WO2017026296A1 - 試料測定装置 - Google Patents
試料測定装置 Download PDFInfo
- Publication number
- WO2017026296A1 WO2017026296A1 PCT/JP2016/072237 JP2016072237W WO2017026296A1 WO 2017026296 A1 WO2017026296 A1 WO 2017026296A1 JP 2016072237 W JP2016072237 W JP 2016072237W WO 2017026296 A1 WO2017026296 A1 WO 2017026296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spectral
- information
- sample
- spectral information
- camera
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 13
- 230000003595 spectral effect Effects 0.000 claims abstract description 164
- 238000011156 evaluation Methods 0.000 claims abstract description 59
- 238000005286 illumination Methods 0.000 claims abstract description 31
- 238000004088 simulation Methods 0.000 claims abstract description 18
- 238000004364 calculation method Methods 0.000 claims description 37
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 13
- 230000001953 sensory effect Effects 0.000 claims description 10
- 238000010801 machine learning Methods 0.000 claims description 4
- 238000004611 spectroscopical analysis Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 24
- 238000002834 transmittance Methods 0.000 description 15
- 230000010365 information processing Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000013461 design Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000003973 paint Substances 0.000 description 5
- 238000000611 regression analysis Methods 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
Definitions
- the present invention relates to a sample measuring device.
- reference data having color information of a reference medium for each pixel or pixel group is associated with evaluation target data having color information of an evaluation medium for each pixel or pixel group at a pixel level, and evaluation is performed.
- An evaluation result is calculated based on a difference in color information of a specific area (area composed of a plurality of pixels) as a unit (difference between color information of a specific area of reference data and color information of a specific area of evaluation target data).
- Patent Document 1 has a problem that it cannot be confirmed whether a set color (for example, a color designed by a designer) can be accurately reproduced.
- the present invention has been made in view of the above, and an object of the present invention is to provide a sample measuring apparatus capable of confirming whether a set color can be accurately reproduced.
- the present invention provides a light source device that irradiates uniform illumination light from a single or a plurality of illumination units to a sample surface of a sample, A spectroscopic camera that splits reflected light to obtain two-dimensional spectroscopic information, and a first spectroscope that calculates first spectroscopic information used for the evaluation of the sample based on the two-dimensional spectroscopic information acquired by the spectroscopic camera.
- An information calculation unit a second spectral information calculation unit that calculates second spectral information used for evaluation of the sample based on two-dimensional spectral information of the sample surface obtained by light beam simulation; and the first An evaluation unit that performs evaluation based on a comparison operation between spectral information and the second spectral information.
- FIG. 1 is a conceptual diagram of a system of a sample measuring device.
- FIG. 2 is a system conceptual diagram of the sample measuring apparatus.
- FIG. 3 is a diagram illustrating an example of the configuration of the sample measuring apparatus.
- FIG. 4 is a diagram illustrating an example of functions of the information processing apparatus.
- FIG. 5 is a diagram schematically showing the main part of the spectroscopic camera device provided in the sample measuring apparatus.
- FIG. 6 is a diagram showing the spectral transmittance of each color filter when the incident angle of the light beam is 0 degree in the spectroscopic camera device of the sample measuring apparatus.
- FIG. 7 is a diagram illustrating a geometric design example of the color filter of the spectroscopic camera device of the sample measuring device.
- FIG. 1 is a conceptual diagram of a system of a sample measuring device.
- FIG. 2 is a system conceptual diagram of the sample measuring apparatus.
- FIG. 3 is a diagram illustrating an example of the configuration of the sample measuring apparatus.
- FIG. 8 is a characteristic diagram showing the incident angle dependence of the spectral transmittance of the color filter.
- FIG. 9 is a view of the microlens array viewed from the optical axis direction.
- FIG. 10 is a plan view of a captured image of the spectroscopic camera device.
- FIG. 11 is an enlarged view of a macro pixel constituting the image of FIG.
- FIG. 12 is a diagram illustrating an example of a color checker as a color sample.
- FIG. 13 is a plot of the color checker onto the 24 color xy chromaticity diagram.
- FIG. 14 is a diagram schematically showing a main part of another spectroscopic camera device provided in the sample measuring apparatus.
- FIG. 15 is a diagram for explaining a spectral filter provided on a sensor surface of another spectral camera device.
- FIG. 16 is a flowchart illustrating an operation example of the sample measuring apparatus.
- FIG. 17 is a flowchart illustrating an operation example of the sample measuring apparatus.
- FIG. 18 is a diagram illustrating an example of a CIELAB value arithmetic expression.
- FIG. 19 is a diagram illustrating an example of a calculation formula for the CIELV value.
- FIG. 20 is a flowchart showing an operation example of the sample measuring apparatus.
- FIG. 21 is a flowchart showing an operation example of the sample measuring apparatus.
- FIG. 22 is a diagram illustrating an example of an arithmetic expression of ⁇ E * ab.
- FIG. 23 is a diagram illustrating an example of an arithmetic expression for ⁇ E2000.
- FIG. 24 is a flowchart showing an operation example of the sample measuring apparatus.
- FIG. 25 is a diagram illustrating an example of MOS evaluation criteria.
- FIG. 26 is a diagram illustrating an example of a subject.
- FIG. 27 is a diagram illustrating an example of a captured image.
- FIG. 28 is a diagram illustrating an example of a result of a parallax conversion image.
- FIG. 1 is a system conceptual diagram of the sample measuring apparatus of the present embodiment.
- the spectroscopic camera 2 capable of acquiring spectroscopic information or XYZ3 stimulus values captures a curved surface sample (specimen) 1 that is uniformly irradiated by the dome-shaped illumination 3 and is stably installed.
- Two-dimensional spectroscopic information 5 is acquired.
- the two-dimensional spectroscopic information 5 holds spectroscopic information 7 or CIEXYZ information for each pixel.
- the curved surface sample 1 coated with a standard white plate or gypsum such as titanium oxide
- the measurement data is calibrated using the photographed data. I do.
- the three-dimensional data (for example, CAD data) of the curved surface sample 1 to be measured, the declination spectral data of each paint, illumination information (spectral illuminance, illuminance, shape, and illumination three-dimensional shape, position information of the light emitting element), camera information
- illumination information spectral illuminance, illuminance, shape, and illumination three-dimensional shape, position information of the light emitting element
- camera information By inputting (position, angle of view) to the light ray simulation software 4, the two-dimensional spectral information 6 of the curved surface sample 1 that can be captured from the camera position on the simulation can be calculated.
- the two-dimensional spectral information 6 holds spectral information 8 for each pixel, and CIEXYZ information for each pixel can be calculated from the spectral information 8.
- color evaluation is performed using the two-dimensional spectral information acquired by the spectroscopic camera 2 and the two-dimensional spectral information obtained by light beam simulation.
- the color evaluation is performed by comparing whether or not a difference in each acquired value, ⁇ E * ab, ⁇ E2000, a difference in spectral information in a specific wavelength range, and the like are within a predetermined reference value range. .
- the simulation is performed by changing the illumination information.
- FIG. 3 is a diagram showing an example of the configuration of the sample measuring apparatus 100 of the present embodiment.
- the sample measurement device 100 includes a spectroscopic camera 10, a light source device 20, and an information processing device 30.
- the spectroscopic camera 10 obtains two-dimensional spectroscopic information (two-dimensional declination spectroscopic information) by spectroscopically reflecting light reflected from the sample surface (planar or curved surface) of the sample.
- the spectroscopic camera 10 includes a main lens, a spectroscopic filter group, and a microlens, and is a camera that acquires spectroscopic information corresponding to the number of spectroscopic filters. Two-dimensional spectroscopic information is acquired by one imaging operation.
- a multiband camera device can be used as the spectroscopic camera 10.
- the multiband camera device includes a spectral filter group inserted into the main lens and a microlens array inserted between the main lens and the light receiving element, and the spectral filter is connected to each other through each microlens of the microlens array. Spectral information corresponding to the number can be acquired.
- the multiband camera can also acquire spectral information corresponding to the number of spectral filters by providing a spectral filter group between the microlens array and the light receiving element.
- the spectroscopic camera 10 one or more sets of filters and a diffraction grating (or prism), a spectroscopic filter for each pixel, or a hyperspectral camera device including a tunable filter mounted may be used.
- the spectroscopic camera 10 preferably has an optical configuration in which the resolution of each pixel with respect to the sample is 10 ⁇ m to 100 ⁇ m.
- the spectroscopic camera 10 includes an imaging unit 11 and an image processing unit 12, and captures two-dimensional spectral information once in synchronization with light irradiation by the illumination unit 15 of the light source device 20 fixed at each angle. Acquired by operation (one-shot).
- the imaging unit 11 is a CMOS imaging sensor or a semiconductor imaging element such as a CCD sensor
- imaging light received by each pixel is an example. This means an operation until reading out the electric charge generated according to light.
- CMOS is an abbreviation for “Complementary Metal Oxide Semiconductor”.
