WO2016147939A1 - 縦軸風車の免震装置 - Google Patents

縦軸風車の免震装置 Download PDF

Info

Publication number
WO2016147939A1
WO2016147939A1 PCT/JP2016/057061 JP2016057061W WO2016147939A1 WO 2016147939 A1 WO2016147939 A1 WO 2016147939A1 JP 2016057061 W JP2016057061 W JP 2016057061W WO 2016147939 A1 WO2016147939 A1 WO 2016147939A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
seismic isolation
main shaft
vertical
support
Prior art date
Application number
PCT/JP2016/057061
Other languages
English (en)
French (fr)
Inventor
鈴木 政彦
Original Assignee
株式会社グローバルエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015051104A external-priority patent/JP6595780B2/ja
Priority claimed from JP2015051114A external-priority patent/JP6518091B2/ja
Priority claimed from JP2015051117A external-priority patent/JP2016169705A/ja
Priority claimed from JP2015057567A external-priority patent/JP6626261B2/ja
Application filed by 株式会社グローバルエナジー filed Critical 株式会社グローバルエナジー
Publication of WO2016147939A1 publication Critical patent/WO2016147939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a vertical axis wind turbine seismic isolation device, and relates to a vertical axis wind turbine seismic isolation device that suppresses the vibration of a support frame that occurs when the vertical axis wind turbine rotates, thereby increasing the rotational efficiency of the rotor. .
  • Patent Documents 1 and 2 disclose a vertical axis wind turbine in which rotors are arranged in a multilayer shape on a high-layer support frame.
  • a plurality of rotors are arranged in multiple layers on one longitudinal main shaft supported by a support frame.
  • a plurality of rotors are arranged in a multilayered manner on a single longitudinal main shaft supported by a support frame, and a deflection preventing means is applied to the longitudinal main shaft.
  • the rotational efficiency of the rotor is high and excellent even in a breeze. Even if it vibrates, it is possible to prevent the wire rope from loosening to some extent.
  • a vertical axis wind turbine seismic isolation device in which an inner frame is supported via an elastic body at a central portion of an outer frame of a seismic isolation member fixed via a bearing, and a bearing that supports a longitudinal main shaft is supported at the central portion.
  • the seismic isolation device is a vertical axis wind turbine seismic isolation device according to any one of (1) to (3), wherein the bearings are arranged in two upper and lower stages.
  • the seismic isolation device for the vertical wind turbine according to any one of (1) to (4), wherein the seismic isolation means includes a pair of upper and lower bearings that share an outer frame, an elastic body, and an inner frame. .
  • the elastic body in the seismic isolation member is formed in two inner and outer layers between the outer frame and the inner frame, and the inner layer is higher in resilience than the outer layer.
  • the seismic isolation device for the vertical axis wind turbine according to any one of the above.
  • the bearing that supports the longitudinal main shaft is either an angular ball bearing, a self-aligning ball bearing, or a combination thereof, or a combination with another rolling bearing, etc.
  • (1) to (6) A seismic isolation device for a vertical axis wind turbine according to any one of the above.
  • the upper part of the vertical main shaft is supported on the horizontal frame at the top of the support frame of the windmill by a bearing fixed to the center via a plurality of support arms in plan view.
  • the inner frame is supported via an elastic body at the center of the outer frame of the seismic isolation member fixed to the center of the horizontal frame that is layered on the support frame in a plan view.
  • the vertical axis wind turbine seismic isolation device according to any one of (1) to (7), wherein a bearing that supports the longitudinal main shaft is supported at a central portion thereof.
  • the bearing that supports the longitudinal main shaft by the seismic isolation member is attached to the central portion of the seismic isolation device, even if the longitudinal main shaft vibrates as the rotor rotates, Since the seismic isolation member absorbs the vibration, it is difficult for the vibration of the longitudinal main shaft to be transmitted to the support frame body of the windmill, so that the support frame body is vibrated greatly and low frequency due to the vibration is suppressed. It is more preferable to use an angular ball bearing or a self-aligning ball bearing as the bearing. Angular contact ball bearings can receive the axial load caused by the vibration of the vertical spindle. Can be prevented.
  • the base frame is assembled into a rectangular base frame with vertical frame members and horizontal frame members, and fixing portions for fixing the support columns are arranged at the four corners.
  • fixing the support column to the fixing portion it is possible to easily assemble a support frame body including a horizontal frame body in a multilayer shape.
  • the base frame is framed in a planar view with a plurality of curved frame members, so a small windmill is used. Can be formed.
  • the seismic isolation member since the seismic isolation member has the bearing portions arranged in two stages, the vertical vibration of the longitudinal main shaft is reduced by the elastic body supporting the upper and lower bearings. Can absorb good vibration.
  • the seismic isolation member since the seismic isolation member has a common outer frame, elastic body, and inner frame and a pair of bearings are mounted on the upper and lower sides, even if the vertical main shaft vibrates due to vibration, it reacts in the direction of shaking. Occurs, and the vibration can be absorbed efficiently.
  • the elastic body in the seismic isolation member of the invention described in (6) is formed between the outer frame and the inner frame so as to extend along the inner and outer sides, and the inner layer has higher resilience than the outer layer. By absorbing in the inner layer and further absorbing in the outer layer, vibration can be effectively suppressed.
  • the bearing supporting the vertical main shaft described in (7) is either an angular ball bearing, a self-aligning ball bearing, or a combination thereof, or a combination with other rolling bearings, etc. Bearings that are suitable for the wind conditions at the site and other situations are used, and an efficient seismic isolation vertical axis wind turbine can be obtained.
  • the vertical main shaft is supported by an ordinary bearing on the uppermost horizontal frame of the wind turbine support frame, but the lower horizontal frame is the seismic isolation member of the seismic isolation device. Since the vertical main shaft is supported by, even if the vertical main shaft starts to vibrate due to rotation, the upper part of the vertical main shaft does not vibrate, and the lower part of the shaft vibrates within the range of expansion and contraction of the elastic body of the seismic isolation member. Large shaking of the entire support frame is suppressed.
  • FIG. 2 is an enlarged perspective view of a corner portion in FIG. 1. It is a front view of the support frame which uses this invention seismic isolation apparatus.
  • FIG. 4 is a cross-sectional plan view taken along line IV-IV in FIG. 3. It is a partially vertical side view which shows Example 2 of this invention. It is a principal part longitudinal cross-sectional front view of Example 3 of the seismic isolation member of this invention. It is a top view of Example 4 of the seismic isolation device of the present invention. It is a partially longitudinal front view of Example 5 of the seismic isolation device of the present invention. It is a partially longitudinal front view of Example 6 of the seismic isolation device of the present invention.
  • Example 7 of this invention seismic isolation member It is a cross-sectional top view of Example 7 of this invention seismic isolation member. It is a vertical front view of Example 7 of this invention seismic isolation member. It is a vertical front view of Example 8 of this invention seismic isolation member. It is a partial front view of Example 9 of this invention seismic isolation member. It is a front view which shows the implementation state of this invention seismic isolation member.
  • FIG. 1 is a plan view showing a first embodiment of the present invention, seismic isolation device 1, and a rectangular base frame body 2 is formed in a plan view by a plurality of frame members 2A and 2B.
  • the seismic isolation member 4 is fixed to the central portion by a plurality of support arms 3 and 3.
  • a tubular column 10 is fitted and screwed to the column mounting portions 2D and 2D, or an L-shaped steel material is circumscribed and screwed to be assembled.
  • the size of the seismic isolation device 1 depends on the size of the windmill, but if the windmill has a radius of 1 m, for example, it has a side of 2.5 m, a height of about 10 cm, and a frame material 2A having a width of about 10 cm.
  • the material is made of metal, FRP, or the like, or a single member or a plurality of members are assembled.
  • FIG. 3 shows the seismic isolation device 1 that is three-dimensionally framed on a support frame 9 of a windmill via a plurality of supports 10.
  • a long object is used as the support column 10
  • an L-shaped steel material is attached so as to cover the column attachment portion 2D of the outer corner member 2C of the horizontal frame 3 from the outside, and is screwed.
  • a reinforcing pipe or the like is fitted to the outer surface of the joint portion.
  • the base G is cement concrete, and as shown in FIG. 4, a foundation column 10 ⁇ / b> A is erected, and a foundation horizontal frame 1 ⁇ / b> A is horizontally supported thereon.
  • a generator 11 is supported on a support base 12 having a seismic isolation member 13 on the lower surface thereof at the bottom of the basic horizontal frame 1A.
