WO2016151778A1 - 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法 - Google Patents

分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法 Download PDF

Info

Publication number
WO2016151778A1
WO2016151778A1 PCT/JP2015/058991 JP2015058991W WO2016151778A1 WO 2016151778 A1 WO2016151778 A1 WO 2016151778A1 JP 2015058991 W JP2015058991 W JP 2015058991W WO 2016151778 A1 WO2016151778 A1 WO 2016151778A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
light source
spectral
source device
integrating sphere
Prior art date
Application number
PCT/JP2015/058991
Other languages
English (en)
French (fr)
Inventor
久志 白岩
弘幸 佐野
Original Assignee
大塚電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚電子株式会社 filed Critical 大塚電子株式会社
Priority to KR1020177021806A priority Critical patent/KR102015203B1/ko
Priority to US15/560,493 priority patent/US10330530B2/en
Priority to JP2017507231A priority patent/JP6481021B2/ja
Priority to PCT/JP2015/058991 priority patent/WO2016151778A1/ja
Priority to TW105104547A priority patent/TWI744222B/zh
Publication of WO2016151778A1 publication Critical patent/WO2016151778A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0295Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • G01J2001/083Testing response of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • G01J2001/086Calibrating drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • G01J2003/2876Correcting linearity of signal

Definitions

  • the present invention relates to a reference light source device used for calibration of a spectral luminance meter and a calibration method using the same.
  • Patent Documents 1 and 2 below disclose a reference light source that can calibrate a spectral luminance meter.
  • the reference light source disclosed in these documents includes an integrating sphere into which the light of the LED or the semiconductor laser is incident from the outside, and the light that has been multiple-reflected in the integrating sphere is provided on the outer wall of the integrating sphere The light is emitted from the luminance reference plane which is an opening.
  • the spectral luminance meter to be calibrated is installed so as to face the luminance reference plane, and measures the luminance of the luminance reference plane.
  • the spectral luminance meter to be calibrated is calibrated based on the luminance measured in this way and the luminance of the luminance reference plane that is likely to be measured by another measuring means.
  • the integrating sphere is a device that spatially equalizes the luminous flux by placing the light source at the center of the integrating sphere.
  • the light from the light source is integrated from the outside of the integrating sphere.
  • the luminance of the luminance reference plane is not uniform. That is, luminance unevenness occurs on the luminance reference plane.
  • the spectral luminance meter to be calibrated generally performs spot measurement with a small measurement angle, so depending on where the spectral luminance meter to be calibrated is actually directed on the luminance reference plane, Luminance measurements will vary greatly.
  • the light of a plurality of individual light sources having different wavelength characteristics is incident on the integrating sphere from different positions on the outer wall of the integrating sphere. It depends on the individual light source. That is, the luminance measurement value by the spectral luminance meter to be calibrated is greatly affected by the change in luminance unevenness caused by the change of the individual light source.
  • the present invention has been made in view of the above problems, and a first object is to provide a reference light source device capable of suppressing luminance unevenness on a luminance reference surface of an integrating sphere.
  • a second object is to provide a highly reliable and simple calibration method of a spectral luminance meter using a reference light source device in which unevenness in luminance on the luminance reference surface of an integrating sphere is suppressed.
  • a reference light source device is provided with an integrating sphere having a luminance reference plane that is an opening and an outer wall of the integrating sphere spaced apart from each other, and has a wavelength characteristic inside the integrating sphere. Includes a plurality of first optical ports that respectively receive equivalent light.
  • the term “integrating sphere” is used to mean a wide range of devices that uniformize incident light by multiple reflection on the inner wall surface, such as a full sphere, a hemisphere, and a 1/8 sphere.
  • the plurality of first optical ports have the same distance from the center of the luminance reference plane on the outer wall of the integrating sphere, and rotate with respect to the rotational symmetry axis of the integrating sphere passing through the center of the luminance reference plane. It may be provided at a plurality of positions having symmetry.
  • the integrating sphere may be a full sphere.
  • the plurality of first optical ports are provided at a plurality of positions that equally divide a circle on the luminance reference plane side from a circle having a maximum radius among circles obtained by cutting the integrating sphere on a plane perpendicular to the rotational symmetry axis. It's okay.
  • the integrating sphere may be a hemisphere including a circular flat plate having the luminance reference plane at the center thereof.
  • the plurality of first optical ports may be provided at a plurality of positions on the circular flat plate that equally divides a circle concentric with the circular flat plate.
  • the reference light source device may further include a single light source that supplies light to each of the plurality of first optical ports through an optical fiber.
  • the lengths of the optical fibers from the single light source to each of the plurality of first optical ports may be equal.
  • the reference light source device is provided on the outer wall of the integrating sphere so as to be spaced apart from each other, and light having an equivalent wavelength characteristic different from that of the plurality of first optical ports is incident on the inside of the integrating sphere.
  • a plurality of second optical ports may be further included.
  • the reference light source device may further include a measurement port provided on the outer wall of the integrating sphere and connected to a spectral illuminometer that measures spectral illuminance.
  • the reference light source device may further include a wavelength calibration port that is provided on the outer wall of the integrating sphere, is connected to a wavelength calibration light source, and receives light having a known wavelength peak inside the integrating sphere.
  • a calibration method is a method for calibrating a spectral luminance meter using the reference light source device, the step of measuring the luminance of the luminance reference plane with a spectral luminance meter to be calibrated, and the luminance with a calibrated spectral illuminometer. Measuring the illuminance of a reference plane; calibrating the calibration target spectral luminometer based on the measured luminance, the measured illuminance, and the relationship between the luminance and the illuminance. Including.
  • the calibration step may convert the measured illuminance into luminance based on the relationship.
  • the relationship may be obtained by associating the illuminance of the luminance reference plane measured by the calibrated spectral luminometer with the luminance of the luminance reference plane measured by the calibrated spectral luminometer.
  • the calibrated spectral illuminance meter may be a calibrated spectral illuminance standard bulb with an optical system for using the calibration target spectrometer as a spectral illuminance meter.
  • FIG. 1 is an overall view of a reference light source device and a calibration system using the same according to an embodiment of the present invention. It is a top view of a reference light source device.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • It is a block diagram of a calibration object spectral luminance meter. It is a flowchart which shows the calibration method of the spectral luminance meter which concerns on one Embodiment of this invention. It is a figure which shows the uniformity of the brightness
  • FIG. 1 It is the IX-IX sectional view taken on the line in FIG. It is a perspective view which shows the reference light source device which concerns on a 2nd modification. It is a top view which shows the reference light source device which concerns on a 2nd modification. It is a general view of the reference light source device which concerns on a 3rd modification, and a calibration system using the same. It is a flowchart which shows the calibration method of the spectral luminance meter using the calibration system shown in FIG.
  • FIG. 1 is an overall view of a reference light source device and a calibration system using the same according to an embodiment of the present invention.
  • the integrating sphere 12 is shown in a perspective view.
  • FIG. 2 is a plan view of hemispherical integrating sphere 12 as seen from the cut surface side
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the reference light source device 10 includes an integrating sphere 12.
  • the integrating sphere 12 is formed in a hollow hemispherical shape, and its outer wall is composed of a hemispherical shell portion 12a and a circular flat plate portion 12b.
  • the inner surface of the circular flat plate portion 12b which is a split surface, is a mirror made of aluminum vapor deposition or the like, and the inner surface of the hemispherical shell portion 12a is a white highly diffuse reflecting surface made of a barium sulfate or PTFE (polytetrafluoroethylene) sintered product.
  • PTFE polytetrafluoroethylene
  • a luminance reference surface 18 that is a circular opening is provided at the center of the circular flat plate portion 12b, and the integrating sphere 12 passes through the center of the luminance reference surface 18 and is perpendicular to the rotational symmetry axis R perpendicular to the circular flat plate portion 12b. It is a three-dimensional shape that is n-fold symmetric (n is an arbitrary integer of 2 or more).
  • the circular flat plate portion 12b is provided with two first optical ports 16a and 16b for allowing light from the halogen lamp 28 as the first light source to enter the integrating sphere 12.
  • the positions of the first optical ports 16a and 16b are set such that the distances from these positions to the center of the luminance reference plane 18 are equal, and the first optical ports 16a and 16b are symmetrical twice with respect to the rotational symmetry axis R. That is, the first optical ports 16a and 16b are provided at positions that divide the concentric circle of the luminance reference surface 18 into two equal parts.
  • the light from the halogen lamp 28, which is a single light source, is guided to the first optical ports 16a and 16b by an optical fiber that is formed in a Y shape and branched in the middle.
  • the lengths of the optical fibers from the halogen lamp 28 to the first optical ports 16a and 16b are equal. For this reason, even if the halogen lamp 28 deteriorates and the wavelength characteristic changes, light having the same wavelength characteristic is always emitted from the first optical ports 16a and 16b.
  • the circular flat plate portion 12b is also provided with two second optical ports 14a and 14b for allowing light from the deuterium lamp 30 as the second light source to enter the integrating sphere 12.
  • the positions of the second optical ports 14a and 14b are also adjusted so that the distances from these positions to the center of the luminance reference plane 18 are equal and are symmetric twice with respect to the rotational symmetry axis R. That is, the second optical ports 14 a and 14 b are also provided at positions that bisect a circle passing through the center of the luminance reference plane 18.
  • the first optical ports 16a and 16b and the second optical ports 14a and 14b are provided at positions shifted from each other by 90 degrees.
  • the light of the deuterium lamp 30 that is a single light source is guided to the second optical ports 14a and 14b by an optical fiber that is formed in a Y shape and branched in the middle.
  • the lengths of the optical fibers from the deuterium lamp 30 to the second optical ports 14a and 14b are equal. For this reason, even if the deuterium lamp 30 is deteriorated and the wavelength characteristic is changed, light having the same wavelength characteristic is always emitted from the second optical ports 14a and 14b.
  • the halogen lamp 28 emits light in the visible / near infrared region, and the deuterium lamp 30 emits light in the ultraviolet region.
  • the mounting positions of the first optical ports 16a and 16b and the second optical ports 14a and 14b are not limited to those described above, and may be provided in the hemispherical shell 12a of the integrating sphere 12. Also in this case, the first optical ports 16a, 16a, 16c are arranged at a plurality of positions having the same distance from the center of the luminance reference surface 18 and having rotational symmetry with respect to the rotational symmetry axis R of the integrating sphere 12 passing through the center of the luminance reference surface 18. 16b and second optical ports 14a and 14b are preferably provided.
