WO2016152282A1 - タッチパネル用導電フィルムの端子接続構造およびタッチパネル - Google Patents

タッチパネル用導電フィルムの端子接続構造およびタッチパネル Download PDF

Info

Publication number
WO2016152282A1
WO2016152282A1 PCT/JP2016/053649 JP2016053649W WO2016152282A1 WO 2016152282 A1 WO2016152282 A1 WO 2016152282A1 JP 2016053649 W JP2016053649 W JP 2016053649W WO 2016152282 A1 WO2016152282 A1 WO 2016152282A1
Authority
WO
WIPO (PCT)
Prior art keywords
external connection
conductive film
terminal
width
touch panel
Prior art date
Application number
PCT/JP2016/053649
Other languages
English (en)
French (fr)
Inventor
新 田尻
健介 片桐
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680015163.4A priority Critical patent/CN107430459B/zh
Priority to JP2017507571A priority patent/JP6295375B2/ja
Publication of WO2016152282A1 publication Critical patent/WO2016152282A1/ja
Priority to US15/664,443 priority patent/US10303015B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a terminal connection structure for a conductive film for a touch panel, and more particularly to a terminal connection structure for a conductive film for a touch panel for connecting the conductive film for a touch panel and a flexible circuit board via an anisotropic conductive film. .
  • the present invention also relates to a touch panel having a terminal connection structure of a conductive film for a touch panel.
  • Patent Document 1 discloses a touch panel in which a conductive film for a touch panel is connected to a flexible circuit board.
  • the conductive film for a touch panel shown in Patent Document 1 has a plurality of detection electrodes and a plurality of external connection terminals for connecting the detection electrodes to the flexible circuit board, and the detection electrodes and the external connection terminals are These are connected by routing wiring so as to correspond to each other.
  • these external connection terminals are arranged at regular intervals.
  • the flexible circuit board has a plurality of circuit side terminals arranged at regular intervals in the same direction as the arrangement direction of the external connection terminals.
  • the touch panel is required to be thin, the detection electrode and the external connection terminal of the conductive film for the touch panel are also extremely thin, and the conductive film for the touch panel and the flexible circuit board are thermocompression bonded via the anisotropic conductive film.
  • a plurality of external connection terminals of a conductive film for a touch panel is connected to a plurality of circuit side terminals of a flexible circuit board.
  • the anisotropic conductive film extends in a direction crossing the plurality of external connection terminals of the conductive film for touch panel and is disposed so as to overlap between the external connection terminals and the plurality of circuit side terminals of the flexible circuit board. At this time, since the anisotropic conductive film crosses each external connection terminal, a pair of ends in a direction orthogonal to the direction in which the anisotropic conductive film extends overlaps each external connection terminal. Become.
  • the conductive film for touch panel and the flexible circuit board are thermocompression bonded via the anisotropic conductive film, the plurality of external connection terminals of the conductive film for touch panel are respectively connected to the corresponding circuit side terminals of the flexible circuit board.
  • the flexible circuit board, the anisotropic conductive film, and the conductive film for touch panel that are overlapped with each other are pressed during thermocompression bonding, the plurality of external connection terminals, the anisotropic conductive film, and the flexible circuit board of the conductive film for touch panel are pressed. Where the circuit side terminals overlap, a shearing force is applied to each external connection terminal from a pair of ends of the anisotropic conductive film located on the external connection terminal. Moreover, as described above, the external connection terminals of the conductive film for a touch panel are formed extremely thin.
  • the pressure of the pressure bonding is not evenly applied to the entire surface of the anisotropic conductive film and is anisotropic.
  • the external connection terminal of the conductive film for touch panel may be broken by the end of the anisotropic conductive film.
  • each circuit-side terminal of the flexible circuit board has a width equal to or greater than the corresponding external connection terminal of the conductive film for the touch panel, and covers the external connection terminal in the width direction, that is, the direction in which the anisotropic conductive film crosses.
  • the breakage extends from one end portion in the width direction of the external connection terminal to the other end portion, and the external connection terminal is divided into two.
  • An object of the present invention is to provide a terminal connection structure for a conductive film.
  • Another object of the present invention is to provide a touch panel having such a terminal connection structure for a conductive film for a touch panel.
  • the terminal connection structure of the conductive film for touch panels which concerns on this invention is the conductive film for touch panels which connects the some external connection terminal of the conductive film for touch panels to the some circuit side terminal of a flexible circuit board via an anisotropic conductive film.
  • the terminal connection structure the plurality of external connection terminals and the plurality of circuit side terminals are arranged in the first direction and arranged so as to at least partially overlap each other.
  • a plurality of lead wirings each connecting the electrodes and the plurality of detection electrodes to the plurality of external connection terminals, and the plurality of external connection terminals are arranged at positions where the connection portions with the plurality of lead wirings are different from each other.
  • the anisotropic conductive film extends in the first direction and has a plurality of external connection terminals and a plurality of external connection terminals. Arranged between the circuit side terminals, and for each external connection terminal, the overlapping region of the circuit side terminal and the anisotropic conductive film has a pair of end portions in the second direction orthogonal to the first direction. At the same time, the width W1 in the first direction of the first end located on the side of the connection portion between the external connection terminal and the lead wiring out of the pair of end portions is the first of the external connection terminals overlapping the first end portion. It is characterized by being smaller than the width W2 in the direction.
  • the width W3 in the first direction of the second end located on the side opposite to the connection side between the external connection terminal and the lead wiring out of the pair of ends is the second. It is preferable that it is smaller than the width W4 in the first direction of the external connection terminal that overlaps the end of the external connection terminal.
  • Each of the plurality of external connection terminals may have a rectangular shape, and at least two of the plurality of external connection terminals may have a configuration in which a plurality of routing wires are connected to different sides of the rectangle. Further, at least two of the plurality of external connection terminals may be connected to lead wires on opposite sides of the rectangle.
  • the plurality of circuit side terminals each have a plurality of terminal branch portions extending in the second direction, and the sum W5 of the widths in the first direction at the first ends of the plurality of terminal branch portions is the first end. It can also be set as the structure smaller than the width W2 of the 1st direction of the external connection terminal which overlaps with a part. In this case, it is desirable that the sum W6 of the widths in the first direction at the second ends of the plurality of terminal branch portions is smaller than the width W4 in the first direction of the external connection terminals overlapping the second ends. .
  • the conductive film for a touch panel has an insulating substrate with a thickness of 50 ⁇ m or less, and the plurality of detection electrodes and the plurality of routing wires can be arranged on the surface of the insulating substrate.
  • the plurality of detection electrodes are preferably formed from mesh-like fine metal wires.
  • the fine metal wire can be formed of at least one of gold, silver, and copper.
  • the touch panel which has the terminal connection structure of these conductive films for touch panels can also be comprised.
  • the overlapping region of the circuit-side terminal and the anisotropic conductive film has a pair of end portions in the second direction orthogonal to the first direction,
  • the first direction width W1 of the first end portion located on the connection portion side between the external connection terminal and the lead-out wiring of the pair of end portions is the first direction of the external connection terminal overlapping the first end portion. Since the width W2 is smaller than the width W2, the conductive film for a touch panel can perform reliable electrical connection with the flexible circuit board through the anisotropic conductive film.
  • FIG. (A) And (B) is a top view which shows the various aspects of the external connection terminal which the test piece of a temperature change test has.
  • Embodiment 1 Embodiments of the present invention will be described below with reference to the accompanying drawings.
  • the conductive film 1 for a touch panel has a rectangular transparent insulating substrate 11.
  • a plurality of first detection electrodes 12 extending along the first direction D1 and arranged in parallel along the second direction D2 orthogonal to the first direction D1 are formed.
  • a plurality of first routing wires 13 corresponding to the plurality of first detection electrodes 12 are disposed, and a plurality of first wirings corresponding to the plurality of first detection electrodes 12 are provided in the vicinity of the edge portion 11A of the insulating substrate 11.
  • the rectangular first external connection terminals 14 are arrayed along the first direction D1.
  • One end portion of the corresponding first routing wire 13 is connected to each first detection electrode 12, and the other end portion of the first routing wire 13 is connected to the corresponding first external connection terminal 14. Yes.
  • the other end portions of some of the first routing wirings 13 are connected to the corresponding first external connection terminals 14 on the edge 11 ⁇ / b> A side of the insulating substrate 11.
  • the other end portions of the other first routing wirings 13 are respectively connected to the corresponding first external connection terminals 14 along the second direction D2 from the side opposite to the edge portion 11A side. ing.
  • a plurality of second detection electrodes 21 extending along the second direction D2 and arranged in parallel along the first direction D1 are formed on the back surface of the insulating substrate 11, and a plurality of second detection electrodes 21 are formed.
  • a plurality of second routing wirings 22 corresponding to the detection electrodes 21 are arranged, and a plurality of rectangular second externals corresponding to the plurality of second detection electrodes 21 are provided in the vicinity of the edge portion 11A of the insulating substrate 11.
  • the connection terminals 23 are arrayed along the first direction D1. One end portion of the corresponding second routing wire 22 is connected to each second detection electrode 21, and the other end portion of the second routing wire 22 is connected to the corresponding second external connection terminal 23. Yes.
  • the other end portions of some of the second routing wirings 22 are connected to the corresponding second external connection terminals 23 on the edge 11 ⁇ / b> A side of the insulating substrate 11.
  • the other end portions of the other second routing wires 22 are respectively connected to the corresponding second external connection terminals 23 along the second direction D2 from the side opposite to the edge portion 11A side. ing.
  • the strip-shaped first anisotropic conductive film 3 is disposed so as to cross the plurality of first external connection terminals 14 along the first direction D1.
  • the length of the first anisotropic conductive film 3 in the second direction D2 is set to a value smaller than the length of each first external connection terminal 14 in the second direction D2.
  • the strip-shaped second anisotropic conductive film 4 is disposed so as to cross the plurality of second external connection terminals 23 along the first direction D1.
  • the length of the second anisotropic conductive film 4 in the second direction D2 is the same as that of the first anisotropic conductive film 3 in the second direction D2 of each second external connection terminal 23. It is set to a smaller value.
  • the flexible circuit board 5 which has flexibility is arrange
  • the flexible circuit board 5 covers the plurality of first external connection terminals 14 and the first anisotropic conductive film 3.
  • a flexible circuit board (not shown) is also disposed on the back surface of the touch panel conductive film 1 so as to cover the plurality of second external connection terminals 23 and the second anisotropic conductive film 4.
  • the first anisotropic conductive film 3 in the present invention is made of an anisotropic conductive material that exhibits adhesiveness and conductivity in the thickness direction by thermocompression bonding, and includes a plurality of first conductive films 1 for the touch panel.
  • One external connection terminal 14 is connected to a plurality of circuit side terminals (not shown) of the flexible circuit board 5.
  • the second anisotropic conductive film 4 also has a function similar to that of the first anisotropic conductive film 3.
  • the conductive film 1 for a touch panel, the first anisotropic conductive film 3 and the flexible circuit board 5 are bonded together by thermocompression bonding in the thickness direction. Thereby, the 1st external connection terminal 14 of the conductive film 1 for touchscreens and the corresponding circuit side terminal of the flexible circuit board 5 are electrically connected through the 1st anisotropic conductive film 3.
  • FIG. 1st anisotropic conductive film 3 FIG. 1st anisotropic conductive film 3.
  • the first detection electrodes 12 arranged on the surface of the insulating substrate 11 are preferably formed by a mesh pattern made of fine metal wires 12 a and arranged on the back surface of the insulating substrate 11.
