WO2016150223A1 - Matériau d'alliage à mémoire de forme et procédé de préparation associé, utilisés pour une impression en trois dimensions - Google Patents

Matériau d'alliage à mémoire de forme et procédé de préparation associé, utilisés pour une impression en trois dimensions Download PDF

Info

Publication number
WO2016150223A1
WO2016150223A1 PCT/CN2015/099708 CN2015099708W WO2016150223A1 WO 2016150223 A1 WO2016150223 A1 WO 2016150223A1 CN 2015099708 W CN2015099708 W CN 2015099708W WO 2016150223 A1 WO2016150223 A1 WO 2016150223A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
shape memory
parts
alcohol
powder
Prior art date
Application number
PCT/CN2015/099708
Other languages
English (en)
Chinese (zh)
Inventor
陈庆
叶任海
曾军堂
Original Assignee
成都新柯力化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都新柯力化工科技有限公司 filed Critical 成都新柯力化工科技有限公司
Publication of WO2016150223A1 publication Critical patent/WO2016150223A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the present invention is in the field of 3D printing manufacturing, and in particular relates to 3D printed materials, and further relates to shape memory alloy smart materials for 3D printing.
  • Additive Manufacturing also known as rapid prototyping technology, 3D printing technology
  • 3D printing manufacturing technology is an advanced manufacturing technology that integrates information technology, new materials technology and high-end manufacturing technology into multiple disciplines.
  • 3D printing manufacturing technology is a rapid additive manufacturing technology that generates three-dimensional solids by adding stacked materials layer by layer. It not only overcomes the loss caused by traditional material reduction, but also makes the product manufacturing more intelligent, more accurate and more efficient. Especially for high-end manufacturing involving complex shapes, 3D printing technology shows great advantages.
  • 3D printing manufacturing technology is a brand-new manufacturing concept, which will eventually be applied to large-scale industrial intelligent production.
  • 3D printing technology is used to manufacture complex intelligent materials, which fully exploits the advantages of 3D printing precision manufacturing, such as the use of 3D printing technology to manufacture electroactive polymers, shape memory materials, piezoelectric materials, electromagnetic flow variants, and biological Medical equipment, magnetostrictive materials, etc.
  • Shape memory refers to a phenomenon in which an article having an initial shape is treated by heating or the like after one deformation, and the original shape can be restored.
  • Shape memory materials can be triggered by external stimuli such as thermal, electrical, magnetic, optical, chemical, or mechanical to change certain parameters of the material, such as shape position, strain, frequency, and friction characteristics. Because shape memory materials have shape memory effect, high recovery and good shock resistance and adaptability, and easy to combine with other materials to form composite materials and other excellent properties, their development has attracted more and more attention, in artificial bones, injuries Bone fixation presses, dental orthodontics, smart valves, smart toys, heat engine models and other fields have been applied.
  • shape memory materials are mostly applied to specific articles having complicated shapes, and shape memory alloy materials are subjected to large temperature deformation, the temperature changes greatly before and after 3D printing, and the precision of the products is affected. This limits the application of 3D printing technology in the processing of deformed memory materials.
  • shape memory materials are used in 3D printing manufacturing because of the shape memory effect, and shape transformation occurs after temperature changes, resulting in a decrease in printing accuracy of the article.
  • the present invention proposes a three-dimensionally printed shape memory alloy material.
  • the shape memory alloy material uses metal foam powder as a carrier, and during the three-dimensional printing heating and cooling process, the shape memory alloy particles are deformed in the micropores of the metal foam powder, and the metal foam powder is used as a printing support to ensure three-dimensional printing.
  • the shape of the tantalum article is not affected by the deformation of the shape memory alloy particles, thereby obtaining a high-precision shape memory alloy article.