  • a measurement port 20 to which the built-in spectrophotometer 24 is connected by an optical fiber and a wavelength calibration port 22 to which a wavelength calibration light source 26 is connected by an optical fiber are further provided.
  • the built-in spectral illuminance meter 24 measures the luminance of the luminance reference surface 18 serving as a reference for calibrating the calibration target (calibrated) spectral luminance meter 40.
  • an annular light shielding wall 21 is provided around the measurement port 20 so that light emitted from the first optical ports 16a and 16b and the second optical ports 14a and 14b does not reach the measurement port 20 directly. Is erected.
  • the wavelength calibration light source 26 includes, for example, a mercury lamp and a neon lamp, and emits light having a known wavelength peak (mercury emission line and neon emission line).
  • the spectral luminance meter 40 to be calibrated is placed at a predetermined distance from the luminance reference surface 18 so as to face the luminance reference surface 18, and calibration is performed by measuring this light.
  • a spectral irradiance standard bulb 32 can be installed at the position of the spectral luminance meter 40 in order to calibrate the sensitivity of the built-in spectral illuminance meter 24.
  • the spectral irradiance standard light bulb 32 is a light bulb calibrated by a specific company as having a predetermined wavelength characteristic.
  • the halogen lamp 28, the deuterium lamp 30, the built-in spectral illuminance meter 24, the wavelength calibration light source 26, the spectral luminance meter 40, and the spectral irradiance standard light bulb 32 are all connected to a controller 34 constituted by a computer.
  • the controller 34 can control lighting of the halogen lamp 28, the deuterium lamp 30, the wavelength calibration light source 26, and the spectral irradiance standard bulb 32.
  • the controller 34 can acquire the illuminance measured by the built-in spectral illuminometer 24 or calibrate the built-in spectral illuminometer 24.
  • the controller 34 can acquire the luminance measured by the calibration target spectral luminance meter 40 or calibrate the calibration target spectral luminance meter 40.
  • FIG. 4 is a diagram showing a configuration example of the spectral luminance meter 40 to be calibrated.
  • the spectral luminometer 40 to be calibrated shown in the figure is a so-called polychromator, and the light to be measured guided to the entrance slit 42 via the condensing optical system 41 is diffracted by the concave diffraction grating 44, and the diffracted light is received by the light receiving sensor.
  • the controller 46 connected to the light receiving sensor array 45 includes a pixel-wavelength table storage unit 47 and a sensitivity correction value storage unit 48.
  • the pixel-wavelength table storage unit 47 stores which pixel corresponds to which wavelength.
  • the sensitivity correction value storage unit 48 stores a coefficient for converting the output value of each pixel into luminance.
  • the controller 34 performs wavelength calibration of the calibration target spectral luminance meter 40 by updating the pixel-wavelength table and updates the sensitivity correction value, thereby correcting the calibration target spectral luminance meter. Perform 40 sensitivity calibrations.
  • the built-in spectral illuminometer 24 has the same configuration.
  • FIG. 5 is a flowchart showing a calibration method by the calibration system. Each step shown in the figure is sequentially executed by the controller 34, but may be executed manually by a calibration operator.
  • wavelength calibration of the built-in spectral illuminance meter 24 is performed (S101). Specifically, the controller 34 turns on the wavelength calibration light source 26 and makes light having a known wavelength peak enter the integrating sphere 12. Further, the spectral illuminance of the incident light is measured by the built-in spectral illuminance meter 24, and the pixel-wavelength table stored in the built-in spectral illuminance meter 24 is updated so that the wavelength peak matches a known value.
  • sensitivity calibration of the built-in spectral illuminometer 24 is performed (S102).
  • the controller 34 installs the spectral irradiance standard bulb 32 in front of the luminance reference plane 18 at a position away from the luminance reference plane 18 by a predetermined distance, and turns on the spectral irradiance standard bulb 32.
  • the spectral irradiance standard bulb 32 illuminates the luminance reference surface 18 with a known spectral illuminance.
  • the movement of the standard irradiance light bulb 32 may be automated by electrical means and mechanical means, or may be manually performed by a calibration operator by displaying a guide message or the like.
  • the controller 34 measures the spectral illuminance by the built-in spectral illuminance meter 24. Then, the sensitivity correction value stored in the built-in spectral illuminance meter 24 is updated so that the illuminance at each wavelength matches that known as that of the spectral irradiance standard bulb 32.
  • the spectral illuminance of the light emitted from the halogen lamp 28 and the deuterium lamp 30 is measured using the built-in spectral illuminance meter 24 that has been subjected to wavelength calibration and sensitivity calibration in this way (S103).
  • the controller 34 turns on the halogen lamp 28 and the deuterium lamp 30, measures the spectral illuminance with the built-in spectral illuminometer 24, and captures the measured value.
  • the controller 34 converts the spectral illuminance measured by the built-in spectral illuminance meter 24 into spectral luminance using the illuminance-luminance table (S104).
  • a calibrated spectral luminance meter is prepared in advance at the factory or service base of the manufacturing company, and after completing the steps S101, S102, and S103, the calibrated spectral luminance meter is set to the calibration target spectral luminance meter 40.
  • the spectral illuminance is measured by the built-in spectral illuminance meter 24, and at the same time, the spectral luminance is measured by the calibrated spectral luminance meter. Then, by associating the spectral illuminance and spectral luminance thus measured, an illuminance-luminance table, that is, an illuminance and luminance conversion coefficient for each wavelength is obtained in advance.
  • the illuminance-luminance table is stored in the controller 34 in advance.
  • the luminance of each wavelength is obtained by multiplying the illuminance of each wavelength obtained by the built-in spectral illuminometer 24 by the conversion coefficient included in this illuminance-luminance table.
  • the controller 34 performs wavelength calibration of the calibration target spectral luminance meter 40 (S105). Specifically, after the spectral irradiance standard light bulb 32 is moved away from the front of the luminance reference plane 18, a guide message is displayed to the calibration operator, and the calibration target spectral luminance meter 40 is moved in front of the luminance reference plane 18. Therefore, it is arranged at a predetermined distance from the luminance reference plane 18. Further, the controller 34 turns on the wavelength calibration light source 26 and causes the calibration target spectral luminance meter 40 to measure the spectral luminance. Then, the pixel-wavelength table stored in the pixel-wavelength table storage unit 47 of the calibration target spectral luminance meter 40 is updated so that the measured wavelength peak matches a known value.
  • the controller 34 measures the spectral luminance of the light emitted from the halogen lamp 28 and the deuterium lamp 30 using the calibration target spectral luminance meter 40 that has completed the wavelength calibration in this way (S106). Specifically, the controller 34 turns on the halogen lamp 28 and the deuterium lamp 30, causes the spectral luminance meter 40 to measure the spectral luminance, and captures the measured value.
  • the controller 34 updates the sensitivity correction value stored in the sensitivity correction value storage unit 48 of the calibration target spectral luminance meter 40 so that the spectral luminance measured in S106 matches the spectral luminance obtained in S104 (S107). ).
  • the reference light source device 10 As described above, light having the same wavelength characteristics is incident on the integrating sphere 12 from the first optical ports 16a and 16b separated from each other. As compared with the case where light is incident from, the luminance unevenness of the luminance reference surface 18 can be suppressed.
  • the first optical ports 16a and 16b are provided at positions on the outer wall of the integrating sphere 12 that are equal in distance from the center of the luminance reference plane 18 and have rotational symmetry with respect to the rotational symmetry axis R. The luminance unevenness of the surface 18 can be more effectively suppressed. Similarly, the luminance unevenness on the luminance reference plane 18 is also suppressed for the light incident from the second optical ports 14a and 14b.
  • FIG. 6 is a diagram showing the uniformity of luminance on the luminance reference surface 18.
  • FIG. 6A is a diagram showing luminance unevenness when light is incident from the first optical port 16a
  • FIG. 4B is a diagram when light is incident from both the first optical ports 16a and 16b. It is a figure which shows a brightness nonuniformity.
  • the horizontal axis indicates the distance from the center of the luminance reference surface 18 to the measurement position as a percentage with respect to the radius of the luminance reference surface 18.
  • the vertical axis represents the luminance at the measurement position as a percentage of the luminance at the center of the luminance reference plane 18.
  • the measurement was performed by moving the line connecting the center of the first optical port 16a and the center of the luminance reference plane 18 from a position 25% away from the center of the luminance reference plane 18 to a position closer to 25%. According to these figures, it can be confirmed that the light emitted from the first optical ports 16a and 16b overlap each other and the luminance unevenness of the luminance reference surface 18 is greatly reduced.
  • the luminance unevenness of the luminance reference surface 18 can be greatly reduced. Therefore, according to the present embodiment, the built-in spectral illuminance can be obtained without using a pre-calibrated spectral luminance meter. Using the spectral illuminance measured by the meter 24, the calibration target spectral luminance meter 40 can be accurately calibrated. That is, as already described, since the spectral luminance meter generally performs spot measurement with a small measurement angle, if the luminance reference surface 18 has a large luminance unevenness, the spectral luminance meter actually performs the luminance reference. Depending on where the face 18 is directed, the brightness measurement will vary greatly.
  • the calibration target spectral luminance meter 40 has the same luminance as the calibrated spectral luminance meter when the illuminance-luminance table is created using the calibrated spectral luminometer and the calibrated spectral luminance meter. Unless measured, the reliability of calibration is not guaranteed. According to the present embodiment, since the luminance unevenness of the luminance reference surface 18 is greatly reduced, the luminance at a position shifted from the measurement position of the calibrated spectral luminance meter when the illuminance-luminance table is created is actually calibrated. Even if it is measured by the target spectral luminance meter 40, the difference is small, so that the reliability of calibration can be maintained.
  • the calibration of the built-in spectral illuminance meter 24 can be easily performed using the spectral irradiance standard light bulb 32, even if it is not a manufacturing company's factory or service base, the user can perform the calibration with the spectral irradiance standard light bulb 32. Calibration with assured traceability can be performed.
  • spectral radiance calibration can be performed in a wide wavelength range. If the halogen lamp 28 and the deuterium lamp 30 are used as described above, spectral radiance calibration in a wide wavelength region from the ultraviolet region to the infrared region can be performed.
  • the illuminance of the reference light source device 10 can be measured each time with the built-in spectral illuminance meter 24, the light intensity of the halogen lamp 28 and the deuterium lamp 30 is changed, and the calibration-target spectral luminometer 40 with a plurality of luminance values. Can be calibrated. Furthermore, even if the internal reflectance of the integrating sphere 12 is reduced, highly reliable spectral radiance calibration can be performed.
  • FIG. 7 is an overall view of a reference light source device according to a first modification and a calibration system using the same.
  • FIG. 8 is a plan view of the reference light source device according to the first modification viewed from the luminance reference plane 118 side