  • the second detection electrode 21 is also preferably formed by a mesh pattern made of fine metal wires 21a.
  • the formation method of these mesh patterns is not specifically limited, For example, it can form by a silver salt system.
  • the material of the metal fine wire 12a and the metal fine wire 21a is not particularly limited as long as it has desired conductivity. For example, it can be formed from at least one of gold, silver, and copper.
  • FIG. 3 shows a state where one first external connection terminal 14 of the conductive film 1 for touch panel and one circuit side terminal 51 of the flexible circuit board 5 are connected via the first anisotropic conductive film 3.
  • the first anisotropic conductive film 3 is arranged so as to cross the first external connection terminal 14 of the conductive film 1 for touch panel in the first direction D1, and the rectangular circuit side terminal 51 of the flexible circuit board 5 is:
  • the first anisotropic conductive film 3 and a part of the first external connection terminal 14 are disposed so as to extend along the second direction D2 and to overlap each other.
  • the overlapping region S between the first anisotropic conductive film 3 and the circuit-side terminal 51 has a first end E1 and a second end E2 in the second direction D2.
  • the first end portion E1 is located on the connection portion J side of the first external connection terminal 14 and the first routing wiring 13, and the first end portion E1 in the first direction D1 It has a width W1.
  • the first external connection terminal 14 has a second width W2 in the first direction D1 at a position where the first end E1 overlaps.
  • the first width W1 is set to a smaller value than the second width W2.
  • the second end portion E2 is located on the side opposite to the connection portion J side and has a third width W3 in the first direction D1.
  • the first external connection terminal 14 has a fourth width W4 in the first direction D1 at a position where the second end E2 overlaps.
  • the third width W3 is set to a smaller value than the fourth width W4.
  • the first width W1 is equal to the third width W3.
  • the second width W2 Is equal to the fourth width W4.
  • the first external connection terminal 14 the first anisotropic conductive film 3 and the circuit side terminal 51 are overlapped, so that a particularly large pressure is applied during thermocompression bonding. For this reason, for example, when a pressure larger than the second end portion E2 side acts on the first end portion E1 side without applying pressure evenly to the entire surface of the overlapping region S, the first anisotropic conductive film A large shearing force is applied to the first external connection terminal 14 from the corresponding end portion 3.
  • the conductive film 1 for a touch panel and the plurality of first external connection terminals 14 may be deformed, and a fracture portion B may be generated in a part of the first external connection terminal 14 as shown in FIG.
  • the thickness of the insulating substrate 11 of the conductive film 1 for touch panels is set to a small value, the conductive film 1 for touch panels is easily deformed, and such breakage is further likely to occur.
  • the first external connection terminal is smaller because the first width W1 of the first end E1 is smaller than the second width W2 of the first external connection terminal 14.
  • 14 has the remaining part 15 which is not fractured on both sides of the fractured part B in the first direction D1. Therefore, as shown in FIG. 5, the first routing is performed from the circuit side terminal 51 through the remaining portion 15 via the first anisotropic conductive film 3 and the first external connection terminal 14 in the overlapping region S. A current path R leading to the connection portion J with the wiring 13 is secured. Thereby, even if the fracture
  • the external connection terminal at a position overlapping the first end E1 14 may not only be broken, but may also be broken in the first external connection terminal 14 up to a position overlapping the end along the second direction D2 of the circuit-side terminal 51 adjacent to the first end E1. Conceivable. However, even in such a case, since the first external connection terminal 14 is not broken at the position overlapping the second end E2, the current path R from the circuit-side terminal 51 to the first routing wiring 13 is not affected. Is secured.
  • the external connection terminal 14 at a position overlapping the second end E2 breaks.
  • the second end portion E2 is located on the opposite side of the pair of end portions E1 and E2 of the first anisotropic conductive film 3 from the connection portion J with the first routing wiring 13, so that the second end portion E2 is not broken. Regardless, a current path R from the circuit side terminal 51 to the first routing wiring 13 is secured.
  • connection portions J of the plurality of first external connection terminals 14 and the plurality of routing wires 13 are alternately arranged in the second direction D2, but the first portion in the overlapping region S Of the pair of end portions E1 and E2 of the anisotropic conductive film 3, the width W1 of the first end portion E1 located on the connection portion J side of the first external connection terminal 14 and the first routing wiring 13 is the first.
  • the width is set smaller than the width W2 of the first external connection terminal 14 at the position overlapping the first end E1, the pair of the first anisotropic conductive films 3 crossing the plurality of first external connection terminals 14 Even if the pressure is biased to any of the side ends of the first external connection terminals 14 and the respective first external connection terminals 14 are broken, all the first external connection terminals 14 reach from the circuit side terminals 51 to the first routing wirings 13. A current path R is secured. Accordingly, the first lead wiring 13 and the circuit side terminal 51 are electrically connected.
  • the width W3 in the 2nd end part E2 is this Since the first external connection terminal 14 is set to a value smaller than the width W4 of the first external connection terminal 14 at the position overlapping the second end E2, the first external connection terminal 14 has the remaining portions 15 on both sides of the fracture portion B. . Therefore, regardless of the position of the first external connection terminal 14 where the connection portion J with the first routing wiring 13 is disposed, a current path R is secured after thermocompression bonding, and the first routing wiring 13 is secured. And the circuit side terminal 51 is electrically connected.
  • the length in the second direction D2 of the first anisotropic conductive film 3 shown in FIG. 3 is L
  • the area of the overlapping region S is A1
  • the ratio (A1 / A2) is preferably 95% to 20%, more preferably 90% to 35%, and most preferably 85% to 50%.
  • the ratio (A1 / A2) is preferably at least 20% or more.
  • the conductive film for touch panel 1 can obtain a reliable electrical connection with the flexible circuit board 5 through the first anisotropic conductive film 3.
  • the plurality of second external connection terminals 23 and the second anisotropic conductive film 4 of the conductive film 1 for touch panel and a plurality of circuits of a flexible circuit board (not shown).
  • the side terminals have the same relationship as the plurality of first external connection terminals 14, the first anisotropic conductive film 3, and the plurality of circuit side terminals 51 of the flexible circuit board 5 on the surface of the insulating substrate 11.
  • the conductive film 1 for a touch panel can obtain a reliable electrical connection with a flexible circuit board (not shown) via the second anisotropic conductive film 4.
  • the first external connection terminal 14, the second external connection terminal 23, the first routing wiring 13, and the second routing wiring 22 are each made of metal but have desired conductivity.
  • the type of metal is not particularly limited as long as it is present.
  • the thickness of each first external connection terminal 14 is preferably 0.05 to 5 ⁇ m, and most preferably 0.1 to 2 ⁇ m, in order to reduce the level difference with the insulating substrate 11.
  • the space between the first external connection terminals 14 adjacent to each other is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and most preferably 200 ⁇ m or less in order to save space.
  • each first external connection terminal 14 in the first direction D1 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and most preferably 200 ⁇ m or less for space saving, but this width is too narrow.
  • at least 50 ⁇ m or more is preferable. The same applies to each of the second external connection terminals 23.
  • the material of the insulating substrate 11 of the conductive film for touch panel 1 is not particularly limited as long as it can support the plurality of first detection electrodes 12 and the plurality of second detection electrodes 21, but is suitable for the conductive film for touch panel.
  • a transparent plastic film is preferred.
  • the thickness of the insulating substrate 11 is not particularly limited as long as the plurality of first detection electrodes 12 and the plurality of second detection electrodes 21 can be supported. However, in consideration of material cost, the thickness is preferably 100 ⁇ m or less, and 50 ⁇ m. The following is more preferable.
  • the material of the first anisotropic conductive film 3 is not particularly limited as long as it has a desired conductivity, but the conductive film 1 for a touch panel and the flexible circuit board 5 due to heat at the time of thermocompression bonding. In order to prevent deformation, those that can be used at 170 ° C. or lower are desirable, those that can be used at 150 ° C. or lower are more preferable, and those that can be used at 130 ° C. or lower are most preferable. Further, the thickness of the first anisotropic conductive film 3 is preferably 30 ⁇ m or less, and more preferably 20 ⁇ m or less, in order to reduce the step between the first external connection terminal 14 and the circuit side terminal 51. These are similarly applied to the second anisotropic conductive film 4.
  • the material of the flexible circuit board 5 is not particularly limited as long as it has desired flexibility.
  • the thickness of the circuit side terminal 51 of the flexible circuit board 5 is preferably 60 ⁇ m or less, and more preferably 40 ⁇ m or less in order to prevent deformation of the conductive film 1 for touch panel during thermocompression bonding.
  • the plurality of first detection electrodes 12, the first routing wirings 13, and the first external connection terminals 14 are arranged on the surface of the insulating substrate 11, and on the back surface of the insulating substrate 11.
  • the plurality of second detection electrodes 21, the second routing wirings 22 and the second external connection terminals 23 are arranged in the above, the present invention is not limited to this.
  • a plurality of first detection electrodes 12 and a plurality of second detection electrodes 21 are arranged on one surface side of the insulating substrate 11 via an interlayer insulating film, and are arranged on the same surface side of the insulating substrate 11.
  • One lead-out wiring 13 and second lead-out wiring 22 may be arranged, and the first external connection terminal 14 and the second external connection terminal 23 may be arranged. Moreover, it can also be set as the structure of 2 sheets. That is, the plurality of first detection electrodes 12, the first routing wirings 13, and the first external connection terminals 14 are arranged on the surface of the first insulating substrate, and the plurality of first detection electrodes 12, the first external connection terminals 14 are arranged on the surface of the second insulating substrate. It is also possible to arrange the two detection electrodes 21, the second routing wiring 22 and the second external connection terminal 23 so that the first insulating substrate and the second insulating substrate are overlapped with each other.
  • the circuit-side terminal 51 is rectangular as shown in FIG. 3, but it is not necessarily rectangular, and may be trapezoidal as shown in FIG.
  • the first width W1 of the first end E1 of the overlapping region S is smaller than the second width W2 of the first external connection terminal 14.
  • the first external connection terminal 14 has the remaining portion 15 and the current path R is secured. Therefore, the first routing wiring 13 and the circuit side terminal 61 are electrically connected.
  • the third width W3 of the second end portion E2 is set to a value smaller than the fourth width W4 of the first external connection terminal 14, so that the connection portion with the first lead wiring 13 is obtained. Regardless of the breakage that occurs in the first external connection terminal 14 at the time of thermocompression bonding, J is arranged at any position of the first external connection terminal 14. Are electrically connected.
  • the first external connection terminal 14 has a rectangular shape as shown in FIG. 3.
  • the first external connection terminal 14 does not necessarily have a rectangular shape, and may have a trapezoidal shape as shown in FIG. good.
  • the first width W1 of the first end E1 is smaller than the second width W2 of the first external connection terminal 71.
  • the third width W3 of the second end E2 is set to a value smaller than the fourth width W4 of the first external connection terminal 71, so that the first external connection can be performed during thermocompression bonding. Since the terminal 14 has the remaining portion 15 and the current path R is ensured, the connection portion J with the first routing wiring 13 is arranged at any position of the first external connection terminal 71. Regardless of the breakage that occurs in the first external connection terminal 71 during thermocompression bonding, the first routing wiring 13 and the circuit side terminal 51 are electrically connected.
  • the shape of the first external connection terminal 71 is not particularly limited to a rectangular shape or a trapezoidal shape as long as it has desired conductivity, and may be a comb shape or a wedge shape.
  • the circuit-side terminal 51 is rectangular as shown in FIG. 3, but it is not necessarily rectangular, and a plurality of terminals extending in the second direction D2 as shown in FIG. A comb shape having a terminal branch portion C may be used.
  • the plurality of overlapping regions S formed by the plurality of terminal branch portions C of the circuit-side terminal 81 and the first anisotropic conductive film 3 include the plurality of first ends E1 and the second ends in the second direction D2.
  • Part E2 is included.