  • the seismic isolation member 13 is configured by a plurality of, for example, seismic rubbers, coil springs, and the like disposed under the support base 12.
  • An outer frame 17A having an elastic body 17 on the inner side is fixed to the inside of the basic horizontal frame body 1A via a plurality of support arms 3, and an upper portion of the generator 11 is fitted to the inner side of the elastic body 17. .
  • the seismic isolation device 1 is supported horizontally in the middle of the support frame 9 in the vertical direction, and the longitudinal main shaft 18 is supported by the center bearing 8.
  • the horizontal frame 1 ⁇ / b> B in the upper region supports the vertical main shaft 18 with a bearing 19.
  • the support frame 9 is supported at the four corners by a fixed oblique column 14 and an inclined column 15, and the vibration is suppressed and is not cut like a tension cord.
  • a rotor 20 is disposed on the vertical main shaft 18 with a certain interval in the vertical direction.
  • the rotor 20 has a vertically long lift type blade 21 (hereinafter simply referred to as a blade) mounted on the vertical main shaft 18 via a support arm 22 having upper and lower ends inclined portions 14A inclined in the direction of the vertical main shaft 18. It is fixed to the mounting plate 23 so as to be detachable.
  • a vertically long lift type blade 21 hereinafter simply referred to as a blade
  • the blades 21 are arranged symmetrically with the vertical main shaft 18 in between.
  • the number of blades 21 is not limited. However, when the number of blades 21 is large, the following blade 21 receives the turbulent air flow generated by the preceding blade 21 during high-speed rotation, and as a whole stalls.
  • the rotational balance with respect to the longitudinal main shaft 18 is not good, which causes vibration.
  • the rotor 20 is disposed on the vertical main shaft 18 in a multilayered manner, the phases of the blades 21 are arranged in a balanced manner so that the upper and lower blades 21 do not overlap.
  • the rotor 20 is arranged in three layers in FIG. 1, but when the number of layers is increased, the speed of the airflow is different between the upper and lower rotors, so that the rotational speed is easily different between the upper and lower rotors 20. In a place where the base G is high and a relatively high-speed wind blows, the three-layer arrangement of the rotor 20 performs efficient high-speed rotation.
  • the blade 21 has a long chord length, a large wind receiving area, and high rotation efficiency. Along with the rotation, the relative flow that strikes the leading edge of the blade 21 flows in the direction of the trailing edge along the inner and outer surfaces, and negative pressure is generated on the outer surface due to the Coanda effect. Then, the suction is performed to the outside, and the inner surface of the blade 21 is pushed outward from the front edge, and the rotation efficiency is increased.
  • the rotational peripheral speed of the outer surface of the blade 21 is larger than the portion close to the vertical main shaft 18, so that the gas rotating along the outer surface is The air pressure in the rotation trajectory of the blade 21 is drawn outward, and the inside becomes negative pressure.
  • the longitudinal main shaft 11 vibrates due to the centrifugal force associated with the high-speed rotation of the blade 21, and the support frame 9 that supports this vibrates. Even if the body 9 is tightly tensed, it may be loosened, the longitudinal main shaft 18 may bend, and vibrations may be transmitted from the base G to other places, resulting in low frequencies.
  • the upper end of the longitudinal main shaft 18 is supported by the upper horizontal frame 1 ⁇ / b> B via the bearing 19. It is received by the body 9 and the vibration is suppressed by the elastic inclined column 15.
  • the vibration generated in the vertical main shaft 18 is generated in the lower part, so the seismic isolation horizontal frame 1 is used at a low position.
  • the vibration is absorbed by the elastic body 7 interposed between the outer frame 5 and the main frame 18.
  • the vibration of the generator 11 is absorbed by the seismic isolation means 13 and the elastic body 17, the vibration of the support frame 9 due to the vibration of the longitudinal main shaft 18 is suppressed.
  • FIG. 5 is a partially longitudinal front view showing Example 2 of the seismic isolation member.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the outer frame 5 of the seismic isolation member 4 is shared, and one set of the elastic body 7, the inner frame 6, and the bearing 8 is formed as a pair of upper and lower sides.
  • This characteristic is that the upper and lower parts of the vertical main shaft 18 are supported by a pair of upper and lower bearings 8 so that when the vertical main shaft 18 swings to the left and right, the upper and lower bearings 8 move in the opposite direction. Due to the reaction of the bearing 8, the force to restore to the original position is large, which has a great effect on vibration reduction.
  • FIG. 6 is a one-part longitudinal sectional front view showing a third example of the seismic isolation member.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the outer frame 5, the pair of upper and lower elastic bodies 7, and the inner frame 6 are used in common to support the pair of upper and lower bearings 8 and 8.
  • This Example 3 is suitable for use in a larger wind turbine than the wind turbine using the seismic isolation member 4 of FIG. Since the elastic body 7 is above and below, the upper and lower elastic bodies 7 repel each other when the vertical main shaft 18 swings, and the vibration can be easily and efficiently absorbed.
  • FIG. 7 is a plan view of Example 4 in which the base frame body 2 of the seismic isolation device 1 is ring-shaped.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • a ring-shaped one is easier to use than a square one.
  • FIG. 7 three curved frame members are connected to each other by a joint 2E and assembled into a ring shape.
  • the attachment of the support arm 3 to the base frame body 2 is arbitrarily performed such as tightening a bolt 3A.
  • the seismic isolation member 4 is arbitrarily used as described above.
  • FIG. 8 is a longitudinal front view showing Example 5 of the seismic isolation member 4 of the seismic isolation device 1.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the inner frame 6 is supported on the inner side of an outer frame 5 fixed to a base frame body (not shown) via a support arm 3 via a known elastic body 7 such as a vibration-proof rubber or a coil spring.
  • a pair of upper and lower bearings 8 are fitted in the center of the inner frame 6.
  • the vertical main shaft 18 of the windmill is supported by the upper and lower bearings 8.
  • the bearing 8 is more preferably an angular ball bearing or a self-aligning ball bearing.
  • the angular ball bearing can receive an axial load caused by the vibration of the longitudinal main shaft 18, and the self-aligning ball bearing is automatically adjusted even if the inner frame 6 of the seismic isolation member 4 is tilted, Axial misalignment can be prevented.
  • FIG. 9 is a longitudinal front view showing Example 6 of the seismic isolation member 4 portion of the seismic isolation device.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the elastic body 7 in the fifth embodiment is doubled with the outer layer 7 and the inner layer 7A, and the inner layer 7A is made of a material having higher resilience than the outer layer. As a result, initial vibration is absorbed by the inner layer 7A, and the remaining vibration is absorbed by the outer layer 7, so that more effective seismic isolation can be exhibited.
  • FIG. 10 is a cross-sectional plan view showing Example 7 of the seismic isolation member 4, and FIG. 11 is a longitudinal sectional view thereof.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the inner frame 6 is supported via a known outer elastic body 7 such as a vibration-proof rubber and a coil spring, and the inner frame 6 A is supported inside the inner frame 6 via the inner elastic body 7 A, A bearing 8 is fitted in the center thereof.
  • the outer elastic body 7 and the inner elastic body 7A are preferably different in resilience from each other, and the inner elastic body 7A has a higher resilience than the outer elastic body 7, and the inner elastic body 7A absorbs the initial vibration. Is preferable.
  • FIG. 12 is a longitudinal front view showing Example 8 of the seismic isolation member 7.
  • the outer frame 5, the inner frame 6, and the inner frame 6A are shared, but the inscribed and inner elastic bodies 7B are arranged in two layers inside the inner elastic body 7A, and are repulsive to each other. It is different.
  • the inscribed inner elastic body 7B has a higher resilience than the inner elastic body 7A.
  • an inner outer elastic body 7 ⁇ / b> C is disposed inside the outer elastic body 7. This elastic body is preferably highly repulsive in order from the outside to the inside.
  • the vibration of the longitudinal main shaft is initially absorbed by the inscribed internal elastic body 7B, and the remaining vibration is absorbed by the inner elastic body 7A. Further, an inscribed / outside elastic body 7C having a higher resilience than the outer elastic body 7 is doubled. As a result, the vibration of the main shaft 8 is absorbed in four stages, and exhibits a great effect on vibration reduction.
  • the resilience strength of the elastic body can be arbitrarily combined inside and outside.
  • FIG. 13 is a longitudinal front view showing Example 9 of the seismic isolation member 4.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the base frame body 2 in FIG. 1 is omitted.