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • the reference light source device 110 is shown in a perspective view. Since the first modified example is different from the calibration system shown in FIG. 1 only in the reference light source device 110, the other elements are denoted by the same reference numerals as those in FIG.
  • the reference light source device 110 includes a spherical integrating sphere 112.
  • a luminance reference surface 118 which is a circular opening, is provided at one location of the integrating sphere 112.
  • the center of the luminance reference surface 118 and the center of the integrating sphere 112 are provided.
  • the integrating sphere 112 has a three-dimensional shape that is n-fold symmetric (n is an arbitrary integer of 2 or more) with respect to the rotational symmetry axis R passing through
  • the first optical ports 116a and 116b are provided at positions on the outer wall of the integrating sphere 112 that are equal in distance from the center of the luminance reference plane 118 and have rotational symmetry with respect to the rotational symmetry axis R.
  • the first optical ports 116a and 116b have a circle Y closer to the luminance reference plane 118 than the circle X (equator) having the maximum radius among the circles cut off the integrating sphere 112 by a plane perpendicular to the rotational symmetry axis R.
  • the light is emitted in two equal positions so that the light emission direction faces the center of the integrating sphere 112.
  • the second optical ports 114 a and 114 b are also provided at positions on the outer wall of the integrating sphere 112 that have the same distance from the center of the luminance reference plane 118 and have rotational symmetry with respect to the rotational symmetry axis R.
  • the second optical ports 114a and 114b are provided at positions where the circle Y is equally divided so that the light emission direction faces the center of the integrating sphere 112.
  • the first optical ports 116a and 116b are provided.
  • the second optical ports 114a and 114b are provided at positions shifted from each other by 90 degrees.
  • a measurement port 120 and a wavelength calibration port 122 are also provided on the outer wall of the integrating sphere 112.
  • the measurement port 120 and the wavelength calibration port 122 are provided on the circle X at positions shifted by 180 degrees.
  • the mounting positions of the first optical ports 116 a and 116 b and the second optical ports 114 a and 114 b are not limited to those described above, and the integrating sphere passing through the center of the luminance reference plane 118 has the same distance from the center of the luminance reference plane 118. Any position may be used as long as it is a plurality of positions having rotational symmetry with respect to 112 rotational symmetry axes R.
  • the first light ports 116a and 116b and the second light ports 114a and 114b are provided on the circle Y so that the light emission directions thereof are directed to the center of the integrating sphere 112. There is an advantage that it is not necessary to provide a light shielding wall for preventing the next light) from directly reaching the luminance reference plane 118.
  • the integrating sphere 112 is connected from the first optical ports 116a and 116b that separate the light from the halogen lamp 28 from the second optical ports 114a and 114b that separate the light from the deuterium lamp 32 from each other. Since the light is incident on the light 112, the luminance unevenness of the luminance reference surface 18 can be suppressed as compared with the case where the light is incident from only one place.
  • the first optical ports 116a and 116b are provided at positions on the outer wall of the integrating sphere 112 that are equal in distance from the center of the luminance reference plane 118 and have rotational symmetry with respect to the rotational symmetry axis R. Brightness unevenness can be suppressed more effectively. Similarly, the luminance unevenness on the luminance reference plane 118 is also suppressed for the light incident from the second optical ports 114a and 114b.
  • FIG. 10 is a perspective view showing a reference light source device according to a second modification.
  • FIG. 11 is a plan view of the reference light source device according to the second modification viewed from the arrow X side.
  • the reference light source device 210 shown in the figure includes a 1/8 spherical integrating sphere 212, and its outer wall is composed of fan-shaped flat plate portions 212a, 212b, 212c and a 1/8 spherical shell portion 212d. Further, the corner portion to be constituted by the flat plate portions 212a, 212b, and 212c is cut out in a plane perpendicular to the rotational symmetry axis R, and the center of the luminance reference plane 218 that is a circular opening is rotated on the plane.
  • the inner surfaces of the flat plate portions 212a, 212b, and 212c and the inner surface of the outer wall portion provided with the luminance reference surface 218 are all mirrors formed by aluminum vapor deposition or the like, and the inner surface of the 1/8 spherical shell portion 212d is barium sulfate or PTFE. It is a white highly diffuse reflecting surface made of a sintered product or the like.
  • the integrating sphere 212 has a three-dimensional shape that is three-fold symmetric with respect to the rotational symmetry axis R.
  • the flat plate portion 212a is provided with a first optical port 216a
  • the flat plate portion 212b is provided with a first optical port 216b
  • the flat plate portion 212c is provided with a first optical port 216c, which are distances from the center of the luminance reference plane 218. Are equal and have rotational symmetry (three-fold symmetry) with respect to the rotational symmetry axis R.
  • the flat plate portion 212a is provided with a second optical port 214a next to the first optical port 216a
  • the flat plate portion 212b is provided with a second optical port 214b next to the first optical port 216b
  • the flat plate portion 212c is provided with a first optical port 216a
  • the second optical port 214c is provided next to the first optical port 216c, and they are also equal in distance from the center of the luminance reference plane 218 and have rotational symmetry (three-fold symmetry) with respect to the rotational symmetry axis R. is doing.
  • the flat plate portion 212b is provided with a measurement port 220, and the flat plate portion 212c is provided with a wavelength calibration port 222. Even in the reference light source device 210 according to the second modification, luminance unevenness on the luminance reference surface 218 can be suppressed.
  • FIG. 12 is an overall view of a reference light source device according to a third modification and a calibration system using the same.
  • the calibration system shown in FIG. 1 includes a measurement port 20, a built-in spectral illuminance meter 24, a wavelength calibration port 22, a wavelength calibration light source 26, and a spectral irradiance standard light bulb.
  • the difference is that 32 is not provided and a calibrated spectral illuminometer 320 is provided.
  • Other elements are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted here.
  • the reference light source device 310 shown in the figure is also hemispherical, but the built-in spectral illuminometer 24 and the wavelength calibration light source 26 are not connected as described above. Instead, the calibration target spectral luminance meter 40 can be calibrated by measuring the illuminance of the luminance reference plane 18 with the calibrated spectral illuminance meter 32.
  • the calibrated spectral illuminometer 32 is calibrated in advance with a wavelength calibration light source such as a spectral irradiance standard bulb, a mercury lamp or a neon lamp.
  • FIG. 13 is a flowchart showing a calibration method of the spectral luminance meter using the calibration system shown in FIG.
  • the spectral illuminance of light emitted from the halogen lamp 28 and the deuterium lamp 30 is first measured by the calibrated spectral illuminance meter 320 (S201).
  • the controller 34 turns on the halogen lamp 28 and the deuterium lamp 30, measures the spectral illuminance with the calibrated spectral illuminance meter 320, and captures the measured value.
  • the controller 34 converts the spectral illuminance measured by the calibrated spectral illuminance meter 320 into spectral luminance using the illuminance-luminance table (S202).
  • a spectral illuminance meter and a spectral luminance meter that have been calibrated in advance are prepared, the calibrated spectral illuminance meter is arranged in front of the luminance reference surface 18 and at a predetermined distance from the luminance reference surface 18, and halogen The spectral illuminance of light emitted from the lamp 28 and the deuterium lamp 30 is measured.
  • a calibrated spectral luminance meter is arranged in front of the luminance reference plane 18 and at a predetermined distance from the luminance reference plane 18, and the spectral illuminance of light emitted from the halogen lamp 28 and the deuterium lamp 30 is measured. To do. Then, by associating the spectral illuminance and the spectral luminance thus measured, an illuminance-luminance table, that is, a conversion coefficient of illuminance and luminance for each wavelength is obtained in advance. The illuminance-luminance table is stored in the controller 34 in advance.
  • the luminance of each wavelength is obtained by multiplying the illuminance of each wavelength obtained by the calibrated spectral illuminometer 320 by the conversion coefficient included in this illuminance-luminance table.
  • the controller 34 measures the spectral luminance of the light emitted from the halogen lamp 28 and the deuterium lamp 30 using the calibration target spectral luminance meter 40 (S203). Specifically, the controller 34 displays the guide message.
  • the calibration operator places the calibration target spectral luminance meter 40 in front of the luminance reference plane 18 and at a predetermined distance from the luminance reference plane 18. Further, the halogen lamp 28 and the deuterium lamp 30 are turned on, the spectral luminance is measured by the calibration target spectral luminance meter 40, and the measured value is captured.
  • the controller 34 updates the sensitivity correction value stored in the sensitivity correction value storage unit 48 of the calibration target spectral luminance meter 40 so that the spectral luminance measured in S203 matches the spectral luminance obtained in S202 (S204). ).
  • spectral luminometers 40 to be calibrated are commercially available that can be operated as a spectral illuminometer by attaching a diffusing plate or other optical system in front of the condensing optical system.
  • the calibration target spectral luminance meter 40 that operates as a spectral illuminance meter is preliminarily used by a wavelength calibration light source such as a spectral irradiance standard bulb, a mercury lamp, or a neon lamp. It can be calibrated and used as a calibrated spectral illuminometer 320. Naturally, the measurement wavelength range of the calibrated spectral illuminometer 320 needs to be equal to or larger than the measurement wavelength range of the calibration-target spectral luminometer 40.
  • the halogen lamp 28 and the deuterium lamp 30 are used as the first light source and the second light source.
  • other light sources such as an LED and a laser may be used.
  • the wavelength calibration light source 26 is used to ensure reliability.
  • the wavelength calibration may be performed using the wavelength peaks of light from the first light source and the second light source.
  • the number of light sources is not limited to two, and three or more may be used.
  • the light source having each wavelength characteristic may be incident on the integrating sphere from three or more optical ports. In this case as well, it is desirable to determine the position of each optical port so that the distance from the center of the luminance reference plane is equal and the object has a rotation object with respect to the rotational symmetry axis R.
  • three optical ports may be arranged at positions shifted from each other by 120 degrees on the concentric circle with the circular flat plate portion 12b.
  • the reference light source device is applicable not only to the calibration method according to the present invention but also to other calibration methods.
  • the calibration target spectral luminance meter 40 is calibrated using the spectral luminance measured by the calibrated spectral luminance meter and the spectral luminance measured by the calibration target spectral luminance meter 40 without using the spectral illuminance meter.
  • the reference light source device can be applied. Also in this case, since the luminance unevenness of the luminance reference surface 18 is suppressed, more reliable spectral radiance calibration can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 輝度基準面における輝度ムラを低減する。開口である輝度基準面(18)を備える積分球(12)と、前記積分球(12)の外壁(12b)に互いに離間して設けられ、前記積分球(12)の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポート(14a),(14b)と、を含む分光輝度計(40)の校正に用いる基準光源装置(10)が提供される。前記複数の第1光ポート(14a),(14b)は、前記積分球(12)の外壁(12b)における、前記輝度基準面(18)の中心からの距離が等しく、前記輝度基準面(18)の中心を通る前記積分球(12)の回転対称軸Rに対して回転対称性を有する複数位置に設けられてよい。