  • the respective first ends E1 are arranged in the first direction D1 and are located on the connection portion J side between the first external connection terminal 14 and the first routing wiring 13, and the first ends E1 are arranged in the first direction D1.
  • the sum W5 of the first branch widths W5A, W5B, and W5C is set to a value smaller than the second width W2.
  • each second end E2 is arranged in the first direction D1 and is located on the opposite side to the connection J side between the first external connection terminal 14 and the first routing wiring 13, 1 has a second branch width W6A, W6B, W6C in the direction D1.
  • the sum W6 of the second branch widths W6A, W6B, and W6C is set to a value smaller than the fourth width W4.
  • the circuit side terminal 81 has a comb shape having a plurality of terminal branch portions C
  • the sum W5 of the first branch widths W5A, W5B, W5C of the plurality of overlapping regions S is the first external connection.
  • the first external connection terminal 14 can be broken regardless of the fracture that occurs in the first external connection terminal 14 in the same manner as in the first to third embodiments. Since the external connection terminal 14 has the remaining portion 15 and the current path R is secured, the first lead wiring 13 and the circuit side terminal 81 are electrically connected.
  • the sum W6 of the second branch widths W6A, W6B, and W6C is set to a value smaller than the fourth width W4 of the first external connection terminal 14, so that the same as in the first to third embodiments. Regardless of the breakage that occurs in the first external connection terminal 14 during thermocompression bonding, regardless of where the connection portion J with the first routing wiring 13 is disposed at any position of the first external connection terminal 14, The first lead wiring 13 and the circuit side terminal 81 are electrically connected.
  • the area A3 ((W5A + W6A) + (W5B + W6B) + (W5C + W6C)) ⁇ L / 2
  • the ratio (A3 / A2) to A2 which is the area of the region where the first anisotropic conductive film 3 and the first external connection terminal 14 overlap may be 95% to 20%. Preferably, it is 90% to 35%, more preferably 85% to 50%.
  • the terminal connection structure of the conductive film for touch panel according to Embodiments 1 to 4 to the touch panel, the conductive film for touch panel, the anisotropic conductive film, and the flexible circuit board incorporated in the touch panel are reliable. A reliable electrical connection can be obtained.
  • a method for producing the conductive film for a touch panel used in such a terminal connection structure for a conductive film for a touch panel is not particularly limited, but a silver halide emulsion layer containing silver halide and a binder on both surfaces of the insulating substrate 11 respectively. That is, a method having a step (1) of forming a photosensitive layer and a step (2) of developing the photosensitive layer after exposing the photosensitive layer. Below, each process is demonstrated.
  • Step (1) is a step of forming a photosensitive layer containing silver halide and a binder on both surfaces of the insulating substrate 11.
  • the method for forming the photosensitive layer is not particularly limited, but from the viewpoint of productivity, the photosensitive layer forming composition containing silver halide and a binder is brought into contact with the insulating substrate 11 and photosensitive on both sides of the insulating substrate 11.
  • a method of forming a conductive layer is preferred.
  • the photosensitive layer forming composition contains a silver halide and a binder.
  • the halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof.
  • As the silver halide for example, silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
  • the type of binder used is not particularly limited, and a known polymer can be used.
  • a water-soluble binder water-soluble polymer
  • a water-soluble binder water-soluble polymer
  • gelatin carrageenan
  • polyvinyl alcohol PVA
  • polyvinyl pyrrolidone PVP
  • polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacrylic acid , Polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, sodium alginate and the like.
  • the binder may be contained in the composition for photosensitive layer formation in the form of latex.
  • the composition for forming a photosensitive layer contains a solvent, if necessary.
  • the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
  • the method for bringing the composition for forming a photosensitive layer into contact with the insulating substrate 11 is not particularly limited, and a known method can be adopted.
  • coating the composition for photosensitive layer formation to the insulating substrate 11, the method of immersing the insulating substrate 11 in the composition for photosensitive layer formation, etc. are mentioned.
  • the protective layer By providing the protective layer, scratches can be prevented and mechanical properties can be improved.
  • Step (2) Exposure development process>
  • the photosensitive layer obtained in the above step (1) is subjected to pattern exposure and then developed to thereby perform the first detection electrode 12, the first routing wiring 13, and the first external connection terminal. 14, and the second detection electrode 21, the second lead wiring 22, and the second external connection terminal 23 are formed.
  • the pattern exposure process will be described in detail below, and then the development process will be described in detail.
  • the silver halide in the photosensitive layer in the exposed region forms a latent image.
  • fine metal lines are formed by a development process described later.
  • the silver halide dissolves and flows out of the photosensitive layer during the fixing process described later, and a transparent film is obtained.
  • the light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • the method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed.
  • the shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of fine metal wires to be formed.
  • the development processing method is not particularly limited, and a known method can be employed.
  • a usual development processing technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the type of the developer used in the development process is not particularly limited.
  • PQ developer, MQ developer, MAA developer and the like can be used.
  • Commercially available products include, for example, CN-16, CR-56, CP45X, FD-3, Papitol, C-41, E-6, RA-4, D-19, D-72 prescribed by KODAK.
  • a developer contained in a kit thereof can be used.
  • a lith developer can also be used.
  • the development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a technique of fixing process used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • undercoat layer forming step For the reason of excellent adhesion between the insulating substrate 11 and the silver halide emulsion layer, a step of forming an undercoat layer containing the above-mentioned predetermined compound on the surface of the insulating substrate 11 is performed before the step (1). Is preferred.
  • Anti-halation layer formation process From the viewpoint of thinning the thin metal wires 12a and 21a, it is preferable to carry out a step of forming antihalation layers on both surfaces of the insulating substrate 11 before the step (1).
  • Example 1 (Preparation of silver halide emulsion) To the following 1 liquid maintained at 38 ° C. and pH 4.5, an amount corresponding to 90% of each of the following 2 and 3 liquids was simultaneously added over 20 minutes while stirring to form 0.16 ⁇ m core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 ⁇ m. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
  • the emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added.
  • Chemical sensitization to obtain optimum sensitivity at 0 ° C. 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was.
  • the finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
  • Photosensitive layer forming step After the corona discharge treatment is performed on the insulating substrate, the gelatin layer having a thickness of 0.1 ⁇ m is formed on both sides of the insulating substrate as a primer layer, and further, the decolorization is performed on the primer layer with an alkali of a developer having an optical density of about 1.0.
  • An antihalation layer containing a dye was provided.
  • the photosensitive layer forming composition was applied, a gelatin layer having a thickness of 0.15 ⁇ m was further provided, and an insulating substrate having a photosensitive layer formed on the surface was obtained.
  • An insulating substrate having a photosensitive layer formed on the surface is referred to as film A.
  • the formed photosensitive layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
  • Exposure development process Using parallel light using a high-pressure mercury lamp as a light source through a photomask corresponding to the pattern of the first detection electrode 12, the first routing wiring 13, and the first external connection terminal 14 on the surface of the film A Exposure was performed. After the exposure, development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, by rinsing with pure water and drying, an insulating substrate having a conductive member made of Ag wire and a gelatin layer formed on both surfaces was obtained. A gelatin layer was formed between Ag lines. The resulting film is referred to as film B.
  • the film B was left to stand in a superheated steam bath at 120 ° C. for 130 seconds and subjected to heat treatment.
  • the film after the heat treatment is referred to as film C.
  • This film C is a conductive film for touch panels.
  • first routing wirings 13 corresponding to the ten first external connection terminals 14 as shown in FIG. 10A are arranged in the first direction D1 and each of them is arranged.
  • a conductive film for a touch panel used in Example 1 in which the first external connection terminals 14 and the first routing wirings 13 were alternately connected in the second direction D2 was produced.
  • the thickness of the insulating substrate is 40 ⁇ m.
  • the conductive film for the touch panel is subjected to thermocompression bonding at 140 ° C. and 3 MPa for 10 seconds to the conductive film for the touch panel through an anisotropic conductive film (CP920CM-25AC manufactured by Dexerials Corporation) for 10 seconds.
  • Example 1 100 test pieces of Example 1 in which 10 first external connection terminals 14 of the film were connected to 10 circuit side terminals of the flexible circuit board were produced.
  • the first width W1 0.40 mm
  • the second width W2 0.50 mm
  • the third width W3 0.50 mm
  • the fourth width W4 0.50 mm
  • the length L of the anisotropic conductive film in the second direction D2 was set to 1.5 mm.
  • the length of each first external connection terminal 14 in the second direction D2 was 4.0 mm.
  • Each test piece has ten first external connection terminals 14 and corresponding first routing wirings 13, and the total of the first external connection terminals 14 included in 100 test pieces is 1000 pieces. Become.
  • the prepared test piece was 500 ° C. under conditions of 85 ° C. for 10 minutes on the high temperature side, ⁇ 40 ° C. for 10 minutes on the low temperature side, and 15 ° C./min.
  • the test pieces of Example 2 were each produced by the method.
  • Comparative Example 2 As shown in FIG. 10B, the comparative example is different except that the connection portions J of the first external connection terminals 14 and the first routing wirings 13 are arranged at the same position in the second direction D2. 1 were used to produce test pieces of Comparative Example 2 respectively.
  • the thickness of the insulating substrate is kept constant, the first width W1, the second width W2, the third width W3, the fourth width W4, and Only the position of the connecting portion J in the second direction D is changed.
  • the conductivity M was 80% or more.
  • the electrical conductivity M was 60% or less. Since the temperature change test is performed in an extremely harsh environment compared to the environment in which the touch panel is normally used, the conductivity yield M of 80% or more obtained in Examples 1 to 4 is sufficiently high in reliability. It has shown that the 1st external connection terminal 14 of the conductive film for touchscreens and the circuit side terminal of a flexible circuit board are connected. On the other hand, in Comparative Examples 1 to 3, the conductivity yield M remains at 60% or less, and there is reliability between the first external connection terminal 14 of the conductive film for touch panel and the circuit side terminal of the flexible circuit board. It is assumed that no connection was made.
  • Example 1 and Comparative Example 1 are compared, the only difference is that the first width W1 is set to a value smaller than the second width W2. And the conductivity M of Example 1 was 43% higher than the conductivity M of Comparative Example 1. That is, even if it is the 1st external connection terminal 14 which the fracture
  • the conductivity M of Comparative Example 1 is 13% lower than the conductivity M of Comparative Example 2. That is, when the positions of the connecting portions J are staggered in the second direction D2, the conductivity yield M is lower than when the positions of the connecting portions J are the same in the second direction D2. This is because when the first width W1 and the second width W2 are set to the same value and the connecting portions J are alternately arranged in the second direction D2, whichever of the pair of end portions of the overlapping region is selected. Even when the pressure is biased, it is considered that the first external connection terminal 14 is generated in which the fracture portion is divided over the entire width of the first external connection terminal 14.
  • 1 conductive film for touch panel 11 insulating substrate, 11A edge of insulating substrate, 12 first detection electrode, 12a, 21a metal fine wire, 13 first routing wiring, 14, 71 first external connection terminal, 15 remaining portion , 21 2nd detection electrode, 22 2nd routing wire, 23 2nd external connection terminal, 3rd first anisotropic conductive film, 4th anisotropic conductive film, 5 flexible circuit board, 51, 61, 81 Circuit side terminal, E1 first end, E2 second end, J connection, B fracture, C terminal branch, S overlap region, R current path, L first anisotropy
  • the length of the conductive film in the second direction W1, first width, W2, second width, W3, third width, W4, fourth width, W5A, W5B, W5C, first branch width, W5, first Sum of branch widths, W6A, W6B, W6C Second branch width, W6 sum of the second branch width, D1 first direction, D2 the second direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