  • the upper and lower seismic isolation members 4 have the outer frame 5 part fixed to the upper surface of the support arm 3 via the elastic body 7. Thereby, the vibration of the longitudinal main shaft 18 is absorbed by the elastic body 7.
  • the generator 11 is supported on the base G through the elastic body 13.
  • the elastic body 13 is configured by laying an elastic body 13 made of earthquake-proof rubber under the support 12 of the generator 11. Thereby, even if the generator 11 is vibrated, it is absorbed by the elastic body 13.
  • FIG. 14 is a front view showing a state in which a plurality of seismic isolation devices 1 are combined in a layered manner by a plurality of pillars 10 and 10 in the support frame 9 of the vertical wind turbine 24.
  • the same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
  • the support frame 9 is obtained by assembling a base frame 2 in which a plurality of vertical and horizontal frames 2A and 2B shown in FIG. It may be circular or annular.
  • Four columnar bodies 10 are used to connect the plurality of base frame bodies 2, but the number can be three, and the number is not limited.
  • an L-shaped steel material is attached to the column 10 of the shape steel at the four corners of the base frame 2 from the outside, and is bolted.
  • the column frame 10 is fitted with the column mounting portions 2 ⁇ / b> D at the four corners of the base frame body 2 and bolted.
  • the base G is cement concrete and fixes the base pillar 10 ⁇ / b> A.
  • the elastic body 13 that supports the generator 11 is configured by arranging a plurality of arbitrary elastic bodies 13 such as an anti-seismic rubber and a coil spring under the support base 12.
  • a fixed inclined column 14 for supporting the support frame 9 from the outer side and an elastic inclined column 15 are fixed to the outside of the base column 10A with bolts 16.
  • the base frame 2 in the middle of the support frame 9 is a vertical frame 2A and a horizontal frame 2B, which are integrally formed in a square shape in plan view.
  • the seismic isolation member 4 is supported by a plurality of support arms 3 in the central portion, thereby forming the seismic isolation device 1.
  • Column mounting portions 2D for fitting the columns 10 to the four corner portions are projected.
  • the seismic isolation member 4 is configured by supporting an inner frame 6 with an elastic body 7 in an outer frame 5.
  • a bearing 8 that supports the longitudinal main shaft 18 is fitted inside the inner frame 6.
  • the elastic body 7 of the seismic isolation member 4 is, for example, an elastic vibration-proof rubber, and is arranged inside the outer frame 5 so that, for example, five pieces are directed radially from the inner frame 6 so as to be able to cope with vibrations from all directions. It is installed. The vibration generated in the longitudinal main shaft 18 and applied to the inner frame 6 is absorbed by the elastic body 7, and the vibration is hardly transmitted to the support frame 9.
  • the lower end of the vertical main shaft 18 is connected to the generator 11.
  • the base frame body 2 is horizontally fixed on the four basic column bodies 10A. As shown in FIG. 3, the base frame body 2 is composed of a vertical frame body 2A and a horizontal frame body 2B in a square shape in a plan view. It can also be.
  • a support ring 17 ⁇ / b> A which is larger than the diameter of the generator 11, is fixed to the inner central portion of the base frame 2 via a plurality of horizontal support arms 3. Even if the generator 11 is vibrated by the vibration of the longitudinal main shaft 18 by interposing the elastic body (for example, seismic rubber) 17 of the seismic isolation member 4 between the support ring 17A and the generator 11, the support frame body 9 is not transmitted.
  • the elastic body for example, seismic rubber
  • the vertical main shaft 18 is rotatably supported at its upper end by a bearing 19 of the base frame 2 disposed at the upper end of the support frame 9. Since the bearing is not provided with an elastic body, it has a role of fixing the longitudinal main shaft 18 at a specific position. Even if the vertical main shaft 18 vibrates due to the rotation of the rotor 20, the lower portion of the vertical main shaft 18 vibrates around the base frame body 2 on the top of the support frame body 9.
  • the angular ball bearing can receive an axial load generated by the vibration of the vertical main shaft 18, and the self-aligning ball bearing is automatically adjusted even if the inner frame 6 of the seismic isolation member 4 is tilted, and the vertical main shaft 18 It is possible to prevent misalignment of the axis.
  • the outer corners of the upper part of the support frame 9 are restrained from being vibrated by the four elastic inclined struts 15. Therefore, the upper part of the vertical main shaft 18 is restrained from being vibrated. Vibration is suppressed.
  • a rotor 20 is disposed on the vertical main shaft 18 with a certain interval in the vertical direction.
  • the rotor 20 has a vertically long lift-type blade 21 (hereinafter simply referred to as a blade) mounted on the vertical main shaft 18 via a support arm 22 with upper and lower ends inclined portions 21A inclined in the direction of the vertical main shaft 18.
  • the mounting plate 22 is detachably fixed.
  • the blades 21 are arranged symmetrically with the longitudinal main shaft 18 in between.
  • the number of blades 21 is not limited, but when the number of blades is large, the following blade 21 receives the turbulence generated by the preceding blade 21 during high-speed rotation, and as a whole stalls.
  • the rotational balance with respect to the longitudinal main shaft 18 is not good, which causes vibration.
  • the rotor 20 is disposed on the vertical main shaft 18 in a multilayered manner, the blades 21 are disposed with their phases changed in a balanced manner so that the upper and lower blades 21 do not overlap.
  • the rotor 20 is arranged in three layers in FIG. 1, but when the number of layers is increased, the speed of the airflow is different between the upper and lower rotors, so that the rotational speed is easily different between the upper and lower rotors 20. In a place where the base G is high and a relatively high-speed wind blows, the three-layer arrangement of the rotor 20 performs efficient high-speed rotation.
  • the blade 21 has a long chord length, a large wind receiving area, and high rotation efficiency. Along with the rotation, the relative flow hitting the leading edge of the blade 21 flows in the direction of the trailing edge along the inner and outer surfaces, and negative pressure is generated on the outer surface due to the Coanda effect. , Suctioned to the outside, the inner surface of the blade 21 is pushed outward from the front edge, and the rotational efficiency is increased.
  • the rotational peripheral speed of the outer surface of the blade 21 is larger than the portion close to the vertical main shaft 18 portion, so that the rotor 20 rotates along the outer surface of the blade 21 due to the viscosity of the fluid.
  • the gas to be discharged has a negative pressure from the inner side, and the air flow in the rotation trajectory of the blade 21 is drawn in the outer direction, so that the inside has a negative pressure.
  • the longitudinal main shaft 18 vibrates due to the centrifugal force accompanying the high-speed rotation of the blade 21, and the support frame 9 that supports this vibrates. Even if the body 9 is strongly tensed, the longitudinal main shaft 18 may be loosened, the vibration may be transmitted from the base G to another place, and a low frequency may be generated.
  • the upper end base frame body 1 ⁇ / b> B supports the upper end portion of the longitudinal main shaft 18 via the bearing 8, so that even if vibration occurs due to the high-speed rotation of the rotor 20, the vibration does not occur. Deterred.
  • an elastic body 13 made of a known seismic rubber or a coil spring or the like is disposed on a base G under a support base 12 on which a generator 5 is placed. ing.
  • the foundation horizontal frame 1A is supported by the fixed inclined support column 14 from four directions, the foundation portion of the support frame 9 is hard to be vibrated and solid.
  • the elastic inclined support columns 15 are fixed at the four corners, so that the vibration is absorbed and the vibration is suppressed.
  • the elastic inclined column 15 is set so as to bend inward from the lower end portion to the upper end portion so that the upper end portion leans against the support frame body 9.
  • the elastic inclined column 15 bends in the horizontal direction corresponding to the intensity of the vibration, and the vibration is absorbed.
  • the elastic inclined column 15 is made of, for example, an L-shaped steel material and the convex portion is used outward, it is difficult to bend outwardly, so that even a long object can be handled.
  • the base horizontal frame 1 ⁇ / b> A, the base column 10 ⁇ / b> A, and the fixed inclined column 14 are firmly framed, and the support frame 9 is integrally fixed thereon.
  • the vibration is suppressed by the plurality of elastic inclined columns 15 fixed to the outside.
  • the generator 5 erected on the vertical main shaft 11 is also supported by the base G with the elastic body 12, and the vibration of the upper end of the vertical main shaft 18 is also suppressed by the seismic isolation means 9 of the seismic isolation device 1. Even if it rotates, it becomes the seismic isolation vertical axis windmill 1 in which the vibration of the support frame 4 and the longitudinal main shaft 11 hardly occurs.
  • the use of the seismic isolation device 1 that supports the longitudinal main shaft 18 can absorb the flexural vibration of the longitudinal main shaft accompanying the rotation of the rotor 20, so that the wind power generator that generates power efficiently. It can be.