- CCD is an abbreviation for “Charge Coupled Device”.
- image processing image reconstruction
- PC information processing apparatus
- the light source device 20 includes a single or a plurality of illumination units 15 (a plurality of illumination units 15 in the example of FIG. 3), and a lighting control unit 16 that drives each illumination unit 15 to be lit.
- illumination unit 15 illumination that can uniformly illuminate the measurement part (dome-type illumination, coaxial epi-illumination, parallel light illumination, etc.) is used, and the light source type is a tungsten lamp, halogen lamp, xenon lamp, white
- the sample to be measured can be irradiated with an LED or the like.
- the information processing apparatus 30 performs various controls and processes such as photographing control of the spectral camera 10, lighting control of the light source device 20, calculation processing of acquired data, calculation processing of each measurement value, and the like.
- a general computer device can be used as the information processing device 30.
- the information processing apparatus 30 includes a CPU 21, a ROM 22, a RAM 23, and a storage device 24.
- the information processing apparatus 30 includes various interfaces (I / F) 25 and an input / output interface (I / O) 26.
- the CPUs 21 to I / O 26 are connected to each other via a bus line 27.
- the storage device 24 stores various data such as a program executed by the CPU 21 (including ray simulation software), various calculation results and calculation results, and calibration information described later. Further, when acquiring three-dimensional information from parallax, the three-dimensional information is also stored in the storage device 24.
- FIG. 4 is a diagram illustrating an example of the functions of the information processing apparatus 30.
- the information processing apparatus 30 includes a calibration information acquisition unit 31, a first spectral information calculation unit 32, a second spectral information calculation unit 33, and an evaluation unit 34.
- FIG. 4 mainly illustrates functions according to the present invention, but the functions of the information processing apparatus 30 are not limited to these.
- the calibration information acquisition unit 31 acquires calibration information.
- the calibration information acquisition unit 31 takes a sample coated with a standard white plate or gypsum (titanium oxide or the like) as a subject with the spectroscopic camera 10 and acquires the imaging data as calibration information.
- a standard white plate or gypsum titanium oxide or the like
- the first spectral information calculation unit 32 evaluates the sample (e.g., evaluation of reproducibility of the set color) based on the above-described two-dimensional spectral information (two-dimensional declination spectral information) acquired by the spectral camera 10. ) Is used to calculate first spectral information (spectral value, CIELAB value, CIEUV value, CIEXYZ value). In this example, the first spectral information calculation unit 32 corrects the two-dimensional spectral information acquired by the spectroscopic camera 10 with the calibration information acquired by the calibration information acquisition unit 31, and the corrected two-dimensional spectral information is obtained. First, the first spectral information is calculated.
- the second spectral information calculation unit 33 uses the second spectral information (spectral value, CIELAB value, CIEUV value, CIEXYZ value, etc.) used for the evaluation of the sample based on the two-dimensional spectral information of the sample surface obtained by the light ray simulation. ) Is calculated. Any light simulation software may be used as long as it can accurately acquire two-dimensional spectroscopic information when a sample of a measurement target irradiated with illumination is photographed using the light source device 20 from a certain camera viewpoint.
- Commercially available products include LightTools provided by Synopsys ’Optical Solutions Group.
- Information required for light simulation includes three-dimensional data (CAD data) of the sample to be measured, declination spectral characteristics of each paint used, illumination information (spectral illuminance, illuminance) , Illumination shape, position), camera information (position, angle of view), and the like.
- Design CAD data may be used as the three-dimensional data of the sample, or may be acquired by a three-dimensional data acquisition device.
- the declination spectral characteristics of the paint can be obtained by referring to a data sheet or using a declination spectrometer. For lighting information and camera information, information according to the configured system is input.
- the second spectral information calculation unit 33 calculates second spectral information (spectral value, CIELAB value, CIEUV value, CIEXYZ value) based on the two-dimensional spectral information obtained by the light ray simulation.
- the evaluation unit 34 performs evaluation based on a comparison operation between the first spectral information and the second spectral information. For example, the evaluation unit 34 uses the correlation information obtained by correlating the sensory evaluation result with the difference between the first spectral information and the second spectral information, and performs evaluation according to the obtained difference. Further, for example, the evaluation unit 34 can correlate the sensory evaluation result with the difference between the first spectral information and the second spectral information by machine learning, and can perform evaluation according to the obtained difference. More specific contents will be described later.
- the CPU 21 stores the functions (the calibration information acquisition unit 31, the first spectral information calculation unit 32, the second spectral information calculation unit 33, the evaluation unit 34, etc.) included in the information processing device 30 described above.
- the present invention is not limited to this.
- at least a part of the functions of the information processing apparatus 30 described above is a dedicated hardware circuit (semiconductor integrated circuit or the like). May be realized.
- the main lens 54 as an optical system is shown as a single lens, and the aperture position S of the main lens 54 is the center of the single lens.
- a color filter 56 as an optical bandpass filter is disposed in the center of the main lens 54.
- the color filter 56 is a filter corresponding to a tristimulus value of a color having a spectral transmittance based on the color matching function of the XYZ color system. That is, the color filter 56 includes a plurality (three in this case) of color filters 56a, 56b, and 56c having different spectral transmittances based on the color matching functions of the XYZ color system.
- Such an optical bandpass filter may be configured by combining a plurality of filters having different spectral transmittances, or may be configured to vary the spectral transmittance for each region on one filter. For example, when 16 types of optical bandpass filters having a transmission wavelength peak in 20 nm increments are used in the wavelength range from 400 nm to 700 nm, spectral information in the wavelength range from 400 nm to 700 nm is acquired in 20 nm increments. It is possible.
- the color filter 56 is not positioned in the lens as shown in FIG.
- the color filter 56 is disposed near the stop of the main lens 54.
- Near the aperture means a portion including the aperture position through which light rays with various angles of view can pass. In other words, it means an allowable range in design of the color filter 56 with respect to the main lens 54.
- FIG. 6 shows the spectral transmittances of the color filters 56a, 56b, and 56c when the incident angle of the light beam is 0 degree.
- the solid line, the broken line, and the dotted line in FIG. 6 are the spectral transmittances T X ( ⁇ ) and T Y of the color filters 56a (F X ), 56b (F Y ), and 56c (F Z ) based on the following color matching functions, respectively. ( ⁇ ), T Z ( ⁇ ).
- FIG. 7 shows a geometric design example of the color filters 56a (F X ), 56b (F Y ), and 56c (F Z ).
- the color filter 56 is roughly divided into three in a fan shape, but the whole may be circular or may be divided into rectangles. Also, the area ratio of each filter need not be equally divided.
- the area surrounded by the color matching function line for Z is smaller than the others.
- the size of this area correlates with the magnitude of the signal to noise ratio (S / N ratio).
- S / N ratio the signal to noise ratio
- the area of the color filter 56c corresponding to Z may be made larger than the others.
- Each spectral transmittance in FIG. 6 includes the color matching function defined in the CIE-1931 color system, the spectral transmittance T L ( ⁇ ) of the optical system excluding the lens filter, and the spectral sensitivity S ( ⁇ ) of the light receiving element. Designed from That is, it can be defined by the following equations 1 to 3.
- Equations (1) to (3) since the sensor itself has spectral sensitivity, it is divided by S ( ⁇ ) in order to eliminate the non-uniformity.
- the values obtained by standardizing each maximum value as the transmittance of 100% are T X ( ⁇ ), T Y ( ⁇ ), and T Z ( ⁇ ).
- the SN ratio can be improved particularly for color filters corresponding to x ( ⁇ ) and y ( ⁇ ).
- T X ( ⁇ ), T Y ( ⁇ ), and T Z ( ⁇ ) are complex waveforms, but can be generated with values close to design values.
- T X ( ⁇ ), T Y ( ⁇ ), and T Z ( ⁇ ) can be generated by a dielectric multilayer film as an example.
- the dielectric multilayer film functions as a band-pass filter by optical interference.
- the spectral transmittance of the color filter 56 has a dependency on the incident angle of light in principle because a band pass filter can be realized by interference action.
- FIG. 8 shows an example of the incident angle dependency in the color filter 56a (F X ).
- a solid line, a broken line, and a dotted line are spectral transmittances of incident angles of 0 degrees, 20 degrees, and 30 degrees, respectively. It can be seen that the transmission band shifts to the short wavelength side as the incident angle increases.
- a microlens array (MLA) 53 composed of a plurality of microlenses (small lenses) is disposed near the condensing position of the main lens 54.
- a light receiving element array 55 including a plurality of light receiving elements (sensors) that convert optical information collected by the main lens 54 into electronic information (electrical signals) is arranged.
- the diameter of the micro lens of the MLA 53 and each light receiving element constituting the light receiving element array 55 are in a relationship of a ratio of about “30: 1 to 2: 1”.
- FIG. 9 shows a view of the MLA 53 as seen from the optical axis direction.
- white circles indicate the respective lenses, and black portions indicate light shielding portions.