 タッチパネル用導電フィルムの複数の外部接続端子およびフレキシブル回路基板の複数の回路側端子は、それぞれ第1の方向に配列されると共に互いに少なくとも一部が重なるように異方性導電膜を介して配置され、タッチパネル用導電フィルムは、複数の検出電極と、複数の検出電極をそれぞれ複数の外部接続端子に接続する複数の引き回し配線を有し、複数の外部接続端子は、複数の引き回し配線との接続部が互いに異なる位置に配置された少なくとも2つの複数の外部接続端子を有し、それぞれの外部接続端子に対して、回路側端子と異方性導電膜との重複領域が第1の方向に直交する第2の方向の一対の端部を有すると共に、一対の端部のうち外部接続端子と引き回し配線との接続部側に位置する第1の端部の第1の方向の幅W1が、第1の端部に重なる外部接続端子の第1の方向の幅W2よりも小さい。

Description

タッチパネル用導電フィルムの端子接続構造およびタッチパネル
 本発明は、タッチパネル用導電フィルムの端子接続構造に係り、特に、異方性導電膜を介してタッチパネル用導電フィルムとフレキシブル回路基板を接続するためのタッチパネル用導電フィルムの端子接続構造に関するものである。
 また、本発明は、タッチパネル用導電フィルムの端子接続構造を有するタッチパネルにも関するものである。
 近年、携帯情報機器を始めとした各種の電子機器において、液晶表示装置等の表示装置と組み合わせて用いられ、画面に接触することにより電子機器への入力操作を行うタッチパネルの普及が進んでいる。タッチパネルの内部では、タッチパネル用導電フィルムが可撓性を有するフレキシブル回路基板を介して駆動用回路に接続されることがある。
 例えば、特許文献1には、タッチパネル用導電フィルムがフレキシブル回路基板に接続されたタッチパネルが掲載されている。
中国特許出願公開第103677363号明細書
 特許文献1に示されるタッチパネル用導電フィルムは、複数の検出電極とこれらの検出電極をフレキシブル回路基板に接続するための複数の外部接続端子を有しており、これらの検出電極と外部接続端子は、それぞれ対応するように引き回し配線で接続されている。また、これらの外部接続端子は、一定の間隔で配列されている。同様に、フレキシブル回路基板は、外部接続端子の配列方向と同一の方向に一定の間隔で配列された複数の回路側端子を有している。
 タッチパネルには薄型化が求められており、タッチパネル用導電フィルムの検出電極および外部接続端子も極めて薄く形成され、異方性導電膜を介してタッチパネル用導電フィルムとフレキシブル回路基板を熱圧着することで、タッチパネル用導電フィルムの複数の外部接続端子をフレキシブル回路基板の複数の回路側端子に接続することが行われている。
 異方性導電膜は、タッチパネル用導電フィルムの複数の外部接続端子を横切る方向に延びると共にこれらの外部接続端子とフレキシブル回路基板の複数の回路側端子の間に重なるように配置される。このとき、異方性導電膜がそれぞれの外部接続端子を横切っているため、異方性導電膜の延びる方向とは直交する方向の一対の端部がそれぞれの外部接続端子の上に重なることとなる。
 異方性導電膜を介してタッチパネル用導電フィルムとフレキシブル回路基板を熱圧着すると、タッチパネル用導電フィルムの複数の外部接続端子が、それぞれ、フレキシブル回路基板の対応する回路側端子に接続される。
 しかしながら、熱圧着の際に、互いに重なるフレキシブル回路基板と異方性導電膜とタッチパネル用導電フィルムが圧迫されるため、タッチパネル用導電フィルムの複数の外部接続端子と異方性導電膜とフレキシブル回路基板の回路側端子が重なっている箇所において、外部接続端子の上に位置する異方性導電膜の一対の端部からそれぞれの外部接続端子にせん断力が加わる。また、上述したように、タッチパネル用導電フィルムの外部接続端子は極めて薄く形成されている。このため、熱圧着時におけるフレキシブル回路基板と異方性導電膜とタッチパネル用導電フィルムの位置ズレ等に起因して、圧着の圧力が異方性導電膜の全面に均等に加わらずに、異方性導電膜の延びる方向に沿った一対の端部のうちいずれかに偏った場合には、タッチパネル用導電フィルムの外部接続端子が異方性導電膜の端部により破断することがある。
 特に、フレキシブル回路基板のそれぞれの回路側端子が、タッチパネル用導電フィルムの対応する外部接続端子と同等以上の幅を有して外部接続端子を幅方向すなわち異方性導電膜が横切る方向に覆っている場合には、外部接続端子の破断が発生すると、破断は、外部接続端子の幅方向の一方の端部から他方の端部にまで及び、外部接続端子が2つに分断されてしまう。
 ここで、複数の引き回し配線が、複数の外部接続端子を横切る異方性導電膜に対して互いに同じ側でそれぞれ対応する外部接続端子に接続されている場合は、異方性導電膜の一対の端部のうち外部接続端子と引き回し配線の接続部側とは反対側の端部に熱圧着の圧力が偏って、外部接続端子が破断しても、複数の引き回し配線とフレキシブル回路基板の複数の回路側端子の導通は確保される。
 しかし、特許文献1に示されるように、複数の引き回し配線が、交互に異なる位置で対応する外部接続端子に接続されていると、異方性導電膜の一対の端部のうちどちらに熱圧着の圧力が偏って外部接続端子の破断が発生しても、引き回し配線を対応するフレキシブル回路基板の回路側端子にまで導通させることができない外部接続端子が発生し、タッチパネル用導電フィルムとフレキシブル回路基板が電気的な接続を得られなくなってしまう。
 この発明は、このような問題点を解消するためになされたもので、タッチパネル用導電フィルムが異方性導電膜を介してフレキシブル回路基板と信頼性のある電気的な接続を行うことができるタッチパネル用導電フィルムの端子接続構造を提供することを目的とする。
 また、この発明は、このようなタッチパネル用導電フィルムの端子接続構造を有するタッチパネルを提供することも目的とする。
 この発明に係るタッチパネル用導電フィルムの端子接続構造は、異方性導電膜を介してタッチパネル用導電フィルムの複数の外部接続端子をフレキシブル回路基板の複数の回路側端子に接続するタッチパネル用導電フィルムの端子接続構造であって、複数の外部接続端子および複数の回路側端子は、それぞれ第1の方向に配列されると共に互いに少なくとも一部が重なるように配置され、タッチパネル用導電フィルムは、複数の検出電極と、複数の検出電極をそれぞれ複数の外部接続端子に接続する複数の引き回し配線を有し、複数の外部接続端子は、複数の引き回し配線との接続部が互いに異なる位置に配置された少なくとも2つの複数の外部接続端子を有し、異方性導電膜は、第1の方向に延びると共に複数の外部接続端子および複数の回路側端子の間に配置され、それぞれの外部接続端子に対して、回路側端子と異方性導電膜との重複領域が第1の方向に直交する第2の方向の一対の端部を有すると共に、一対の端部のうち外部接続端子と引き回し配線との接続部側に位置する第1の端部の第1の方向の幅W1が、第1の端部に重なる外部接続端子の第1の方向の幅W2よりも小さいことを特徴とするものである。
 それぞれの外部接続端子に対して、一対の端部のうち外部接続端子と引き回し配線との接続部側とは反対側に位置する第2の端部の第1の方向の幅W3が、第2の端部に重なる外部接続端子の第1の方向の幅W4よりも小さいことが好ましい。
 複数の外部接続端子は、それぞれ矩形状を有し、少なくとも2つの複数の外部接続端子は、矩形の互いに異なる辺に複数の引き回し配線が接続されている構成としても良い。また、少なくとも2つの複数の外部接続端子は、矩形の互いに対向する辺に引き回し配線が接続されていても良い。
 複数の回路側端子は、それぞれ第2の方向に延びる複数の端子分岐部を有し、複数の端子分岐部の第1の端部における第1の方向の幅の和W5が、第1の端部に重なる外部接続端子の第1の方向の幅W2よりも小さい構成とすることもできる。この場合、複数の端子分岐部の第2の端部における第1の方向の幅の和W6が、第2の端部に重なる外部接続端子の第1の方向の幅W4よりも小さいことが望ましい。
 タッチパネル用導電フィルムは50μm以下の厚さの絶縁基板を有し、複数の検出電極および複数の引き回し配線は、絶縁基板の表面上に配置される構成とすることができる。複数の検出電極は、メッシュ状の金属細線から形成されることが望ましい。また、金属細線は、金、銀、銅の少なくとも1つから形成することができる。
 また、これらのタッチパネル用導電フィルムの端子接続構造を有するタッチパネルを構成することもできる。
 この発明によれば、タッチパネル用導電フィルムの端子接続構造により、回路側端子と異方性導電膜との重複領域が第1の方向に直交する第2の方向の一対の端部を有すると共に、一対の端部のうち外部接続端子と引き回し配線との接続部側に位置する第1の端部の第1の方向の幅W1が、第1の端部に重なる外部接続端子の第1の方向の幅W2よりも小さいので、タッチパネル用導電フィルムが異方性導電膜を介してフレキシブル回路基板と信頼性のある電気的な接続を行うことができる。
この発明の実施の形態1に係るタッチパネル用導電フィルムの端子接続構造が適用されたタッチパネル用導電フィルムを示す平面図である。 タッチパネル用導電フィルムの検出電極を示す部分平面図である。 タッチパネル用導電フィルムの1つの第1の外部接続端子とフレキシブル回路基板の1つの回路側端子が第1の異方性導電膜を介して接続されている様子を示す平面図である。 外部接続端子の破断部の態様を示す平面図である。 外部接続端子の電流の経路の態様を示す平面図である。 隣り合う2つの外部接続端子の電流の経路の態様を示す平面図である。 実施の形態2に係るタッチパネル用導電フィルムの端子接続構造の平面図である。 実施の形態3に係るタッチパネル用導電フィルムの端子接続構造の平面図である。 実施の形態4に係るタッチパネル用導電フィルムの端子接続構造の平面図である。 (A)および(B)は、温度変化試験のテストピースが有する外部接続端子の各種の態様を示す平面図である。
実施の形態1
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 図1に、この発明の実施の形態1に係るタッチパネル用導電フィルムの端子接続構造が適用されたタッチパネル用導電フィルムの構成を示す。このタッチパネル用導電フィルム1は、矩形状の透明な絶縁基板11を有している。絶縁基板11の表面上には、それぞれ第1の方向D1に沿って延び且つ第1の方向D1に直交する第2の方向D2に沿って並列配列された複数の第1の検出電極12が形成され、複数の第1の検出電極12に対応する複数の第1の引き回し配線13が配置されると共に、絶縁基板11の縁部11Aの近傍に複数の第1の検出電極12に対応する複数の矩形状の第1の外部接続端子14が第1の方向D1に沿って配列形成されている。
 それぞれの第1の検出電極12には対応する第1の引き回し配線13の一端部が接続され、第1の引き回し配線13の他端部は、対応する第1の外部接続端子14に接続されている。このとき、複数の第1の引き回し配線13の内、一部の第1の引き回し配線13の他端部は、これらに対応する第1の外部接続端子14に、絶縁基板11の縁部11A側から第2の方向D2に沿ってそれぞれ接続されている。
 一方で、その他の第1の引き回し配線13の他端部は、これらに対応する第1の外部接続端子14に、縁部11A側とは反対側から第2の方向D2に沿ってそれぞれ接続されている。
 また、絶縁基板11の裏面には、それぞれ第2の方向D2に沿って延び且つ第1の方向D1に沿って並列配列された複数の第2の検出電極21が形成され、複数の第2の検出電極21に対応する複数の第2の引き回し配線22が配置されると共に、絶縁基板11の縁部11Aの近傍に複数の第2の検出電極21に対応する複数の矩形状の第2の外部接続端子23が第1の方向D1に沿って配列形成されている。
