JP2006177813A - 迷光補正法及びそれを用いた二次元分光輝度計 - Google Patents

迷光補正法及びそれを用いた二次元分光輝度計 Download PDF

Info

Publication number
JP2006177813A
JP2006177813A JP2004372180A JP2004372180A JP2006177813A JP 2006177813 A JP2006177813 A JP 2006177813A JP 2004372180 A JP2004372180 A JP 2004372180A JP 2004372180 A JP2004372180 A JP 2004372180A JP 2006177813 A JP2006177813 A JP 2006177813A
Authority
JP
Japan
Prior art keywords
image
stray light
pixel
pixels
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004372180A
Other languages
English (en)
Other versions
JP4400450B2 (ja
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004372180A priority Critical patent/JP4400450B2/ja
Publication of JP2006177813A publication Critical patent/JP2006177813A/ja
Application granted granted Critical
Publication of JP4400450B2 publication Critical patent/JP4400450B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 迷光補正を行い好適な測定画像を得ると共に、充分な精度を維持しつつ補正処理時間を短縮する。
【解決手段】 撮像により得られる観察画像に対する迷光の影響を補正して補正画像を求める迷光補正法として、迷光の影響に基づく迷光画像が重畳された観察画像と、予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光に応じて該撮像域の全画素に対して得られる応答画像とから、観察画像の画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、当該推定算出された迷光画像を観察画像から除去して実画像に近似する補正画像を算出する方法を用いる。
【選択図】 図14