Description

分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
 本発明は分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法に関する。
 下記特許文献1及び2には、分光輝度計の校正を行うことができる基準光源が開示されている。これらの文献に開示された基準光源は、LED又は半導体レーザの光が外部から入射される積分球を備えており、該積分球内で多重反射した光は、該積分球の外壁に設けられた開口である輝度基準面から出射する。校正対象の分光輝度計は、輝度基準面に対向するように設置されて、該輝度基準面の輝度を測定する。このようにして測定された輝度と、別途他の測定手段により測定される、確からしい前記輝度基準面の輝度と、に基づいて、校正対象の分光輝度計が校正される。
特開2006-177785号公報 特開2009-52978号公報
 理論的には、積分球は積分球の中心に光源を配置することで光束の空間的均一化を図る装置であるところ、上記従来の輝度光源においては、光源の光が積分球の外部から積分球内に入射されており、厳密には、輝度基準面の輝度は均一とならない。すなわち、輝度基準面には輝度ムラが生じる。一方で、校正対象となる分光輝度計は、一般的には、測定角度が小さなスポット測定を行うものであるため、校正対象の分光輝度計が実際に輝度基準面のどこに向けられているかにより、輝度測定値は大きく異なることになる。
 また、上記従来の基準光源においては、それぞれ波長特性の異なる複数の個別光源の光が積分球の外壁上の異なる位置から積分球内に入射されているため、輝度基準面の輝度ムラの態様は個別光源により異なる。すなわち、個別光源の変更に伴う輝度ムラの変化によって、校正対象の分光輝度計による輝度測定値は大きな影響を受けることになる。
 このように、輝度基準面における輝度の均一性が確保されていない従来の基準光源によれば、分光輝度計の校正の信頼性は低くならざるを得ないという問題があった。
 本発明は上記課題に鑑みてなされたものであって、第1の目的は、積分球の輝度基準面における輝度ムラを抑えることができる基準光源装置を提供することにある。
 また、第2の目的は、積分球の輝度基準面における輝度ムラが抑えられた基準光源装置を用いる、信頼性が高く且つ簡便な分光輝度計の校正方法を提供することにある。
 上記課題を解決するために、本発明に係る基準光源装置は、開口である輝度基準面を備える積分球と、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポートと、を含む。なお、本発明においては、「積分球」の語を、全球状、半球状、1/8球状など、内壁面での多重反射により入射光を均一化する装置を広く含む意味に用いる。
 ここで、前記複数の第1光ポートは、前記積分球の外壁における、前記輝度基準面の中心からの距離が等しく、前記輝度基準面の中心を通る前記積分球の回転対称軸に対して回転対称性を有する複数位置に設けられてよい。
 この場合、前記積分球は全球状であってよい。前記複数の第1光ポートは、前記回転対称軸に垂直な面で前記積分球を切った円のうち最大半径となる円よりも前記輝度基準面側の円を等分する複数位置に設けられてよい。
 また、前記積分球はその中心に前記輝度基準面を備える円形平板を含む半球状であってよい。前記複数の第1光ポートは、前記円形平板と同心の円を等分する、前記円形平板上の複数位置に設けられてよい。
 また、基準光源装置は、前記複数の第1光ポートのそれぞれに対し、光ファイバにより光を供給する単一の光源をさらに含んでよい。前記単一の光源から前記複数の第1光ポートのそれぞれまでの光ファイバの長さは等しくてよい。
 また、基準光源装置は、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に前記複数の第1光ポートとは波長特性の異なる、同等の波長特性の光をそれぞれ入射する複数の第2光ポートをさらに含んでよい。
 また、基準光源装置は、前記積分球の外壁に設けられ、分光照度を測定する分光照度計が接続される測定ポートをさらに含んでよい。
 また、基準光源装置は、前記積分球の外壁に設けられるとともに、波長校正用光源が接続され、前記積分球の内部に既知の波長ピークを有する光を入射する波長校正ポートをさらに含んでよい。
 本発明に係る校正方法は、上記基準光源装置を用いる分光輝度計の校正方法であって、校正対象分光輝度計により前記輝度基準面の輝度を測定するステップと、校正済み分光照度計により前記輝度基準面の照度を測定するステップと、前記測定される輝度と、前記測定される照度と、前記輝度と前記照度との関係と、に基づいて前記校正対象分光輝度計を校正するステップと、を含む。
 ここで、前記校正するステップは、前記関係に基づいて前記測定される照度を輝度に変換してよい。
 また、前記関係は、校正済み分光照度計により測定される前記輝度基準面の照度と、校正済み分光輝度計により測定される前記輝度基準面の輝度と、を関連づけることにより得られてよい。
 また、前記校正済み分光照度計は、前記校正対象分光計を分光照度計として用いるための光学系を取り付け、分光放射照度標準電球により校正したものであってよい。
本発明の一実施形態に係る基準光源装置及びそれを用いる校正システムの全体図である。 基準光源装置の平面図である。 図2におけるIII-III線断面図である。 校正対象分光輝度計の構成図である。 本発明の一実施形態に係る分光輝度計の校正方法を示すフロー図である。 輝度基準面における輝度の均一性を示す図である。 第1変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。 第1変形例に係る基準光源装置の平面図である。 図8におけるIX-IX線断面図である。 第2変形例に係る基準光源装置を示す斜視図である。 第2変形例に係る基準光源装置を示す平面図である。 第3変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。 図12に示す校正システムを用いる分光輝度計の校正方法を示すフロー図である。
 以下、本発明の一実施形態について図面に基づき詳細に説明する。
 図1は、本発明の一実施形態に係る基準光源装置及びそれを用いる校正システムの全体図である。同図において積分球12は斜視図で示されている。また、図2は、半球状である積分球12を割面側から見た平面図であり、図3は、図2におけるIII-III線断面図である。
 これらの図に示すように、基準光源装置10は積分球12を含んでいる。積分球12は中空半球状に形成されており、その外壁は半球殻部12aと円形平板部12bにより構成されている。割面である円形平板部12bの内面はアルミ蒸着等によるミラーであり、また半球殻部12aの内面は硫酸バリウムやPTFE(ポリテトラフルオロエチレン)焼結品等による白色高拡散反射面である。円形平板部12bの中心には円形の開口である輝度基準面18が設けられており、積分球12は、輝度基準面18の中心を通り円形平板部12bに垂直な回転対称軸Rに対してn回対称(nは2以上の任意整数)の3次元形状である。積分球12を半球状とすることにより、後述の全球状のものと比べて、装置全体をコンパクトにすることができ、また輝度基準面18に到達する光の量を約2倍とすることができる。
 円形平板部12bには、第1光源であるハロゲンランプ28からの光を積分球12内に入射するため、2つの第1光ポート16a,16bが設けられている。第1光ポート16a,16bの位置は、それらの位置から輝度基準面18の中心までの距離が等しく、また回転対称軸Rに対して2回対称となるよう設定されている。つまり、第1光ポート16a,16bは、輝度基準面18の同心円を2等分する位置に設けられている。第1光ポート16a,16bには、上述のように単一の光源であるハロゲンランプ28の光がY字状に形成されて途中で分岐した光ファイバにより導光されている。ハロゲンランプ28から第1光ポート16a、16bまでの光ファイバの長さは等しい。このため、ハロゲンランプ28が劣化して波長特性が変化しても、第1光ポート16a,16bからは常に同一の波長特性の光が出射される。
 同様に、円形平板部12bには、第2光源である重水素ランプ30からの光を積分球12内に入射するため、2つの第2光ポート14a,14bも設けられている。第2光ポート14a,14bの位置も、それらの位置から輝度基準面18の中心までの距離が等しく、また回転対称軸Rに対して2回対称となるよう調整されている。つまり、第2光ポート14a,14bも、輝度基準面18の中心を通る円を2等分する位置に設けられている。ここでは、第1光ポート16a,16bと第2光ポート14a,14bは互いに90度ずれた位置に設けられている。第2光ポート14a,14bには、上述のように単一の光源である重水素ランプ30の光がY字状に形成されて途中で分岐した光ファイバにより導光されている。重水素ランプ30から第2光ポート14a、14bまでの光ファイバの長さは等しい。このため、重水素ランプ30が劣化して波長特性が変化しても、第2光ポート14a,14bからは常に同一の波長特性の光が出射される。なお、ハロゲンランプ28は可視・近赤外領域の光を出射し、重水素ランプ30は紫外領域の光を出射する。
 なお、第1光ポート16a,16b及び第2光ポート14a,14bの取り付け位置は上述のものに限らず、積分球12の半球殻部12aに設けられてもよい。この場合も、輝度基準面18の中心からの距離が等しく、輝度基準面18の中心を通る積分球12の回転対称軸Rに対して回転対称性を有する複数位置に、第1光ポート16a,16bや第2光ポート14a,14bが設けられることが望ましい。この場合、第1光ポート16a,16bや第2光ポート14a,14bから出射される光が輝度基準面18に届かないように、積分球12の内面に所要数の遮光壁を設けることが望ましい。この点、上述のように円形平板部12bに第1光ポート16a,16b及び第2光ポート14a,14bを設ければ、このような遮光壁は不要であり、また平板に対する加工で済むために製造が容易となる。
 半球殻部12aの縁部には、内蔵分光照度計24が光ファイバにより接続される測定ポート20と、波長校正用光源26が光ファイバにより接続される波長校正ポート22と、がさらに設けられる。内蔵分光照度計24は、後述するように、校正対象(被校正)分光輝度計40を校正する基準となる輝度基準面18の輝度を測定するものである。半球殻部12aの内面には、第1光ポート16a,16b及び第2光ポート14a,14bから出射される光が測定ポート20に直接届かないよう、測定ポート20の周囲に環状の遮光壁21が立設されている。波長校正用光源26は、例えば水銀ランプ及びネオンランプを含んでおり、既知の波長ピーク(水銀輝線及びネオン輝線)を有する光を出射する。