 それぞれの第2の検出電極21には対応する第2の引き回し配線22の一端部が接続され、第2の引き回し配線22の他端部は、対応する第2の外部接続端子23に接続されている。このとき、複数の第2の引き回し配線22の内、一部の第2の引き回し配線22の他端部は、これらに対応する第2の外部接続端子23に、絶縁基板11の縁部11A側から第2の方向D2に沿ってそれぞれ接続されている。
 一方で、その他の第2の引き回し配線22の他端部は、これらに対応する第2の外部接続端子23に、縁部11A側とは反対側から第2の方向D2に沿ってそれぞれ接続されている。
 タッチパネル用導電フィルム1の表面上において、複数の第1の外部接続端子14を第1の方向D1に沿って横切るように、帯状の第1の異方性導電膜3が配置されている。第1の異方性導電膜3の第2の方向D2の長さは、それぞれの第1の外部接続端子14の第2の方向D2の長さよりも、小さい値に設定されている。
 タッチパネル用導電フィルム1の裏面上においても、複数の第2の外部接続端子23を第1の方向D1に沿って横切るように、帯状の第2の異方性導電膜4が配置されている。第2の異方性導電膜4の第2の方向D2の長さは、第1の異方性導電膜3と同様に、それぞれの第2の外部接続端子23の第2の方向D2の長さよりも、小さい値に設定されている。
 また、タッチパネル用導電フィルム1の表面に重なるように、可撓性を有するフレキシブル回路基板5が配置されている。フレキシブル回路基板5は、複数の第1の外部接続端子14および第1の異方性導電膜3を覆っている。
 同様に、タッチパネル用導電フィルム1の裏面にも、図示しないフレキシブル回路基板が、複数の第2の外部接続端子23および第2の異方性導電膜4を覆うように配置されている。
 ここで、本発明における第1の異方性導電膜3とは、熱圧着により接着性と厚み方向への導電性とを示す異方導電性材料からなり、タッチパネル用導電フィルム1の複数の第1の外部接続端子14とフレキシブル回路基板5の図示しない複数の回路側端子とを接続するためのものである。また、第2の異方性導電膜4も、第1の異方性導電膜3と同様の機能を有するものである。
 タッチパネル用導電フィルム1と第1の異方性導電膜3とフレキシブル回路基板5は、厚み方向に熱圧着されることで互いに接合される。これにより、タッチパネル用導電フィルム1の第1の外部接続端子14とフレキシブル回路基板5の対応する回路側端子が、第1の異方性導電膜3を介して電気的に接続される。
 図2に示されるように、絶縁基板11の表面上に配置された第1の検出電極12は、金属細線12aからなるメッシュパターンにより形成されることが好ましく、絶縁基板11の裏面上に配置された第2の検出電極21も、金属細線21aからなるメッシュパターンにより形成されることが好ましい。これらのメッシュパターンの形成方法は、特に限定されるものではないが、例えば、銀塩方式により形成することができる。また、金属細線12aおよび金属細線21aの材質は、所望の導電性を有していれば特に限定されるものではないが、例えば、金、銀、銅の少なくとも1つから形成することができる。
 図3は、タッチパネル用導電フィルム1の1つの第1の外部接続端子14とフレキシブル回路基板5の1つの回路側端子51が第1の異方性導電膜3を介して接続されている様子を示している。第1の異方性導電膜3がタッチパネル用導電フィルム1の第1の外部接続端子14を第1の方向D1に横切るように配置され、フレキシブル回路基板5の矩形状の回路側端子51は、第2の方向D2に沿って延びると共に第1の異方性導電膜3および第1の外部接続端子14の一部と互いに重なるように配置されている。
 第1の異方性導電膜3と回路側端子51の重複領域Sは、第2の方向D2の第1の端部E1および第2の端部E2を有している。これらの端部E1およびE2のうち、第1の端部E1は、第1の外部接続端子14と第1の引き回し配線13の接続部J側に位置し、第1の方向D1における第1の幅W1を有している。また、第1の外部接続端子14は、第1の端部E1が重なる位置において第1の方向D1における第2の幅W2を有している。そして、第1の幅W1は、第2の幅W2よりも、小さい値に設定されている。
 同様に、端部E1およびE2のうち、第2の端部E2は、接続部J側とは反対側に位置し、第1の方向D1における第3の幅W3を有している。また、第1の外部接続端子14は、第2の端部E2が重なる位置において第1の方向D1における第4の幅W4を有している。そして、第3の幅W3は、第4の幅W4よりも、小さい値に設定されている。
 なお、実施の形態1では、回路側端子51および第1の外部接続端子14は共に矩形状であるため、第1の幅W1は第3の幅W3と等しく、同様に、第2の幅W2は第4の幅W4と等しい。
 重複領域Sでは、第1の外部接続端子14と第1の異方性導電膜3と回路側端子51が重なっているため、熱圧着の際に特に大きい圧力を受ける。このため、重複領域Sの全面に均等に圧力が加わらずに、例えば、第2の端部E2側よりも大きい圧力が第1の端部E1側に作用すると、第1の異方性導電膜3の対応する端部から第1の外部接続端子14に大きいせん断力が加わる。このとき、タッチパネル用導電フィルム1および複数の第1の外部接続端子14が変形して、図4に示されるように、第1の外部接続端子14の一部分に破断部Bが生じることがある。
 なお、タッチパネル用導電フィルム1の絶縁基板11の厚さが小さい値に設定されている場合、タッチパネル用導電フィルム1は変形しやすく、このような破断がさらに生じやすくなる。
 しかし、このような破断部Bが生じても、第1の端部E1の第1の幅W1が第1の外部接続端子14の第2の幅W2よりも小さいため、第1の外部接続端子14は、破断部Bの第1の方向D1の両側に破断していない残存部15を有することとなる。このため、図5に示されるように、回路側端子51から重複領域Sにおける第1の異方性導電膜3および第1の外部接続端子14を介して残存部15を通り、第1の引き回し配線13との接続部Jへと繋がる電流の経路Rが確保される。これにより、第1の外部接続端子14に破断部Bが生じても、第1の引き回し配線13と回路側端子51は、電気的に接続される。
 また、熱圧着の際に、重複領域Sの第2の端部E2側よりも大きい圧力が第1の端部E1側に作用した場合に、第1の端部E1に重なる位置の外部接続端子14に破断が生じるだけでなく、第1の端部E1に隣接する回路側端子51の第2の方向D2に沿った端部に重なる位置まで第1の外部接続端子14に破断が生じることが考えられる。
 しかし、このような場合でも、第2の端部E2に重なる位置においては第1の外部接続端子14に破断が生じないため、回路側端子51から第1の引き回し配線13まで至る電流の経路Rが確保される。
 一方、重複領域Sの第1の端部E1側よりも大きい圧力が第2の端部E2側に作用して、第2の端部E2に重なる位置の外部接続端子14に破断が生じても、第2の端部E2は、第1の異方性導電膜3の一対の端部E1およびE2のうち第1の引き回し配線13との接続部Jとは反対側に位置するので、破断に関係なく、回路側端子51から第1の引き回し配線13まで至る電流の経路Rが確保されることとなる。
 図6に示されるように、複数の第1の外部接続端子14と複数の引き回し配線13の接続部Jは、第2の方向D2に互い違いに配置されているが、重複領域Sにおける第1の異方性導電膜3の一対の端部E1およびE2のうち第1の外部接続端子14と第1の引き回し配線13の接続部J側に位置する第1の端部E1の幅W1がこの第1の端部E1に重なる位置の第1の外部接続端子14の幅W2よりも小さく設定されているので、複数の第1の外部接続端子14を横切る第1の異方性導電膜3の一対の側端のいずれに圧力が偏ってそれぞれの第1の外部接続端子14に破断が生じても、すべての第1の外部接続端子14において、回路側端子51から第1の引き回し配線13まで至る電流の経路Rが確保される。従って、第1の引き回し配線13と回路側端子51は、電気的に接続される。
 なお、図3に示した重複領域Sの第2の端部E2からのせん断力により、第1の外部接続端子14に破断部Bが生じても、第2の端部E2における幅W3がこの第2の端部E2に重なる位置の第1の外部接続端子14の幅W4よりも小さい値に設定されているため、第1の外部接続端子14は破断部Bの両側に残存部15を有する。このため、第1の引き回し配線13との接続部Jが第1の外部接続端子14のいずれの位置に配置されていても、熱圧着後に電流の経路Rが確保され、第1の引き回し配線13と回路側端子51は、電気的に接続されることとなる。
 ここで、図3に示した第1の異方性導電膜3の第2の方向D2の長さをL、重複領域Sの面積をA1、第1の異方性導電膜3と第1の外部接続端子14が重複する領域の面積をA2とすると、比(A1/A2)は、
(A1/A2)=((W1+W3)×L/2)/((W2+W4)×L/2)
と表され、比(A1/A2)が95%~20%となることが好ましく、90%~35%となることがより好ましく、85%~50%となることが最も好ましい。
 なお、比(A1/A2)が小さすぎると、第1の外部接続端子14と回路側端子51が導通するための第1の異方性導電膜3の面積が足りなくなり、第1の外部接続端子14と回路側端子51が電気的に接続できなくなるため、比(A1/A2)は、少なくとも20%以上であることが望ましい。
 このように、実施の形態1に係るタッチパネル用導電フィルムの端子接続構造を用いることで、タッチパネル用導電フィルム1の絶縁基板11の厚さ、あるいは、複数の第1の外部接続端子14と第1の引き回し配線13の接続部Jの位置にかかわらず、タッチパネル用導電フィルム1が第1の異方性導電膜3を介してフレキシブル回路基板5と信頼性のある電気的な接続を得ることができる。
 また、図1に示した絶縁基板11の裏面においても、タッチパネル用導電フィルム1の複数の第2の外部接続端子23と第2の異方性導電膜4と図示しないフレキシブル回路基板の複数の回路側端子が、絶縁基板11の表面上における複数の第1の外部接続端子14と第1の異方性導電膜3とフレキシブル回路基板5の複数の回路側端子51と同様の関係を有しており、タッチパネル用導電フィルム1が第2の異方性導電膜4を介して図示しないフレキシブル回路基板と信頼性のある電気的な接続を得ることができる。
 なお、第1の外部接続端子14と第2の外部接続端子23と第1の引き回し配線13と第2の引き回し配線22は、それぞれ金属から形成されているが、所望の導電性を有するものであれば特に金属の種類は限定されるものではない。
 それぞれの第1の外部接続端子14の厚さは、絶縁基板11との段差を小さくするため、0.05~5μmであることが好ましく、0.1~2μmが最も好ましい。互いに隣り合う第1の外部接続端子14同士の間隔は、省スペースのため、1000μm以下が好ましく、500μm以下がより好ましく、200μm以下が最も好ましい。さらに、それぞれの第1の外部接続端子14の第1の方向D1の幅は、省スペースのため、1000μm以下が好ましく、500μm以下がより好ましく、200μm以下が最も好ましいが、この幅を狭くし過ぎると、熱圧着後に第1の異方性導電膜3との電気的な接続に必要な面積が得られなくなるため、少なくとも50μm以上が好ましい。これらのことは、それぞれの第2の外部接続端子23についても、同様に適用される。
 タッチパネル用導電フィルム1の絶縁基板11の材質は、複数の第1の検出電極12および複数の第2の検出電極21を支持できれば特に限定されるものではないが、タッチパネル用導電フィルムに好適である透明なプラスチックフィルムが好ましい。また、絶縁基板11の厚さは、複数の第1の検出電極12および複数の第2の検出電極21を支持できれば特に制限されるものではないが、材料コストを考慮すると100μm以下が好ましく、50μm以下がより好ましい。