Description

本発明は、測定対象である二次元光源の各画素の分光強度を得るとともに、これを輝度、色度などのインデックスの二次元分布に変換して出力する二次元分光輝度計、及びこの二次元分光輝度計による測定において迷光補正を行う場合の迷光補正法に関する。
従来、二次元光源の輝度、色度は、フィルターを用いた三刺激値型の二次元測色計が用いられてきたが、近年各種ディスプレーやLED応用機器など単色に近い(スペクトル幅の狭い)発光スペクトルを有する面光源が増えつつあり、これらの輝度、色度を精度良く測定するという要請から、分光型の二次元輝度計の必要性が高くなっている。この分光型の二次元輝度計(二次元分光輝度計)は、以下のマルチフィルター方式、或いはスリット分散像方式をとるものが多い。
<マルチフィルター方式>
回転円板等に円環状に取り付けられた中心波長の異なる複数のバンドパスフィルター(BPF;Band Pass Filter)を対象光学系の結像光束中に順次挿入し、これら各フィルターの透過波長帯の光束による像を、結像面に置かれた二次元撮像素子によって撮像することで二次元の分光特性情報を得る輝度計測方式(例えば、特許文献1参照)。
<スリット分散像方式>
測定対象である二次元光源の対物光学系による像を、結像面に置かれたスリットによって切り出す。切り出されたスリット状の像(スリット光源)の分散光学系による波長分散像を、結像面に置かれた二次元撮像素子によって撮像する。そして、測定対象又は測定系を、スリットと直交する方向に走査して二次元の分光特性情報を得る輝度計測方式(例えば、特許文献2参照)。
特開平6−201472号公報 特開平8−50057号公報
上記マルチフィルター方式及びスリット分散像方式のいずれにおいても、バンドパスフィルターやスリットからの反射成分が存在する。この反射成分は、光学系のレンズ面や装置のハウジング内面等で再反射され、迷光となって再入射される。そして、この再入射された迷光は、撮像素子の撮像によって得られる本来の測定画像(実画像)に対して影響を与えてしまう、すなわち、迷光によって生じる迷光画像が測定画像に重畳されてしまい、当該観察画像の精度、特に高コントラストの画像の精度を劣化させてしまうことになる。バンドパスフィルターやスリットを用いない場合であっても、撮像素子表面や光学系のレンズ表面からの反射光などによって迷光が生じてしまうことは避けられない。
本発明は上記事情に鑑みてなされたもので、測定画像に対する迷光の影響が除去されて(迷光補正が行われて)好適な測定画像を得ることができるとともに、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を短縮することができる迷光補正法及びそれを用いた二次元分光輝度計を提供することを目的とする。
本発明の請求項1に係る迷光補正法は、撮像により得られる観察画像に対する迷光の影響を補正して補正画像を求める迷光補正法であって、前記迷光の影響に基づく迷光画像が重畳された前記観察画像と、予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光に応じて該撮像域の全画素に対して得られる応答画像とから、前記観察画像を構成する画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、当該推定算出された迷光画像を観察画像から除去して実画像に近似する前記補正画像を算出することを特徴とする。
上記構成によれば、迷光の影響に基づく迷光画像が重畳された観察画像と、迷光補正演算において使用するべく別途校正等によって予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光が該撮像域の全画素上につくる応答画像(本実施形態ではレスポンス画像という)とから、観察画像を構成する画素数より低い画素数の画像情報を用いて迷光画像が推定算出され、この推定算出された迷光画像を観察画像から除去(例えば減算)することで実画像に近似する補正画像(観察画像から迷光の影響を補正した画像)が求められる。したがって、このように迷光補正処理が行われるため、測定画像(観察画像)に対する迷光の影響が除去された好適な測定画像を得ることができる。また、予め測定して求めておいた応答画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像を構成する画素数より低い画素数の画像情報を用いて当該迷光補正を行う方法をとることで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。なお、当該観察画像から迷光の影響が除去されることで、コントラストを有した画像における低輝度画素の精度向上に大きな効果が得られる。
請求項2に係る迷光補正法は、請求項1において、前記撮像により得られる観察画像(Oij(λ))を、該観察画像の全画素数に対して低画素数となる観察画像である低画素観察画像(OIJ(λ))に変換する第1の工程と、当該低画素観察画像と低画素数の応答画像((FMNIJ(λ))とから、前記補正画像(R’ij(λ))の低画素数画像としての低画素補正画像(QIJ(λ))を算出する第2の工程と、前記低画素観察画像と当該低画素補正画像との差(OIJ(λ)−QIJ(λ))によって低画素数の迷光画像(BIJ(λ))を算出する第3の工程と、当該低画素数の迷光画像を前記全画素数に対する迷光画像(Bij(λ))に変換する第4の工程と、前記全画素数の観察画像(Oij(λ))から当該全画素数に対する迷光画像(Bij(λ))を減じて前記実画像に近似する補正画像(R’ij(λ))を算出する第5の工程とを有することを特徴とする。
この構成によれば、第1〜第5の工程によって迷光補正演算が行われるため、扱うデータ量及び演算処理時間を大幅に削減(短縮)しながら、充分な精度で(元の全画素数の)観察画像に対する迷光補正を行うことが可能となる。
請求項3に係る迷光補正法は、請求項2において、前記低画素観察画像(OIJ(λ))に対する仮の実画像としての低画素補正画像(QIJ(λ))と応答画像((FMNIJ(λ))とから擬似観察画像(O’IJ(λ))を算出し、当該擬似観察画像と低画素観察画像との差による差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像(QIJ(λ))を再補正し、当該再補正した低画素補正画像(QIJ(λ))と前記応答画像とから新たな擬似観察画像(O’IJ(λ))を算出し、当該新たな擬似観察画像と前記低画素観察画像との差による新たな差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像をさらに補正する漸近演算を、当該差画像による誤差が所定値以下となるまで繰り返し行うことで、前記第2の工程における低画素補正画像(QIJ(λ))を算出することを特徴とする。
この構成によれば、低画素観察画像(OIJ(λ))と低画素数の応答画像((FMNIJ(λ))とから、漸近法によって(第2の工程における)低画素補正画像(QIJ(λ))を算出する方法をとるため、より簡易な処理プログラムを用いて、短い演算処理時間で精度の高い低画素補正画像を得ることが可能となり、ひいては迷光補正全体に対する更なる演算処理時間の短縮、演算精度(補正画像(R’ij(λ))の精度)向上を図ることができる。
請求項4に係る迷光補正法は、請求項1〜3のいずれかにおいて、前記全画素数の画像がビニングされ、所定数の画素が一纏めにされた所定数の画素セットからなる画素セット画像を前記低画素数の画像とすることを特徴とする。この構成によれば、全画素数の画像(例えば観察画像(Oij(λ))や迷光画像(Bij(λ)))がビニングされることで、容易に低画素数の画像(例えば低画素数の観察画像(OIJ(λ))や迷光画像(BIJ(λ)))を得ることができる。
請求項5に係る迷光補正法は、請求項4において、前記観察画像の撮像域における前記各画素セットに点光源からの光を結像させて撮像した画像に基づいて前記応答画像を得ることを特徴とする。この構成によれば、各画素に対してではなく、各画素セットに点光源からの光を結像(照射)させて撮像した画像に基づいて応答画像を得るため、(当該応答画像を用いる二次元分光輝度計個々に応じた)応答画像を、実験的に且つ容易に取得することができる。
請求項6に係る迷光補正法は、請求項1〜4のいずれかにおいて、前記迷光補正の演算処理を、観察画像の撮像における入射光の波長ごとに行うことを特徴とする。この構成によれば、迷光補正処理を観察画像の撮像における入射光の波長ごとに(本実施形態では、ウェッジバンドパスフィルタによる分光透過光の中心波長λに応じて)行うので、迷光の要因に波長依存性があったとしても効果的に当該迷光補正を行うことができる。
請求項7に係る二次元分光輝度計は、撮像により得られる観察画像に対する迷光の影響を補正して補正画像を求める迷光補正演算を行う二次元分光輝度計であって、前記迷光の影響に基づく迷光画像が重畳された前記観察画像と、予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光に応じて該撮像域の全画素に対して得られる応答画像とから、前記観察画像の画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、当該推定算出された迷光画像を観察画像から除去して実画像に近似する前記補正画像を算出する迷光補正演算手段を備えることを特徴とする。
上記構成によれば、迷光補正演算手段によって、迷光の影響に基づく迷光画像が重畳された観察画像と、迷光補正演算において使用するべく別途校正等によって予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光が該撮像域の全画素上につくる応答画像とから、観察画像の画素数より低い画素数の画像情報を用いて迷光画像が推定算出され、この推定算出された迷光画像を観察画像から除去(例えば減算)することで実画像に近似する補正画像が求められる。したがって、このように迷光補正処理が行われるため、測定画像(観察画像)に対する迷光の影響が除去された好適な測定画像を得ることができる。また、予め測定して求めておいた応答画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像の画素数より低い画素数の画像情報を用いて当該迷光補正を行うことで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。
請求項1記載の発明によれば、観察画像と予め測定された応答画像とから観察画像の画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、この算出した迷光画像を観察画像から除去することで実画像に近似する補正画像を求める、というように迷光補正処理が行われるため、測定画像(観察画像)に対する迷光の影響が除去された好適な測定画像を得ることができる。また、予め測定して求めておいた応答画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像を構成する画素数より低い画素数の画像情報を用いて当該迷光補正を行う方法をとることで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。なお、観察画像から迷光の影響が除去されることで、コントラストを有した画像における低輝度画素の精度向上に大きな効果を得ることができる。
請求項2記載の発明によれば、第1〜第5の工程によって迷光補正演算が行われるため、扱うデータ量及び演算処理時間を大幅に削減(短縮)しながら、充分な精度で(元の全画素数の)観察画像に対する迷光補正を行うことが可能となる。
請求項3記載の発明によれば、低画素観察画像と低画素数の応答画像とから、漸近法によって低画素補正画像を算出する方法をとるため、より簡易な処理プログラムを用いて、短い演算処理時間で精度の高い低画素補正画像を得ることが可能となり、ひいては迷光補正全体に対する更なる演算処理時間の短縮、演算精度向上を図ることができる。
請求項4記載の発明によれば、全画素数の画像(全画素数の観察画像や迷光画像等)がビニングされることで、容易に低画素数の画像(低画素数の観察画像や迷光画像等)を得ることができる。
請求項5記載の発明によれば、各画素に対してではなく、各画素セットに点光源からの光を結像(照射)させて撮像した画像に基づいて応答画像を得るため、(当該応答画像を用いる二次元分光輝度計個々に応じた)応答画像を、実験的に且つ容易に取得することができる。
請求項6記載の発明によれば、迷光補正処理を観察画像の撮像における入射光の波長ごとに行うので、迷光の要因に波長依存性があったとしても効果的に当該迷光補正を行うことができる。
請求項7記載の発明によれば、観察画像と予め測定された応答画像とから観察画像の画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、この算出した迷光画像を観察画像から除去することで実画像に近似する補正画像を求める、というように迷光補正処理が行われるため、測定画像(観察画像)に対する迷光の影響が除去された好適な測定画像を得ることができる。また、予め測定して求めておいた応答画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像を構成する画素数より低い画素数の画像情報を用いて当該迷光補正を行う方法をとることで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。
以下、図面に基づいて、本発明の実施形態につき説明する。
(二次元分光輝度計の全体的な説明)
図1は、本発明に係る二次元分光輝度計1の一例を示す概略構造図である。二次元分光輝度計1は、対物光学系2、副透過帯除去フィルタ3、第1コンデンサーレンズ4、第2コンデンサーレンズ5、リレーレンズ6、撮像素子7、画像信号処理部8、主制御部9、及び走査ウェッジバンドパスフィルタ10を備えて構成されている。対物光学系2は、測定対象である二次元光源Lからの光束Laを入射させ、第1像面2bに第1像2aを作る光学レンズ(レンズ群)である。副透過帯除去フィルタ3は、後述のWBPF12の副透過帯透過光を除去するフィルターである。具体的には、このWBPF12は入射光の中心波長の1/2倍及び2倍の波長位置に副透過帯を有するものとされている(例えば、中心波長を約400nmとすると、約200nm及び800nmの波長位置に副透過帯を有している)が、副透過帯除去フィルタ3は、このような副透過帯を有したWBPF12に対する、例えば約380nm以下及び720nm以上の波長の光を遮断することで当該副透過帯透過光の除去を行う。副透過帯除去フィルタ3は、第1コンデンサーレンズ4の前方に配置されている。
第1コンデンサーレンズ4及び第2コンデンサーレンズ5は、光束Laを絞る、即ち集光(集束)するためのレンズである。第1コンデンサーレンズ4は、対物光学系2からの光束LaがWBPF12に対して発散するのを防ぎ、対物光学系2からの光束Laを第1像面2bに集光させる。第2コンデンサーレンズ5も同様に、WBPF12を透過した光束Laをリレーレンズ6に集光させる。
リレーレンズ6は、第1像2aを作った光束La(光像)を撮像素子7へ向けて等倍でリレーするレンズであり、第2像面6bにおいて第2像6aをつくる。ところで、第1コンデンサーレンズ4の焦点は、対物光学系2の後方主点近傍にあり、対物光学系2から射出して第1像2aの各画素をつくって収束する光束Laの主光線を、入射部位に拘わらず光軸と略平行(平行光束)にして、後述のWBPF12(干渉BPF)がもつ中心波長の入射角依存性の影響を抑制している。また、第2コンデンサーレンズ5の焦点はリレーレンズ6の前方主点近傍にあり、WBPF12を通過した光束Laを有効にリレーレンズ6に入射させる。