 ハロゲンランプ28及び重水素ランプ30が点灯すると、それぞれの光は第1光ポート16a,16b及び第2光ポート14a,16bから積分球12内に入射し、多重反射した後に輝度基準面18に達し、そこから外部に出射する。校正対象となる分光輝度計40は輝度基準面18から所定距離の位置に輝度基準面18に対向するように設置され、この光を測定することにより校正が実施される。
 なお、後述するように分光輝度計40の位置には、内蔵分光照度計24の感度校正のために分光放射照度標準電球32を設置可能となっている。分光放射照度標準電球32は、所定の波長特性を有するものとして特定事業者により校正された電球である。
 ハロゲンランプ28、重水素ランプ30、内蔵分光照度計24、波長校正用光源26、分光輝度計40及び分光放射照度標準電球32は、いずれもコンピュータにより構成されたコントローラ34に接続されている。これにより、コントローラ34はハロゲンランプ28、重水素ランプ30、波長校正用光源26及び分光放射照度標準電球32の点灯を制御できる。また、コントローラ34は、内蔵分光照度計24により測定された照度を取得したり、内蔵分光照度計24の校正を行ったりできる。さらに、コントローラ34は、校正対象分光輝度計40により測定された輝度を取得したり、校正対象分光輝度計40の校正を行ったりできる。
 図4は、校正対象分光輝度計40の構成例を示す図である。同図に示す校正対象分光輝度計40は、いわゆるポリクロメータであり、集光光学系41を介して入射スリット42に導かれる被測定光は凹面型回折格子44により回折され、回折光は受光センサアレイ45に至る。受光センサアレイ45には波長分散像が結像するので、受光センサアレイ45の各画素の出力値は対応波長の輝度に変換される。すなわち、受光センサアレイ45に接続されたコントローラ46は画素-波長テーブル記憶部47及び感度補正値記憶部48を含んでいる。画素-波長テーブル記憶部47は、どの画素がどの波長に対応するかを記憶するものである。一方、感度補正値記憶部48は各画素の出力値を輝度に変換する係数を記憶するものである。本実施形態に係る校正システムでは、コントローラ34が、画素-波長テーブルを更新することにより、校正対象分光輝度計40の波長校正を実施し、感度補正値を更新することにより、校正対象分光輝度計40の感度校正を実施する。なお、内蔵分光照度計24も同様の構成を有している。
 図5は、校正システムによる校正方法を示すフロー図である。同図に示される各ステップは、コントローラ34により順に実行されるものであるが、もちろん校正作業者による手作業で実行されてもよい。まず、本校正方法では、まず内蔵分光照度計24の波長校正を実施する(S101)。具体的には、コントローラ34は波長校正用光源26を点灯させ、既知の波長ピークを有する光を積分球12内に入射する。また、入射光の分光照度を内蔵分光照度計24により計測し、波長ピークが既知の値に一致するよう、内蔵分光照度計24に記憶される画素-波長テーブルを更新する。
 次に、内蔵分光照度計24の感度校正を実施する(S102)。具体的には、コントローラ34は、分光放射照度標準電球32を輝度基準面18の正面であって輝度基準面18から所定距離だけ離れた位置に設置し、分光放射照度標準電球32を点灯させる。こうして、分光放射照度標準電球32は輝度基準面18を既知の分光照度にて照らす。なお、分光放射照度標準電球32の移動は電気的手段及び機械的手段により自動化してもよいし、ガイドメッセージなどを表示して校正作業者に手作業で行わせてもよい。次に、コントローラ34は、内蔵分光照度計24により分光照度を測定する。そして、各波長での照度が、分光放射照度標準電球32のそれとして既知のものと一致するよう、内蔵分光照度計24に記憶される感度補正値を更新する。
 次に、このようにして波長校正及び感度校正を終えた内蔵分光照度計24を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光照度を計測する(S103)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、内蔵分光照度計24により分光照度を計測させ、その計測値を取り込む。
 次に、コントローラ34は、内蔵分光照度計24により計測された分光照度を、照度-輝度テーブルにより分光輝度に変換する(S104)。本校正方法では、事前に製造会社の工場やサービス拠点で校正済みの分光輝度計を準備し、前記S101・S102・S103を完了後、校正済みの分光輝度計を校正対象分光輝度計40の設置位置に設置し、ハロゲンランプ28及び重水素ランプ30を点灯させ、内蔵分光照度計24で分光照度を計測すると同時に校正済みの分光輝度計で分光輝度を計測する。そして、こうして計測される分光照度及び分光輝度を関連づけることにより、照度-輝度テーブル、すなわち波長ごとの照度及び輝度の変換係数を事前に得ている。照度-輝度テーブルは事前にコントローラ34に記憶されている。S104では、内蔵分光照度計24により得られる各波長の照度に、この照度-輝度テーブルに含まれる変換係数を乗じることにより、各波長の輝度、すなわち分光輝度を得ている。
 次に、コントローラ34は校正対象分光輝度計40の波長校正を実施する(S105)。具体的には、分光放射照度標準電球32を輝度基準面18の正面から退去させてから、校正作業者に対してガイドメッセージを表示し、校正対象分光輝度計40を輝度基準面18の正面であって該輝度基準面18から所定距離に配置させる。さらに、コントローラ34は波長校正用光源26を点灯させ、校正対象分光輝度計40により分光輝度を計測させる。そして、計測される波長ピークが既知の値に一致するよう、校正対象分光輝度計40の画素-波長テーブル記憶部47に記憶される画素-波長テーブルを更新する。
 次に、コントローラ34は、このようにして波長校正を終えた校正対象分光輝度計40を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光輝度を計測する(S106)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正対象分光輝度計40により分光輝度を計測させ、その計測値を取り込む。
 その後、コントローラ34は、S106で測定される分光輝度がS104で得られる分光輝度に一致するよう、校正対象分光輝度計40の感度補正値記憶部48に記憶される感度補正値を更新する(S107)。
 本実施形態に係る基準光源装置10によれば、上述のように、波長特性が同じ光を互いに離間した第1光ポート16a,16bから積分球12内に入射するようにしたので、1箇所だけから光を入射する場合に比して、輝度基準面18の輝度ムラを抑えることができる。特に、第1光ポート16a,16bは、積分球12の外壁における、輝度基準面18の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられるので、輝度基準面18の輝度ムラをより効果的に抑えられる。同様に、第2光ポート14a,14bから入射する光についても輝度基準面18での輝度ムラが抑えられる。
 図6は、輝度基準面18における輝度の均一性を示す図である。同図(a)は、第1光ポート16aから光を入射した場合の輝度ムラを示す図であり、同図(b)は、第1光ポート16a,16bの双方から光を入射した場合の輝度ムラを示す図である。横軸は、輝度基準面18の中心から測定位置までの距離を、輝度基準面18の半径に対する百分率で示している。縦軸は、当該測定位置での輝度を、輝度基準面18の中心での輝度に対する百分率で示している。測定は、第1光ポート16aの中心と輝度基準面18の中心を結ぶ線上を、輝度基準面18の中心から25%離れた位置から25%近づいた位置まで移動させて実施した。これらの図によれば、第1光ポート16a,16bから出射した光が相互に重なりあって、輝度基準面18の輝度ムラを大きく低減していることが確認できる。
 また、このように基準光源装置10によれば輝度基準面18の輝度ムラを大きく低減することができるので、本実施形態によれば、予め校正された分光輝度計を用いずとも、内蔵分光照度計24により測定された分光照度を用いて、校正対象分光輝度計40の校正を精度よく行うことができる。すなわち、既に説明したように、分光輝度計は、一般的には、測定角度が小さなスポット測定を行うものであるため、輝度基準面18の輝度ムラが大きいと、分光輝度計が実際に輝度基準面18のどこに向けられているかにより、輝度測定値は大きく異なることになる。このため、校正済みの分光照度計及び校正済みの分光輝度計を用いて照度-輝度テーブルを作成する際の当該校正済み分光輝度計と全く同一の位置の輝度を、校正対象分光輝度計40が測定しない限り、校正の信頼性は保証されない。本実施形態によれば、輝度基準面18の輝度ムラが大きく低減されているので、照度-輝度テーブルを作成する際の校正済み分光輝度計の測定位置とずれた位置の輝度を、実際に校正対象分光輝度計40で測定したとしても、その差は小さいので、校正の信頼性を維持することができる。
 また、内蔵分光照度計24の校正は分光放射照度標準電球32を用いて簡単に行うことができるので、製造会社の工場やサービス拠点でなくても、ユーザ側で、分光放射照度標準電球32とのトレーサビリティーが確保された校正を実施することができる。
 また、本実施形態によれば、第1ポート16a,16b及び第2ポート14a,14bから異なる波長特性の光を入射しているので、広い波長範囲で分光放射輝度校正が可能となる。上述のようにハロゲンランプ28及び重水素ランプ30を用いれば、紫外領域から赤外領域までの広波長領域での分光放射輝度校正が可能となる。
 また、内蔵分光照度計24で都度、基準光源装置10の照度を測定することができるので、ハロゲンランプ28及び重水素ランプ30の光量を変更して、複数の輝度値により校正対象分光輝度計40の校正を行うことができる。さらに、積分球12の内面反射率が低下しても、信頼性の高い分光放射輝度校正を実施することができる。
 なお、本発明は上記実施形態に限定されず、種々の変形実施が可能である。