- light is shielded by the light shielding part except for the lens part constituting the lens array.
- the light shielding part is formed by vapor-depositing chromium oxide.
- the light shielding portion is a flat portion having no curvature or a region where the curvature does not satisfy the design value specification in terms of manufacturing. Since light from these regions may cause a light beam that is not intended in the design to reach the light receiving element, an electrical signal that is assumed from the design can be obtained by shielding the light. Thereby, an accurate measured value can be obtained.
- the light receiving element array 55 is a monochrome sensor in which a color filter for each pixel is not mounted.
- the light receiving element array 55 is also referred to as a “monochrome sensor”.
- the light beam that enters the aperture of the main lens 54 and passes through the aperture is the object of measurement.
- the light beam incident on the main lens 54 is a collection of innumerable light beams, and each light beam passes through different positions of the stop of the main lens 54.
- each light beam passes through three filters having different spectral transmittances.
- the angle of the light ray incident on the filter surface varies depending on the object height. This can also be seen from the fact that the chief rays of the light beams emitted from the points on the object indicated by the symbols P and Q in FIG. 5 pass through the aperture surface of the main lens 54 at different angles.
- the light rays that have passed through the color filter 56 once form an image in the vicinity of the MLA 53, but then reach a different position of the sensor by the MLA 53, respectively. That is, since the position of the sensor surface (light receiving position) corresponds to the filter surface through which the light beam has passed, a value obtained by decomposing light emitted from a certain point of the object into tristimulus values X, Y, and Z in terms of wavelength is measured. be able to.
- the spectral transmittance of the color filter 56 has an incident angle dependency. Therefore, if the output of the light receiving element is simply used, the optical axis may be on the optical axis at best. It is difficult to measure accurate tristimulus values X, Y, and Z of the included two-dimensional surface.
- the spectroscopic camera 10 comes to obtain an accurate tristimulus value of a two-dimensional surface corrected for each light receiving position using a reference value and a value calculated from the output value from the spectroscopic camera 10. ing.
- this is a technique called multiple regression analysis.
- explanatory variables and objective variables are prepared in advance, and correction calculation is performed using a regression matrix obtained from them. The procedure is specifically described below. First, a procedure for calculating an output value from the spectroscopic camera 10 will be described. This corresponds to an explanatory variable in the multiple regression analysis.
- the image photographed with the configuration of FIG. 5 is a series of small circles as shown in FIG.
- the reason for forming a circle is that the aperture shape of the single lens (main lens 54) is circular.
- each small circle is called a “macro pixel”.
- Each macro pixel is formed directly under each small lens constituting the lens array.
- the internal structure of the macro pixel corresponds to the structure of the color filter shown in FIG.
- An enlarged view of the macro pixel is shown in FIG. Compared to FIG. 11 and FIG. 7, the top, bottom, left, and right are inverted because of passing through the optical system. However, since this correspondence depends on the optical system, it is not limited to this example.
- the macro pixel internal structures M X , M Y , and M Z are the results of arrival of light that has passed through the color filters F X , F Y , and F Z , respectively.
- t means transposition of the matrix.
- M X, M Y may take the average value of M Z, M X, and selects one of the light receiving element from M Y, M Z, may be the output value as the representative value.
- a color sample that covers a wide range in the color space is measured by a device such as a spectroscope that measures the X, Y, and Z values, and these are used as reference values.
- a device such as a spectroscope that measures the X, Y, and Z values
- As the color swatch for example, a widely used 24-color rectangular color swatch called a “color checker” can be used.
- An example of the color checker is shown in FIG.
- FIG. 13 shows the result of plotting the measured values of 24 colors included in the color checker on the xy chromaticity diagram.
- the color sample is not limited to the color checker, and if the object to be measured is known, a better correction result can be obtained by using a value close to that color as a reference value.
- a color sample is measured with a measuring instrument to obtain a reference value.
- R [r 1 ,..., R 24 ].
- R is a 3 ⁇ 24 matrix. This matrix R is an objective variable.
- This matrix G is called a regression matrix and is used for correction calculation. Since the explanatory variable V has a different value for each macro pixel, the matrix G is also calculated for each macro pixel. The above is preparation for correction calculation.
- a sample to be measured is imaged by the spectroscopic camera device 1.
- the corrected tristimulus value r C is calculated by performing the following equation (5). By obtaining r C for each macro pixel, an accurate tristimulus value of a two-dimensional surface can be obtained.
- V or v C using the output value as it is is used, but it can be expanded as shown in the following equation (6).
- the spectroscopic camera 10 having the configuration shown in FIG. 14 may be used.
- the microlens array 87 is provided so that the image position of the main lens 85 and the sensor surface 88 are in a conjugate relationship.
- the same effects as described above can be obtained.
- the number of lenses of the microlens array 87 and the number of spectral filters 89a to 89d are the same. Then, an image of the main lens 85 is formed at each sensor position by each microlens array 87.
- the spectroscopic camera 10 shown in FIG. 14 since complex image processing is not necessary, high-speed calculation is possible. Further, since each spectral image can be simultaneously captured in the adjacent imaging regions, the sensor surface 88 can be used effectively, and the spectral image with higher resolution than the above-described spectral camera 10 described with reference to FIG. Can be obtained.
- a field lens 86 may be provided between the main lens 85 and the microlens array 87. By providing the field lens 86, the parallax of the image formed by each microlens array 87 can be reduced.
- the exit pupil of the main lens 85 and the entrance pupil of the microlens array 87 are preferably in a conjugate relationship.
- FIG. 16 is a flowchart illustrating an operation example when acquiring the calibration information.
- a sample whose surface is coated with a standard white plate or gypsum is placed within the photographing range of the spectroscopic camera 10 (step S1), and the illumination is irradiated.
- imaging by the spectroscopic camera 10 is performed (step S ⁇ b> 2), the calibration information acquisition unit 31 acquires the imaging data as calibration information, and stores the acquired calibration information in the storage device 24.
- the above flow is performed by switching only the light sources.
- FIG. 17 is a flowchart showing an operation example when calculating the first spectral information described above.
- a sample is set within the imaging range of the spectroscopic camera 10 (step S11), and the illumination is irradiated.
- photographing by the spectral camera 10 is performed (step S12), and the first spectral information calculation unit 32 corrects the two-dimensional spectral information obtained by the photographing with the calibration information (step S13).
- the first spectral information calculation unit 32 calculates first spectral information (spectral value, CIELAB value, CIEUV value, CIEXYZ value) based on the corrected two-dimensional spectral information (step S14).
- the first spectroscopic information calculation unit 32 first uses the corrected two-dimensional spectroscopic information (deflection spectroscopic information) as defined by the CIE (Commission Internationale de l'Eclairage). Calculate tristimulus values XYZ. Then, the CIELAB value can be calculated by performing the calculation shown in FIG. 18 using the tristimulus values XYZ. In addition, for example, the first spectral information calculation unit 32 can calculate the CIELV value by performing the calculation shown in FIG. 19 using the tristimulus values XYZ. The CIEXYZ value calculation method is as described above. Thus, the first spectral information calculation unit 32 can calculate the declination colorimetric information as the first spectral information based on the corrected two-dimensional spectral information (declination spectroscopic information).
- CIE Commission Internationale de l'Eclairage
- FIG. 20 is a flowchart showing an operation example when calculating the second spectral information described above.
- the above-described input information three-dimensional data of the sample to be measured, declination spectral characteristics of each paint used, illumination information, camera information, etc.
- the light ray simulation software is input to the light ray simulation software (step S21).
- ray simulation is performed by ray simulation software to obtain two-dimensional spectral information (step S22).
- the second spectral information calculation unit 33 calculates second spectral information (spectral value, CIELAB value, CIEUV value, CIEXYZ value) based on the two-dimensional spectral information obtained in Step S22 (Step S22).
- the second spectral information calculation unit 33 uses the two-dimensional spectral information (deflection spectral information) obtained by the light ray simulation as the second spectral information. Colorimetric information can be calculated.
- FIG. 21 is a flowchart showing an operation example when performing an evaluation based on a comparison operation between the first spectral information and the second spectral information.
- the evaluation is performed using a predetermined reference range.
- the evaluation unit 34 calculates the difference between the first spectral information and the second spectral information (step S31).
- the evaluation unit 34 can calculate a difference in spectral information for each pixel or pixel area, or ⁇ E * ab or ⁇ E2000, or a difference in spectral information in a specific wavelength range.
- the CIERGB value and the CMYK value may be calculated from the CIEXYZ value.
- ⁇ E * ab can be calculated by performing the calculation shown in FIG.
- ⁇ E2000 can be calculated by performing the calculation shown in FIG.
- the evaluation unit 34 evaluates the sample by determining whether or not the difference value calculated in step S31 is within a predetermined reference range (step S32). For example, a standard deviation within 3 standard deviations of CIELAB values in 1000 samples to be measured can be set as a reference range, or ⁇ E * ab ⁇ 1 can be set as a reference range. Rank A indicating a high evaluation if it is within ⁇ , Rank B having a lower evaluation than Rank A if it is within ⁇ to 2 ⁇ , Rank C having a lower evaluation than Rank B if it is within 2 ⁇ to 3 ⁇ . It can also be.