撮像素子7は、第2像面6bに配置され、すなわち該撮像素子7の撮像面(受光面)が第2像面6bと重なる位置となるよう配置され、第2像6aを作る光束Laを受光(結像)して該第2像6aを撮像するものである。撮像素子7は、例えば1000×1000画素で約7.4mm角(1辺が7.4mm)の2次元の撮像域(撮像面)を有しており、撮像域に光束Laが結像されると、当該撮像域における約7.4μm角の画素毎に電気信号に変換(光電変換)し、画像信号処理部8へこの画像信号を出力する。
画像信号処理部8は、撮像素子7から送出される画像信号に対して所定の信号処理(アナログ信号処理及びデジタル信号処理)を施すものである。画像信号処理部8は、アナログ信号からデジタル信号へA/D変換を行う機能を備えており、当該デジタル信号を主制御部9へ送信する。
主制御部9は、各制御プログラム等を記憶するROM(Read Only Memory)、演算処理や制御処理用のデータを格納するRAM(Random Access Memory)、及び当該制御プログラム等をROMから読み出して実行するCPU(中央演算処理装置)等からなり、二次元分光輝度計1全体の動作制御を司るものである。
主制御部9は、後述の走査WBPF10による各走査ステップに応じて撮像素子7により撮像された画像(画素列毎に異なる透過波長情報を有する画像)を画像信号処理部8を介して分光感度が異なる複数の画像として取り込み、上記RAM等に予め記憶しておいた後述のレスポンス画像情報や所定の係数(例えば校正係数や重価係数)等の情報に基づいて、当該画像に対する迷光補正や輝度補正を行なったり、後述の三刺激値を求めるといった各種演算処理を行う機能も備えている。なお、主制御部9は、取り込んだ各画像を記憶しておくための専用の記憶部(例えば画像メモリ)を別途備えていてもよい。
走査ウェッジバンドパスフィルタ(Wedge Band Pass Filter:WBPF)10は、波長(WBPF12の中心波長)の異なる単色光(分光透過光)を取り出すものである。走査WBPF10は、該走査WBPF10における後述のWBPF12(フィルター保持板11)を、各レンズの光軸に対して垂直方向(x方向)に所定距離ずつ複数の走査ステップで順に移動(スライド移動)させることで、相対的にWBPF12を光束Laによって走査するようにして当該波長の異なる単色光を取り出す。なお、走査WBPF10は、第1像面2b近傍(走査WBPF10の入射面が第1像面2bと重なる位置となる場合も含む)に配置される構成となっている。また、走査WBPF10による「走査」とは、(位置固定された)光束Laに対して、上記WBPF12(フィルター保持板11)を走査方向(x方向)に沿って移動させる動作を示すものとする。走査WBPF10の詳細については後述する。
二次元光源Lから放射された光束Laは、対物光学系2に入射し、副透過帯除去フィルタ3を通って副透過帯透過光が除去された後、第1コンデンサーレンズ4によって走査WBPF10(WBPF12)に集光され第1像面2bに第1像2aを形成(結像)する。第1像2aを形成した光束Laは、走査WBPF10(WBPF12)を通って分光され、この分光された光束Laは 第2コンデンサーレンズ5を通ってリレーレンズ6に入り、リレーレンズ6によって(光束Laによる第1像2aが)等倍でリレーされ、第2像面6bに第2像6aを形成する。そして、この第2像6aが撮像素子7によって撮像され、この撮影画像(信号)は、画像信号処理部8に送信されてA/D変換等の信号処理が施された後、主制御部9へ送信される。そして、主制御部9において当該撮影画像から迷光画像を除去するといったことに関する各種演算処理が行われる。
ここで、図2を用いて走査WBPF10について詳述する。図2に示すように、走査WBPF10は、フィルター保持板11、WBPF12及び走査駆動部13を備えて構成されている。フィルター保持板11は、WBPF12を保持するためものである。フィルター保持板11は外形が略長方形状の板状体(WBPF12の枠体)であり、その略中央部には開口部111が形成されている。この開口部111は、例えばx方向(走査方向)に約20mm、これと直交するy方向に約9mmの長さ(縁)を有したサイズに形成さており、この開口部111に、WBPF12が嵌合されるなどして設けられている。WBPF12内に図示された点線枠は、撮像素子7に結像させるための光束Laが通過する箇所(この箇所は位置固定されている)、すなわち、上記WBPF12上に結像される第1像2aを示しており、この点線枠のサイズ及び形状は、撮像素子7の撮像面に対応した、例えば上記約7.4mm角の正方形状となっている。
フィルター保持板11は、x方向における開口部111を挟んだその両端部(左右端部)の領域に、第1遮光部112及び第2遮光部113を備えている。これら第1及び第2遮光部112、113は、少なくとも上記点線枠に示す第1像2aのサイズを有しており、フィルター保持板11のx方向における移動によって、第1遮光部112又は第2遮光部113が第1像2a(撮像域)の位置にきた場合には、当該遮光部により撮像素子7に対する光束Laの遮光(遮蔽)が行われる構成となっている。このように、フィルター保持板11に第1及び第2遮光部112、113が併設されていることで、フィルター保持板11が撮像素子7に対する遮光を行うための所謂シャッターとしての機能を兼ね備えることになる(これによりシャッターを別途設けなくともよく、構成の簡易化が図れる)。
WBPF12は、走査方向において異なった中心波長を有する透過光を得るためのフィルタである。具体的には、WBPF12は、WBPF12の各部位(座標(x、y)の位置)における透過光の中心波長λ(中心波長λc(x、y))が、y方向に沿って一定で、且つx方向に沿って約17nm/mmで連続的に(滑らかに)変化する所謂干渉バンドパスフィルタ(BPF)である。WBPF12の中心波長は、x座標を後述の走査ステップ毎の移動幅d(=0.296mm)を用いて表現すると、x=0〜64d(0〜18.9mm)の走査範囲において約390〜710nmまで連続的に変化する。このように部位に応じて中心波長の異なるWBPF12は、例えば図3に示すWBPF12のように、走査方向(x方向)に膜厚が(直線的に)変化する所謂楔型の干渉フィルターとされている。
走査駆動部13は、フィルター保持板11を走査方向(x方向)に沿って移動させることで、光束La(第1像2a)に対する、WBPF12並びに第1及び第2遮光部112、113の走査(走査駆動)を行うものである。走査駆動部13は、ステッピングモータ14、回転軸15、連結部材16及び駆動回路17を備えて構成されている。ステッピングモータ14は、回転軸15を回転駆動させるモータであり、パルス信号(デジタル信号)が入力されるごとに所定の回転速度で一定角度ずつ回転する。連結部材16は、回転軸15とフィルター保持板11とを平行移動可能に連結するためのものであり、フィルター保持板11に対して固設されている。ここでは、連結部材16は、例えば第1遮光部112側の一端部においてフィルター保持板11と一体的に設けられている。なお、連結部材16は、フィルター保持板11がx方向に移動(走査)可能となるのであれば、フィルター保持板11に対する任意の位置(例えば第2遮光部113側でもよい)及び任意の構成で設けられてもよい。
回転軸15は、連結部材16と連結した状態で該連結部材16を移動させるもの(軸体)であり、例えばその全長に亘って螺子部が形成されてなり、これによって連結部材16と螺合されている。回転軸15は、ステッピングモータ14の回転軸をなすものであり、ステッピングモータ14の回転駆動に応じて回転することで連結部材16を走査方向(x方向)に移動させる構成となっている。駆動回路17は、ステッピングモータ14の駆動を制御するものであり、ステッピングモータに応じたパルス信号を出力して、ステッピングモータ14の回転駆動(回転角度、回転速度)を制御する。なお、駆動回路17によるステッピングモータ14の回転駆動制御は、主制御部9からの走査駆動制御指示信号に基づいて行われる。
このように走査駆動部13は、主制御部9の走査駆動制御指示に応じて、駆動回路17によりステッピングモータ14を駆動させ、回転軸15及び連結部材16を介してフィルター保持板11をx方向(正方向又は負方向)に移動させる。ただし、この移動による走査は、WBPF12の中心波長5nmピッチに相当する約0.296mm(上述したWBPF12の中心波長が約17nm/mmで変化することに基づき算出)の移動幅を有する走査ステップで行われるよう制御される。
なお、当該走査駆動部13によるフィルター保持板11の移動に関し、上述したように副透過帯除去フィルタ3はWBPF12と別に設けられているため、走査駆動部13による当該移動は、WBPF12及びフィルター保持板11のみ行えばよいことから、走査駆動部13による走査負荷及び移動距離を小さくすることができるので、走査駆動部13の小型化やコスト低減、或いは走査時間(測定時間)の短縮が可能となる。
また、本実施形態では、各走査ステップにおいて、第2像6a(撮像素子7の撮像域)の各画素に順次設定される5nmピッチのBPFの分光透過特性を荷重積算して、国際照明委員会(CIE)が推奨する2°視野の等色関数x(λ)、y(λ)、z(λ)を合成するが、WBPF12の中心波長の半値幅を、合成精度が高くなる15nm程度とするため(15nmというように半値幅がある程度大きい方が合成精度が高められる)、WBPF12には1次の干渉BPFが採用されている。なお、一般的に、1次の干渉BPFは、上述したように中心波長の1/2倍及び2倍の波長域に副透過帯を有している。
次に、走査WBPF10(走査駆動部13)による実際の走査動作について説明する。
先ず、以下の説明で用いる記号をここに纏める。
x:第1像面2b及び第2像面6bの走査方向(x方向)の座標(x=0〜7.4mm)
y:第1像面2b及び第2像面6bの走査方向に直交する方向(y方向)の座標(y=0 〜7.4mm)
s:走査ステップで表したWBPF12の走査位置(s=0〜65)
i,j:第1像面2b及び第2像面6bの画素単位のx、y座標(i,j=1〜1000)
j’:WBPF12面の画素単位のx座標(j’=1〜2560)
ij:画像情報
(IijS:走査ステップsでの画像情報
上述のように、走査WBPF10におけるフィルター保持板11(WBPF12)の走査は、5nmに相当するd=40*7.4μm=0.296mm(40画素列相当)のステップ幅で行われるので、WBPF12における可視域390〜710nmの波長幅320nm(=710−390nm)は、64(=320/5)ステップの移動(64*0.296=18.9mm;64*40=2560画素列に相当)でカバーすることができる。しかしながら、撮像素子7の撮像域はx方向に1000画素列、つまり25ステップ相当の長さを有しているため、この撮像素子7の全画素(1000画素列)を、上記波長幅320nm(WBPF12)で走査するためには、すなわち、撮像域の全ての画素が全ての波長域(390〜710nm)をカバーするためには、少なくとも、この25ステップ分を含めた89(=64+25)ステップの移動(走査)が必要となる。なお、走査(移動)が開始される前の初期位置を走査ステップs=0(ゼロ)とする。
これについて図4及び図5を用いて説明する。図4は、撮像素子7の撮像域における、各走査ステップsに対応した撮影画像(露光状態)について説明する概念図である。図5は、各走査ステップsにおいて走査方向(x方向)に移動したフィルター保持板11の各部(WBPF12及び第1、第2遮光部112、113)と、撮像素子7における撮像域との位置関係について説明する概念図である。図4に示すように、走査開始前(二次元分光輝度計1による分光輝度計測開始前)には、フィルター保持板11(WBPF12)は初期位置(s=0)に位置し、この位置において、第1像面2bの撮像域(結像域)がフィルター保持板11の第1遮光部112によって遮光された(覆われた)状態となっている。この状態は、図5では符号501に示すフィルター保持板11(s=0)の位置に相当し、第1遮光部112に、撮像域T(上記j=1〜1000の画素列の幅に相当)が位置している。
走査が開始されると、走査ステップs=0の位置で、図4に示す最前面の画像401(=画像(Iij0)が撮像素子7により暗画像(ノイズ画像又はオフセット画像)として取り込まれる。続いて、走査駆動部13がフィルター保持板11をx方向における正方向に1走査ステップ(1s)だけ平行移動し(図5における符号502に示すフィルター保持板11の移動位置に相当)、当該s=1において最初の画像402(=画像(Iij1)が取り込まれる。この画像(Iij1では、該画像内の符号403に示す第1画素列(j=1)(図5における符号503に示す位置の画素列に相当)に、中心波長390nmの単色光が入射し、他の画素列(j=2〜1000)は遮光された状態となっている。
以降、1走査ステップ毎に画像が取り込まれるが、この1走査ステップ毎に中心波長390nmの単色光が入射する画素列jは、右方(x方向の正方向側)へ移動し、第1画素列(j=1)に入射する光束の波長は約5nmずつ増加する。それに伴い、第1遮光部112によって遮光された画素列は減少し、走査ステップがs=25となると、第1遮光部112は撮像域外に出る。s=25において取り込まれる画像404に示す画像(Iij25では(図5における符号504に示すフィルター保持板11の移動位置に相当)、第1〜第1000画素列(j=1〜1000)に入射する単色光の中心波長は、390nmから515nmまで連像的に変化したものとなっている。
走査ステップsが進み、s=64において取り込まれる画像405に示す画像(Iij64では(図5における符号505に示すフィルター保持板11の移動位置に相当)、第1〜第1000画素列に対応する中心波長は585nmから710nmまで変化したものとなる。次のs=65では、画像406の符号407に示す第1画素列(j=1)(前記符号403に示す第1画素列と同じ画素列;図5では符号506に示す位置の画素列に相当)が第2遮光部113によって遮光され、さらに走査ステップsが進むと、第2遮光部113による遮光域(遮光される画素列)が増加し、最終の走査ステップs=90においては(図5では符号507に示すフィルター保持板11の移動位置に相当)、画像408(画像401と同様の暗画像)に示すように全撮像域(全画素列j=1〜1000)が第2遮光部113によって遮光された状態となる。このように、走査WBPF10(走査駆動部13)によってフィルター保持板11及びWBPF12が走査方向にステップ移動され、走査ステップ毎に撮像素子7による撮影画像が取り込まれる(ただし、上記ステップs=90での撮影画像の取り込みは行われなくともよい)。
上述で説明したことからも、各走査ステップsで撮像された画像は、該画像の各画素をつくる単色光の中心波長が走査ステップsと画素のx座標とに依存しており、中心波長がx(列番号j)方向に沿って連続的に変化するとともに、y(行番号i)方向に沿っては略一定となるものとなっている。
(分光画像情報の処理)
ところで、二次元分光輝度計1は、上記各走査ステップsで取り込まれた画像(IijSから三刺激値画像を求めて出力するようになっている。一般的に、マルチバンド測色計では、異なる分光感度を適切な重価係数を乗じて積算する処理を行うことで上記CIEが推奨する2°視野の等色関数x(λ)、y(λ)、z(λ)の合成が行われるが、二次元分光輝度計1のような二次元測定器においては当該処理が各画素に対して実行される。