Abstract

 本発明は、ロータを複数層状に配設した縦軸風車の支持枠体に使用して、ロータの回転に伴う振動を抑止する縦軸風車の免震装置を提供する。 風車の支持枠体に、複数の支持柱2で層状に組まれる横枠体3であって、複数の枠材で基枠体2として枠組され、平面視でその中央部に複数の支持腕を介して免震部材4の外枠体5が支持され、その中央部に弾性体7を介して内枠体6が支持され、その中央部に縦主軸18を支持するベアリング8が支持されている縦軸風車の免震装置1。

Description

縦軸風車の免震装置
 本発明は、縦軸風車の免震装置に係り、縦軸風車の回転時に生じる、支持枠体の震動を抑止して、ロータの回転効率を高めるようにした、縦軸風車の免震装置に関する。
 高層の支持枠体に、ロータを多層状に配設した縦軸風車は、特許文献1及び2に開示されている。
特開2006-118384号公報 特開2006-017011号公報
 前記、特許文献1に記載の発明は、支持枠体に支持された1本の縦主軸に、複数のロータを、多層状に配設したものである。
 特許文献2に記載の発明も、支持枠体に支持された1本の縦主軸に、複数のロータを多層状に配設し、縦主軸に撓み防止手段を施したものである。
 これらの発明においては、微風時でもロータの回転効率が高く優れており、支持枠体をワイヤロープ等で四方から緊張して固定保持すれば、ロータの回転に伴う遠心力によって、支持枠体全体が震動しても、ある程度ワイヤロープの弛みを防止することができる。しかし、支持枠体全体の震動を抑制する方法が、切望されているところである。
 本発明は、この問題を解決することを目的としている。
 本発明の具体的な内容は、次の通りである。
 (1) 風車の支持枠体に、複数の支柱で層状に組まれる横枠体であって、複数の枠材で基枠体が形成され、平面視でその中央部に、複数の支持腕を介して固定された免震部材の外枠の中央部に、弾性体を介して内枠が支持され、その中央部に縦主軸を支持するベアリングが支持されている縦軸風車の免震装置。
(2) 前記基枠体は、縦枠材と横枠材とで方形の枠体に組まれ、四隅部に支柱を固定する固定部が配設されている前記(1)に記載の縦軸風車の免震装置。
(3) 前記基枠体は、湾曲した複数の枠材で平面視環型に枠組され、等間隔に支持柱を固定する固定部が突設されている前記(1)に記載の縦軸風車の免震装置。
(4) 前記免震手段は、ベアリングが上下2段に配設されている前記(1)~(3)のいずれかに記載の縦軸風車の免震装置。
(5) 前記免震手段は、外枠、弾性体、内枠を共通としてベアリングが上下一対で装着されている前記(1)~(4)のいずれかに記載の縦軸風車の免震装置。
(6) 前記免震部材における弾性体は、外枠と内枠の間で内外2層に形成され、内層は外層よりも高反発性であることを特徴とする請求項(1)~(5)のいずれかに記載の縦軸風車の免震装置。
(7) 前記、縦主軸を支持するベアリングは、アンギュラ玉軸受か自動調心玉軸受、又はその組合わせ、他の転がり軸受との組合わせ等のいずれかである前記(1)~(6)のいずれかに記載の縦軸風車の免震装置。
(8) 前記、風車の支持枠体の最頂部の横枠体に、平面視でその中央部に複数の支持腕を介して固定されたベアリングで縦主軸の上部が支持され、複数の支柱で支持枠体に層状に組まれる横枠体の平面視でその中央部に、複数の支持腕を介して固定された免震部材の外枠の中央部に、弾性体を介して内枠が支持され、その中央部に縦主軸を支持するベアリングが支持されている前記(1)~(7)のいずれかに記載の縦軸風車の免震装置。
 本発明によると、次のような効果が奏せられる。
 前記(1)に記載の発明においては、免震装置の中央部に、免震部材によって縦主軸を支持するベアリングが装着されているので、ロータの回転に伴い縦主軸が震動しても、その震動を免震部材が吸収するため、縦主軸の震動が風車の支持枠体に伝わりにくいので、支持枠体が大きく震動したり、その震動による低周波が生じたりすることが抑止される。
 ベアリングはアンギュラ玉軸受か、自動調心玉軸受を用いるのがより好ましい。アンギュラ玉軸受は、縦主軸の震動により生じるアキシャル荷重を受けることができ、自動調心玉軸受は、免震部材の内枠が傾いても自動的に調整され、縦主軸の軸心のずれを防ぐことができる。
 前記(2)に記載の発明においては、基枠体は、縦枠材と横枠材とで方形の基枠体に組まれ、四隅部に支柱を固定する固定部が配設されているので、固定部に支柱を固定することによって、容易に横枠体を多層状に備える支持枠体を組立てることができる。
 前記(3)に記載の発明においては、基枠体は、湾曲した複数の枠材で平面視環型に枠組されるので、小型風車を使用し、例えば3本支柱で簡易に支持枠体を形成することができる。
 前記(4)に記載の発明においては、免震部材は、ベアリング部分が上下2段に配設されているので、縦主軸の横揺れ震動を、上下のベアリングを支持する弾性体によって、効率のよい震動吸収をすることができる。
 前記(5)に記載の発明において免震部材は、外枠、弾性体、内枠を共通としてベアリングが上下一対で装着されているので、震動により縦主軸が震動しても、揺れ方向で反作用が生じて、震動を効率良く吸収することができる。
 前記(6)に記載の発明の免震部材における弾性体は、外枠と内枠の間で内外に沿うように形成され、内層は外層よりも高反発性であるので、縦主軸の震動を内層で吸収して、更に外層で吸収することによって、震動を効果的に抑止することができる。
 前記(7)に記載の、縦主軸を支持するベアリングは、アンギュラ玉軸受か自動調心玉軸受、又はその組合わせ、他の転がり軸受との組合わせ等のいずれかであるので、風車の型式、現場の風況その他の実情に適するベアリングが使用され、効率の良い免震縦軸風車とすることができる。
 前記(8)に記載の発明は、風車の支持枠体の最上部の横枠体には普通のベアリングで縦主軸を支持しているが、下方の横枠体は免震装置の免震部材で縦主軸を支持しているので、縦主軸が回転によって震動をし始めても、縦主軸の上部は震動せずに、軸の下部が免震部材の弾性体の伸縮の範囲で震動するので、支持枠体全体が大きく震動する事が抑止される。
本発明免震装置の実施例1の平面図である。 図1における角隅部分の拡大斜視図である。 本発明免震装置を使用した支持枠体の正面図である。 図3におけるIV-IV線横断平面図である。 本発明の実施例2を示す一部縦断側面図である。 本発明の免震部材の実施例3の要部縦断正面図である。 本発明免震装置の実施例4の平面図である。 本発明免震装置の実施例5の一部縦断正面図である。 本発明免震装置の実施例6の一部縦断正面図である。 本発明免震部材の実施例7の横断平面図である。 本発明免震部材の実施例7の縦断正面図である。 本発明免震部材の実施例8の縦断正面図である。 本発明免震部材の実施例9の一部正面図である。 本発明免震部材の実施状態を示す正面図である。