  • a shape memory alloy material for three-dimensional printing is realized by the following technical solutions:
  • a shape memory alloy material for three-dimensional printing characterized in that: based on the metal foam powder as a carrier, the shape memory alloy particles are fixed in the pores of the metal foam powder, and the average particle diameter is obtained by grinding and refining at 50 - 100 mesh spherical material, suitable for 3D printing to manufacture high-precision shape memory alloy products; mainly prepared from the following parts by weight:
  • metal foam powder 50-60 parts [0011] metal foam powder 50-60 parts
  • the metal foam powder is one of foamed copper powder, aluminum foamed aluminum powder, foamed iron powder, nickel foamed powder, magnesium foamed foam, titanium foamed foam, and foamed zinc powder, and has a three-dimensional through-hole structure. Uniform pores, porosity 8
  • the average particle size is 50 mesh
  • the shape memory alloy particles are one of titanium nickel alloy particles, nickel manganese alloy particles, titanium platinum alloy particles, and the average particle diameter is 1250-2500 mesh;
  • the alcohol-soluble resin is a thermoplastic alcohol-soluble resin, and at least one of an alcohol-soluble phenol resin, an alcohol-soluble polyamide resin, and an alcohol-soluble polyacrylate resin is used;
  • the dispersing agent is at least one of gelatin, seaweed gum, methyl cellulose, hydroxypropyl methylcellulose, polyvinyl alcohol, a copolymer of maleic anhydride and vinyl acetate, and a polyacrylate.
  • the method for preparing a shape memory alloy material for three-dimensional printing of the present invention is characterized as follows
  • Step 1) pre-formed alcohol-soluble resin solution with 30-40 parts by weight of shape memory alloy particles, 0.1-0.5 parts by weight of dispersant into a high-speed disperser, while adding ethanol to adjust the viscosity at 100-150cp Disperse at a high speed of 50,000-100 rpm for 3-5 minutes to obtain a shape memory alloy particle dispersion;
  • the above preparation method is characterized in that the disc grinder of the step 4) is a double disc grinder, and the abrasive is between the upper and lower grinding discs, and is rotated by the upper grinding disc to achieve grinding and ball forming, and passes through Adjust up and down to control the fineness of the material.
  • a shape memory alloy material for three-dimensional printing is a metal foam powder as a carrier, and in a three-dimensional printing heating and cooling process, the shape memory alloy particles are in the micropores of the metal foam powder. Deformation occurs, and the metal foam powder as a support for printing ensures that the shape of the three-dimensionally printed tantalum product is not affected by the deformation of the shape memory alloy particles, and the shape memory alloy particles are uniformly dispersed by using the alcohol-soluble resin having thermoplastic properties. It is coated and resides in the micropores of the metal foam powder, and has the same thermoplasticity in the three-dimensional printing. Thereby, a high-precision shape memory alloy article is obtained, which overcomes the instability of the initial shape forming of the shape memory alloy material.
  • a shape memory alloy material for three-dimensional printing according to the present invention using metal foam powder as a carrier, The shape memory alloy particles are deformed in the micropores of the metal foam powder, and the metal foam powder serves as a support for printing, which ensures that the shape of the three-dimensionally printed tantalum product is not affected by the deformation of the shape memory alloy particles, thereby obtaining high precision.
  • the shape memory alloy article overcomes the instability of the initial shape forming of the shape memory alloy material.
  • the shape memory alloy material for three-dimensional printing of the present invention utilizes an alcohol-soluble resin having thermoplastic properties to uniformly disperse, coat and reside in the micropores of the metal foam powder. , in 3D printing ⁇ , with thermoplastic adhesion.
  • the shape memory alloy material for three-dimensional printing the shape memory alloy material obtained by surface modification, vacuum adsorption and disc grinding of shape memory alloy particles in an alcohol-soluble resin in a liquid state.
  • the narrow particle size distribution, uniform particle size, and spherical shape greatly improve the uniformity of material transport in 3D printing.