この画像(IijSからの三刺激値画像の算出について以下に説明する。
各走査ステップsで得られた画像(IijSを、後述の輝度軸校正で既知となっている各画素の輝度校正係数(CijSを用いて輝度画像(LijSに変換する。三刺激値を求めるために輝度画像(LijSに与える重価係数をそれぞれWxS,j、WyS,j、WzS,jとすると、三刺激値Xij、Yij、Zijは、以下の式(1-1)〜(1-3)により算出される。
ij=ΣSWxS,j*(LijS …(1-1)
ij=ΣSWyS,j*(LijS …(1-2)
ij=ΣSWzS,j*(LijS …(1-3)
一般的に、マルチフィルター方式(背景技術参照)による分光輝度計測では、1つの画像における全画素に同じ波長帯の光束が入射するため、全画素に同じ重価係数が適用されるのに対し、本実施形態の方式では、走査ステップs毎、画素列毎に入射光の透過波長帯が異なるため、これに伴って各画素に対する重価係数も異なるものとなる。
なお、上記輝度校正係数(CijSと重価係数WxS,j、WyS,j、WzS,jとから、各走査ステップにおける取得画像の画素毎の重価係数WxS,ij、WyS,ij、WzS,ijを予め求めておき、以下の式(2-1)〜(2-3)によって三刺激値Xij、Yij、Zijを算出することも可能である。これによって、当該三刺激値の算出に対する演算時間のさらなる短縮を図ることができる。
ij=ΣSWxS,ij*(IijS …(2-1)
ij=ΣSWyS,ij*(IijS …(2-2)
ij=ΣSWzS,ij*(IijS …(2-3)
前記積算は走査ステップ毎に行われ、走査終了時に三刺激値画像が得られる。この三刺激値画像は、主制御部9(RAM等)に保存(記憶)される。なお、この方法は、上記5nmピッチによる撮像により取得した89個(図4に示す走査ステップs=1〜89での撮影画像)の単色光画像を全て保存しておき、走査終了後に纏めて三刺激値画像へ変換する方法に比べ、必要なデータ記憶容量を大幅に低減することができる。
図11は、二次元分光輝度計1による三刺激値画像の測定に関する動作の一例を示すフローチャートである。先ず、主制御部9(走査駆動部13)によって走査WBPF10(フィルター保持板11)が初期位置(s=0)にセット(移動)される(ステップS1)とともに、三刺激値Xij、Yij、Zijの初期値が0に設定され(ステップS2)、当該s=0において撮像素子7の撮像域が遮光された状態で暗画像(Ii,j0が画像信号処理部8を介して主制御部9に取り込まれる(ステップS3)。次に、同様に走査WBPF10(フィルター保持板11)が1走査ステップ分だけ移動され(ステップS4)、このs=1における画像(IijSが取り込まれる(ステップS5)。そして、主制御部9によって、この取り込まれた画像(IijSに対し、上記ステップS3において取り込まれた暗画像(Iij0を用いた暗画像補正((IijS=(IijS−(Iij0)が行われ(ステップS6)、さらに、この暗画像補正が行われた画像(IijSに対し、(後述の輝度軸校正で算出され保存されている)輝度校正係数(CijSを用いた輝度補正((LijS=(CijS*(IijSが行われて輝度画像(LijSに変換される(ステップS7)。
そして、この輝度画像(LijSに対し、走査ステップs毎に、撮影画像の画素列毎に異なる各刺激値の重価係数WxS,j、WyS,j、WzS,jが乗算されて積算される(Xij=Xij+WxS,j*(LijS、Yij=Yij+WyS,j*(LijS、Zij=Zij+WzS,j*(LijS)(ステップS8)。主制御部9によって走査ステップsが89より大きくないと判別された場合には(ステップS9のNO)、上記ステップS4に戻って、さらに1走査ステップ分だけ移動され次の走査ステップsに対するステップS5〜S8の動作が繰り返される。ただし、この繰り返しにおけるステップS8では、前回の走査ステップにおいて得られた三刺激値Xij、Yij、Zijに対する更なる積算(積算値の更新)が行われる。走査ステップsが89より大きいと判別された場合には(ステップS9のYES)、当該全走査ステップsに亘って積算されて得られた三刺激値画像(Xij、Yij、Zij)が所定のデータ記憶部(主制御部9のRAM等)に記憶され(ステップS10)、フロー終了となる。
なお、上記フローチャートに示す実施形態では、取り込んだ画像(IijSに対して後述の迷光補正を行っていないが、この迷光補正を行わない場合においても、各走査ステップs毎の画像(IijSを記憶しておき、各画素の輝度校正係数(CijSを用いて輝度画像(LijSに変換した後(後述の式(6-1))、後述の波長軸校正において既知となっている各画素列jの相対分光感度SS,j(λ)を用い、公知の演算処理によって後述の分光輝度画像Lij(λ)を求めてもよい。
ところで、二次元分光輝度計1では、予め(例えば出荷時に)WBPF12に対する波長軸校正及び輝度軸校正を行い、この校正により求めた例えば上記の感度校正係数(CijSといった演算用データを主制御部9(RAM等)に設定(記憶)しておき、実際の分光輝度計測時には、当該演算用データを用いて、撮影画像(観察画像)を輝度画像に変換(輝度補正)するといったことが行われる。以下、この波長軸校正及び輝度軸校正について説明する。
<波長軸校正>
WBPF12に対する波長軸の校正は、例えば図6に示す校正システム30を用いて参照強度Mλを求め、この参照強度Mλに基づいて二次元分光輝度計1での各走査ステップsにおける各画素列jの分光感度を求めることによって実施される。すなわち、校正システム30において、基準単波長光源31は、制御用PC(パーソナルコンピュータ)32によって制御され、例えば2nmピッチで350から750nmまで、合計201個の十分狭い半値幅の単波長光束31aを、積分球33の入射開口331に出力する。この単波長光束31aは、積分球33内で多重拡散反射して、積分球33の出力開口332に均一輝度面をつくる。校正が行われる二次元分光輝度計1としての被校正二次元分光輝度計34は、この均一輝度面を測定することで、単波長光束31a毎の画像情報(単波長画像)を取得し、これを制御用PC32に送信(出力)する。各単波長光束31aに対する上記均一輝度面は、スポット型の基準分光輝度計35によっても測定されており、この基準分光輝度計35の測定によって得られた参照強度Mλの情報は、制御用PC32に送信される。なお、校正システム30の符号36に示すものは、後述の輝度軸校正において、基準単波長光源31の単波長光束31aの代わりに積分球33へ入射させる白色光の光束36aを出力する白色光源(白色光源36)であり、この波長軸校正においては使用されない(この場合、白色光源36や積分球33の入射開口333は備えてなくともよい)。
ところで上記図4、5で説明したように、WBPF12の走査方向の有効域は2560画素列(j’=1〜2560)に相当し、1000画素列(j=1〜1000)をもつ撮像素子7の撮像域よりも大きいサイズであるため、1つの走査ステップ位置での撮像によってWBPF12の全有効域を測定することはできない。したがって、上記基準単波長光源31からの単波長光束31a(均一輝度面からの光束)による走査を、走査ステップs=25、45及び65の3つの走査ステップ位置で行うことで、当該WBPF12の全有効域における分光感度を(画素毎に)求めるようにしている。
まず、被校正二次元分光輝度計34において、WBPF12(フィルター保持板11)を走査ステップs=25の位置で固定して基準単波長光源31を波長走査し、撮像した201個の単波長画像の各画素列の積算値を上記参照強度Mλで基準化して、WBPF12における、上記撮像域の1000の画素列(j=1〜1000)に相当する画素列j’=1〜1000の範囲の相対分光感度を求める。同様に、走査ステップs=45及び65の位置で固定して波長走査した単波長画像群の画素列積算値から、それぞれWBPF12の画素列j’=801〜1800及びj’=1601〜2560に相当する範囲の相対分光感度を求める。そして、これらs=25、45、65の各走査ステップ位置での相対分光感度から、WBPF12の全有効域の画素列(j’=1〜2560)に対する2nmのピッチの相対分光感度Sj'(λ)を求める。ただし、s=25、45、65それぞれの場合の画素列範囲、つまり上記画素列j’=1〜1000、801〜1800、1601〜2560から、1つの全有効域の画素列(j’=1〜2560)における相対分光感度を作成する場合、これら各範囲に互いに(約1/3ずつ)重なる領域が存在するが、当該重なり合っている領域の2つのデータ(相対分光感度情報)は、その何れのデータを採用してもよい。
測定時の走査ステップs位置における撮像素子7(撮像域)の各画素列jの相対分光感度SS,j(λ)は、図7に示すように、上述のように求めたWBPF12の全有効域の2560画素列の相対分光感度Sj'(λ)を、各走査ステップs位置に応じて平行移動させたSj'(λ)(ただし、j’=40*s−j+1)として与えられる。なお、図7の符号701、702、703…に示す相対分光感度波形は、それぞれ上記平行移動させて得られた各走査ステップsに対するものであり、各相対分光感度波形701、702、703…それぞれの間は、1走査ステップに相当する40画素分の間隔となっている。また、符号704に示す横軸は同一のものであり、中心波長350nm〜750nmにおける低波長域、中波長域及び高波長域の各相対分光感度波形を明示するべく、各グラフ710〜730を縦に並べて表している。ただし、画素列方向(y方向)では同じ分光感度(分光透過率)であるので、この画素列方向において平均化したものをその画素列の(相対)分光感度としている。
なお、上記式(1-1)〜(1-3)で用いられる画素列jの走査ステップ位置sに対する重価係数WxS,j、WyS,j、WzS,jは、相対分光感度SS,j(λ)を用いて、以下の式(3-1)〜(3-3)により算出される合成分光感度xj(λ)、yj(λ)、zj(λ)と、
j(λ)=ΣSWxS,j*SS,j(λ) …(3-1)
j(λ)=ΣSWyS,j*SS,j(λ) …(3-2)
j(λ)=ΣSWzS,j*SS,j(λ) …(3-3)
等色関数理論値x(λ)、y(λ)、z(λ)とによる、以下の式(4-1)〜(4-3)に示す波長毎の誤差の自乗和Exj、Eyj、Ezjが最小となる重価係数WxS,j、WyS,j、WzS,jとして求められる。
Exj=Σλ[xj(λ)−x(λ)]2 …(4-1)
Eyj=Σλ[yj(λ)−y(λ)]2 …(4-2)
Ezj=Σλ[zj(λ)−z(λ)]2 …(4-3)
図12は、波長軸校正に関する動作の一例を示すフローチャートである。先ず、積分球33がつくる均一輝度面に対向配置された被校正二次元分光輝度計34の走査WBPF10(フィルター保持板11)が初期位置(s=0)にセット(移動)され(ステップS21)、撮像素子7の撮像域が遮光された状態で暗画像(Iij0が取り込まれる(ステップS22)。次に、走査WBPF10がs=25の位置まで移動され(ステップS23、S24)、基準単波長光源31(又は制御用PC34)によって基準単波長(中心波長λ)が所定の初期値(例えば348nm)にセットされる(ステップS25)。そして、基準単波長光源31から上記初期セットされた中心波長λよりも2nm大きな中心波長を有する単波長光が出力され(ステップS26)、このステップS26において出力された中心波長λに対応する積分球33の均一輝度面の画像(IijS,λが取り込まれる(ステップS27)。
一方、スポット型の基準分光輝度計35により参照強度Mλが測定され(ステップS28)。そして、上記ステップS27において取り込まれた画像(IijS,λが、暗画像(Iij0を用いて暗画像補正((IijS,λ=(IijS,λ−(Iij0)され(ステップS29)、さらに、上記ステップS28において得られた参照強度Mλを用いて基準化((IijS,λ=(IijS,λ/Mλ)されて記憶される(ステップS30)。基準単波長光源31から出力される単色光の中心波長λが750nmより大きくない場合には(ステップS31のNO)、上記ステップS26に戻って、さらに2nm増加されて基準単波長光源31から出力された次の中心波長λの単波長光に対する上記画像を取り込み、参照強度Mλの測定(検出)、暗画像補正及び基準化処理が行われる。このようにして、中心波長350nmから750nmに亘って2nmピッチで増加された単波長光が順次出力され、この単波長光に対する上記ステップS27〜S30の各動作が繰り返される。
基準単波長光源31から出力される中心波長λが750nmより大きい場合(ステップS31のYES)、次に、走査ステップsが65より大きくなければ(ステップS32のNO)、上記ステップS24に戻って、走査WBPF10(フィルター保持板11)を現在の走査ステップs位置からさらに走査ステップを「20」だけ走査方向(x方向の正方向)に移動させ、つまり最初のステップS24における走査ステップs=25の位置から走査ステップs=45の位置まで順に移動させ、2nmピッチで出力される中心波長λが350nmから750nmに至るまで上記ステップS26〜S30の動作が繰り返される。同様にして、さらに20走査ステップ分だけ移動された走査ステップs=65に対して上記ステップS26〜S30の動作が繰り返され、その結果、上記ステップS30において基準化された各走査ステップ25、45及び65に対する画像(Iij25,λ、(Iij45,λ及び(Iij65,λが得られて記憶される。
上記ステップS32において走査ステップsが65より大きくなった場合(ステップS32のYES)、すなわち測定終了後、上記記憶された画像(Iij25,λ、(Iij45,λ及び(Iij65,λから、WBPF12の全有効域の画素列(j’=1〜2560)に対する分光感度画像(Iij')λが算出される(ステップS33)。そして、さらに分光感度画像(Iij')λが画素行iについて積算され((Ij')λ=Σi(Iij')λ)、全画素列j’の分光感度画像(Ij')λが求められて保存される(ステップS34)。
<輝度軸校正>
次に、輝度軸校正について説明する。上述の波長軸校正によって校正されるのは、各走査ステップ位置での各画素列jの相対的な分光感度(相対分光感度)であるため(絶対的な輝度としての校正はなされておらず、感度ムラが補正されていないので)、ここで輝度軸(感度軸)の校正を行う。この輝度軸校正は、例えば上記図6に示す校正システム30を利用して行なわれる。ただし、波長軸校正の場合の基準単波長光源31に代えて、A光源などの白色光源36の光束を積分球33に入射させて出力開口332に均一輝度面をつくり、被校正二次元分光輝度計34でこの均一輝度面を測定する。この均一輝度面は、同時に基準分光輝度計35で測定され、参照分光輝度L0(λ)が求められる。
そして、相対分光感度SS,j(λ)を有する走査ステップsにおける画素列jの画素Pijが、参照分光輝度L0(λ)の光源を測定したときに得られるべき出力ΣλL0(λ)*SS,j(λ)と、上記輝度軸校正において実測により得られた出力(IijSとを用いて、走査ステップsでの画素Pijの感度校正係数(CijSが、以下の式(5-1)によって求められる。
(CijS=[ΣλL0(λ)*SS,j(λ)]/(IijS …(5-1)
二次元分光輝度計1による実際の測定(分光輝度計測)時には、この感度校正係数(CijSを用い、被測定対象となる二次元光源Lに対する走査ステップsでの画素Pijの出力(IijSを、以下の式(6-1)により輝度画像(LijSに変換して出力する。
(LijS=(CijS*(IijS …(6-1)