 図7は、第1変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。図8は、第1変形例に係る基準光源装置を輝度基準面118側から見た平面図であり、図9は、図8におけるIX-IX線断面図である。図7において、基準光源装置110は斜視図で示されている。第1変形例は、図1に示される校正システムと比して基準光源装置110のみ異なっているので、他の要素は図1と同一符号を付し、ここでは詳細説明を省略する。
 基準光源装置110は全球状の積分球112を備えており、積分球112の1箇所に円形の開口である輝度基準面118が設けられており、輝度基準面118の中心及び積分球112の中心を通る回転対称軸Rに対して、積分球112はn回対称(nは2以上の任意整数)の3次元形状である。
 第1光ポート116a,116bは、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられる。ここでは、第1光ポート116a,116bは、回転対称軸Rに垂直な面で積分球112を切った円のうち最大半径となる円X(赤道)よりも輝度基準面118側の円Yを2等分した位置に光の出射方向が積分球112の中心を向くようにして設けられている。同様に、第2光ポート114a,114bも、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられる。ここでは、第2光ポート114a,114bは円Yを2等分した位置に光の出射方向が積分球112の中心を向くようにして設けられており、ここでは、第1光ポート116a,116bと第2光ポート114a,114bは互いに90度ずれた位置に設けられている。積分球112の外壁には、測定ポート120及び波長校正ポート122も設けられている。ここでは測定ポート120及び波長校正ポート122は円X上において180度ずれた位置に設けられている。なお、第1光ポート116a,116b及び第2光ポート114a,114bの取り付け位置は上述のものに限らず、輝度基準面118の中心からの距離が等しく、輝度基準面118の中心を通る積分球112の回転対称軸Rに対して回転対称性を有する複数位置であれば、どこであってもよい。但し、第1光ポート116a,116b及び第2光ポート114a,114bを、それらの光の出射方向が積分球112の中心を向くようにして円Y上に設けることで、出射される光(1次光)が輝度基準面118に直接到達しないようにするための遮光壁を設けずに済むという利点がある。
 第1変形例に係る積分球112でも、ハロゲンランプ28の光を互いに離間した第1光ポート116a,116bから、重水素ランプ32の光を互いに離間した第2光ポート114a,114bから、積分球112内にそれぞれ入射するようにしたので、それぞれの光を1箇所だけから光を入射する場合に比して、輝度基準面18の輝度ムラを抑えることができる。第1光ポート116a,116bは、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられるので、輝度基準面118の輝度ムラをより効果的に抑えられる。同様に、第2光ポート114a,114bから入射する光についても輝度基準面118での輝度ムラが抑えられる。
 図10は、第2変形例に係る基準光源装置を示す斜視図である。また、図11は、第2変形例に係る基準光源装置を矢印X側から見た平面図である。同図に示す基準光源装置210は1/8球状の積分球212を備えており、その外壁は扇型の平板部212a,212b,212cと1/8球殻部212dとから構成される。また、平板部212a,212b,212cにより構成されるべき角部は回転対称軸Rに垂直な面にて切り欠かれており、その面に円形の開口である輝度基準面218がその中心が回転対称軸Rに一致するようにして開設されている。平板部212a,212b,212cの各内面、輝度基準面218が設けられた外壁部分の内面は、いずれもアルミ蒸着等によるミラーであり、また1/8球殻部212dの内面は硫酸バリウムやPTFE焼結品等による白色高拡散反射面である。積分球212は、回転対称軸Rに対して3回対称の3次元形状である。積分球212を1/8球状とすることで、装置をさらにコンパクトにすることができ、また輝度基準面218に到達する光の量をさらに増加させることができる。
 平板部212aに第1光ポート216aが設けられ、平板部212bに第1光ポート216bが設けられ、平板部212cに第1光ポート216cが設けられ、それらは輝度基準面218の中心からの距離が等しく、回転対称軸Rに対して回転対称性(3回対称)を有している。同様に、平板部212aには第1光ポート216aの隣に第2光ポート214aが設けられ、平板部212bには第1光ポート216bの隣に第2光ポート214bが設けられ、平板部212cには第1光ポート216cの隣に第2光ポート214cが設けられ、それらも輝度基準面218の中心からの距離が等しく、回転対称軸Rに対して回転対称性(3回対称)を有している。
 平板部212bには、測定ポート220が設けられ、平板部212cには波長校正ポート222が設けられている。第2変形例に係る基準光源装置210でも、輝度基準面218における輝度ムラを抑えることができる。
 図12は、第3変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。同図に示す校正システムは、図1に示す校正システムに比して、基準光源装置310に測定ポート20、内蔵分光照度計24、波長校正ポート22、波長校正用光源26、分光放射照度標準電球32が設けられてない点、校正済み分光照度計320が設けられている点が異なる。その他の要素には図1と同一符号を付し、ここでは詳細説明を省略する。
 同図に示す基準光源装置310も半球状であるが、上記のように内蔵分光照度計24及び波長校正用光源26が接続されない。代わりに、校正済み分光照度計32で輝度基準面18の照度を測定することにより、校正対象分光輝度計40の校正を実施することができる。校正済み分光照度計32は、例えば分光放射照度標準電球や、水銀ランプやネオンランプなどの波長校正用光源により、事前に校正されたものである。
 図13は、図12に示す校正システムを用いる分光輝度計の校正方法を示すフロー図である。同図に示すように、この方法では、まず校正済み分光照度計320により、ハロゲンランプ28及び重水素ランプ30により出射される光の分光照度を計測する(S201)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正済み分光照度計320により分光照度を計測させ、その計測値を取り込む。
 次に、コントローラ34は、校正済み分光照度計320により計測された分光照度を、照度-輝度テーブルにより分光輝度に変換する(S202)。ここでは、事前に校正済みの分光照度計及び分光輝度計を準備し、校正済みの分光照度計を輝度基準面18の正面であって該輝度基準面18から所定距離の位置に配置し、ハロゲンランプ28及び重水素ランプ30から出射される光の分光照度を計測する。また、校正済みの分光輝度計を輝度基準面18の正面であって該輝度基準面18から所定距離の位置に配置し、ハロゲンランプ28及び重水素ランプ30から出射される光の分光照度を計測する。そして、こうして計測される分光照度及び分光輝度を関連づけることにより、照度-輝度テーブル、すなわち波長ごとの照度及び輝度の変換係数を事前に得る。照度-輝度テーブルは事前にコントローラ34に記憶されている。S202では、校正済み分光照度計320により得られる各波長の照度に、この照度-輝度テーブルに含まれる変換係数を乗じることにより、各波長の輝度、すなわち分光輝度を得る。
 次に、コントローラ34は、校正対象分光輝度計40を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光輝度を計測する(S203)具体的には、コントローラ34はガイドメッセージの表示などにより、校正作業者に、校正対象分光輝度計40を輝度基準面18の正面であって該輝度基準面18から所定距離に配置させる。さらに、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正対象分光輝度計40により分光輝度を計測させ、その計測値を取り込む。
 その後、コントローラ34は、S203で測定される分光輝度がS202で得られる分光輝度に一致するよう、校正対象分光輝度計40の感度補正値記憶部48に記憶される感度補正値を更新する(S204)。
 このように、内蔵分光照度計24等を設けなくても、輝度ムラが抑えられた基準輝度面18を用いて、信頼性の高い分光放射輝度校正を実施できる。なお、校正対象分光輝度計40の中には、集光光学系の前方に拡散板その他の光学系を取り付けることにより、分光照度計として動作させることができるものも市販されている。このような校正対象分光輝度計40の場合には、分光照度計として動作する校正対象分光輝度計40を、例えば分光放射照度標準電球や、水銀ランプやネオンランプなどの波長校正用光源により事前に校正して、校正済み分光照度計320として用いることができる。当然ながら、校正済み分光照度計320の測定波長範囲は、校正対象分光輝度計40の測定波長範囲と同等か、それ以上の広波長範囲が必要である。
 また、以上の説明では第1光源及び第2光源としてハロゲンランプ28及び重水素ランプ30を用いたが、LEDやレーザなどの他の光源を用いてよいのはもちろんである。また、波長校正には、信頼性確保のために波長校正用光源26を用いたが、第1光源及び第2光源からの光の波長ピークを用いて波長校正を行ってもよい。また、光源の数は2つに限らず、3つ以上を用いてよい。さらに、各波長特性の光源は、3以上の光ポートから積分球内に入射されてよい。この場合も、輝度基準面の中心との距離が等しく、また回転対称軸Rに対して回転対象性を有するよう、各光ポートの位置を決定することが望ましい。例えば、図1の例では、円形平板部12bと同心円上で120度ずつ互いにずれた位置に3つの光ポートを配置してよい。光ポートの数を増やすことにより、輝度基準面の輝度ムラをさらに効果的に抑えることができる。
 また、本発明に係る基準光源装置は、本発明に係る校正方法だけでなく、他の校正方法にも適用可能である。例えば、分光照度計を用いずに、校正済みの分光輝度計により測定される分光輝度と、校正対象分光輝度計40により測定される分光輝度と、により、校正対象分光輝度計40の校正を実施する場合にも、本発明に係る基準光源装置は適用することができる。この場合も、輝度基準面18の輝度ムラが抑えられているので、より信頼性の高い分光放射輝度校正を実施できる。