 以下本発明を、図面を参照して説明する。
 図1は本発明、免震装置1の実施例1を示す平面図であり、複数の枠材2A、2Bによって、平面視で方形の基枠体2が形成されている。その中央部に免震部材4が複数の支持腕3、3によって固定されている。
 方形の基枠体2の四隅部には、支持枠体9の支柱10を固定する頑強な角隅材2Cが固定され、図2に示すように、上下に突出する柱取付部2D、2Dが突設されている。この柱取付部2D、2Dに、例えば管状の支柱10を嵌合させてネジ留めするとか、あるいはL型鋼材を外接してネジ留めして組立てる。
 免震装置1の大きさは、風車の大きさによるが、半径1mの風車ならば、例えば1辺2.5m、高さ10cm前後、枠材2Aの幅10cm前後のものである。用材は金属、FRPなどで、一体物あるいは、複数の部材を組立てる形式にする。
 図3は、免震装置1を風車の支持枠体9に、複数の支柱10を介して立体的に枠組したものである。支柱10として長尺物を使用するときは、例えばL型鋼材を、横枠体3の外隅材2Cの柱取付部2Dを外側から覆うように被着して、ネジ留めをする。必要に応じて、継目部分の外面に、例えば補強管などを嵌合する。
 図1において、基盤Gは、セメントコンクリートとし、図4に示すように、基礎柱体10Aが立設され、その上に基礎横枠体1Aが水平に支持されている。基礎横枠体1Aの下部に、免震部材13を下面に備えた支持台12の上に、発電機11が支持されている。
 免震部材13は、支持台12の下に、複数の、例えば防震ゴムやコイルスプリング等を配設したもので構成されている。
 基礎横枠体1Aの内部に、内側に弾性体17を備えた外枠17Aが、複数の支持腕3を介して固定され、弾性体17の内側に発電機11の上部が嵌合されている。
 これによって、縦主軸18がロータ20の回転によって震動しても、発電機11の上部の震動は弾性体17で緩和され、発電機11全体の震動は、下部の免震部材13によって制御されるので、震動が基盤Gから他域に伝わりにくい。
 支持枠体9の上下方向の中間には、免震装置1が水平に支持され、中央のベアリング8により縦主軸18が支持されている。その上域における横枠体1Bは、ベアリング19で縦主軸18を支持している。
 支持枠体9は四隅部を固定斜柱14と、傾斜柱15で支持しており、震動が抑止され、緊張索のように切断されることはない。
 縦主軸18には、上下方向に一定の間隔を開けて、ロータ20が配設されている。
 ロータ20は、上下端部を縦主軸18方向へ傾斜する傾斜部14Aとした、縦長の揚力型ブレード21(以下単にブレードという)を、支持腕22を介して、縦主軸18に装着されている取付板23に、着脱可能に固定して形成されている。
 ブレード21は、縦主軸18を挾んで対称的に配設されている。ブレード21の枚数は限定されないが、枚数が多い場合には、高速回転時に、先行のブレード21によって生じる乱気流を、追行するブレード21が受けて全体として失速する。
 ブレード21が1枚の場合、縦主軸18に対する回転バランスが良くなく、震動の原因になる。縦主軸18にロータ20を多層状に配設するときは、上下のブレード21が重ならないように、ブレード21の位相をバランスよく変えて配置する。
 ロータ20は、図1においては3層に配設されているが、これより層数が増加すると、気流の速度が上下で異なるため、上下のロータ20間で回転速度に違差が生じやすい。基盤Gの位置が高くて、比較的高速風の吹く場所においては、ロータ20の3層配設は、効率のよい高速回転をする。
 ブレード21は、弦長が長くて、受風面積が大きく、回転効率を高いものとしてある。回転に伴い、ブレード21の前縁に当る相対流は、内外側面に沿って後縁方向へ流動する過程で、コアンダ効果により、外側面に負圧が生じ、ブレード21の回転軌跡内の気流が、外側へ吸引されて、ブレード21の内側面が前縁外方向へ押され、回転効率が高まる。
 また、ロータ20が高速回転をすると、縦主軸18に近い部分よりも、ブレード21の外側面の回転周速が大であるため、流体の粘性によって、外側面に沿って回転する気体は、内側部よりも負圧となり、ブレード21の回転軌跡内の気流が、外側方向に引かれて、内部が負圧となる。
 それによって、風流以外の周囲の気流が、この負圧となる回転軌跡内に吸引されて、相対的に気流の量が増加し、ロータ20の回転効率が高められ、ブレード21は、風速以上の速度をもって回転する。
 そのため、支持枠体4を頑強に形成しても、ブレード21の高速回転に伴う遠心力によって、縦主軸11が震動し、これを支持する支持枠体9が震動するため、ワイヤ等で支持枠体9を強く緊張しておいても、緩んだり縦主軸18が撓み、震動が、基盤Gから他所へ伝わり、低周波が発生する等の事態が生じかねない。
 しかし、図3においては、上端の横枠体1Bには、ベアリング19を介して、縦主軸18の上端部を支持してあるので、ロータ20の高速回転に伴う震動が生じても、支持枠体9により受け止められ、弾性傾斜柱15で震動が抑止される。
 縦主軸18の上部が固定されていると、縦主軸18に生じる震動は、下部で生じるため、低い位置において免震横枠体1を使用している。図1に示すように、縦主軸18が震動して、免震手段4における内枠6が震動しても、外枠5との間に介在されている弾性体7によって震動が吸収される。
 また発電機11全体も、免震手段13や弾性体17によって震動が吸収されるので、縦主軸18の震動による支持枠体9の震動が抑止される。
 図5は、免震部材の実施例2を示す一部縦断正面図である。前例と同じ部材には、同じ符号を付して説明を省略する。
 この実施例2においては、免震部材4の外枠5を共通として、弾性体7、内枠6、ベアリング8の1組が上下一対として形成されている。
 この特性は、縦主軸18の一定間隔の上下部分を上下一対のベアリング8で支持しているので、縦主軸18が左右に揺れた時に、上下のベアリング8は逆向きに移動して、それぞれのベアリング8の反作用によって、元の位置に復元する力が大きく、震動緩和に大きな効果を有する。
 図6は免震部材の実施例3を示す1部縦断正面図である。前例と同じ部材には同じ符号を付して説明を省略する。
 この実施例3は、外枠5、上下一対の弾性体7、内枠6を共通として上下一対のベアリング8、8を支持しているものである。