- FIG. 24 is a flowchart showing an operation example when performing an evaluation based on a comparison operation between the first spectral information and the second spectral information.
- an evaluation is performed according to the obtained difference. Is assumed.
- the color difference between the chromaticity calculated by the light simulation and the chromaticity obtained from the above-described two-dimensional spectral information acquired by the spectral camera 10 is measured, and at the same time, a MOS test is performed on the sample (sample) by a plurality of people. If done by a person, the color difference for each sample and the MOS test score can be correlated.
- step S40 and step S41 are the same as the processing content of step S30 and step S31 of FIG. 21, detailed description is abbreviate
- the evaluation unit 34 performs evaluation according to the difference calculated in step S41 using the above-described correlation information (step S42), and outputs the evaluation result.
- evaluation may be performed by machine learning of the difference between the spectral information obtained for each illumination angle and the sensory evaluation result. For example, when acquiring data of three illumination angles for 16-band spectroscopic information obtained by dividing a wavelength in the range from 20 nm to 400 nm at a wavelength of 400 nm to 700 nm, for one sample (sample) to be measured, Data of 48 dimensions (16 bands ⁇ 3 angles) can be obtained. When sensory evaluation is performed for each sample, sensory evaluation result for difference of spectral information obtained by performing machine learning by setting difference of 48-dimensional spectral information as input and sensory evaluation result as output Can be constructed.
- the spectroscopic camera 10 may be configured to detect posture information indicating the posture of the sample from the parallax information between the microlenses, and the posture information may be fed back to the above-described light beam simulation.
- the spectroscopic camera 10 has a plenoptic configuration, three-dimensional information of the sample can be obtained by acquiring parallax information between microlenses simultaneously with the spectroscopic information.
- the posture of the sample can be calculated (detected) from the three-dimensional information, the detected posture is indicated even when a slight deviation of the posture has a great influence on the spectral information particularly in a sample having a large curvature of the curved surface.
- the posture information is fed back to the ray simulation, the above-described second spectral information is recalculated, and the sample can be evaluated according to the flow of FIG. 21 and FIG.
- the method for obtaining the three-dimensional shape of the object in the plenoptic configuration is shown below.
- the plenoptic camera can capture a large number of parallax images depending on the position of the light beam on the aperture.
- a photographed image when MLA) is arranged is shown in FIG. 27, and the result of the parallax conversion image is shown in FIG.
- a conjugate image of the aperture is displayed in each macro pixel.
- a parallax image a in the case where a camera is artificially placed above the aperture can be configured.
- a continuous parallax image can be obtained by performing similar image processing from the upper end to the lower end of the stop.
- the following method can be considered.
- the parallax (pixel) p of the parallax image a at the upper end and the parallax image b at the lower end is derived.
- the distance can be estimated in a form according to a general triangulation formula. Specifically, it can be expressed by the following equation (7).
- a distance MAP image of an object can be obtained by deriving spectral information and parallax information with a plenoptic configuration.
- the distance MAP image here is information (x, y, d) in which distance information d from the camera is embedded in each pixel (x, y) of the image. From the distance MAP image (x, y, d) of the subject derived by the photographing, the incident angle from the illumination and the incident angle to the camera at each position of the subject can be derived. Spectral information (spectral reflection characteristic information) can be derived (see the flow of FIG. 20).
- the subject can be evaluated according to the flow of FIG. 21 and FIG.
- the first spectral information calculated based on the two-dimensional spectral information acquired by the spectroscopic camera 10 and the two-dimensional spectral information of the sample surface obtained by the light ray simulation are used.
- the evaluation based on the comparison operation with the second spectral information calculated originally it is possible to quantitatively evaluate whether the set color can be accurately reproduced.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the gist thereof in the implementation stage.
- Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment.