 第1の異方性導電膜3の材質は、所望の導電性を有するものであれば特に限定されるものではないが、熱圧着の際の熱によるタッチパネル用導電フィルム1およびフレキシブル回路基板5の変形を防ぐため、170℃以下で使用できるものが望ましく、150℃以下で使用できるものがより好ましく、130℃以下で使用できるものが最も好ましい。また、第1の異方性導電膜3の厚さは、第1の外部接続端子14および回路側端子51との段差を小さくするため、30μm以下が好ましく、20μm以下がより好ましい。これらのことは、第2の異方性導電膜4についても、同様に適用される。
 フレキシブル回路基板5の材質は、所望の可撓性を有していれば特に限定されるものではない。フレキシブル回路基板5の回路側端子51の厚さは、熱圧着の際にタッチパネル用導電フィルム1の変形を防ぐために60μm以下が好ましく、40μm以下がより好ましい。
 また、上記の実施の形態1では、絶縁基板11の表面上に複数の第1の検出電極12と第1の引き回し配線13と第1の外部接続端子14を配置し、絶縁基板11の裏面上に複数の第2の検出電極21と第2の引き回し配線22と第2の外部接続端子23を配置したが、これに限るものではない。
 例えば、絶縁基板11の一方の面側に、複数の第1の検出電極12と複数の第2の検出電極21とが層間絶縁膜を介して配置されると共に絶縁基板11の同じ面側に第1の引き回し配線13および第2の引き回し配線22が配置され、さらに第1の外部接続端子14および第2の外部接続端子23が配置される構成とすることもできる。
 また、2枚基板の構成とすることもできる。すなわち、第1の絶縁基板の表面上に複数の第1の検出電極12と第1の引き回し配線13と第1の外部接続端子14を配置し、第2の絶縁基板の表面上に複数の第2の検出電極21と第2の引き回し配線22と第2の外部接続端子23を配置し、これら第1の絶縁基板および第2の絶縁基板を、互いに重ね合わせて使用することもできる。
 実施の形態2
 実施の形態1では、図3に示したように回路側端子51は矩形状であったが、必ずしも矩形状である必要はなく、図7に示されるように台形状であっても良い。
 このように回路側端子61が台形状であっても、重複領域Sの第1の端部E1の第1の幅W1が、第1の外部接続端子14の第2の幅W2よりも小さい値に設定されることで、熱圧着の際に第1の外部接続端子14に破断部Bが生じても、第1の外部接続端子14が残存部15を有して電流の経路Rが確保されるので、第1の引き回し配線13と回路側端子61は、電気的に接続される。
 また、第2の端部E2の第3の幅W3が、第1の外部接続端子14の第4の幅W4よりも小さい値に設定されることで、第1の引き回し配線13との接続部Jが第1の外部接続端子14のいずれの位置に配置されていても、熱圧着の際に第1の外部接続端子14に生じる破断に関わらず、第1の引き回し配線13と回路側端子61は、電気的に接続される。
 実施の形態3
 実施の形態1では、図3に示したように第1の外部接続端子14は矩形状であったが、必ずしも矩形状である必要はなく、図8に示されるように台形状であっても良い。
 このように第1の外部接続端子71が台形状であっても、第1の端部E1の第1の幅W1が、第1の外部接続端子71の第2の幅W2よりも小さい値に設定されることで、熱圧着の際に第1の外部接続端子14が残存部15を有して電流の経路Rが確保されるので、第1の引き回し配線13と回路側端子51は、電気的に接続される。
 また、第2の端部E2の第3の幅W3が、第1の外部接続端子71の第4の幅W4よりも小さい値に設定されることで、熱圧着の際に第1の外部接続端子14が残存部15を有して電流の経路Rが確保されるので、第1の引き回し配線13との接続部Jが第1の外部接続端子71のいずれの位置に配置されていても、熱圧着の際に第1の外部接続端子71に生じる破断に関わらず、第1の引き回し配線13と回路側端子51は、電気的に接続される。
 なお、第1の外部接続端子71の形状は、所望の導電性を有するものであれば特に矩形状や台形状に限定されず、櫛形状または楔形状とすることもできる。
 実施の形態4
 実施の形態1では、図3に示したように回路側端子51は矩形状であったが、必ずしも矩形状である必要はなく、図9に示されるように第2の方向D2に延びる複数の端子分岐部Cを有するような櫛形状であっても良い。
 回路側端子81の複数の端子分岐部Cと第1の異方性導電膜3が形成する複数の重複領域Sは、第2の方向D2の複数の第1の端部E1と第2の端部E2を有している。それぞれの第1の端部E1は、第1の方向D1に配列され且つ第1の外部接続端子14と第1の引き回し配線13との接続部J側に位置し、第1の方向D1の第1の分岐幅W5A、W5B、W5Cを有している。
 そして、第1の分岐幅W5A、W5B、W5Cの和W5は、第2の幅W2よりも小さい値に設定されている。
 また、それぞれの第2の端部E2は、第1の方向D1に配列され且つ第1の外部接続端子14と第1の引き回し配線13との接続部J側とは反対側に位置し、第1の方向D1の第2の分岐幅W6A、W6B、W6Cを有している。
 そして、第2の分岐幅W6A、W6B、W6Cの和W6は、第4の幅W4よりも小さい値に設定されている。
 このように回路側端子81が複数の端子分岐部Cを有する櫛型状であっても、複数の重複領域Sの第1の分岐幅W5A、W5B、W5Cの和W5が、第1の外部接続端子14の第2の幅W2よりも小さい値に設定されることで、実施の形態1~3と同様に、熱圧着の際に第1の外部接続端子14に生じる破断に関わらず、第1の外部接続端子14が残存部15を有して電流の経路Rが確保されるので、第1の引き回し配線13と回路側端子81は、電気的に接続される。
 また、第2の分岐幅W6A、W6B、W6Cの和W6が、第1の外部接続端子14の第4の幅W4よりも小さい値に設定されることで、実施の形態1~3と同様に、第1の引き回し配線13との接続部Jが第1の外部接続端子14のいずれの位置に配置されていても、熱圧着の際に第1の外部接続端子14に生じる破断に関わらず、第1の引き回し配線13と回路側端子81は、電気的に接続される。
 ここで、第1の異方性導電膜3の第2の方向D2の長さをL、複数の重複領域Sの面積の和をA3とすると面積A3は、
A3=((W5A+W6A)+(W5B+W6B)+(W5C+W6C))×L/2
と表され、第1の異方性導電膜3と第1の外部接続端子14とが重複する領域の面積であるA2との比(A3/A2)は、95%~20%となることが好ましく、90%~35%となることがより好ましく、85%~50%となることが最も好ましい。
 また、上記の実施の形態1~4に係るタッチパネル用導電フィルムの端子接続構造をタッチパネルに適用することで、このタッチパネルに組み込まれるタッチパネル用導電フィルムと異方性導電膜とフレキシブル回路基板は、信頼性のある電気的な接続を得ることができる。
 このようなタッチパネル用導電フィルムの端子接続構造において使用されるタッチパネル用導電フィルムの製造方法は特に制限されないが、絶縁基板11の両面にそれぞれ、ハロゲン化銀とバインダーとを含有するハロゲン化銀乳剤層、すなわち、感光性層を形成する工程(1)、感光性層を露光した後、現像処理する工程(2)を有する方法が挙げられる。
 以下に、各工程に関して説明する。
<工程(1):感光性層形成工程>
 工程(1)は、絶縁基板11の両面に、ハロゲン化銀とバインダーとを含有する感光性層を形成する工程である。
 感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀およびバインダーを含有する感光性層形成用組成物を絶縁基板11に接触させ、絶縁基板11の両面上に感光性層を形成する方法が好ましい。
 以下に、上記方法で使用される感光性層形成用組成物の態様について詳述した後、工程の手順について詳述する。
 感光性層形成用組成物には、ハロゲン化銀およびバインダーが含有される。
 ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素およびフッ素のいずれであってもよく、これらを組み合わせでもよい。ハロゲン化銀としては、例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、さらに臭化銀や塩化銀を主体としたハロゲン化銀が好ましく用いられる。
 使用されるバインダーの種類は特に制限されず、公知の高分子を使用することでき、例えば、水溶性バインダー(水溶性高分子)が用いられてもよい。具体的には、例えば、ゼラチン、カラギナン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース、アラビアゴム、アルギン酸ナトリウムなどが挙げられる。また、バインダーはラテックスの形態で感光性層形成用組成物中に含まれていてもよい。
 感光性層形成用組成物には、必要に応じて、溶媒が含有される。
 使用される溶媒としては、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、またはこれらの混合溶媒を挙げることができる。
(工程の手順)
 感光性層形成用組成物と絶縁基板11とを接触させる方法は特に制限されず、公知の方法を採用できる。例えば、感光性層形成用組成物を絶縁基板11に塗布する方法や、感光性層形成用組成物中に絶縁基板11を浸漬する方法などが挙げられる。
 なお、必要に応じて、感光性層上にバインダーからなる保護層をさらに設けてもよい。保護層を設けることにより、擦り傷防止や力学特性の改良がなされる。
<工程(2):露光現像工程>
 工程(2)は、上記工程(1)で得られた感光性層をパターン露光した後、現像処理することにより、第1の検出電極12、第1の引き回し配線13および第1の外部接続端子14、並びに、第2の検出電極21、第2の引き出し配線22および第2の外部接続端子23を形成する工程である。
 まず、以下では、パターン露光処理について詳述し、その後現像処理について詳述する。
(パターン露光)
 感光性層に対してパターン状の露光を施すことにより、露光領域における感光性層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって金属細線を形成する。一方、露光がなされなかった未露光領域では、後述する定着処理の際にハロゲン化銀が溶解して感光性層から流出し、透明な膜が得られる。
 露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、または、X線などの放射線などが挙げられる。
 パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は特に制限されず、形成したい金属細線のパターンに合わせて適宜調整される。
(現像処理)
 現像処理の方法は特に制限されず、公知の方法を採用できる。例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 現像処理の際に使用される現像液の種類は特に制限されないが、例えば、PQ現像液、MQ現像液、MAA現像液等を用いることもできる。市販品では、例えば、富士フイルム社処方のCN-16、CR-56、CP45X、FD-3、パピトール、KODAK社処方のC-41、E-6、RA-4、D-19、D-72等の現像液、またはそのキットに含まれる現像液を用いることができる。また、リス現像液を用いることもできる。
 現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 上記工程以外に必要に応じて、以下の下塗り層形成工程、アンチハレーション層形成工程、加熱処理、または、脱バインダー処理を実施してもよい。
(下塗り層形成工程)