 この実施例3では、図5の免震部材4を使用する風車よりも大型の風車に使用するのに適している。弾性体7が上下にあるため、縦主軸18が揺動するときに上下の弾性体7が反発し合い、容易に震動を効率よく吸収することができる。
 図7は、免震装置1の基枠体2を環型にした実施例4の平面図である。前例と同じ部材には同じ符号を付して説明を省略する。小型風車で、支柱10を例えば3本しか使用しない場合などでは、方形のものよりも環型のものが使用しやすい。
 図7では3つの湾曲した枠材を、継目2Eで連結して環型に組立てている。基枠体2に対する支持腕3の取付けはボルト3A締めなど任意に行われる。免震部材4は前記したものを任意に使用する。
 図8は、免震装置1の免震部材4の実施例5を示す縦断正面図である。前例と同じ部材には同じ符号を付して説明を省略する。
 図示しない基枠体に支持腕3を介して固定された外枠5の内側に、防震ゴムやコイルスプリング等公知の弾性体7を介して内枠6が支持されている。内枠6の中央部にベアリング8が上下一対で嵌装されている。上下のベアリング8、8によって、風車の縦主軸18が支持される。
 ベアリング8は、アンギュラ玉軸受か自動調心玉軸受を用いるのがより好ましい。アンギュラ玉軸受は、縦主軸18の震動により生じるアキシャル荷重を受けることができ、自動調心玉軸受は、免震部材4の内枠6が傾いても、自動的に調整され、縦主軸18の軸心のずれを防ぐことができる。
 図9は免震装置の免震部材4部分の実施例6を示す縦断正面図である。前例と同じ部材には同じ符号を付して説明を省略する。
 この実施例6においては、実施例5における弾性体7を外層7と内層7Aの2重にし、かつ内層7Aは外層よりも高反発性の素材としたものである。その結果、内層7Aで初期的な震動吸収をして、残存する震動を外層7で吸収するので、より効果的な免震作用を発揮することができる。
 図10は免震部材4の実施例7を示す横断平面図、図11はその縦断性面図である。前例と同じ部材には、同じ符号を付して説明を省略する。
 外枠5の内側に、防震ゴムやコイルスプリング等公知の外弾性体7を介して内枠6を支持し、かつ内枠6の内部に内弾性体7Aを介して中枠6Aを支持し、その中央にベアリング8を嵌装して構成されている。
 外弾性体7と内弾性体7Aとは互いに反発性が異なるものがよく、内弾性体7Aの方が外弾性体7よりも高反発性の方が、内弾性体7Aで初期的な震動吸収をして好ましい。
 図12は、免震部材7の実施例8を示す縦断正面図である。前例と同じ部材には、同じ符号を付して説明を省略する。
 この実施例8においては、外枠5、中枠6、内枠6Aを共通としているが、内弾性体7Aの内側に内接内弾性体7Bを2層に配してあり、互いに反発性が異なるようにしてある。好ましくは内接内弾性体7Bの方を、内弾性体7Aよりも高反発性とする。また外弾性体7の内側に内側外弾性体7Cを配設してある。この弾性体は、外側から内方へかけて順に高反発性とすることが好ましい。
 これによって、縦主軸の震動を初期的に内接内弾性体7Bで吸収し、残余の震動を内弾性体7Aで吸収する。
 更に外弾性体7の内側に、それよりも高反発性の内接外弾性体7Cを2重に配してある。これによって、主軸8の震動は4段階的に吸収され、震動緩和に大きな効果を発揮する。
 なお弾性体の反発性の強弱は、内外で任意に組合わせることができる。
 図13は、免震部材4の実施例9を示す縦断正面図である。前例と同じ部材には、同じ符号を付して説明を省略する。この図13においては、図1における基枠体2を省略してある。
 図13において、上下の免震部材4は、外枠5部分が支持腕3の上面に、弾性体7を介して固定されている。これによって、縦主軸18の震動は、弾性体7によって吸収される。
 また基盤Gに、弾性体13を介して発電機11が支持されている。弾性体13は、発電機11の支持台12の下に、防震ゴムからなる弾性体13を挾設して構成されている。これによって、発電機11が震動しても弾性体13によって吸収される。
 図14は、縦軸風車24の支持枠体9において、複数の柱体10、10によって、複数の免震装置1を層状に組合わせて実施して状態を示す正面図である。前例と同じ部材は同じ符号を付して説明を省略する。
 支持枠体9は、平面視で図1に示す複数の縦横枠体2A、2Bを方形に組んだ基枠体2を上下複数の柱体10、10で櫓状に組んだもので、平面視で円形または環状でも構わない。複数の基枠体2を連結するのに、4本の柱体10が使用されているが、3本とすることでも可能で、その数は限定されない。
 柱体10として長尺物を使用するときは、例えばL字型鋼材を凸部を外向きとし、基枠体2の四隅における型鋼の柱体10に外から被着して、ボルト留めをする。柱体10して短尺杆を使用する時には、基枠体2の四隅の柱取付部2Dに嵌合させてボルト留めする。
 図14において、基盤Gは、セメントコンクリートとし、基礎柱体10Aを固定する。
 発電機11を支持する弾性体13は、支持台12の下に、複数の、例えば防震ゴムやコイルスプリング等の、任意の弾性体13を配設して構成されている。
 基礎柱体10Aの外側に、支持枠体9を外側部から支持させる固定傾斜支柱14と、弾性傾斜支柱15をボルト16で固定する。
 支持枠体9の中間の基枠体2は、図2に示すように縦枠体2Aと横枠体2Bとで、平面視で方形の一体に形成されたものが示されているが、環状とすることもある。その中央部に、免震部材4が、複数の支持腕3で支持されて、免震装置1とされている。四隅部に支柱10を嵌合させる柱取付部2Dが突設されている。
 免震部材4は、図2に示すように、外枠5の中に、内枠6を弾性体7を介して支持して構成されている。内枠6の内部に、縦主軸18を支持するベアリング8が嵌装されている。
 免震部材4の弾性体7は、例えば弾性のある防震ゴムで、全方向からの震動に対応可能に、例えば、5個が内枠6から放射方向へ向いて、外枠5の内側に配設されている。縦主軸18に生じて、内枠6に与えられる震動は、弾性体7によって吸収されて、震動が支持枠体9に伝わりにくい。
 縦主軸18の下端部は、発電機11に連結されている。4本の基礎柱体10Aの上に、基枠体2が水平に固定されている。図3に示すように、基枠体2は、縦枠体2Aと横枠体2Bとで、平面視で方形に組成されているが、半円弧状の枠体によって、平面視で環状のものとすることもできる。
 基枠体2の内側中央部に、複数の水平な支持腕3を介して、発電機11の直径よりも大寸の、支持環体17Aが固定されている。