- the program executed by the information processing apparatus 100 described above is an installable or executable file, and is a CD-ROM, flexible disk (FD), CD-R, DVD (Digital Versatile Disk), USB (Universal Serial Bus). ) Or the like may be recorded and provided on a computer-readable recording medium, or may be provided or distributed via a network such as the Internet. Various programs may be provided by being incorporated in advance in a ROM or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本発明の試料測定装置は、光源装置と分光カメラと第1の分光情報算出部と第2の分光情報算出部と評価部とを備える。光源装置は、試料の試料面に対して、単一または複数の照明部から均一な照明光を照射する。分光カメラは、試料面からの反射光を分光して2次元分光情報を取得する。第1の分光情報算出部は、分光カメラにより取得された2次元分光情報に基づいて、試料の評価に用いる第1の分光情報を算出する。第2の分光情報算出部は、光線シミュレーションにより得られた試料面の2次元分光情報に基づいて、試料の評価に用いる第2の分光情報を算出する。評価部は、第1の分光情報と第2の分光情報との比較演算に基づく評価を行う。
Description
本発明は、試料測定装置に関する。
例えばカメラの筐体における曲面に印刷されたパターン(文字、図形、記号、模様、図案、装飾)などの意匠性の高い製品の精密な色評価が求められている。
例えば特許文献1には、画素毎又は画素群毎に基準媒体の色情報を有する基準データと、画素毎又は画素群毎に評価媒体の色情報を有する評価対象データを画素レベルで対応させ、評価単位となる特定領域(複数の画素からなる領域)の色情報の差分(基準データの特定領域の色情報と、評価対象データの特定領域の色情報との差分)に基づいて評価結果を算出する技術が開示されている。
しかしながら、特許文献1に開示された技術では、設定した色味(例えばデザイナーがデザインした色味)を正確に再現できているかを確認することはできないという問題がある。
本発明は、上記に鑑みてなされたものであって、設定した色味を正確に再現できているかを確認可能な試料測定装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、試料の試料面に対して、単一または複数の照明部から均一な照明光を照射する光源装置と、前記試料面からの反射光を分光して2次元分光情報を取得する分光カメラと、前記分光カメラにより取得された2次元分光情報に基づいて、前記試料の評価に用いる第1の分光情報を算出する第1の分光情報算出部と、光線シミュレーションにより得られた前記試料面の2次元分光情報に基づいて、前記試料の評価に用いる第2の分光情報を算出する第2の分光情報算出部と、前記第1の分光情報と前記第2の分光情報との比較演算に基づく評価を行う評価部と、を備える試料測定装置である。
本発明によれば、設定した色味を正確に再現できているかを確認することができる。
以下、添付図面を参照しながら、本発明に係る試料測定装置の実施形態を詳細に説明する。
図1は、本実施形態の試料測定装置のシステム概念図である。分光情報またはXYZ3刺激値を取得することができる分光カメラ2は、ドーム型照明3によって、均一に照射され、かつ安定して設置されている曲面サンプル(試料)1を撮影し、曲面サンプル1の2次元分光情報5を取得する。2次元分光情報5は、画素毎に分光情報7またはCIEXYZ情報を保持している。曲面サンプル1を測定する前には、標準白色板または石膏(酸化チタンなどの)でコーティングされた曲面サンプル1を被写体として、上記分光カメラ5で撮影し、その撮影データを用いて測定データの校正を行う。
一方、測定したい曲面サンプル1の3次元データ(例えばCADデータ)、各塗料の偏角分光データ、照明情報(発光素子の分光照度、照度、形状、および照明3次元形状、位置情報)、カメラ情報(位置、画角)を光線シミュレーションソフトウェア4に入力することで、シミュレーション上でのカメラ位置から捉えることのできる曲面サンプル1の2次元分光情報6を算出することができる。2次元分光情報6は画素毎に分光情報8を保持しており、画素毎のCIEXYZ情報は分光情報8より算出することができる。
本実施形態では、分光カメラ2で取得された2次元分光情報と、光線シミュレーションにより得られた2次元分光情報とを用いて色評価を行う。色評価は、取得したそれぞれの値での差分、ΔE*ab、ΔE2000、特定の波長域の分光情報の差分などが予め定められた基準値の範囲内に収まっているかどうかを比較することで行う。塗料によっては、複数の角度毎に計測(多角度計測)した方が特徴を捉えやすい場合もあるため、図2として、複数の平行光照明301および平行光照明302を用いた例を提示している。この場合は、光線シミュレーションにおいても、照明情報を変更してシミュレーションを行う。
図3は、本実施形態の試料測定装置100の構成の一例を示す図である。図3に示すように、試料測定装置100は、分光カメラ10、光源装置20、情報処理装置30を有している。
分光カメラ10は、試料の試料面(平面あるいは曲面)からの反射光を分光して2次元分光情報(2次元の偏角分光情報)を取得する。分光カメラ10は、メインレンズ、分光フィルタ群、および、マイクロレンズを備え、分光フィルタの数に応じた分光情報を取得するカメラであり、後述の照明部15の照明光の照射に同期して、2次元分光情報を1回の撮像動作で取得する。分光カメラ10としては、例えばマルチバンドカメラ装置を用いることができる。マルチバンドカメラ装置は、メインレンズ内に挿入された分光フィルタ群、およびメインレンズと受光素子との間に挿入されたマイクロレンズアレイを備え、マイクロレンズアレイの各マイクロレンズを介して、分光フィルタの数に応じた分光情報を取得することができる。また、マルチバンドカメラは、マイクロレンズアレイと受光素子との間に分光フィルタ群を設けることにより、分光フィルタの数に応じた分光情報を取得することもできる。また、分光カメラ10として1組以上のフィルタおよび回折格子(または、プリズム)または画素ごとの分光フィルタ、あるいは、チューナブルフィルタが実装されたものを含むハイパースペクトルカメラ装置等を用いてもよい。なお、分光カメラ10は、試料に対する各画素の分解能が、それぞれ10μmから100μmの光学構成を備えることが好ましい。
分光カメラ10は、撮像部11および画像処理部12を備えており、各角度に固定されている光源装置20の照明部15による光の照射に同期して、2次元分光情報を1回の撮像動作(ワンショット)で取得する。一例ではあるが、1回の撮像動作とは、撮像部11がCMOSセンサ、または、CCDセンサ等の半導体撮像素子の場合、各画素で受光した撮像光(この例の場合は、試料からの反射光)に応じて生成された電荷を読み出すまでの動作を意味している。CMOSは、「Complementary Metal Oxide Semiconductor」の略記である。CCDは、「Charge Coupled Device」の略記である。また、分光カメラ10がプレノプティック光学系を利用するカメラの場合は、情報処理装置(PC)30にて画像処理(画像の再構成)を行う場合もある。
光源装置20は、単一または複数の照明部15(図3の例では複数の照明部15)と、各照明部15を点灯駆動する点灯制御部16を有している。照明部15(光源)としては、均一に測定部分を照射できる照明(ドーム型照明、同軸落射型照明、または平行光照明など)を用い、光源種としてはタングステンランプ、ハロゲンランプ、キセノンランプ、白色LEDなどで、測定対象の試料を照射することができる。
情報処理装置30は、分光カメラ10の撮影制御、光源装置20の点灯制御、取得データの演算処理、各測定値の算出処理などの各種の制御や処理を行う。情報処理装置30としては、一般的なコンピュータ装置を用いることができる。情報処理装置30は、CPU21、ROM22、RAM23、記憶装置24を備える。また、情報処理装置30は、各種インタフェース(I/F)25と、入出力インタフェース(I/O)26を有している。CPU21~I/O26は、バスライン27を介して相互に接続されている。
記憶装置24には、CPU21が実行するプログラム(光線シミュレーションソフトなども含む)、各種の演算結果や算出結果、後述の校正情報などの各種のデータが記憶される。また、視差より3次元情報を取得する場合は、3次元情報も記憶装置24に記憶される。
図4は、情報処理装置30が有する機能の一例を示す図である。図4に示すように、情報処理装置30は、校正情報取得部31、第1の分光情報算出部32、第2の分光情報算出部33、評価部34を有する。説明の便宜上、図4では、本発明に係る機能を主に例示しているが、情報処理装置30が有する機能は、これらに限られるものではない。
校正情報取得部31は、校正情報を取得する。例えば校正情報取得部31は、標準白色板、あるいは、石膏(酸化チタンなど)でコーティングされた試料を被写体として分光カメラ10で撮影し、その撮影データを校正情報として取得する。
第1の分光情報算出部32は、分光カメラ10により取得された上述の2次元分光情報(2次元の偏角分光情報)に基づいて、試料の評価(設定した色味の再現性の評価等)に用いる第1の分光情報(分光値、CIELAB値、CIELUV値、CIEXYZ値)を算出する。この例では、第1の分光情報算出部32は、分光カメラ10により取得された2次元分光情報を、校正情報取得部31により取得された校正情報で補正し、補正後の2次元分光情報を元に、第1の分光情報を算出する。
第2の分光情報算出部33は、光線シミュレーションにより得られた試料面の2次元分光情報に基づいて、試料の評価に用いる第2の分光情報(分光値、CIELAB値、CIELUV値、CIEXYZ値等)を算出する。光線シミュレーションソフトとしては、あるカメラ視点から、上記光源装置20を使用して、照明を照射した測定対象の試料を撮影した際の2次元分光情報を精度よく取得できるものであればよい。市販されているものでは、Synopsys’ Optical Solutions Groupから提供されているLightToolsなどがある。光線シミュレーションに必要な情報(光線シミュレーションソフトへの入力情報)としては、測定対象の試料の3次元データ(CADデータ)、使用されている各塗料の偏角分光特性、照明情報(分光照度、照度、照明形状、位置)、カメラ情報(位置、画角)などが挙げられる。試料の3次元データは設計上のCADデータを使用してもよいし、3次元データ取得装置で取得してもよい。塗料の偏角分光特性はデータシートを参照するか、偏角分光測定機を用いて、取得することができる。照明情報、カメラ情報については、構成したシステムに準じた情報をそれぞれ入力する。光線シミュレーションは、再現性を上げるためにできるだけ精度よく行う必要があるため、上記入力情報としては可能な限り詳細な内容を入力し、実測値を使用することが望ましい。また、光線本数も可能な限り多い方がより精度のよいデータを取得することができる。第2の分光情報算出部33は、光線シミュレーションにより得られた2次元分光情報を元に、第2の分光情報(分光値、CIELAB値、CIELUV値、CIEXYZ値)を算出する。