  • Step 1) pre-formed alcohol-soluble phenolic resin solution and 30 parts by weight of titanium oxide alloy particles with an average particle diameter of 1250 mesh, 0.1 parts by weight of gelatin was added to a high-speed disperser, while adding ethanol to adjust the viscosity at 100 cp, High speed dispersion of 5000 rpm for 5 min to obtain a shape memory alloy particle dispersion;
  • the shape memory alloy material obtained in Example 1 was manufactured by a three-dimensional printing technique to obtain a precision sleeve joint having a precision value of plus or minus 0.01 mm compared with the initial shape of the design.
  • the shape memory alloy material obtained in Example 2 was fabricated by a three-dimensional printing technique to obtain a spring heat sensitive shrinkage driving device for a fire extinguisher.
  • step 1) pre-formed alcohol-soluble polyacrylate resin solution is added to a high-speed disperser with 40 parts by weight of titanium-platinum alloy particles having an average particle diameter of 2000 mesh and 0.3 parts by weight of hydroxypropylmethylcellulose. Adding ethanol to adjust the viscosity at 130 cp, and dispersing at a high speed of 1000 rpm for 5 min to obtain a shape memory alloy particle dispersion;
  • the dry powdery fine particles obtained in the step 3) are ground by a disc grinder and sieved through 50 mesh to obtain spherical particles of uniform size, that is, shape memory alloy materials for three-dimensional printing.
  • the shape memory alloy material obtained in Example 3 was manufactured by a three-dimensional printing technique to obtain a medical braces.
  • Step 1) pre-formed alcohol-soluble phenolic resin solution and 40 parts by weight of nickel-manganese alloy particles having an average particle diameter of 2,500 mesh, and 0.5 parts by weight of polyvinyl alcohol are added to a high-speed disperser, and ethanol is added to adjust the viscosity at 150 cp.
  • the dry powdery fine particles obtained in the step 3) are ground by a disc grinder and sieved through 50 mesh to obtain spherical particles of uniform size, that is, shape memory alloy materials for three-dimensional printing.
  • Step 1) pre-formed alcohol-soluble polyamide tree solution with 30 parts by weight of 2000 nm objective nickel manganese alloy particles, 0.2 parts by weight of polyacrylate, into a high-speed disperser, while adding ethanol to adjust the viscosity 130 cp, dispersing at a high speed of 8000 rpm for 3 min to obtain a shape memory alloy particle dispersion;
  • Shape memory alloy particles occur in the pores of the metal foam during the three-dimensional printing heating and cooling process
  • the deformation, and the metal foam powder as a support for printing ensures that the shape of the three-dimensionally printed tantalum product is not affected by the deformation of the shape memory alloy particles, thereby obtaining a high-precision shape memory alloy product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un matériau d'alliage à mémoire de forme utilisé pour une impression en trois dimensions, préparé principalement à partir des produits de départ suivants, en parties en poids: 50 à 60 parties de poudre de mousse métallique, 30 à 40 parties de particules d'alliage à mémoire de forme, 3 à 8 parties de résine soluble à l'alcool et 0,1 à 0,5 parties de dispersant; les particules d'alliage à mémoire de forme sont fixées dans les pores de la poudre de mousse métallique; au moyen d'un broyage et d'un affinement, un matériau sphérique présentant un diamètre moyen de particules de 50 à 100 mesh est obtenu; pendant le processus de chauffage et de refroidissement de l'impression en trois dimensions, les particules d'alliage à mémoire de forme se déforment dans les micropores de la poudre de mousse métallique; la poudre de mousse métallique sert de structure de support pour l'impression et permet de garantir que, pendant que l'impression en trois dimensions forme un produit, la forme du produit n'est pas affectée par la déformation des particules d'alliage à mémoire de forme; et un produit d'alliage à mémoire de forme de haute précision est obtenu.
PCT/CN2015/099708 2015-03-26 2015-12-30 Matériau d'alliage à mémoire de forme et procédé de préparation associé, utilisés pour une impression en trois dimensions WO2016150223A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510134030.6A CN104801704B (zh) 2015-03-26 2015-03-26 一种用于三维打印的形状记忆合金材料及其制备方法
CN201510134030.6 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016150223A1 true WO2016150223A1 (fr) 2016-09-29