 

Claims (13)

  1.  開口である輝度基準面を備える積分球と、
     前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポートと、
     を含むことを特徴とする分光輝度計の校正に用いる基準光源装置。
  2.  請求項1に記載の基準光源装置であって、
     前記複数の第1光ポートは、前記積分球の外壁における、前記輝度基準面の中心からの距離が等しく、前記輝度基準面の中心を通る前記積分球の回転対称軸に対して回転対称性を有する複数位置に設けられる、
     ことを特徴とする分光輝度計の校正に用いる基準光源装置。
  3.  請求項2に記載の基準光源装置であって、
     前記積分球は全球状であり、
     前記複数の第1光ポートは、前記回転対称軸に垂直な面で前記積分球を切った円のうち最大半径となる円よりも前記輝度基準面側の円を等分する複数位置に設けられる、
     ことを特徴とする基準光源装置。
  4.  請求項2に記載の基準光源装置であって、
     前記積分球はその中心に前記輝度基準面を備える円形平板を含む半球状であり、
     前記複数の第1光ポートは、前記円形平板と同心の円を等分する、前記円形平板上の複数位置に設けられる、
     ことを特徴とする基準光源装置。
  5.  請求項1乃至4のいずれかに記載の基準光源装置であって、
     前記複数の第1光ポートのそれぞれに対し、光ファイバにより光を供給する単一の光源をさらに含む、
     ことを特徴とする基準光源装置。
  6.  請求項5に記載の基準光源装置であって、
     前記単一の光源から前記複数の第1光ポートのそれぞれまでの光ファイバの長さが等しい、
     ことを特徴とする基準光源装置。
  7.  請求項1乃至6のいずれかに記載の基準光源装置であって、
     前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に前記複数の第1光ポートとは波長特性の異なる、同等の波長特性の光をそれぞれ入射する複数の第2光ポートをさらに含む、
     ことを特徴とする基準光源装置。
  8.  請求項1乃至7のいずれかに記載の基準光源装置であって、
     前記積分球の外壁に設けられ、分光照度を測定する分光照度計が接続される測定ポートをさらに含む、
     ことを特徴とする基準光源装置。
  9.  請求項1乃至8のいずれかに記載の基準光源装置であって、
     前記積分球の外壁に設けられるとともに、波長校正用光源が接続され、前記積分球の内部に既知の波長ピークを有する光を入射する波長校正ポートをさらに含む、
     ことを特徴とする基準光源装置。
  10.  請求項1に記載の基準光源装置を用いる分光輝度計の校正方法であって、
     校正対象分光輝度計により前記輝度基準面の輝度を測定するステップと、
     校正済み分光照度計により前記輝度基準面の照度を測定するステップと、
     前記測定される輝度と、前記測定される照度と、前記輝度と前記照度との関係と、に基づいて前記校正対象分光輝度計を校正するステップと、
     を含むことを特徴とする校正方法。
  11.  請求項10に記載の校正方法であって、
     前記校正するステップは、前記関係に基づいて前記測定される照度を輝度に変換する、
     ことを特徴とする校正方法。
  12.  請求項10又は11に記載の校正方法であって、
     前記関係は、校正済み分光照度計により測定される前記輝度基準面の照度と、校正済み分光輝度計により測定される前記輝度基準面の輝度と、を関連づけることにより得られる、
     ことを特徴とする校正方法。
  13.  請求項10乃至12のいずれかに記載の校正方法において、
     前記校正済み分光照度計は、前記校正対象分光計を分光照度計として用いるための光学系を取り付け、分光放射照度標準電球により校正したものである、
     ことを特徴とする校正方法。

     
PCT/JP2015/058991 2015-03-24 2015-03-24 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法 WO2016151778A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177021806A KR102015203B1 (ko) 2015-03-24 2015-03-24 분광 휘도계의 교정에 사용하는 기준 광원 장치 및 교정 방법
US15/560,493 US10330530B2 (en) 2015-03-24 2015-03-24 Reference light source device used for calibration of spectral luminance meter and calibration method using same
JP2017507231A JP6481021B2 (ja) 2015-03-24 2015-03-24 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
PCT/JP2015/058991 WO2016151778A1 (ja) 2015-03-24 2015-03-24 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
TW105104547A TWI744222B (zh) 2015-03-24 2016-02-17 用於分光亮度計之校正的基準光源裝置及使用其之校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058991 WO2016151778A1 (ja) 2015-03-24 2015-03-24 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法

Publications (1)

Publication Number Publication Date
WO2016151778A1 true WO2016151778A1 (ja) 2016-09-29

Family

ID=56978593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058991 WO2016151778A1 (ja) 2015-03-24 2015-03-24 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法

Country Status (5)

Country Link
US (1) US10330530B2 (ja)
JP (1) JP6481021B2 (ja)
KR (1) KR102015203B1 (ja)
TW (1) TWI744222B (ja)
WO (1) WO2016151778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505063A (zh) * 2017-07-13 2017-12-22 北京航空航天大学 一种基于高频正弦校准光的激光光线偏折校正装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863280B2 (ja) * 2015-07-10 2021-04-21 ソニーグループ株式会社 検査装置、検査方法、及び、プログラム
CN113167648A (zh) * 2018-10-08 2021-07-23 威利食品有限公司 一种用于光谱仪的附件
CN109506901B (zh) * 2019-01-21 2020-06-16 中国科学院合肥物质科学研究院 一种光源装置的调试方法
CN109738062B (zh) * 2019-03-14 2024-04-09 贵州大学 一种环形光源积分球结构
KR102203066B1 (ko) 2019-12-04 2021-01-14 한국표준과학연구원 적분구 광원
TWI755252B (zh) * 2021-01-13 2022-02-11 宇瞻科技股份有限公司 輝度計
CN112985585B (zh) * 2021-02-02 2023-02-03 上海医勒希科技有限公司 标准光源、光度计的校准方法以及校准系统
KR102533767B1 (ko) * 2021-02-26 2023-05-18 (주)이즈소프트 빛공해 평가용 면휘도계 측정장치 및 면휘도계의 보정 방법
CN114323265B (zh) * 2021-12-30 2024-06-07 航天新气象科技有限公司 一种定标装置
WO2024003159A1 (en) * 2022-07-01 2024-01-04 Admesy B.V. Luminance calibration device
KR102702282B1 (ko) * 2022-07-29 2024-09-04 교정기술원 주식회사 적분구를 구비한 조도계 교정 장치
CN116610007B (zh) * 2023-07-18 2023-10-27 上海图双精密装备有限公司 掩模对准光刻设备及其照明系统和照明方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231940A (ja) * 1991-05-14 1993-09-07 Nkk Corp 表面色調の測色方法
JPH07301565A (ja) * 1994-03-07 1995-11-14 Ricoh Co Ltd 光学測定装置
JP2003331631A (ja) * 2002-03-28 2003-11-21 Eastman Kodak Co 照明装置およびその作成方法
JP2006177813A (ja) * 2004-12-22 2006-07-06 Konica Minolta Sensing Inc 迷光補正法及びそれを用いた二次元分光輝度計
JP2009052978A (ja) * 2007-08-24 2009-03-12 Konica Minolta Sensing Inc 校正用基準光源およびそれを用いる校正システム
JP2009092397A (ja) * 2007-10-04 2009-04-30 Nippon Avionics Co Ltd 積分筒および積分筒を用いたライン型照明装置
JP2010078418A (ja) * 2008-09-25 2010-04-08 Seiko Epson Corp 分光測定装置、校正装置、分光測定方法、および校正方法
JP2014020952A (ja) * 2012-07-19 2014-02-03 Otsuka Denshi Co Ltd 光学特性測定装置
JP2015045618A (ja) * 2013-08-29 2015-03-12 スガ試験機株式会社 測色計