評価部34は、第1の分光情報と第2の分光情報との比較演算に基づく評価を行う。例えば評価部34は、官能評価結果と、第1の分光情報と第2の分光情報との差分とを相関付けた相関情報を用いて、得られた差分に応じた評価を行う。また、例えば評価部34は、官能評価結果と、第1の分光情報と第2の分光情報との差分と、を機械学習によって相関付け、得られた差分に応じた評価を行うこともできる。より具体的な内容については後述する。
本実施形態では、上述の情報処理装置30が有する機能(校正情報取得部31、第1の分光情報算出部32、第2の分光情報算出部33、評価部34等)は、CPU21が記憶装置24等に格納されたプログラムを実行することにより実現されるが、これに限らず、例えば上述の情報処理装置30が有する機能のうちの少なくとも一部が専用のハードウェア回路(半導体集積回路等)により実現されてもよい。
次に、図5を用いて、プレノプティック光学系を利用した構成の分光カメラ10の原理を説明する。ここでは、理解容易とするために、光学系としてのメインレンズ54は単レンズで示し、メインレンズ54の絞り位置Sを単レンズの中心としている。メインレンズ54の中心には、光学バンドパスフィルタとしてのカラーフィルタ56が配置されている。カラーフィルタ56は、XYZ表色系の等色関数に基づいた分光透過率を持つ色の三刺激値に対応したフィルタである。すなわち、カラーフィルタ56は、XYZ表色系の等色関数に基づいた分光透過率が異なる複数(ここでは3つ)のカラーフィルタ56a、56b、56cから構成されている。
このような光学バンドパスフィルタは、分光透過率が異なるフィルタを複数組み合わせて構成してもよいし、一つのフィルタ上で領域毎に分光透過率を異ならせるように構成してもよい。例えば、400nmから700nmまでの波長域において、20nm刻みで透過波長のピークを持った16種類の光学バンドパスフィルタを用いた場合、400nmから700nmまでの波長域においての分光情報を20nm刻みで取得することが可能である。
なお、実際には、図5に示すようにレンズ内にカラーフィルタ56が位置することはない。カラーフィルタ56は、メインレンズ54の絞り付近に配置される。「絞り付近」とは、絞り位置を含み、種々の画角の光線が通過できる部位を意味する。換言すれば、メインレンズ54に対するカラーフィルタ56の設計上の許容範囲を意味する。
図6に光線の入射角度が0度の場合の各カラーフィルタ56a、56b、56cの分光透過率を示す。図6における実線、破線、点線はそれぞれ、下記の等色関数に基づいたカラーフィルタ56a(FX)、56b(FY)、56c(FZ)の分光透過率TX(λ)、TY(λ)、TZ(λ)である。
図7に、カラーフィルタ56a(FX)、56b(FY)、56c(FZ)の幾何学的設計例を示す。図5では、カラーフィルタ56をおおよそ扇型に3等分しているが、全体を円形としてもよいし、矩形で分割してもよい。また、各フィルタの面積の割合も等分である必要はない。
図6に示すように、Zについての等色関数のラインで囲まれる面積は他に比べて小さい。この面積の大小は信号雑音比(SN比)の大きさに相関する。SN比を大きくするために、Zに対応するカラーフィルタ56cの面積を他に比べて大きくしてもよい。
次に、TX(λ)、TY(λ)、TZ(λ)の設計について説明する。図6の各分光透過率は、CIE-1931表色系で規定された等色関数とレンズのフィルタを除く光学系の分光透過率TL(λ)、および受光素子の分光感度S(λ)から設計される。すなわち、以下の数1式~数3式で定義できる。
数1式~数3式では、センサ自体にも分光感度があるため、その不均一性をなくすためにS(λ)で除している。数1式~数3式において、それぞれの最大値を透過率100%として規格化したものがTX(λ)、TY(λ)、TZ(λ)となる。規格化することで、特にx(λ)、y(λ)に対応したカラーフィルタについてSN比を改善できる。このように設計したカラーフィルタを用いると、そのカラーフィルタを透過した光線を受光素子で検出した場合に、最大値による規格化を逆算するだけで、その出力値をそのままX、Y、Z(三刺激値)として用いることができる。
TX(λ)、TY(λ)、TZ(λ)は複雑な波形ではあるが、設計値に近い値で生成することが可能である。TX(λ)、TY(λ)、TZ(λ)は、一例として誘電体多層膜で生成することができる。誘電体多層膜は、光学的な干渉作用によりバンドパスフィルタとして機能する。カラーフィルタ56の分光透過率は、干渉作用でバンドパスフィルタを実現できるため、原理的に光線の入射角度依存性を持つ。図8に、カラーフィルタ56a(FX)での入射角度依存性の例を示す。実線、破線、点線はそれぞれ、入射角度0度、20度、30度の分光透過率である。入射角度が大きくなるにつれて短波長側に透過帯域がシフトしていることがわかる。
図5に示すように、メインレンズ54の集光位置付近には、複数のマイクロレンズ(小レンズ)から構成されるマイクロレンズアレイ(MLA)53が配置されている。イメージ面には、メインレンズ54により集光された光情報を電子情報(電気信号)に変換する複数の受光素子(センサ)を備えた受光素子アレイ55が配置されている。MLA53のマイクロレンズの径と、受光素子アレイ55を構成する各受光素子とは、約「30:1~2:1」の比率の関係にある。
図9に、MLA53を光軸方向から見た図を示す。図9において、白い円は各レンズを示しており、黒く塗りつぶしている部分は遮光部を示している。すなわち、レンズアレイを構成するレンズの部分以外は遮光部により遮光されている。一例ではあるが、遮光部は、酸化クロムを蒸着して形成されている。遮光部は、曲率を持たない平坦部や、曲率が製造的に設計値仕様を満たさない領域である。これらの領域からの光は、設計上意図しない光線を受光素子まで届けるおそれがあるため、遮光することで設計から想定される電気信号を得ることができる。これにより、正確な測定値を得ることができる。
受光素子アレイ55は、画素毎のカラーフィルタが実装されていないモノクロセンサである。以下、受光素子アレイ55を「モノクロセンサ」ともいう。図5に示す物体57から発する光のうち、メインレンズ54の開口に入射し絞りを通過する光束が測定の対象となる。メインレンズ54に入射した光束は、無数の光線の集合であり、それぞれの光線はメインレンズ54の絞りの異なる位置を通過する。図5の例の場合、メインレンズ54の絞り位置に、3つのカラーフィルタ56a、56b、56cを配置しているので、各光線は異なる分光透過率を持つ3つのフィルタを通過することになる。このとき、フィルタ面に入射する光線の角度は物体高さにより異なる。これは図5中、符号P、符号Qで示す物体上の点から発した光束の主光線が、異なる角度でメインレンズ54の絞り面を通過していることからもわかる。
カラーフィルタ56を通過した光線は、MLA53付近で一旦結像するが、その後MLA53によりそれぞれセンサの別位置に到達する。すなわち、センサ面の位置(受光位置)は、光線が通過したフィルタ面に対応するため、物体のある一点から発した光を波長的に三刺激値X、Y、Zに分解した値を測定することができる。
しかし、図8を用いて説明したように、カラーフィルタ56の分光透過率は、入射角依存性を持つため、受光素子の出力を単純に用いただけでは、光軸上はよくても軸外を含めた二次元面の正確な三刺激値X、Y、Zを測定することは困難となる。
このため、分光カメラ10は、基準となる値と、分光カメラ10からの出力値から算出した値とを用いて受光位置毎に補正した、二次元面の正確な三刺激値を得るようになっている。一般には、重回帰分析と呼ばれる手法である。重回帰分析では、説明変数と目的変数とを予め用意し、それらから求まる回帰行列を利用して補正演算を行う。以下にその手順を具体的に述べる。まず、分光カメラ10からの出力値を算出する手順について述べる。これは重回帰分析における説明変数に相当する。
図5の構成で撮影された画像は、図10に示すような小さな円が並んだものとなる。円になるのは単レンズ(メインレンズ54)の絞り形状が円形状だからである。ここでは、それぞれの小さな円を「マクロピクセル」と呼ぶこととする。各マクロピクセルは、レンズアレイを構成する各小レンズの直下に形成される。マクロピクセルの内部構造は、図7に示したカラーフィルタの構造に対応したものとなる。マクロピクセルの拡大図を図11に示す。図11と図7とを比べて、上下左右が反転しているのは、光学系を通過したことによるものである。ただし、この対応関係は光学系に依存するため、この例に限ったものではない。
マクロピクセルの内部構造MX、MY、MZは、それぞれ、カラーフィルタFX、FY、FZを通過した光が到達した結果である。MX、MY、MZの受光素子の出力値をv=[vX,vY,vZ]tとする。tは行列の転置を意味する。出力値の取り方は、MX、MY、MZの平均値をとってもよいし、MX、MY、MZから一つの受光素子を選択し、その出力値を代表値としてもよい。
次に、基準となる値の取得方法について述べる。これは重回帰分析における目的変数に相当する。色空間において広い範囲をカバーする色見本を分光器等のX値、Y値、Z値を測定する装置で測定し、それらを基準の値とする。色見本としては、例えば広く用いられている「カラーチェッカー」と呼ばれる24色の矩形の色見本が並んだものを用いることができる。カラーチェッカーの例を、図12に示す。カラーチェッカーに含まれる24色の測定値のxy色度図へのプロット結果を、図13に示す。
色見本はカラーチェッカーに限るわけではなく、測定したい対象がわかっていれば、その色に近いものを基準の値とすることでより良い補正結果を得ることができる。ある色見本に対するX、Y、Z(三刺激値)の基準の値をr=[rX,rY,rZ]tとする。
次に、補正演算の流れを述べる。まず、色見本を測定器で測定し、基準の値を得る。色見本に24色のカラーチェッカーを用いた場合、便宜的に番号を付け、1番目の色に対する基準の値をr1=[r1X r1Y r1Z]tとする。すなわち、r1~r24までの値を得る。R=[r1,・・・,r24]とする。Rは、3行24列の行列となる。この行列Rが目的変数である。
次に、図5の分光カメラ10で色見本を撮影し、撮像情報を取得する。このとき画像全体に一つの色見本が映るように配置する。各マクロピクセルからvを取得する。基準の値と同様にV=[v1,・・・,v24]を得る。このVが説明変数となる。ここまでに得られたRおよびVから行列Gを求める。
G=RVt(VVt)-1・・・(数4式)
この行列Gは、回帰行列と呼ばれ、補正演算に用いられる。説明変数Vは、マクロピクセル毎に別の値を持つため、行列Gもマクロピクセル毎に算出される。以上が補正演算のための準備である。
実際に測定を行うときの流れを説明する。測定対象となる試料を、分光カメラ装置1で撮像する。撮像画像に含まれる各マクロピクセルについて出力値を算出する。これを、「vC=[vCX,vCY,vCZ]t」とする。次に、補正された三刺激値rCを、以下の数5式の演算を行うことで算出する。マクロピクセル毎にrCを求めることで、二次元面の正確な三刺激値を求めることができる。
rC=GvC・・・(数5式)
上述の流れでは、出力値をそのまま用いるVやvCを用いたが、以下の数6式に示すように拡張することもできる。
v=[vX, vY, vZ 1 vX
2 vY
2 vZ
2 ・・・]t
・・・(数6式)
・・・(数6式)
数6式の「…」は、vXvYおよびvX
3などの高次の項を意味する。このような拡張を行うことで、補正の精度を高め、より正確な値を求められることができる。拡張したVで回帰行列Gを求めた場合には、実際に数5式を用いた測定の場合にも、拡張したvCを用いることが好ましい。