 絶縁基板11とハロゲン化銀乳剤層との密着性に優れる理由から、上記工程(1)の前に、絶縁基板11の表面に上述した所定の化合物を含む下塗り層を形成する工程を実施することが好ましい。
(アンチハレーション層形成工程)
 金属細線12aおよび21aの細線化の観点で、上記工程(1)の前に、絶縁基板11の両面にアンチハレーション層を形成する工程を実施することが好ましい。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができ、本発明の範囲は、以下の実施例により限定的に解釈されるべきものではない。
実施例1
(ハロゲン化銀乳剤の調製)
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。さらに、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。
 1液:
   水                    750ml
   ゼラチン                    9g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300ml
   硝酸銀                   150g
 3液:
   水                    300ml
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    8ml
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液) 10ml
 4液:
   水                    100ml
   硝酸銀                    50g
 5液:
   水                    100ml
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
 その後、常法に従い、フロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。さらに3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作をさらに1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン3.9g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7-テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。
(感光性層形成用組成物の調製)
 上記乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAgを添加し、クエン酸を用いて塗布液pHを5.6に調整して、感光性層形成用組成物を得た。
(感光性層形成工程)
 絶縁基板にコロナ放電処理を施した後、絶縁基板の両面に、下塗層として厚み0.1μmのゼラチン層、さらに下塗層上に光学濃度が約1.0で現像液のアルカリにより脱色する染料を含むアンチハレーション層を設けた。上記アンチハレーション層の上に、上記感光性層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、表面に感光性層が形成された絶縁基板を得た。表面に感光性層が形成された絶縁基板をフィルムAとする。形成された感光性層は、銀量6.0g/m、ゼラチン量1.0g/mであった。
(露光現像工程)
 上記フィルムAの表面に、第1の検出電極12、第1の引き回し配線13、第1の外部接続端子14のパターンに対応したフォトマスクを介し、高圧水銀ランプを光源とした平行光を用いて露光を行った。露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フィルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg線からなる導電部材とゼラチン層とが形成された絶縁基板を得た。ゼラチン層はAg線間に形成されていた。得られたフィルムをフィルムBとする。
(現像液の組成)
 現像液1リットル(L)中に、以下の化合物が含まれる。
    ハイドロキノン          0.037mol/L
    N-メチルアミノフェノール    0.016mol/L
    メタホウ酸ナトリウム       0.140mol/L
    水酸化ナトリウム         0.360mol/L
    臭化ナトリウム          0.031mol/L
    メタ重亜硫酸カリウム       0.187mol/L
(加熱工程)
 上記フィルムBに対して、120℃の過熱蒸気槽に130秒間静置して、加熱処理を行った。加熱処理後のフィルムをフィルムCとする。このフィルムCがタッチパネル用導電フィルムである。
 このようにして、図10(A)に示されるような10個の第1の外部接続端子14と対応する10本の第1の引き回し配線13が第1の方向D1に配列形成され且つそれぞれの第1の外部接続端子14と第1の引き回し配線13が第2の方向D2に互い違いに接続された実施例1において用いられるタッチパネル用導電フィルムを作製した。なお、絶縁基板の厚さは40μmである。
 そして、作製されたタッチパネル用導電フィルムに対し、異方性導電膜(デクセリアルズ株式会社製CP920CM-25AC)を介してフレキシブル回路基板を140℃、3MPaで10秒間の熱圧着をして、タッチパネル用導電フィルムの10個の第1の外部接続端子14をフレキシブル回路基板の10個の回路側端子に接続した、実施例1のテストピースを100個作製した。なお、図3に示した寸法について、第1の幅W1=0.40mm、第2の幅W2=0.50mm、第3の幅W3=0.50mm、第4の幅W4=0.50mm、異方性導電膜の第2の方向D2の長さL=1.5mmとした。また、それぞれの第1の外部接続端子14の第2の方向D2の長さは、4.0mmとした。それぞれのテストピースは、10個の第1の外部接続端子14と対応する第1の引き回し配線13を有し、100個のテストピースが有する第1の外部接続端子14の合計は、1000個となる。
 作成したテストピースに対して、JIS C 60068-2-14に基づき、高温側は85℃を10分間、低温側は-40℃を10分間、温度変化率は15℃/分という条件で、500サイクルの温度変化試験を行った。試験後に、合計1000個の第1の外部接続端子14のうち、フレキシブル回路基板の回路側端子とこれに対応する第1の引き回し配線13との間の導通状態が維持されているものの個数Pを計測し、個数Pから、以下の計算式で導電得率Mを計算した。
M=P/(10×100)×100
 なお、接続部Jを介して導通した外部接続端子14と第1の引き回し配線13の個数Pは、PICOTEST製M3500A 6 1/2 Digits Standard DMMを使用して測定した。
実施例2
 第1の幅W1=0.08mm、第2の幅W2=0.10mm、第3の幅W3=0.10mm、第4の幅W4=0.10mmとした以外は、実施例1と同様の方法により、実施例2のテストピースをそれぞれ作製した。
実施例3
 第1の幅W1=0.40mm、第2の幅W2=0.50mm、第3の幅W3=0.40mm、第4の幅W4=0.50mmとした以外は、実施例1と同様の方法により、実施例3のテストピースをそれぞれ作製した。
実施例4
 第1の幅W1=0.08mm、第2の幅W2=0.10mm、第3の幅W3=0.08mm、第4の幅W4=0.10mmとした以外は、実施例1と同様の方法により、実施例4のテストピースをそれぞれ作製した。
比較例1
 第1の幅W1=0.50mm、第2の幅W2=0.50mm、第3の幅W3=0.50mm、第4の幅W4=0.50mmとした以外は、実施例1と同様の方法により、比較例1のテストピースをそれぞれ作製した。
比較例2
 図10(B)に示されるように、それぞれの第1の外部接続端子14と第1の引き回し配線13の接続部Jが第2の方向D2に同一の位置に配置された以外は、比較例1と同様の方法により、比較例2のテストピースをそれぞれ作製した。
比較例3
 第1の幅W1=0.10mm、第2の幅W2=0.10mm、第3の幅W3=0.10mm、第4の幅W4=0.10mmとした以外は、比較例2と同様の方法により、比較例1のテストピースをそれぞれ作製した。
 実施例1~4および比較例1~3のテストピースに対して、それぞれ、上記温度変化試験を実施した後に、接続部Jを介して導通した外部接続端子14と第1の引き回し配線13の個数Pを測定すると共に、導電得率Mを計算した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4および比較例1~3は、絶縁基板の厚さを一定としたまま、第1の幅W1、第2の幅W2、第3の幅W3、第4の幅W4、並びに、接続部Jの第2の方向Dの位置のみを変化させたものである。
 実施例1~4のテストピースでは、いずれも、導電得率Mは80%以上となった。これに対して、比較例1~3のテストピースでは、いずれも、導電得率Mが60%以下となった。
 タッチパネルが通常使用される環境と比較して極めて過酷な環境下で温度変化試験を行っているため、実施例1~4で得られた80%以上の導電得率Mは、十分に高い信頼性でタッチパネル用導電フィルムの第1の外部接続端子14とフレキシブル回路基板の回路側端子とが接続されていることを示している。
 これに対し、比較例1~3では、導電得率Mが60%以下に留まり、タッチパネル用導電フィルムの第1の外部接続端子14とフレキシブル回路基板の回路側端子との間に信頼性のある接続がなされなかったものと推測される。
 ここで、実施例1と比較例1を比較すると、第1の幅W1が第2の幅W2よりも小さい値に設定されていることのみが異なる。そして、実施例1の導電得率Mは、比較例1の導電得率Mに対して、43%も高くなった。すなわち、第1の幅W1が第2の幅W2よりも小さい値に設定されていることで、破断が生じた第1の外部接続端子14であっても、第1の引き回し配線13とフレキシブル回路基板の回路側端子の導通がなされたものと考えられる。
 また、比較例1と2を比較すると、複数の第1の外部接続端子14と第1の引き回し配線13の接続部Jの位置のみが異なる。そして、比較例1の導電得率Mは、比較例2の導電得率Mに対して、13%低いという差がある。すなわち、接続部Jの位置が第2の方向D2に互い違いであると、接続部Jの位置が第2の方向D2に同じであるよりも、導電得率Mが低い。
 これは、第1の幅W1と第2の幅W2が同じ値に設定され、且つ、接続部Jが第2の方向D2に互い違いに配置されると、重複領域の一対の端部のうちどちらに圧力が偏っても、破断部が第1の外部接続端子14の全幅に渡って分断された第1の外部接続端子14が発生したためであると考えられる。
1 タッチパネル用導電フィルム、11 絶縁基板、11A 絶縁基板の縁部、12 第1の検出電極、12a,21a 金属細線、13 第1の引き回し配線、14、71 第1の外部接続端子、15 残存部、21 第2の検出電極、22 第2の引き回し配線、23 第2の外部接続端子、3 第1の異方性導電膜、4 第2の異方性導電膜、5 フレキシブル回路基板、51,61、81 回路側端子、E1 第1の端部、E2 第2の端部、J 接続部、B 破断部、C 端子分岐部、S 重複領域、R 電流の経路、L 第1の異方性導電膜の第2の方向の長さ、W1 第1の幅、W2 第2の幅、W3 第3の幅、W4 第4の幅、W5A,W5B,W5C 第1の分岐幅、W5 第1の分岐幅の和、W6A,W6B,W6C 第2の分岐幅、W6 第2の分岐幅の和、D1 第1の方向、D2 第2の方向。