(迷光補正)
ところで、WBPF12は多層膜干渉フィルタであり、一般的に、透過波長帯以外の波長域における成分の光が反射されてしまう。このWBPF12で反射された成分は、さらに光学系のレンズ面やハウジング内面で反射され、所謂「迷光」となってWBPF12に再入射する。この入射位置の透過波長帯の成分はWBPF12を透過して撮像素子7に到達し、透過しない再入射光は再び入射され、上記過程を繰り返す。このようにして撮像素子7に到達した迷光による迷光画像は、本来の観察画像に重畳して観察画像の精度を劣化させてしまう。そこで、この観察画像(上述した各走査ステップsで取り込んだ画像(IijS)に対する当該迷光画像の影響をなくすべく、以下に述べるように、迷光補正を行ってもよい。
以下の迷光補正に関する説明に用いる記号を以下に整理しておく。
m,n:被測定光の第1像面2b及び第2像面6b入射位置の画素単位の座標(m,n
=1〜1000)
I,J:第1像面2b及び第2像面6bの40×40画素のビニングをした画素セット座標(I,J=1〜25)
M,N:被測定光の第1像面2b及び第2像面6b入射位置の画素セット座標(M,N=1〜25)
ij(λ)或いはRIJ(λ):迷光画像が重畳されていない実画像(迷光が除去された画像)
R’ij(λ):実画像Rij(λ)の近似画像
ij(λ)或いはBIJ(λ):迷光画像
ij(λ)或いはOIJ(λ):迷光画像が重畳された観察画像(実際に測定される画像)、つまりOij(λ)=Rij(λ)+Bij(λ)或いはOIJ(λ)=RIJ(λ)+BIJ(λ)
(Fmnij(λ)或いは(FMNIJ(λ):レスポンス画像、画素Pmn或いは画素セットPMNに入射した単位強度の入射光によって得られる画像
IJ(λ):実画像に近似するべく推定される補正画像
O’IJ(λ):補正画像とレスポンス画像とから算出される擬似観察画像
図8に、上記実画像Rij(λ)、観察画像Oij(λ)及び迷光画像Bij(λ)の強度分布の一例を示す。ただし、この強度分布はj座標(x方向)に沿ったものである。同図に示すように、観察画像Oij(λ)は、実画像Rij(λ)に迷光画像Bij(λ)が重畳されたものとなっている。ただし、非結像であるこの迷光画像Bij(λ)の分布はなだらかであり(略一様であり)、その空間周波数は、結像によって得られる実画像Rij(λ)と比べて遙かに低いレベルとなっている。
(レスポンス画像)
ここで、上記レスポンス画像について説明する。
測定域、すなわち被測定光の第1像面2b及び第2像面6bにおける特定画素Pmnに入射する単位強度の光束(結像光束)が、撮像素子7の撮像域における全画素Pij上につくる画像のことを、レスポンス画像(Fmnijとする。このレスポンス画像(Fmnijは、入射位置の座標(m、n)に結像する点光源が、上記「迷光」の影響も含み、(i、j)という画像全体にどのような影響を与えるかということを示す関数であるとも言える。ところで、当該入射画素(或る1つの画素Pmn)以外の画素への入射光である迷光のレベルは、(1)結像光束が入射する部位(画素Pmn)、及び(2)迷光が入射する部位(画素Pij)に依存するとともに、(3)結像光束の波長λに依存するため(迷光が関与する反射・透過は一般に波長依存性を有するため)、上記レスポンス画像(Fmnijは、(Fmnij(λ)というように波長λの関数で表されることになる。
レスポンス画像をこのように定義すると、二次元分光輝度計1によって実際に測定(観察)される観察画像Oij(λ)は、入射画素Pmnに入射されるべき光束の強度をもつ実画像Rmn(λ)によって重み付けした当該レスポンス画像(Fmnij(λ)を、全入射画素Pmnについて積算したものとなり、以下の式(7-1)で表される。
ij(λ)=Σmn[Rmn(λ)*(Fmnij(λ)] …(7-1)
(実画像の推定)
迷光補正においては、観察画像Oij(λ)から迷光の影響を除去することで実画像Rij(λ)が得られるのであるが、ここでは、観察画像Oij(λ)から、実画像Rij(λ)を推定することにつき説明する。
当該推定される実画像Rij(λ)として、上記式(7-1)に基づいて、観察画像Oij(λ)とレスポンス画像(Fmnij(λ)とから、迷光画像の影響を除去した実画像Rij(λ)に近似する補正画像を求める。まず、実画像Rij(λ)に近似する補正画像の初期値Rij(λ)(0)をOmn(λ)としする(Rij(λ)(0)=Omn(λ))。この初期値Rij(λ)(0)とレスポンス画像(Fmnij(λ)とから算出される擬似観察画像Σmn[Rij(λ)(0)*(Fmnij(λ)]と、実観察画像Oij(λ)との差画像Σmn[Rij(λ)(0)*(Fmnij(λ)]−Oij(λ)によって初期値Rij(λ)(0)を補正することで、1次(1次近似解)の補正画像Rij(λ)(1)を求める(以下の式(8-1))。
ij(λ)(1)=Rij(λ)(0)−a*[Σmn[Rij(λ)(0)*(Fmnij(λ)]−Oij(λ)] …(8-1)
さらに、この式の右辺のRij(λ)(0)をRij(λ)(1)に置き換えて、以下の式(9-1)に示す2次の補正画像Rij(λ)(2)が求められる。
ij(λ)(2)=Rij(λ)(1)−a*[Σmn[Rij(λ)(1)*(Fmnij(λ)]−Oij(λ)] …(9-1)
そして、このような計算が繰り返され、k次の補正画像Rij(λ)(k)が、Rmn(λ)(k-1)を用いて、以下の式(10-1)で与えられる。
ij(λ)(k)=Rij(λ)(k-1)−a*[Σmn[Rij(λ)(k-1)*(Fmnij(λ)]−Oij(λ)] …(10-1)
上記式(8-1)〜(10-1)における右辺第2項の記号「a」は、漸近の特性を与える定数であり、その値は(当該漸近式が収束するよう)実験的に選択される。以上のプロセスにより、補正項である右辺第2項の画素毎の自乗和(以下の式(11-1))が許容値以下となる最初のk次補正画像Rij(λ)(k)を以て近似画像R’ij(λ)とする。ただし、このk次補正画像Rij(λ)(k)(=近似画像R’ij(λ))は、上述した実画像Rij(λ)に近似する補正画像、つまり推定された実画像Rij(λ)を示している。
(k-1)=Σij[Σmn[Rij(λ)(k-1)*(Fmnij(λ)]−Oij(λ)]2 …(11-1)
なお、迷光画像は、上記k次補正画像Rij(λ)(k)を用いて、以下の式(12-1)におけるBij(λ)で与えられる(観察画像Oij(λ)から、推定された実画像Rij(λ)(k)を減じたものが迷光画像Bij(λ)となっている)。
ij(λ)=Oij(λ)−Rij(λ)(k) …(12-1)
(実際の演算)
上述の演算を、撮像素子7のもつ106の画素について行うと、1次の演算に1012のデータが関与することになり、データ量、演算時間ともに膨大となる。そこで、まず迷光画像を求め、上記の式(12-1)を変形した以下の(13-1)を用いて、観察画像Oij(λ)から迷光画像Gij(λ)(上記迷光画像Bij(λ)に相当)を減じて近似画像R’ij(λ)を得る手法をとる。
ij(λ)(k)=Oij(λ)−Gij(λ) …(13-1)
この手法を用いる背景は、上記図8で説明したように、迷光画像は高い空間周波数成分を含まず、低画素数の画像情報でも十分な精度を有しており、画素数を下げる(低画素数とする)ことで画像情報量と演算時間とを大幅に低減できることにある。また、当該求めた低画素数の迷光画像を、スムージングなどの公知の処理を行い元の画素数(全画素数)の迷光画像に変換し、(全画素数を有した)観察画像からこれを減じて得られる近似画像(実画像に近似する補正画像)も十分な精度を有するものとなる。
このことから、本実施形態では、図9に示すように40×40画素をビニング(積算)して、25×25(=I×J及びM×N)の画素セットによる画像情報を用いて迷光画像を求める。すなわち、上述の画素座標(i、j)及び(m、n)(i、j、m、n=1〜1000)を、画素セット座標(I、J)及び(M、N)(I、J、M、N=1〜25)に置き換え、これに伴って、観察画像Oij(λ)、実画像Rij(λ)、レスポンス画像(Fmnij(λ)及び迷光画像Bij(λ)を、40×40画素のビニング処理を行ったOIJ(λ)、RIJ(λ)、(FMNIJ(λ)及びBIJ(λ)に置き換えて扱う。なお、各演算において当該ビニングした情報を扱うことにより、画像情報量、演算時間を例えば10-4/256に縮小・短縮し、実用レベルにまで抑えることが可能となる。
(レスポンス画像の実測)
二次元分光輝度計1による分光輝度測定での演算においては、上述したように、観察画像Oij(λ)とレスポンス画像(Fmnij(λ)とから、迷光画像の影響を除去した実画像Rij(λ)に近似する補正画像(推定された実画像Rij(λ))を求めるのであるが、この演算で用いるレスポンス画像の情報は、予め(例えば出荷時に)実測によって求めておく。以下に、このレスポンス画像の実測について説明する。
レスポンス画像の実測は、例えば図10に示す校正システム30aを用いて行う。ただし、この校正システム30aは、上記図6に示す校正システム30に対してさらにピンホール板37及び移動台38を備えたものとなっている。図10に示すように、当該レスポンス画像の実測に際しては、まず、積分球33に白色光源36の光束36aを入射させ、積分球33の出力開口332の位置(近傍)にピンホール板37を配置して点光源を形成する。この点光源からの光(白色光)を、x方向及びy方向に(矢印A方向で見た場合の図(A視)における符号39に示す各方向に)移動可能に構成された移動台38上に設置した被校正二次元分光輝度計34によって測定する。この移動台38を制御用PC32によって制御することで、点光源の像を、第1像面2b及び第2像面6bの任意の座標(画素セット座標(M、N);M=1〜25、N=1〜25)における画素セット内につくるように(例えば図9に示す或る画素セット901内の点光源P参照)、被校正二次元分光輝度計34の位置を設定(移動)することができる。ピンホール板37のピンホールから放射される白色光の分光強度は、基準分光輝度計35で測定され、当該測定によるモニター出力から相対分光強度M(λ)が得られる。
図13は、このレスポンス画像の実測に関する動作の一例を示すフローチャートである。まず、制御用PC32により移動台38の位置が制御され、点光源が初期位置、すなわち第1像面2b(又は第2像面6b)の画素セット座標(M、N)が例えばM=1、N=1の位置にセット(移動)される(ステップS41)。点光源がその画素セット座標位置にあるときに、走査WBPF10における走査駆動部13によりフィルター保持板11(WBPF12)が走査ステップs=0の初期位置にセットされ(ステップS42)、この走査ステップs=0において撮像素子7により暗画像(Iij0が撮像され、画像信号処理部8を介して主制御部9に取り込まれる(ステップS43)。次に、走査ステップsが1ステップ移動され(ステップS44)、この走査ステップsにおいて同様に画像(IijS,MNが撮像されて取り込まれ(ステップS45)、画像(IijS,MNが暗画像補正されて保存される((IijS,MN=(IijS,MN−(Iij0))(ステップS46)。
走査ステップsが89より大きくない場合には(ステップS47のNO)、上記ステップS44に戻って次の走査ステップsに移動され、走査ステップs毎に画像(IijS,MNを取り込んで、暗画像補正を施して保存する動作が繰り返される。走査ステップsが89より大きい場合には(ステップS47のYES)、この暗画像補正されて保存された画像(IijS,MNが分光強度画像(IijMN(λ)に変換され(ステップS48)、この分光強度画像(IijMN(λ)が、40×40画素のビニングによってデータ数が削減された画素セット座標(I、J)の分光強度画像(IIJMN(λ)に変換されて保存される(ステップS49)。
次に、点光源のM座標が1つ進められ(M=M+1、N=N)(ステップS50)、このMの座標値が25より大きくない場合には(ステップS51のNO)、この画素セット座標位置において、上記ステップS42に戻ってフィルター保持板11(WBPF12)が走査ステップs=0の初期位置にセットされ、同様に画像の取り込みや暗画像補正、ビニングが行なわれる。Mの座標値が25より大きな値となる場合には(ステップS51のYES)、点光源のM座標が1に戻されるとともにN座標が1つ進められる(M=1、N=N+1)(ステップS52)。このNの座標値が25より大きくない場合には(ステップS53のNO)、この画素セット座標位置において、上記ステップS42に戻って同様の動作が行なわれる。このようにして、画素セット座標(M、N)が、初期位置(1、1)から(25、25)まで順に移動され、当該各座標位置において上記ステップS42〜49の動作が繰り返される。Nの座標値が25より大きな値となり、全ての画素セット座標(M、N)への点光源の入射に対する分光強度画像(IIJMN(λ)が得られた場合には(ステップS53のYES)、スポット型の基準分光輝度計35によって点光源の相対分光強度M(λ)が測定される(ステップS54)。そして、分光強度画像(IIJMN(λ)がこの波長毎の相対分光強度M(λ)により基準化((FMNIJ(λ)=(IIJMN(λ)/M(λ))されてレスポンス画像(FMNIJ(λ)として保存され(ステップS55)、フロー終了となる。
(測定時の迷光補正)
ここで、二次元分光輝度計1の測定時に迷光補正を行なう場合の演算の一例について説明する(上記図11に示すフローチャートに示す場合の実施形態では、迷光補正を実施していないが、ここでの実施形態では、迷光補正を実施している)。当該測定時に迷光補正を行なう場合には、先ず走査WBPF10(WBPF12)の走査ステップs毎に二次元光源Lの光像を撮像して暗画像補正((IijS=(IijS−(Iij0)を行なった画像(IijSを観察画像(OijSとして保存しておく。走査終了後、この観察画像(OijSを分光画像である(波長λの関数としての)観察画像Oij(λ)に変換し、さらに観察画像Oij(λ)をビニングして40×40画素の画素セットによる観察画像OIJ(λ)に変換する。そして、上述の式(7-1)に準じ、以下の式(14-1)に示すように、当該ビニングした観察画像OIJ(λ)を補正画像QIJ(λ)と仮定し、この補正画像QIJ(λ)に対応するQMN(λ)(つまりM、N座標における入射画素セットに入射するべき光束の強度であるQMN(λ)) と、上記実測され保存されているレスポンス画像(FMNIJ(λ)とから、擬似観察画像O’IJ(λ)を算出する。
O’IJ(λ)=ΣMN[QMN(λ)*(FMNIJ(λ)] …(14-1)
次に、以下の式(15-1)に示すように、擬似観察画像O’IJ(λ)と観察画像OIJ(λ)との差[O’IJ(λ)−OIJ(λ)]によって補正画像QIJ(λ)を再補正し、これを新たに補正画像QIJ(λ)とする。
IJ(λ)=QIJ(λ)−a*[O’IJ(λ)−OIJ(λ)] …(15-1)
そして、以下の式(16-1)に示す擬似観察画像O’IJ(λ)と観察画像OIJ(λ)との画素毎の差の二乗和E(λ)が、予め設定された限界値Etより小さくなった最初の補正画像QIJ(λ)を最終補正画像として採用し、
E(λ)=ΣIJ[O’IJ(λ)−OIJ(λ)]2 …(16-1)
E(λ)が限界値Et以上の値をとる場合には、限界値Etより小さくなるまで上記式(14-1)、(15-1)及び(16-1)の演算を繰り返す。
最終補正画像QIJ(λ)が得られると、観察画像OIJ(λ)との差から迷光画像BIJ(λ)が求められる(以下の式(17-1))。
IJ(λ)=OIJ(λ)−QIJ(λ) …(17-1)