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932023A (en) * 1974-11-18 1976-01-13 E. I. Du Pont De Nemours & Company Optical coupler for transmitting light linearly between a single point and plural points
US4770530A (en) * 1986-04-23 1988-09-13 Kollmorgen Corporation Remote spectrophotometer
US4939376A (en) * 1989-04-14 1990-07-03 The United States Of America As Represented By The United States Department Of Energy Light collection device for flame emission detectors
JP2932591B2 (ja) * 1990-04-13 1999-08-09 松下電器産業株式会社 遮光筒式輝度計
US5340974A (en) * 1991-12-09 1994-08-23 Hughes Aircraft Company Polychromatic source calibration by one or more spectrally filtered photodetector currents
US6597457B1 (en) * 1991-12-09 2003-07-22 Goodrich Corporation Calibration of solar reflectance panel
CA2199868C (en) * 1994-09-14 2000-05-16 David R. Bowden Compact spectrophotometer
JPH08320273A (ja) * 1995-05-26 1996-12-03 Minolta Co Ltd 光学的角度特性測定装置
US5825464A (en) * 1997-01-03 1998-10-20 Lockheed Corp Calibration system and method for lidar systems
EP0898162A1 (en) * 1997-08-20 1999-02-24 Suzuki Motor Corporation Immunoassay apparatus
JP3555400B2 (ja) * 1997-08-28 2004-08-18 ミノルタ株式会社 反射特性測定装置
JPH11258173A (ja) * 1998-03-16 1999-09-24 Toshiba Corp 照明装置
JP4061765B2 (ja) * 1999-02-09 2008-03-19 コニカミノルタセンシング株式会社 蛍光試料の分光特性測定装置及びその測定方法
US6369888B1 (en) * 1999-11-17 2002-04-09 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
US6608293B2 (en) * 1999-12-17 2003-08-19 Agilent Technologies Inc. Method of and apparatus for testing a photosensor
US6369883B1 (en) * 2000-04-13 2002-04-09 Amherst Holding Co. System and method for enhanced mass splice measurement
US6888636B2 (en) * 2001-03-19 2005-05-03 E. I. Du Pont De Nemours And Company Method and apparatus for measuring the color properties of fluids
DE602004002571T2 (de) * 2003-02-24 2007-06-21 Gretagmacbeth, L.L.C. Spektrophotometer und dessen baugruppen
JP4400448B2 (ja) 2004-12-22 2010-01-20 コニカミノルタセンシング株式会社 分光輝度計の校正方法、及び校正システムの動作プログラム
US7375812B2 (en) * 2005-02-22 2008-05-20 Axsun Technologies, Inc. Method and system for reducing parasitic spectral noise in tunable semiconductor source spectroscopy system
US7456955B2 (en) * 2005-03-14 2008-11-25 Datacolor Holding Ag Spectrophotometer with light emitting diode illuminator
CN101221087A (zh) * 2007-01-09 2008-07-16 鸿富锦精密工业(深圳)有限公司 镜片光反射率检测装置及镜片组装设备
CN101221088B (zh) * 2007-01-10 2011-11-30 鸿富锦精密工业(深圳)有限公司 镜片光穿透率检测装置及镜片组装设备
TWI325953B (en) * 2007-05-29 2010-06-11 Chroma Ate Inc A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
US8119996B2 (en) * 2009-01-20 2012-02-21 Otsuka Electronics Co., Ltd. Quantum efficiency measurement apparatus and quantum efficiency measurement method
EP2448006A1 (en) * 2009-06-24 2012-05-02 Konica Minolta Sensing, Inc. Light source evaluation device, light source adjustment system, light source evaluation system, and light source evaluation method
US8067738B1 (en) * 2009-08-25 2011-11-29 Ball Aerospace & Technologies Corp. Space based calibration transfer spectroradiometer
JP5643983B2 (ja) * 2010-03-25 2014-12-24 大塚電子株式会社 光学測定装置、光学測定システムおよびファイバ結合器
KR101144653B1 (ko) * 2010-08-02 2012-05-11 한국표준과학연구원 적분구 광도계 및 그 측정 방법
US20130003064A1 (en) * 2011-01-03 2013-01-03 National Institute Of Standards And Technology Dynamic Spectral Radiance Calibration Source
US8976256B2 (en) * 2011-03-21 2015-03-10 The United States Of America As Represented By The Secretary Of The Air Force Remote sensing of hidden objects
WO2013103408A1 (en) * 2011-10-07 2013-07-11 Duke University Apparatus for coded aperture x-ray scatter imaging and method therefor
US8861106B2 (en) * 2011-12-02 2014-10-14 Raytheon Company Variable monochromatic uniform calibration source
US8749773B2 (en) * 2012-02-03 2014-06-10 Epistar Corporation Method and apparatus for testing light-emitting device
WO2013186913A1 (ja) * 2012-06-15 2013-12-19 パイオニア株式会社 測光装置
CN102967604B (zh) * 2012-11-06 2014-11-05 广州标旗电子科技有限公司 一种用于宝石检测的反射光谱测量取样系统及方法
US9646223B2 (en) * 2012-12-26 2017-05-09 Nec Corporation Image measuring method, system, device, and program
JP6185864B2 (ja) * 2013-06-07 2017-08-23 本田技研工業株式会社 積分球
KR101486282B1 (ko) * 2014-01-07 2015-01-27 한국표준과학연구원 고속 측각 분광복사계 및 그 측정방법
US9841322B1 (en) * 2014-06-02 2017-12-12 Kemeny Associates LLC Spectral imaging with multiple illumination sources
US10228279B2 (en) * 2016-04-21 2019-03-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Radiance sensor and radiance reconstruction method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231940A (ja) * 1991-05-14 1993-09-07 Nkk Corp 表面色調の測色方法
JPH07301565A (ja) * 1994-03-07 1995-11-14 Ricoh Co Ltd 光学測定装置
JP2003331631A (ja) * 2002-03-28 2003-11-21 Eastman Kodak Co 照明装置およびその作成方法
JP2006177813A (ja) * 2004-12-22 2006-07-06 Konica Minolta Sensing Inc 迷光補正法及びそれを用いた二次元分光輝度計
JP2009052978A (ja) * 2007-08-24 2009-03-12 Konica Minolta Sensing Inc 校正用基準光源およびそれを用いる校正システム
JP2009092397A (ja) * 2007-10-04 2009-04-30 Nippon Avionics Co Ltd 積分筒および積分筒を用いたライン型照明装置
JP2010078418A (ja) * 2008-09-25 2010-04-08 Seiko Epson Corp 分光測定装置、校正装置、分光測定方法、および校正方法
JP2014020952A (ja) * 2012-07-19 2014-02-03 Otsuka Denshi Co Ltd 光学特性測定装置
JP2015045618A (ja) * 2013-08-29 2015-03-12 スガ試験機株式会社 測色計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505063A (zh) * 2017-07-13 2017-12-22 北京航空航天大学 一种基于高频正弦校准光的激光光线偏折校正装置及方法
CN107505063B (zh) * 2017-07-13 2019-07-12 北京航空航天大学 一种基于高频正弦校准光的激光光线偏折校正装置及方法

Also Published As

Publication number Publication date
TWI744222B (zh) 2021-11-01
KR20170131354A (ko) 2017-11-29
US10330530B2 (en) 2019-06-25
TW201634906A (zh) 2016-10-01
KR102015203B1 (ko) 2019-08-27
JP6481021B2 (ja) 2019-03-13
US20180058927A1 (en) 2018-03-01
JPWO2016151778A1 (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6481021B2 (ja) 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
US8625088B2 (en) Integrating sphere photometer and measuring method of the same
JP4216314B2 (ja) 光学測定装置
JP4452737B2 (ja) 光束計および測定方法
TWI622756B (zh) 標準光源及使用標準光源的測量方法
KR101108604B1 (ko) 적분구 광도계 및 그 측정 방법
KR101144653B1 (ko) 적분구 광도계 및 그 측정 방법
Ohno Detector-based luminous-flux calibration using the absolute integrating-sphere method
CN111413070A (zh) 亮度检测装置及其检测方法
TW202117291A (zh) 光學測定方法及處理裝置
CN217586041U (zh) 一种白光照度计、紫外辐照度计及亮度计一体化校准装置
Hanselaer et al. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
JP2008292497A (ja) 光学測定装置
Miller et al. LED photometric calibrations at the National Institute of Standards and Technology and future measurement needs of LEDs
Hovila et al. Realization of the unit of luminous flux at the HUT using the absolute integrating-sphere method
Sauter Goniophotometry: new calibration method and instrument design
Schwarzmaier et al. The Radiance Standard RASTA of DLR's calibration facility for airborne imaging spectrometers
CN112014069B (zh) 一种成像测量装置
Askola Characterization of an integrating sphere setup for measurements of organic LEDs
Kim et al. Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS
Poikonen Characterization of Light Emitting Diodes and Photometer Quality Factors
WO2015151488A1 (ja) 放射束分布測定方法及び放射束分布測定装置
Terrich Preparation of light standards in photometry
Баковец et al. National standard of luminous flux of the Republic of Belarus
Ohno 7. Photometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507231

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177021806

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886331

Country of ref document: EP

Kind code of ref document: A1