Claims (10)

  1.  異方性導電膜を介してタッチパネル用導電フィルムの複数の外部接続端子をフレキシブル回路基板の複数の回路側端子に接続するタッチパネル用導電フィルムの端子接続構造であって、
     前記複数の外部接続端子および前記複数の回路側端子は、それぞれ第1の方向に配列されると共に互いに少なくとも一部が重なるように配置され、
     前記タッチパネル用導電フィルムは、複数の検出電極と、前記複数の検出電極をそれぞれ前記複数の外部接続端子に接続する複数の引き回し配線を有し、
     前記複数の外部接続端子は、前記複数の引き回し配線との接続部が互いに異なる位置に配置された少なくとも2つの前記複数の外部接続端子を有し、
     前記異方性導電膜は、前記第1の方向に延びると共に前記複数の外部接続端子および前記複数の回路側端子の間に配置され、
     それぞれの前記外部接続端子に対して、前記回路側端子と前記異方性導電膜との重複領域が前記第1の方向に直交する第2の方向の一対の端部を有すると共に、前記一対の端部のうち前記外部接続端子と前記引き回し配線との接続部側に位置する第1の端部の前記第1の方向の幅W1が、前記第1の端部に重なる前記外部接続端子の前記第1の方向の幅W2よりも小さいことを特徴とするタッチパネル用導電フィルムの端子接続構造。
  2.  それぞれの前記外部接続端子に対して、前記一対の端部のうち前記外部接続端子と前記引き回し配線との接続部側とは反対側に位置する第2の端部の前記第1の方向の幅W3が、前記第2の端部に重なる前記外部接続端子の前記第1の方向の幅W4よりも小さい請求項1に記載のタッチパネル用導電フィルムの端子接続構造。
  3.  前記複数の外部接続端子は、それぞれ矩形状を有し、
     前記少なくとも2つの前記複数の外部接続端子は、矩形の互いに異なる辺に前記複数の引き回し配線が接続されている請求項1または2に記載のタッチパネル用導電フィルムの端子接続構造。
  4.  前記少なくとも2つの前記複数の外部接続端子は、矩形の互いに対向する辺に前記引き回し配線が接続されている請求項3に記載のタッチパネル用導電フィルムの端子接続構造。
  5.  前記複数の回路側端子は、それぞれ第2の方向に延びる複数の端子分岐部を有し、
     前記複数の端子分岐部の前記第1の端部における前記第1の方向の幅の和W5が、前記第1の端部に重なる前記外部接続端子の前記第1の方向の幅W2よりも小さい請求項1~4のいずれか一項に記載のタッチパネル用導電フィルムの端子接続構造。
  6.  前記複数の端子分岐部の前記第2の端部における前記第1の方向の幅の和W6が、前記第2の端部に重なる前記外部接続端子の前記第1の方向の幅W4よりも小さい請求項5に記載のタッチパネル用導電フィルムの端子接続構造。
  7.  前記タッチパネル用導電フィルムは50μm以下の厚さの絶縁基板を有し、前記複数の検出電極および前記複数の引き回し配線は、前記絶縁基板の表面上に配置される請求項1~6のいずれか一項に記載のタッチパネル用導電フィルムの端子接続構造。
  8.  前記複数の検出電極は、メッシュ状の金属細線から形成される請求項1~7のいずれか一項に記載のタッチパネル用導電フィルムの端子接続構造。
  9.  前記金属細線は、金、銀、銅の少なくとも1つから形成される請求項8に記載のタッチパネル用導電フィルムの端子接続構造。
  10.  請求項1~9のいずれか一項に記載のタッチパネル用導電フィルムの端子接続構造を有するタッチパネル。
PCT/JP2016/053649 2015-03-20 2016-02-08 タッチパネル用導電フィルムの端子接続構造およびタッチパネル WO2016152282A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680015163.4A CN107430459B (zh) 2015-03-20 2016-02-08 触摸屏用导电膜的端子连接结构及触摸屏
JP2017507571A JP6295375B2 (ja) 2015-03-20 2016-02-08 タッチパネル用導電フィルムの端子接続構造およびタッチパネル
US15/664,443 US10303015B2 (en) 2015-03-20 2017-07-31 Terminal connection structure of conductive film for touch panel and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015058199 2015-03-20
JP2015-058199 2015-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/664,443 Continuation US10303015B2 (en) 2015-03-20 2017-07-31 Terminal connection structure of conductive film for touch panel and touch panel

Publications (1)

Publication Number Publication Date
WO2016152282A1 true WO2016152282A1 (ja) 2016-09-29

Family

ID=56977308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053649 WO2016152282A1 (ja) 2015-03-20 2016-02-08 タッチパネル用導電フィルムの端子接続構造およびタッチパネル

Country Status (5)

Country Link
US (1) US10303015B2 (ja)
JP (1) JP6295375B2 (ja)
CN (1) CN107430459B (ja)
TW (1) TWI680387B (ja)
WO (1) WO2016152282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185267A (zh) * 2019-06-12 2021-01-05 云谷(固安)科技有限公司 电路基板、显示面板及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200026391A1 (en) * 2018-07-20 2020-01-23 Sharp Kabushiki Kaisha Touchscreen panel and display device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160624A (ja) * 1990-10-25 1992-06-03 Fujitsu Ltd タッチ入力表示装置
JP2005141643A (ja) * 2003-11-10 2005-06-02 Fujitsu Component Ltd タッチパネル
JP2007026846A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp フレキシブル回路基板及びこれを用いた表示装置
WO2015004970A1 (ja) * 2013-07-09 2015-01-15 日本写真印刷株式会社 タッチセンサ及びタッチセンサの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133677A (ja) * 2001-10-29 2003-05-09 Advanced Display Inc フレキシブル回路基板の圧着構造
JP2003140188A (ja) * 2001-11-07 2003-05-14 Hitachi Ltd 液晶表示装置
JP3824220B2 (ja) * 2002-04-30 2006-09-20 ホシデン株式会社 タッチパネルの電極接続構造
CN1284996C (zh) * 2003-02-14 2006-11-15 友达光电股份有限公司 外引脚接合结构
JP2004317924A (ja) * 2003-04-18 2004-11-11 Advanced Display Inc 表示装置および表示装置の製造方法
JP2005301161A (ja) * 2004-04-15 2005-10-27 Nec Corp 表示装置
US7515240B2 (en) * 2004-10-05 2009-04-07 Au Optronics Corporation Flat display panel and assembly process or driver components in flat display panel
JP5370944B2 (ja) * 2010-03-17 2013-12-18 株式会社ジャパンディスプレイ タッチパネルおよびその製造方法
JP5538567B2 (ja) * 2010-12-09 2014-07-02 シャープ株式会社 タッチパネル及びそれを備えた表示装置並びにタッチパネルの製造方法
CN103477307B (zh) * 2011-04-06 2016-05-18 夏普株式会社 配线连接结构、端子部、视差屏障基板以及触摸面板
CN202171790U (zh) * 2011-07-19 2012-03-21 彩虹集团公司 一种触摸屏电极引出结构
CN103677363A (zh) 2012-09-11 2014-03-26 联胜(中国)科技有限公司 触控面板
CN103838441B (zh) * 2012-11-23 2016-09-28 北京富纳特创新科技有限公司 电容式触摸屏
TWM472241U (zh) * 2013-07-17 2014-02-11 Wintek Corp 觸控面板及觸控顯示裝置
JP5858016B2 (ja) * 2013-09-06 2016-02-10 大日本印刷株式会社 タッチパネルセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160624A (ja) * 1990-10-25 1992-06-03 Fujitsu Ltd タッチ入力表示装置
JP2005141643A (ja) * 2003-11-10 2005-06-02 Fujitsu Component Ltd タッチパネル
JP2007026846A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp フレキシブル回路基板及びこれを用いた表示装置
WO2015004970A1 (ja) * 2013-07-09 2015-01-15 日本写真印刷株式会社 タッチセンサ及びタッチセンサの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185267A (zh) * 2019-06-12 2021-01-05 云谷(固安)科技有限公司 电路基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN107430459B (zh) 2020-06-16
TW201704963A (zh) 2017-02-01
JP6295375B2 (ja) 2018-03-14
US10303015B2 (en) 2019-05-28
US20170329170A1 (en) 2017-11-16
TWI680387B (zh) 2019-12-21
JPWO2016152282A1 (ja) 2017-07-20
CN107430459A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6235726B2 (ja) タッチパネル用導電フィルム
JP6240789B2 (ja) タッチパネル用導電フィルムおよびタッチパネル
WO2014171426A1 (ja) タッチパネル用導電シートの製造方法、および、タッチパネル用導電シート
JP5849059B2 (ja) タッチパネル用導電性フィルムおよびタッチパネル
JP5839541B2 (ja) 導電シート及びタッチパネル
JP5345980B2 (ja) 透明導電性基板、タッチパネル用導電シート及びタッチパネル
JP2021077906A (ja) 導電性フィルムを備える表示装置
JP6009488B2 (ja) シート状導電体、およびこれを用いるタッチパネル
WO2015008617A1 (ja) タッチパネル用積層体、タッチパネル
WO2013062041A1 (ja) 導電性フイルム及びタッチパネル
WO2015029779A1 (ja) 導電性フィルム及びその製造方法
JP5840163B2 (ja) タッチパネルおよび保護層形成用樹脂組成物
JP6295375B2 (ja) タッチパネル用導電フィルムの端子接続構造およびタッチパネル
JP5613448B2 (ja) タッチパネル及び導電シート
JP6486382B2 (ja) 導電体の成形方法および導電体
JP5476237B2 (ja) タッチパネル及び導電シート
WO2016035810A1 (ja) タッチパネル用導電フィルム
JP5463315B2 (ja) 電極シート、電極シートの製造方法、及びタッチパネル
JP6445694B2 (ja) タッチパネル用導電体の製造方法、導電フィルム積層体およびタッチパネル用導電体
JP2023035795A (ja) タッチセンサフィルム
JP2020204789A (ja) 導電性フィルムおよびタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768185

Country of ref document: EP

Kind code of ref document: A1