Family

ID=53687135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099708 WO2016150223A1 (fr) 2015-03-26 2015-12-30 Matériau d'alliage à mémoire de forme et procédé de préparation associé, utilisés pour une impression en trois dimensions

Country Status (2)

Country Link
CN (1) CN104801704B (fr)
WO (1) WO2016150223A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500668A (zh) * 2020-11-23 2021-03-16 江苏大学 一种可选择性响应的形状记忆聚合物结构及其制备方法
CN115198123A (zh) * 2022-06-09 2022-10-18 中国科学院宁波材料技术与工程研究所 一种镍锰锡形状记忆合金的增材制造方法及镍锰锡形状记忆合金

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801704B (zh) * 2015-03-26 2017-01-25 成都新柯力化工科技有限公司 一种用于三维打印的形状记忆合金材料及其制备方法
CN105130482B (zh) * 2015-08-04 2017-03-29 成都新柯力化工科技有限公司 一种用于3d打印的金属增韧陶瓷基复合材料
CN105108134B (zh) * 2015-08-04 2017-03-08 成都新柯力化工科技有限公司 一种用于3d打印的膏状金属复合材料及其制备方法
CN105598441B (zh) * 2015-12-23 2017-11-14 罗仙花 一种用于3d打印发动机缸盖的复合材料及其制备方法
CN105562676B (zh) * 2015-12-23 2017-07-11 成都新柯力化工科技有限公司 一种用于3d打印的增强金属复合材料及其制备方法
CN105524429A (zh) * 2015-12-30 2016-04-27 成都新柯力化工科技有限公司 一种3d打印用聚芳酯粉末材料及其制备方法
US11549009B2 (en) 2016-02-05 2023-01-10 Lg Chem, Ltd. Composition for 3 dimensional printing
WO2018005349A1 (fr) 2016-06-28 2018-01-04 Dow Global Technologies Llc Articles thermodurcissables à fabrication additive incorporant un matériau à changement de phase, et leur procédé de fabrication
CN106825594B (zh) * 2017-02-08 2018-12-14 中航迈特粉冶科技(北京)有限公司 一种3d打印用球形钛镍形状记忆合金粉末的制备方法
CN107225243A (zh) * 2017-05-25 2017-10-03 北京康普锡威科技有限公司 一种泡沫金属材料制备方法
CN108247035B (zh) * 2018-01-08 2021-07-30 广州金穗芯能科技有限公司 一种用于三维打印的氧化石墨烯/锆改性的铝基形状记忆合金颗粒及其制备方法
CN109394286A (zh) * 2018-12-07 2019-03-01 中国人民解放军陆军军医大学第附属医院 基于3d打印技术的异形手术创口缝合装置及其制作方法
CN111777412A (zh) * 2020-07-14 2020-10-16 嘉兴饶稷科技有限公司 大尺寸模型3d陶瓷打印工艺
CN113558793B (zh) * 2021-05-18 2023-04-18 宁波职业技术学院 一种基于磁流体的牙齿正畸动态模拟方法与系统
CN113480823B (zh) * 2021-07-16 2022-01-18 东莞市飞胜生物科技有限公司 一种高性能抗形变3d打印材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516048A (ja) * 2002-06-18 2006-06-15 ダイムラークライスラー・アクチェンゲゼルシャフト 3dバインダ印刷のための粒状材料、その生産方法及びその使用法
EP1770176A1 (fr) * 2005-09-30 2007-04-04 Haute Ecole Valaisanne Granule pour l'impression à trois dimensions
CN103160948A (zh) * 2013-04-07 2013-06-19 苏州聚复高分子材料有限公司 快速成型形状记忆高分子材料及其制备方法和应用
CN104084592A (zh) * 2014-07-28 2014-10-08 中国科学院重庆绿色智能技术研究院 一种制备三维打印用球形粉末材料的方法
CN104416159A (zh) * 2013-08-20 2015-03-18 中国科学院理化技术研究所 一种低熔点金属多维结构的液相打印系统及打印方法
CN104801704A (zh) * 2015-03-26 2015-07-29 成都新柯力化工科技有限公司 一种用于三维打印的形状记忆合金材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456834A (en) * 1987-08-27 1989-03-03 Sumitomo Electric Industries Manufacture of ti-ni shape memory alloy
CN100389915C (zh) * 2006-03-21 2008-05-28 北京科技大学 一种高孔隙度镍钛基形状记忆合金的凝胶注模成型方法
CN101280399A (zh) * 2007-04-03 2008-10-08 中国石油大学(北京) 一种碳化钛增强镍钛记忆合金复合材料及其制备方法
CN104401968B (zh) * 2014-05-31 2016-03-30 福州大学 一种基于3d打印泡沫金属制备立体石墨烯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516048A (ja) * 2002-06-18 2006-06-15 ダイムラークライスラー・アクチェンゲゼルシャフト 3dバインダ印刷のための粒状材料、その生産方法及びその使用法
EP1770176A1 (fr) * 2005-09-30 2007-04-04 Haute Ecole Valaisanne Granule pour l'impression à trois dimensions
CN103160948A (zh) * 2013-04-07 2013-06-19 苏州聚复高分子材料有限公司 快速成型形状记忆高分子材料及其制备方法和应用
CN104416159A (zh) * 2013-08-20 2015-03-18 中国科学院理化技术研究所 一种低熔点金属多维结构的液相打印系统及打印方法
CN104084592A (zh) * 2014-07-28 2014-10-08 中国科学院重庆绿色智能技术研究院 一种制备三维打印用球形粉末材料的方法
CN104801704A (zh) * 2015-03-26 2015-07-29 成都新柯力化工科技有限公司 一种用于三维打印的形状记忆合金材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500668A (zh) * 2020-11-23 2021-03-16 江苏大学 一种可选择性响应的形状记忆聚合物结构及其制备方法
CN112500668B (zh) * 2020-11-23 2022-09-16 江苏大学 一种可选择性响应的形状记忆聚合物结构及其制备方法
CN115198123A (zh) * 2022-06-09 2022-10-18 中国科学院宁波材料技术与工程研究所 一种镍锰锡形状记忆合金的增材制造方法及镍锰锡形状记忆合金
CN115198123B (zh) * 2022-06-09 2023-09-22 中国科学院宁波材料技术与工程研究所 一种镍锰锡形状记忆合金的增材制造方法及镍锰锡形状记忆合金