このBIJ(λ)は、上記ビニングした画素セットによる迷光画像であるため、スムージング処理を行うことによって、元の(ビニング前の)全画素からなる迷光画像Bij(λ)に変換する。上述したように迷光画像は空間周波数が低いので、迷光画像BIJ(λ)をスムージングした迷光画像Bij(λ)と全画素による式(12-1)の迷光画像との間に大きな誤差はなく、したがって、観察画像Oij(λ)から迷光画像Bij(λ)を差し引いて近似画像R’ij(λ)を求める(以下の式(18-1))。
R’ij(λ)=Oij(λ)−Bij(λ) …(18-1)
このように、二次元光源Lを走査ステップs毎に撮像した画像(IijS(観察画像Oij(λ))と、予め記憶されているレスポンス画像(FMNIJ(λ)とから、演算によって迷光画像Bij(λ)を算出し、さらに観察画像Oij(λ)からこれを差し引く演算を行なうことで迷光補正がなされ、近似画像R’ij(λ)が得られる。
ところで、前述の輝度補正を、さらにこの近似画像R’ij(λ)に対して施すことで後述の分光輝度画像Lij(λ)を得ることができる。当該輝度補正において用いる校正係数は、予め前記と同様の輝度軸校正によって求めておく必要がある。具体的には、上記(14-1)〜(18-1)での演算と同様にして、(図6において)白色光源36による均一輝度面の測定画像を取得し、この測定画像を迷光補正することで上記と同様の近似画像R’ij(λ)を算出する。一方で、スポット型の基準分光輝度計35により同時に測定画像を測定して基準分光輝度L0(λ)を求めておき、以下の式(19-1)に示すように、これら近似画像R’ij(λ)と基準分光輝度L0(λ)とから、波長λの関数としての校正係数Cij(λ)を求め、これを主制御部9等に保存しておく。
ij(λ)=L0(λ)/R’ij(λ) …(19-1)
二次元分光輝度計1による実際の測定時には、上記式(14-1)〜(18-1)によって二次元光源Lの測定画像を迷光補正して近似画像R’ij(λ)を求め、上記保存しておいた校正係数Cij(λ)を用いて分光輝度画像Lij(λ)に変換して出力する(以下の式(20-1))。
ij(λ)=Cij(λ)*R’ij(λ) …(20-1)
図14は、上述の二次元分光輝度計1による測定時に迷光補正を行なう場合の動作の一例を示すフローチャートである。まず、走査WBPF10(WBPF12)の走査ステップs毎に撮像されて暗画像補正((IijS=(IijS−(Iij0)された画像(IijSが観察画像(OijSとして保存され(ステップS61)、この観察画像(OijSが観察画像Oij(λ)に変換される(ステップS62)。次に、観察画像Oij(λ)がビニングされて40×40画素の画素セットによる観察画像OIJ(λ)に変換される(ステップS63)。そして、この観察画像OIJ(λ)が補正画像QIJ(λ)とされ(ステップS64)、上記式(14-1)によって、当該補正画像QIJ(λ)に対応するQMN(λ)と実測され保存されているレスポンス画像(FMNIJ(λ)とから擬似観察画像O’IJ(λ)が算出される(ステップS65)。
次に、上記式(16-1)に示す擬似観察画像O’IJ(λ)と観察画像OIJ(λ)との画素毎の差の二乗和E(λ)が求められ(ステップS66)、E(λ)の値が、予め設定された限界値Etより小さくない場合には(ステップS67のNO)、上記式(15-1)において、擬似観察画像O’IJ(λ)と観察画像OIJ(λ)との差(O’IJ(λ)−OIJ(λ))によって補正画像QIJ(λ)が再補正され、これが新たな補正画像QIJ(λ)とされて(ステップS68)、上記ステップS65に戻り、このE(λ)が限界値Etより小さくなるまで上記ステップS65〜S68の演算が繰り返される。E(λ)の値が限界値Etより小さくなった場合には(ステップS67のYES)、当該限界値Etより小さくなった最初の補正画像QIJ(λ)が最終補正画像として決定され、上記式(17-1)に示すように、観察画像OIJ(λ)からこの補正画像QIJ(λ)が差し引かれて迷光画像BIJ(λ)が算出される(ステップS69)。その後、迷光画像BIJ(λ)に対するスムージング処理が施され、元の全画素からなる迷光画像Bij(λ)に変換される(ステップS70)。そして、上記式(18-1)に示すように、観察画像Oij(λ)からこの迷光画像Bij(λ)が差し引かれて近似画像R’ij(λ)が求められる(ステップS71)。
以上のように本実施形態の迷光補正法によれば、迷光の影響に基づく迷光画像が重畳された観察画像(Oij(λ))と、迷光補正演算において使用するべく例えば上記図10に示す校正システム30aを用いた校正等によって予め測定(実測)されて主制御部9等に保存された、観察画像の撮像域(第2像6a又は第1像2a)における特定画素(例えば画素セットPMN)への単位強度の入射光が撮像素子7の撮像域の全画素上につくるレスポンス画像(例えば(FMNIJ(λ);応答画像)とから、観察画像(Oij(λ))を構成する画素数より低い画素数の画像情報((例えばOIJ(λ)やBIJ(λ))を用いて迷光画像(Bij(λ))が推定算出され、この推定算出された迷光画像(Bij(λ))を観察画像(Oij(λ))から除去(減算)することで、実画像(Rij(λ))に近似する補正画像(R’ij(λ);観察画像から迷光の影響を補正した画像)が求められる。したがって、このように迷光補正処理が行われるため、観察画像に対する迷光の影響が除去された好適な観察画像(測定画像)を得ることができる。また、予め測定して求めておいたレスポンス画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像を構成する画素数より低い画素数の画像情報を用いて当該迷光補正を行う方法をとることで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである(図8参照)迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。なお、この迷光補正法によれば、観察画像から迷光の影響によるボヤケやカブリを除去できるため、コントラストを有した画像における特に低輝度画素の精度向上に大きな効果が得られる(このことは、当該迷光補正法を用いる二次元分光輝度計1に対しても同じ)。
また、図14に示すように、撮像により得られる観察画像(Oij(λ))を、該観察画像の全画素数に対して低画素数となる観察画像である低画素観察画像(OIJ(λ))に変換する第1の工程と、当該低画素観察画像と低画素数の応答画像((FMNIJ(λ))とから、補正画像(R’ij(λ))の低画素数画像としての低画素補正画像(QIJ(λ))を算出する第2の工程と、低画素観察画像と当該低画素補正画像との差(OIJ(λ)−QIJ(λ))によって低画素数の迷光画像(BIJ(λ))を算出する第3の工程と、当該低画素数の迷光画像を全画素数に対する迷光画像(Bij(λ))に変換する第4の工程と、全画素数の観察画像(Oij(λ))から当該全画素数に対する迷光画像(Bij(λ))を減じて実画像(Rij(λ))に近似する補正画像(R’ij(λ))を算出する第5の工程とによって迷光補正演算が行われるため、当該演算時に扱うデータ量を大幅に削減し且つ演算処理時間を大幅に短縮しながら、充分な精度で観察画像(Oij(λ))に対する迷光補正を行うことが可能となる。
また、低画素観察画像(OIJ(λ))に対する仮の実画像としての低画素補正画像(QIJ(λ))(或いはこのQIJ(λ)に対応するQMN(λ);式(14-1)参照)と応答画像((FMNIJ(λ))とから擬似観察画像(O’IJ(λ))を算出し、当該擬似観察画像と低画素観察画像との差による差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像(QIJ(λ))を再補正し、当該再補正した低画素補正画像(QIJ(λ))と応答画像とから新たな擬似観察画像(O’IJ(λ))を算出し、当該新たな擬似観察画像と低画素観察画像との差による新たな差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像をさらに補正する漸近演算を、当該差画像による誤差が所定値以下となるまで繰り返し行うことで、上記低画素補正画像(QIJ(λ))を算出する、すなわち、低画素観察画像(OIJ(λ)と低画素数の応答画像((FMNIJ(λ))とから、漸近法によって低画素補正画像(QIJ(λ))を算出する方法をとるため、より簡易な処理プログラムを用いて、短い演算処理時間で精度の高い低画素補正画像(QIJ(λ))を得ることが可能となり、ひいては迷光補正全体に対する更なる演算処理時間の短縮、演算精度(補正画像(R’ij(λ))の精度)向上を図ることができる。
また、当該迷光補正演算において、全画素数の画像(例えば観察画像(Oij(λ))や迷光画像(Bij(λ)))がビニングされるため(図9参照)、容易に低画素数の画像(例えば低画素数の観察画像(OIJ(λ))や迷光画像(BIJ(λ)))を得ることができる。
また、レスポンス画像((FMNIJ(λ))が、観察画像の撮像域における、各画素(m、n)又は(i、j)に対してではなく(1つ1つの画素に対する点光源の照射は現実的には困難である)、各画素セット(各画素セット座標(M、N))に対して点光源(白色光源36)からの光束36aを結像させて撮像した画像に基づいて得られるため(図10参照)、二次元分光輝度計個々に応じたレスポンス画像を、実験的に且つ容易に取得することが可能となる。
また、迷光補正処理を観察画像の撮像における入射光の波長(WBPF12による分光透過光の中心波長λに応じて)行うので、迷光の要因に波長依存性があったとしても効果的に迷光補正を実施することができる。
さらに、本実施形態の二次元分光輝度計1によれば、迷光補正演算手段(主制御部9)によって、迷光の影響に基づく迷光画像が重畳された観察画像(Oij(λ))と、迷光補正演算において使用するべく例えば上記図10に示す校正システム30aを用いた校正等によって予め測定(実測)されて主制御部9等に保存された、観察画像の撮像域(第2像6a又は第1像2a)における特定画素(例えば画素セットPMN)への単位強度の入射光が撮像素子7の撮像域の全画素上につくるレスポンス画像(例えば(FMNIJ(λ);応答画像)とから、観察画像(Oij(λ))の画素数より低い画素数の画像情報((例えばOIJ(λ)やBIJ(λ))を用いて迷光画像(Bij(λ))が推定算出され、この推定算出された迷光画像(Bij(λ))を観察画像(Oij(λ))から除去(減算)することで、実画像(Rij(λ))に近似する補正画像(R’ij(λ))が求められる。したがって、このように迷光補正処理が行われるため、二次元分光輝度計1による観察画像(測定画像)に対する迷光の影響が除去され、好適な観察画像を得ることができる。また、予め測定して求めておいたレスポンス画像情報を用いるなどして実際の測定時の演算が効率良く実行されるとともに、観察画像の画素数より低い画素数の画像情報を用いて当該迷光補正を行うことで演算時に扱うデータ量を少なくすることが可能となり、一方で、空間周波数が観察画像に比べて遙かに低いレベルである迷光画像に対して当該低画素数での演算を適用しても、低画素数での演算を行わない場合との誤差は小さいものとなるため、充分な精度を維持しつつ迷光補正に要する演算処理時間(補正時間)を大幅に短縮することができる。
なお、本発明は、以下の態様をとることができる。
(A)上記実施形態では、迷光画像の空間周波数が観察画像と比較して極めて低いことから、ビニングを行うことによって扱うデータ量や演算処理時間を実用レベルにまで抑えているが、この技術は、上述の走査WBPF10を用いた二次元分光輝度計1に限らず、画像情報から二次元の輝度や色彩を測定する機器一般に応用可能である。すなわち、二次元分光輝度計1のように干渉フィルタ(WBPF12)を用いる場合には、当該フィルタを透過されない波長域の光束成分が反射されて迷光が生じることから当該技術(迷光補正方法)が適用されているが、干渉フィルタを用いない機器であっても、光学系のレンズ表面や測定画像を撮像する撮像素子表面からの反射光などにより迷光が生じ、これが測定画像に重畳して(特に高コントラストの)画像の精度を劣化させてしまうため、このような迷光の影響を本技術によって改善することが可能となる。
(B)上記実施形態では、対物光学系2とリレー光学系(リレーレンズ6等)とを備えることで、第1像面2b及び第2像面6bの2つの像面を設け、これら各像面にそれぞれWBPF12(走査WBPF10)と撮像素子7とを配置して互いに分離(離間)させているが、当該リレー光学系を備えずに、単一の像面に対して撮像素子7とWBPF12とを配置する構成としてもよい。
(C)上記実施形態では、第1遮光部112(s=0)において暗画像を取り込んだ後、x方向の正方向に向けてフィルター保持板11(WBPF12)を走査ステップs毎に移動させる構成としてるが、逆に、第2遮光部113を走査ステップs=0の位置として暗画像を取り込み、x方向の負方向に向けてフィルター保持板11を当該走査移動させる構成としてもよい。
(D)上記実施形態では、レスポンス画像((FMNIJ(λ))は予め実測して求めたものを保存しているが、これに限らず、(実測して求める必要はなく)所定の推測演算等によって予め求めたものを保存してもよい。
(E)WBPF12の形状は、必ずしも、厚みが(走査方向に)直線的に変化する(前後の透過面が平面となっている)楔型でなくともよく、例えば当該厚みが曲線的に変化する(当該透過面が湾曲している)ような形状であってもよい。
(F)上記実施形態では、楔型のWBPF12を一方向に沿って移動させることで走査を行う構成であるが、例えば周方向に沿って厚み(透過波長)が変化する円環状(又は環状でない例えば半円といった円弧状)のBPFを用い、当該BPFを光束La(光路)に対して(回転走査ステップで)回転移動させて走査を行う構成としてもよい。
本発明に係る二次元分光輝度計の一例を示す概略構造図である。 図1に示す二次元分光輝度計における走査WBPFの一例を示す概略構成図である。 WBPFの一例を示す斜視図である。 撮像素子の撮像域における、各走査ステップに対応した撮影画像について説明する概念図である。 各走査ステップにおいて走査方向(x方向)に移動したフィルター保持板の各部と、撮像素子における撮像域との位置関係について説明する概念図である。 波長軸校正用の校正システムの一例を示す概略構成図である。 波長軸校正によるWBPFの相対分光感度の一例を示すグラフ図である。 実画像Rij(λ)、観察画像Oij(λ)及び迷光画像Bij(λ)の強度分布の一例を示すグラフ図である。 ビニングによる画像の画素セット座標について説明する概念図である。 レスポンス画像実測用のシステムの一例を示す概略構成図である。 二次元分光輝度計による三刺激値画像の測定に関する動作の一例を示すフローチャートである。 波長軸校正に関する動作の一例を示すフローチャートである。 レスポンス画像の実測に関する動作の一例を示すフローチャートである。 二次元分光輝度計による測定時に迷光補正を行なう場合の動作の一例を示すフローチャートである。
符号の説明
1 二次元分光輝度計
2a 第1像
6a 第2像
7 撮像素子
8 画像信号処理部
9 主制御部(迷光補正演算手段)
10 走査WBPF
12 WBPF
13 走査駆動部
30、30a 校正システム
31 基準単波長光源
34 被校正二次元分光輝度計
35 基準分光輝度計
36 白色光源(点光源)
112 第1遮光部
113 第2遮光部
901 画素セット
L 二次元光源
La 光束
T 撮像域