 支持環体17Aと発電機11との間に、免震部材4の弾性体(例えば防震ゴム)17を介在させて、発電機11が、縦主軸18の震動によって震動しても、支持枠体9に伝わらないようにされている。
 縦主軸18は、その上端を、支持枠体9の上端に配置された基枠体2のべアリング19によって、回転可能に支持されている。ベアリングは弾性体を介在されていないので、縦主軸18を特定位置に固定する役割をもつ。
 縦主軸18がロータ20の回転によって震動しても、縦主軸18は、支持枠体9の頂上の基枠体2を中心に下方の部分が振動することになる。
 ベアリングは、アンギュラ玉軸受か自動調心玉軸受を用いるのがより好ましい。アンギュラ玉軸受は、縦主軸18の震動によって生じるアキシャル荷重を受けることができ、自動調心玉軸受は、免震部材4の内枠体6が傾いても、自動的に調整され、縦主軸18の軸心のずれを防ぐことができる。
 縦主軸18の下部は、弾性体17に支持された発電機11に連結されているので、縦主軸18の下部が震動しても、弾性体17に吸収されることとなり、縦主軸18は震動しにくい。
 加えて、支持枠体9の上部の外角隅部分は、4隅の弾性傾斜支柱15によって、震動が抑止されているので、縦主軸18の上部は震動が抑止され、支持枠体9の上部も震動が抑止される。
 縦主軸18には、上下方向に一定の間隔を開けて、ロータ20が配設されている。
 ロータ20は、上下端部を縦主軸18方向へ傾斜する傾斜部21Aとした、縦長の揚力型ブレード21(以下単にブレードという)を、支持腕22を介して、縦主軸18に装着されている取付板22に、着脱可能に固定して形成されている。
 ブレード21は、縦主軸18を挾んで対称的に配設されている。ブレード21の枚数は限定されないが、枚数が多い場合には、高速回転時に、先行のブレード21によって生じる乱気流を、追行するブレード21が受けて全体として失速する。
 ブレード21が1枚の場合、縦主軸18に対する回転バランスが良くなく、震動の原因になる。縦主軸18にロータ20を多層状に配設するときは、上下のブレード21が重ならないように、ブレード21の位相をバランスよく変えて配置する。
 ロータ20は、図1においては3層に配設されているが、これより層数が増加すると、気流の速度が上下で異なるため、上下のロータ20間で回転速度に違差が生じやすい。基盤Gの位置が高くて、比較的高速風の吹く場所においては、ロータ20の3層配設は、効率のよい高速回転をする。
 ブレード21は、弦長が長くて、受風面積が大きく、回転効率を高いものとしてある。回転に伴い、ブレード21の前縁に当る相対流は、内外側面に沿って後縁方向へ流動する過程で、コアンダ効果により、外側面に負圧が生じ、ブレード21の回転軌跡内の気流が、外側へ吸引されて、ブレード21の内側面が前縁外方向へ押され、回転効率が高まる。
 また、ロータ20が高速回転をすると、縦主軸18部分に近い部分よりも、ブレード21の外側面の、回転周速が大であるため、流体の粘性によって、ブレード21の外側面に沿って回転する気体は、内側部よりも負圧となり、ブレード21の回転軌跡内の気流が、外側方向に引かれて、内部が負圧となる。
 それによって、風流以外の周囲の気流が、この負圧となる回転軌跡内に吸引されて、相対的に気流の量が増加し、ロータ20の回転効率が高められ、ブレード21は、風速以上の速度をもって回転する。
 そのため、支持枠体9を頑強に形成しても、ブレード21の高速回転に伴う遠心力によって、縦主軸18が震動し、これを支持する支持枠体9が震動するため、ワイヤ等で支持枠体9を強く緊張しておいても、緩んだり縦主軸18が撓み、震動が、基盤Gから他所へ伝わり、低周波が発生する等の事態が生じかねない。
 しかし、図1においては、上端の基枠体1Bには、ベアリング8を介して、縦主軸18の上端部を支持してあるので、ロータ20の高速回転に伴う震動が生じても、震動が抑止される。
 基盤G上に配置した発電機11から、縦主軸18が立設されている縦軸風車24においては、縦主軸18の震動が、発電機11を経て基盤Gを震動させる。
 図1において、発電機5を載置した支持台12の下に、公知の防震ゴムか、あるいはコイルスプリング等からなる弾性体13を、基盤G上に配設して、免震部材4とされている。
 これによって、縦主軸18の回転に伴う震動が、発電機11に伝えられたとしても、弾性体17によって震動が吸収されるので、基盤Gへの震動伝播が抑止される。
 この場合、その他の基枠体2を、免震装置1と同じく、免震部材4を具備させると、縦主軸18に対する震動抑止の効果は大となる。
 基礎横枠体1Aは、四方向から固定傾斜支柱14によって支持されているので、支持枠体9の基礎部分は、震動しにくく堅固となっている。支持枠体9の上層部については、四隅に弾性傾斜支柱15が固定されているので、これによって震動が吸収されて震動が抑止される。
 弾性傾斜支柱15は、下端部から上端部にかけて内向きに湾曲して、上端部が支持枠体9に、寄りかかったように設定されている。支持枠体9が震動すると、震動の強さに対応して、弾性傾斜支柱15に水平方向の撓みが生じ、震動が吸収される。
 また、弾性傾斜支柱15を例えばL字型鋼材として、凸部を外向きに使用すると、外方向への撓みが生じにくいため、ある程度長尺の物でも対応させることができる。
 このように、支持枠体9の基礎部分においては、基礎横枠体1Aと基礎柱10Aと固定傾斜支柱14とで、堅固に枠組みされており、その上に一体に固定される支持枠体9も、外側に固定した複数の弾性傾斜支柱15によって、震動が抑止される。
 縦主軸11を立設する発電機5も、弾性体12で基盤Gに支持され、縦主軸18の上端も、免震装置1の免震手段9によって震動が抑止されるので、ロータ13が高速回転しても、支持枠体4や縦主軸11の震動が生じにくい免震縦軸風車1となる。
 本発明においては、縦主軸18を支持する免震装置1を使用することによって、ロータ20の回転に伴う縦主軸の撓み震動を、吸収することが出来るので、効率の高い発電をさせる風力発電装置とすることができる。
1.免震横枠体
2.基枠体
2A.縦枠材
2B.横枠材
2C.角隅材
2D.柱取付体
2E.継目
3.支持腕
3A.ボルト
4.免震部材
5.外枠
6.内枠
7.弾性体
8.ベアリング
9.支持枠体
10.支柱
11.発電機
12.支持台
13.弾性部材
14.固定支柱
15.傾斜支柱
16.ボルト
17.弾性体
17A.支持環体
18.縦主軸
19.ベアリング
20.ロータ
21.揚力型ブレード
21A.傾斜部
22.支持腕
23.取付板
24.縦軸風車
G.基盤