Also Published As

Publication number Publication date
CN104801704A (zh) 2015-07-29
CN104801704B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2016150223A1 (fr) Matériau d'alliage à mémoire de forme et procédé de préparation associé, utilisés pour une impression en trois dimensions
US8932514B1 (en) Fracture toughness of glass
TWI337893B (en) Modifying powder, liquid compositions and molded products containing the modifying powder, and method for producing the modifying powder
CN109590473B (zh) 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法
CN102140246A (zh) 一种制备选择性激光烧结用尼龙粉末的方法
CA2971310A1 (fr) Utilisation de particules ame-enveloppe(-enveloppe) dans le procede liaison par jet
JP2004509983A5 (fr)
JP6373220B2 (ja) 三次元立体造形用粉体および三次元立体造形物
WO2024000915A1 (fr) Noyau d'atomisation de céramique poreuse et son procédé de préparation, et dispositif de génération d'aérosol
CN111763090B (zh) 一种粘结剂及其制备方法与应用
KR101729054B1 (ko) 분무 건조법을 이용한 알루미나 과립의 제조방법
WO2016150225A1 (fr) Poudre de métal mou, son procédé de préparation et son application en impression tridimensionnelle
CN107583106A (zh) 聚柠檬酸酯/甲壳素纳米晶须组织工程支架及其制备方法
CN109692971A (zh) 一种纳米银粉及其制备与在低温固化导电银浆中的应用
CN104528897A (zh) 一种抗菌炭棒及其制作方法
CN103359746A (zh) 一种双层中空二氧化硅纳米球及其制备方法
CN113681024B (zh) 一种基于喂料打印制备钨金属零件的方法
CN103359743A (zh) 一种尺寸与壳层厚度可控的单分散中空二氧化硅纳米球的制备方法
WO2005098110A2 (fr) Procedes et compositions de fabrication de cotes finies
CN103214609B (zh) 单分散松香基高分子微球的制备方法
CN106554473B (zh) 一种适用于3d打印的sebs弹性体粉末及其制备方法和应用
CN107052327B (zh) 一种银黏土用银粉及包含该银粉的银黏土
CN100556529C (zh) 包覆法磁性聚合物微球的生产方法
CN108610044B (zh) 用于3d直写的氧化锆墨水
Rothberg et al. Production of magnetite-polyvinyl butyral composites using a Nano Spray Dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886145

Country of ref document: EP

Kind code of ref document: A1