Claims (7)

  1. 撮像により得られる観察画像に対する迷光の影響を補正して補正画像を求める迷光補正法であって、
    前記迷光の影響に基づく迷光画像が重畳された前記観察画像と、
    予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光に応じて該撮像域の全画素に対して得られる応答画像とから、
    前記観察画像を構成する画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、
    当該推定算出された迷光画像を観察画像から除去して実画像に近似する前記補正画像を算出することを特徴とする迷光補正法。
  2. 前記撮像により得られる観察画像(Oij(λ))を、該観察画像の全画素数に対して低画素数となる観察画像である低画素観察画像(OIJ(λ))に変換する第1の工程と、
    当該低画素観察画像と低画素数の応答画像((FMNIJ(λ))とから、前記補正画像(R’ij(λ))の低画素数画像としての低画素補正画像(QIJ(λ))を算出する第2の工程と、
    前記低画素観察画像と当該低画素補正画像との差(OIJ(λ)−QIJ(λ))によって低画素数の迷光画像(BIJ(λ))を算出する第3の工程と、
    当該低画素数の迷光画像を前記全画素数に対する迷光画像(Bij(λ))に変換する第4の工程と、
    前記全画素数の観察画像(Oij(λ))から当該全画素数に対する迷光画像(Bij(λ))を減じて前記実画像に近似する補正画像(R’ij(λ))を算出する第5の工程とを有することを特徴とする請求項1記載の迷光補正法。
  3. 前記低画素観察画像(OIJ(λ))に対する仮の実画像としての低画素補正画像(QIJ(λ))と応答画像((FMNIJ(λ))とから擬似観察画像(O’IJ(λ))を算出し、当該擬似観察画像と低画素観察画像との差による差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像(QIJ(λ))を再補正し、当該再補正した低画素補正画像(QIJ(λ))と前記応答画像とから新たな擬似観察画像(O’IJ(λ))を算出し、当該新たな擬似観察画像と前記低画素観察画像との差による新たな差画像(O’IJ(λ)−OIJ(λ))によって低画素補正画像をさらに補正する漸近演算を、当該差画像による誤差が所定値以下となるまで繰り返し行うことで、前記第2の工程における低画素補正画像(QIJ(λ))を算出することを特徴とする請求項2記載の迷光補正法。
  4. 前記全画素数の画像がビニングされ、所定数の画素が一纏めにされた所定数の画素セットからなる画素セット画像を前記低画素数の画像とすることを特徴とする請求項1〜3のいずれかに記載の迷光補正法。
  5. 前記観察画像の撮像域における前記各画素セットに点光源からの光を結像させて撮像した画像に基づいて前記応答画像を得ることを特徴とする請求項4記載の迷光補正法。
  6. 前記迷光補正の演算処理を、観察画像の撮像における入射光の波長ごとに行うことを特徴とする請求項1〜4のいずれかに記載の迷光補正法。
  7. 撮像により得られる観察画像に対する迷光の影響を補正して補正画像を求める迷光補正演算を行う二次元分光輝度計であって、
    前記迷光の影響に基づく迷光画像が重畳された前記観察画像と、
    予め測定されて記憶された、観察画像の撮像域における特定画素への単位強度の入射光に応じて該撮像域の全画素に対して得られる応答画像とから、
    前記観察画像の画素数より低い画素数の画像情報を用いて迷光画像を推定算出し、
    当該推定算出された迷光画像を観察画像から除去して実画像に近似する前記補正画像を算出する迷光補正演算手段を備えることを特徴とする二次元分光輝度計。
JP2004372180A 2004-12-22 2004-12-22 迷光補正法及びそれを用いた二次元分光輝度計 Active JP4400450B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372180A JP4400450B2 (ja) 2004-12-22 2004-12-22 迷光補正法及びそれを用いた二次元分光輝度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372180A JP4400450B2 (ja) 2004-12-22 2004-12-22 迷光補正法及びそれを用いた二次元分光輝度計