Claims (8)

  1.  風車の支持枠体に、複数の支柱で層状に組まれる横枠体であって、複数の枠材で基枠体が形成され、平面視でその中央部に、複数の支持腕を介して固定された免震部材の外枠の中央部に、弾性体を介して内枠が支持され、その中央部に縦主軸を支持するベアリングが支持されていることを特徴とする縦軸風車の免震装置。
  2.  前記基枠体は、縦枠材と横枠材とで方形の枠体に組まれ、四隅部に支柱を固定する固定部が配設されていることを特徴とする請求項1に記載の縦軸風車の免震装置。
  3.  前記基枠体は、湾曲した複数の枠材で平面視環型に枠組され、等間隔に支持柱を固定する固定部が突設されていることを特徴とする請求項1または2に記載の縦軸風車の免震装置。
  4.  前記免震部材は、ベアリング部分が上下2段に配設されていることを特徴とする請求項1~3のいずれかに記載の縦軸風車の免震装置。
  5.  前記免震部材は、外枠、弾性体、内枠を共通としてベアリングが上下1対で装着されていることを特徴とする請求項1~3のいずれかに記載の縦軸風車の免震装置。
  6.  前記免震部材における弾性体は、外枠と内枠の間で内外2層に形成され、内層は外層よりも高反発性であることを特徴とする請求項1~5のいずれかに記載の縦軸風車の免震装置。
  7.  前記縦主軸を支持するベアリングは、アンギュラ玉軸受か自動調心玉軸受、又はその組合わせ、他の転がり軸受との組合わせ等のいずれかであることを特徴とする請求項1~6のいずれかに記載の縦軸風車の免震装置。
  8.  前記風車の支持枠体の最頂部の横枠体に、平面視でその中央部に複数の支持腕を介して固定されたベアリングで縦主軸の上部が支持され、複数の支柱で支持枠体に層状に組まれる横枠体の平面視でその中央部に、複数の支持腕を介して固定された免震部材の外枠の中央部に、弾性体を介して内枠が支持され、その中央部に縦主軸を支持するベアリングが支持されていることを特徴とする請求項1~7のいずれかに記載の縦軸風車の免震装置。
PCT/JP2016/057061 2015-03-13 2016-03-08 縦軸風車の免震装置 WO2016147939A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-051114 2015-03-13
JP2015-051104 2015-03-13
JP2015-051117 2015-03-13
JP2015051104A JP6595780B2 (ja) 2015-03-13 2015-03-13 免振縦軸風車
JP2015051114A JP6518091B2 (ja) 2015-03-13 2015-03-13 免震横枠体を備えた風車装置
JP2015051117A JP2016169705A (ja) 2015-03-13 2015-03-13 風車の免震装置
JP2015057567A JP6626261B2 (ja) 2015-03-20 2015-03-20 風車の免震装置
JP2015-057567 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016147939A1 true WO2016147939A1 (ja) 2016-09-22

Family

ID=56918802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057061 WO2016147939A1 (ja) 2015-03-13 2016-03-08 縦軸風車の免震装置

Country Status (2)

Country Link
TW (1) TW201643318A (ja)
WO (1) WO2016147939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500500A (ja) * 2017-10-24 2021-01-07 デニス ヴァレンチノヴィッチ チャグリン 風力発電所

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272217A (ja) * 1988-09-02 1990-03-12 Hitachi Ltd 電磁軸受装置
JP2006291868A (ja) * 2005-04-12 2006-10-26 Fjc:Kk 風車の支持枠体ユニット並びに縦主軸の連結方法
JP2007032455A (ja) * 2005-07-28 2007-02-08 Shinko Electric Co Ltd 風力発電装置
JP2007278307A (ja) * 2006-04-03 2007-10-25 Kubota Corp すべり軸受装置およびポンプ装置
WO2011003482A2 (en) * 2009-07-10 2011-01-13 Siemens Aktiengesellschaft Wind turbine main bearing
JP2013526660A (ja) * 2010-05-12 2013-06-24 ティンバー タワー ゲーエムベーハー 風力発電装置用タワー及びその建設方法
JP2014222045A (ja) * 2013-05-14 2014-11-27 三井海洋開発株式会社 浮体式洋上風力発電装置の浮体への支承装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272217A (ja) * 1988-09-02 1990-03-12 Hitachi Ltd 電磁軸受装置
JP2006291868A (ja) * 2005-04-12 2006-10-26 Fjc:Kk 風車の支持枠体ユニット並びに縦主軸の連結方法
JP2007032455A (ja) * 2005-07-28 2007-02-08 Shinko Electric Co Ltd 風力発電装置
JP2007278307A (ja) * 2006-04-03 2007-10-25 Kubota Corp すべり軸受装置およびポンプ装置
WO2011003482A2 (en) * 2009-07-10 2011-01-13 Siemens Aktiengesellschaft Wind turbine main bearing
JP2013526660A (ja) * 2010-05-12 2013-06-24 ティンバー タワー ゲーエムベーハー 風力発電装置用タワー及びその建設方法
JP2014222045A (ja) * 2013-05-14 2014-11-27 三井海洋開発株式会社 浮体式洋上風力発電装置の浮体への支承装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500500A (ja) * 2017-10-24 2021-01-07 デニス ヴァレンチノヴィッチ チャグリン 風力発電所

Also Published As

Publication number Publication date
TW201643318A (zh) 2016-12-16

Similar Documents

Publication Publication Date Title
KR101255502B1 (ko) 풍력 발전용 풍차의 제진 장치 및 풍력 발전용 풍차
JP4831847B1 (ja) 制振装置、風力発電装置及び制振方法
JP5181029B2 (ja) 洋上風力発電装置
JP2006189047A (ja) 風力タービン用の振動荷重低減システム
JP2004503200A (ja) ステータ支持構造
JP2023095968A (ja) 風力発電所
JP4867228B2 (ja) 風力発電装置
WO2016147939A1 (ja) 縦軸風車の免震装置
JP6595780B2 (ja) 免振縦軸風車
KR20190089972A (ko) 동조 다이내믹 댐퍼 및 진동의 진폭을 감소시키는 방법
JP6518091B2 (ja) 免震横枠体を備えた風車装置
KR20190091294A (ko) 소형 공간 타원체 질량 진자
JP4572707B2 (ja) 制振装置
JP6626261B2 (ja) 風車の免震装置
JP2000205108A (ja) 制振機能を備えた風力発電装置
JP5916828B2 (ja) 遮音壁の設計方法および遮音壁
JP3074144U (ja) 風力発電タワー
JP2003120510A (ja) 風車装置
JP5709487B2 (ja) 遮音壁の設計方法および遮音壁
JP2004169549A (ja) 振動制御機構
JP2002061564A (ja) 風力発電用風車
JP3893554B2 (ja) 超高塔状タワーの制振構造
KR101665401B1 (ko) 풍력 발전장치
JP2016169705A (ja) 風車の免震装置
RU2472987C2 (ru) Виброгаситель мачты ветряной установки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764769

Country of ref document: EP

Kind code of ref document: A1