次に、分光カメラ装置1としては、図14の構成の分光カメラ10を用いてもよい。図14に示す分光カメラ10の場合、メインレンズ85の像位置とセンサ面88が共役関係になるようにマイクロレンズアレイ87を設けている。また、センサ面88上には、図15に示すように、複数の分光フィルタ89a~89dを設けることにより、上述と同等の効果が得ることができる。
図14に示す分光カメラ10の場合、マイクロレンズアレイ87のレンズの数と分光フィルタ89a~89dの数は一致する。そして、メインレンズ85の像を各々のマイクロレンズアレイ87で、各センサ位置に結像する。図14に示す分光カメラ10の場合、複雑な画像処理が不要であるため、高速演算が可能となる。また各分光画像を、それぞれ隣接する撮像領域で同時に撮像可能であるため、センサ面88を有効に利用でき、図5等を用いて説明した上述の分光カメラ10よりも、より高解像度の分光画像を得ることができる。
また、メインレンズ85と、マイクロレンズアレイ87との間に、フィールドレンズ86を設けてもよい。このフィールドレンズ86を設けることで、各マイクロレンズアレイ87で作られる像の視差を低減できる。なお、フィールドレンズ86は、メインレンズ85の射出瞳とマイクロレンズアレイ87の入射瞳が共役関係にあることが好ましい。
次に、試料測定装置100の動作例を説明する。図16は、校正情報を取得する際の動作例を示すフローチャートである。まず、標準白色板または石膏で表面コーティングされた試料を分光カメラ10の撮影範囲内に設置し(ステップS1)、上記照明を照射する。次に、分光カメラ10による撮影が行われ(ステップS2)、校正情報取得部31は、その撮影データを校正情報として取得し、取得した校正情報を記憶装置24に格納する。なお、複数の光源を使用する場合は、上記フローを光源のみを切り替えて行う。
図17は、上述の第1の分光情報を算出する際の動作例を示すフローチャートである。まず、試料を分光カメラ10の撮影範囲内に設置し(ステップS11)、上記照明を照射する。次に、分光カメラ10による撮影が行われ(ステップS12)、第1の分光情報算出部32は、その撮影により得られた2次元分光情報を校正情報で補正する(ステップS13)。次に、第1の分光情報算出部32は、補正後の2次元分光情報を元に、第1の分光情報(分光値、CIELAB値、CIELUV値、CIEXYZ値)を算出する(ステップS14)。例えば第1の分光情報算出部32は、CIE(Commission Internationale de l'Eclairage:国際照明委員会)で定められている通り、まず、補正後の2次元分光情報(偏角分光情報)を用いて、三刺激値XYZを計算する。そして、三刺激値XYZを用いて図18に示す演算を行うことで、CIELAB値を算出することができる。また、例えば第1の分光情報算出部32は、三刺激値XYZを用いて図19に示す演算を行うことで、CIELUV値を算出することができる。なお、CIEXYZ値の算出方法は上述したとおりである。このように、第1の分光情報算出部32は、補正後の2次元分光情報(偏角分光情報)を元に、第1の分光情報として偏角測色情報を算出することができる。
図20は、上述の第2の分光情報を算出する際の動作例を示すフローチャートである。まず、上述の入力情報(測定対象の試料の3次元データ、使用されている各塗料の偏角分光特性、照明情報、カメラ情報など)が光線シミュレーションソフトに入力される(ステップS21)。次に、光線シミュレーションソフトによる光線シミュレーションが行われて2次元分光情報が得られる(ステップS22)。次に、第2の分光情報算出部33は、ステップS22で得られた2次元分光情報を元に、第2の分光情報(分光値、CIELAB値、CIELUV値、CIEXYZ値)を算出する(ステップS23)。第1の分光情報算出部32と同様に、第2の分光情報算出部33は、光線シミュレーションにより得られた2次元分光情報(偏角分光情報)を元に、第2の分光情報として偏角測色情報を算出することができる。
図21は、第1の分光情報と第2の分光情報との比較演算に基づく評価を行う際の動作例を示すフローチャートである。この例では、予め定められた基準範囲を用いて評価する態様を想定している。まず、上述の第1の分光情報および上述の第2の分光情報が評価部34に入力される(ステップS30)。次に、評価部34は、第1の分光情報と第2の分光情報との差分を算出する(ステップS31)。例えば評価部34は、画素または画素領域ごとの分光情報の差分、または、ΔE*abやΔE2000、あるいは特定の波長域の分光情報の差分を算出することができる。必要に応じて、CIEXYZ値からCIERGB値やCMYK値を算出してもよい。また、ΔE*abは、図22に示す演算を行うことで算出することができる。ΔE2000は、図23に示す演算を行うことで算出することができる。
次に、評価部34は、ステップS31で算出した差分の値が、予め定められた基準範囲内に収まっているか否かを判断することで試料の評価を行う(ステップS32)。例えば測定対象の試料1000個におけるCIELAB値のばらつきの標準偏差3σ以内を基準範囲として設定することもできるし、ΔE*ab<1以内を基準範囲として設定することもできる。また、上記のσ以内であれば高評価を示すランクA、上記σ~2σ以内であればランクAよりも評価が低いランクB、2σ~3σ以内であればランクBよりも評価が低いランクCとすることもできる。
図24は、第1の分光情報と第2の分光情報との比較演算に基づく評価を行う際の動作例を示すフローチャートである。この例では、官能評価結果と、第1の分光情報と第2の分光情報との差分(差分の範囲)とを相関付けた相関情報を用いて、得られた差分に応じた評価を行う態様を想定している。ここで、官能評価方法には様々な方法があるが、例えば、図25に示すようなMean Opinion Score(MOS)という5段階の評点(5:差がわからない、4:差がわかるが気にならない、3:差がやや気になる、2:差が気になる、1:差が非常に気になる)での主観評価を各測定対象の試料について行い、算出された差分(色差等)の範囲と評点とを相関付けた相関情報を予め作成しておくことができる。相関情報は、例えば記憶装置24に格納される。例えば、光線シミュレーションによって算出された色度と、分光カメラ10で取得した上述の2次元分光情報から得られた色度の色差を測定し、同時にその試料(サンプル)についてMOSテストを複数人の評価者によって行う場合、それぞれのサンプルに対する色差とMOSテストの評点を相関付けることができる。
図24の説明を続ける。ステップS40およびステップS41の処理内容は、図21のステップS30およびステップS31の処理内容と同様であるので、詳細な説明は省略する。次に、評価部34は、上述の相関情報を用いて、ステップS41で算出された差分に応じた評価を行い(ステップS42)、その評価結果を出力する。
また、例えば照明角度毎に得られた分光情報の差分と官能評価結果を機械学習することで、評価(品質の可否判定やランク付け等)を行っても良い。例えば、400nmから700nmの波長において、その範囲の波長を20nmごとに分割した16バンドの分光情報について、3つの照明角度のデータを取得した場合、1つの測定対象の試料(サンプル)に対して、48次元(16バンド×3つの角度)のデータが得られる。各サンプルに対して、官能評価を行った場合、入力として48次元の分光情報の差分、出力として官能評価結果を設定し、機械学習を行うことで、得られた分光情報の差分に対する官能評価結果を出力するシステムを構築することができる。
また、例えば分光カメラ10は、マイクロレンズ間の視差情報から、試料の姿勢を示す姿勢情報を検出し、その姿勢情報は上述の光線シミュレーションにフィードバックされる構成であってもよい。上記の分光カメラ10をプレノプティック構成とした場合には、上記の分光情報と同時にマイクロレンズ間の視差情報を取得することで、試料の3次元情報を得ることができる。この場合、3次元情報から試料の姿勢を算出(検出)できることから、特に曲面の曲率が大きいような試料でわずかな姿勢のずれが分光情報に大きな影響を与える場合でも、検出された姿勢を示す姿勢情報を光線シミュレーションにフィードバックして、上述の第2の分光情報を再計算し、図21や図24のフローに従って試料の評価を行うことができる。
プレノプティック構成における対象物の三次元形状の取得方法を以下に示す。プレノプティックカメラは、絞り上の光線の通る位置に応じて、多数の視差画像を撮影することができる。具体的には図26のような被写体をカメラから10mm離し、焦点距離F=4.7mm、入射瞳径B=1.2mmのメインレンズ、および径M=φ55μm、NA0.25のマイクロレンズアレイ(MLA)を並べた時の撮影画像を図27に示し、視差変換画像の結果を図28に示す。図27の撮影画像では、各マクロピクセル内に絞りの共役画像が映し出されている。各マクロピクセルの絞りの上端を通過した画素同士を集めることで、絞りの上部に擬似的にカメラを置いた場合の視差画像aを構成することができる。同様に絞りの上端から下端に掛けて同様の画像処理を施すことで、連続的な視差画像を求めることができる。視差画像から、カメラから物体までの距離d(この例では10mm)を導出する方法としては以下のような方法が考えられる。まず上端の視差画像a、下端の視差画像bの視差(画素)pを導出する。視差pにMLAの径Mを乗ずることで、一般的な三角測量の式に則る形で距離を推定することができる。具体的には以下の数7式で表すことができる。
d=BF/P,P=p×M・・・(数7式)
上記距離推定方法は、あくまで2枚からの視差画像から距離を導出した一方式であり、この他にも複数の視差画像からより正確に距離を推定する方法などが考えられる。以上の原理より、プレノプティック構成で分光情報および視差情報を導出することで、物体の距離MAP画像を得ることができる。ここでいう距離MAP画像とは、画像の各画素(x,y)に対しカメラからの距離情報dが埋め込まれた情報(x,y,d)となる。撮影により導出された被写体の距離MAP画像(x,y,d)より、被写体のそれぞれ位置における照明からの入射角およびカメラへの入射角を導出することができ、上述の光線シミュレーションより、その位置での分光情報(分光反射特性情報)を導出することができる(図20のフロー参照)。以下、図21や図24のフローに従って、被写体(試料)の評価を行うことができる。
以上に説明したように、本実施形態では、分光カメラ10により取得された2次元分光情報を元に算出された第1の分光情報と、光線シミュレーションにより得られた試料面の2次元分光情報を元に算出された第2の分光情報との比較演算に基づく評価を行うことにより、設定した色味を正確に再現できているかを定量的に評価することができる。
以上、本発明に係る実施形態について説明したが、本発明は、上述の実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。
上述した情報処理装置100が実行するプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB(Universal Serial Bus)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよいし、インターネット等のネットワーク経由で提供または配布するように構成してもよい。また、各種プログラムを、ROM等に予め組み込んで提供するように構成してもよい。
10 分光カメラ