Publications (2)

Publication Number Publication Date
JP2006177813A true JP2006177813A (ja) 2006-07-06
JP4400450B2 JP4400450B2 (ja) 2010-01-20

Family

ID=36732057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372180A Active JP4400450B2 (ja) 2004-12-22 2004-12-22 迷光補正法及びそれを用いた二次元分光輝度計

Country Status (1)

Country Link
JP (1) JP4400450B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166682A (ja) * 2014-03-03 2015-09-24 エバ・ジャパン 株式会社 分光放射輝度計
WO2016151778A1 (ja) * 2015-03-24 2016-09-29 大塚電子株式会社 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
WO2016181746A1 (ja) * 2015-05-14 2016-11-17 コニカミノルタ株式会社 分光測色装置、および分光反射率の算出方法
CN109813536A (zh) * 2019-03-14 2019-05-28 长春理工大学 一种红外光学系统外部杂散光测试装置及测试方法
JP2020176873A (ja) * 2019-04-16 2020-10-29 セイコーエプソン株式会社 校正装置、校正方法、分光カメラ、及び表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945225B1 (ko) * 2018-06-08 2019-02-07 (주)트라이시스 이미지 데이터 처리 방법 및 장치

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166682A (ja) * 2014-03-03 2015-09-24 エバ・ジャパン 株式会社 分光放射輝度計
US20180058927A1 (en) * 2015-03-24 2018-03-01 Otsuka Electronics Co., Ltd. Reference light source device used for calibration of spectral luminance meter and calibration method using same
KR20170131354A (ko) * 2015-03-24 2017-11-29 오츠카덴시가부시끼가이샤 분광 휘도계의 교정에 사용하는 기준 광원 장치 및 그것을 사용하는 교정 방법
JPWO2016151778A1 (ja) * 2015-03-24 2018-01-11 大塚電子株式会社 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
WO2016151778A1 (ja) * 2015-03-24 2016-09-29 大塚電子株式会社 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法
US10330530B2 (en) 2015-03-24 2019-06-25 Otsuka Electronics Co., Ltd. Reference light source device used for calibration of spectral luminance meter and calibration method using same
KR102015203B1 (ko) * 2015-03-24 2019-08-27 오츠카덴시가부시끼가이샤 분광 휘도계의 교정에 사용하는 기준 광원 장치 및 교정 방법
TWI744222B (zh) * 2015-03-24 2021-11-01 日商大塚電子股份有限公司 用於分光亮度計之校正的基準光源裝置及使用其之校正方法
WO2016181746A1 (ja) * 2015-05-14 2016-11-17 コニカミノルタ株式会社 分光測色装置、および分光反射率の算出方法
JPWO2016181746A1 (ja) * 2015-05-14 2018-03-01 コニカミノルタ株式会社 分光測色装置、および分光反射率の算出方法
US10408681B2 (en) 2015-05-14 2019-09-10 Konica Minolta, Inc. Spectrocolorimetric device and spectral reflectance calculating method
CN109813536A (zh) * 2019-03-14 2019-05-28 长春理工大学 一种红外光学系统外部杂散光测试装置及测试方法
JP2020176873A (ja) * 2019-04-16 2020-10-29 セイコーエプソン株式会社 校正装置、校正方法、分光カメラ、及び表示装置
JP7207124B2 (ja) 2019-04-16 2023-01-18 セイコーエプソン株式会社 校正装置、校正方法、分光カメラ、及び表示装置

Also Published As

Publication number Publication date
JP4400450B2 (ja) 2010-01-20

Similar Documents

Publication Publication Date Title
JP5786149B2 (ja) 汎用的に詰め合わせたピクセル配列のカメラシステムおよび方法
US7365850B2 (en) Two-dimensional spectroradiometer
KR102040368B1 (ko) 하이퍼스펙트럴 이미지 센서와 이를 이용한 3차원 스캐너
JP6064290B2 (ja) 撮像装置、分光システム、および分光方法
JP6524617B2 (ja) 撮像装置および方法
EP3007432B1 (en) Image acquisition device and image acquisition method
JP6340884B2 (ja) 測定装置、測定システム及び測定方法
JP6322939B2 (ja) 撮像システム及び色検査システム
US8976240B2 (en) Spatially-varying spectral response calibration data
US20080117438A1 (en) System and method for object inspection using relief determination
JP2010271246A (ja) 色彩輝度測定装置及び色彩輝度測定方法
WO2018085841A1 (en) Calibration method and apparatus for active pixel hyperspectral sensors and cameras
US20220299369A1 (en) System, Method and Apparatus for Wide Wavelength Range Imaging with Focus and Image Correction
JP4400450B2 (ja) 迷光補正法及びそれを用いた二次元分光輝度計
JP6225519B2 (ja) 測定装置及び測定方法
US11831968B2 (en) Image pickup apparatus comprising first and second sensor units each including a plurality of sensors
Schöberl et al. Building a high dynamic range video sensor with spatially nonregular optical filtering
JP2007147507A (ja) 分光測定方法及び分光測定装置
WO2017026296A1 (ja) 試料測定装置
WO2021053852A1 (ja) 外観検査装置、外観検査装置の較正方法及びプログラム
CN116249876A (zh) 图像分析方法、图像分析装置、程序及记录媒体
KR102022836B1 (ko) 광 측정 장치, 시스템 및 방법
WO2020003673A1 (ja) イメージセンサの分光感度測定方法、分光感度測定装置の検査方法及び分光感度測定装置
JP2004186789A (ja) 画像評価装置
JP6611509B2 (ja) 画像処理装置、撮像装置および画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350