11 撮像部
12 画像処理部
15 照明部
16 点灯制御部
20 光源装置
21 CPU
22 ROM
23 RAM
24 記憶装置
25 I/F
26 I/O
27 バス
30 情報処理装置
31 校正情報取得部
32 第1の分光情報算出部
33 第2の分光情報算出部
34 評価部
100 試料測定装置
11 撮像部
12 画像処理部
15 照明部
16 点灯制御部
20 光源装置
21 CPU
22 ROM
23 RAM
24 記憶装置
25 I/F
26 I/O
27 バス
30 情報処理装置
31 校正情報取得部
32 第1の分光情報算出部
33 第2の分光情報算出部
34 評価部
100 試料測定装置
Claims (8)
- 試料の試料面に対して、単一または複数の照明部から均一な照明光を照射する光源装置と、
前記試料面からの反射光を分光して2次元分光情報を取得する分光カメラと、
前記分光カメラにより取得された2次元分光情報に基づいて、前記試料の評価に用いる第1の分光情報を算出する第1の分光情報算出部と、
光線シミュレーションにより得られた前記試料面の2次元分光情報に基づいて、前記試料の評価に用いる第2の分光情報を算出する第2の分光情報算出部と、
前記第1の分光情報と前記第2の分光情報との比較演算に基づく評価を行う評価部と、を備える、
試料測定装置。 - 前記評価部は、官能評価結果と、前記第1の分光情報と前記第2の分光情報との差分とを相関付けた相関情報を用いて、得られた前記差分に応じた評価を行う、
請求項1の試料測定装置。 - 前記評価部は、官能評価結果と、前記第1の分光情報と前記第2の分光情報との差分とを機械学習によって相関付け、得られた前記差分に応じた評価を行う、
請求項1の試料測定装置。 - 前記分光カメラは、
メインレンズ、分光フィルタ群、および、マイクロレンズを備え、前記分光フィルタの数に応じた分光情報を取得するカメラであり、
前記照明部の照明光の照射に同期して、2次元分光情報を1回の撮像動作で取得する、
請求項1乃至3のうちの何れか1項の試料測定装置。 - 前記分光カメラは、
前記メインレンズ内に挿入された前記分光フィルタ群、および前記メインレンズと受光素子との間に挿入されたマイクロレンズアレイを備え、前記マイクロレンズアレイの各マイクロレンズを介して、前記分光フィルタの数に応じた分光情報を取得する、
請求項4の試料測定装置。 - 前記分光カメラは、前記マイクロレンズアレイと前記受光素子との間に前記分光フィルタ群を設けることにより、前記分光フィルタの数に応じた分光情報を取得する、
請求項5の試料測定装置。 - 前記分光カメラは、前記試料に対する各画素の分解能が、それぞれ10μmから100μmの光学構成を備える、
請求項4乃至6のうちの何れか1項の試料測定装置。 - 前記分光カメラは、前記マイクロレンズ間の視差情報から、前記試料の姿勢を示す姿勢情報を検出し、
前記姿勢情報は前記光線シミュレーションにフィードバックされる、
請求項4乃至7のうちの何れか1項の試料測定装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-158506 | 2015-08-10 | ||
JP2015158506 | 2015-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017026296A1 true WO2017026296A1 (ja) | 2017-02-16 |
Family
ID=57983215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072237 WO2017026296A1 (ja) | 2015-08-10 | 2016-07-28 | 試料測定装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017026296A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022513847A (ja) * | 2018-12-14 | 2022-02-09 | スペクトラル エムディー,インコーポレイテッド | 高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法 |
US11948300B2 (en) | 2018-12-14 | 2024-04-02 | Spectral Md, Inc. | Machine learning systems and methods for assessment, healing prediction, and treatment of wounds |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005181038A (ja) * | 2003-12-18 | 2005-07-07 | Olympus Corp | 反射特性測定装置とそれを用いた高色再現デザインシステム及び反射特性測定方法 |
JP2014006079A (ja) * | 2012-06-21 | 2014-01-16 | Olympus Corp | 撮像モジュールおよび撮像装置 |
WO2014125804A1 (ja) * | 2013-02-13 | 2014-08-21 | パナソニック株式会社 | マルチスペクトル撮像装置およびマルチスペクトル撮像方法 |
-
2016
- 2016-07-28 WO PCT/JP2016/072237 patent/WO2017026296A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005181038A (ja) * | 2003-12-18 | 2005-07-07 | Olympus Corp | 反射特性測定装置とそれを用いた高色再現デザインシステム及び反射特性測定方法 |
JP2014006079A (ja) * | 2012-06-21 | 2014-01-16 | Olympus Corp | 撮像モジュールおよび撮像装置 |
WO2014125804A1 (ja) * | 2013-02-13 | 2014-08-21 | パナソニック株式会社 | マルチスペクトル撮像装置およびマルチスペクトル撮像方法 |
Non-Patent Citations (1)
Title |
---|
MASAHIRO YAMAGUCHI: "High-quality Image Reproduction Based On Natural Vision For Realistic Material Perception", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 66, no. 5, May 2012 (2012-05-01), pages 371 - 378, XP055363728 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022513847A (ja) * | 2018-12-14 | 2022-02-09 | スペクトラル エムディー,インコーポレイテッド | 高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法 |
JP7186298B2 (ja) | 2018-12-14 | 2022-12-08 | スペクトラル エムディー,インコーポレイテッド | 高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法 |
US11631164B2 (en) | 2018-12-14 | 2023-04-18 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
US11948300B2 (en) | 2018-12-14 | 2024-04-02 | Spectral Md, Inc. | Machine learning systems and methods for assessment, healing prediction, and treatment of wounds |
US11989860B2 (en) | 2018-12-14 | 2024-05-21 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384183B2 (ja) | 試料測定装置および試料測定プログラム | |
JP7200204B2 (ja) | 多重組織検定用の撮像デバイスまたはシステムを較正、構成、および有効性判断するためのシステムおよび方法 | |
JP6816572B2 (ja) | 色測定装置、色測定方法及びプログラム | |
JP6390252B2 (ja) | 試料測定装置および試料測定プログラム | |
JP6340884B2 (ja) | 測定装置、測定システム及び測定方法 | |
TWI509220B (zh) | 採用表面顏色之表面形貌干涉儀 | |
US10964001B2 (en) | Multispectral imaging systems and methods | |
US8315692B2 (en) | Multi-spectral imaging spectrometer for early detection of skin cancer | |
JP2016510408A5 (ja) | ||
JP2016091359A (ja) | 情報処理システム、情報処理装置、情報処理方法、及びプログラム | |
JP2010127739A (ja) | 分光感度特性測定装置および分光感度特性測定方法 | |
JP6113319B2 (ja) | 画像色分布検査装置および画像色分布検査方法 | |
JP2022165355A (ja) | 撮像装置 | |
JP5841091B2 (ja) | 画像色分布検査装置および画像色分布検査方法 | |
KR20220137629A (ko) | 촬상 유닛 및 측정 장치 | |
WO2017026296A1 (ja) | 試料測定装置 | |
JP2006177812A (ja) | 二次元分光輝度計 | |
JP6225519B2 (ja) | 測定装置及び測定方法 | |
JP7136064B2 (ja) | 被検査体の表面検査装置および被検査体の表面検査方法 | |
WO2020003673A1 (ja) | イメージセンサの分光感度測定方法、分光感度測定装置の検査方法及び分光感度測定装置 | |
KR102022836B1 (ko) | 광 측정 장치, 시스템 및 방법 | |
US12025562B2 (en) | Method for optical monitoring and/or determination of properties of sample | |
CN115031934B (zh) | 一种图像传感器光谱响应度的测量装置和方法 | |
JP5929338B2 (ja) | 撮像装置、分光情報作成方法 | |
JP5895094B1 (ja) | 画像色分布検査装置および画像色分布検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16834993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16834993 Country of ref document: EP Kind code of ref document: A1 |