WO2016147727A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2016147727A1
WO2016147727A1 PCT/JP2016/053166 JP2016053166W WO2016147727A1 WO 2016147727 A1 WO2016147727 A1 WO 2016147727A1 JP 2016053166 W JP2016053166 W JP 2016053166W WO 2016147727 A1 WO2016147727 A1 WO 2016147727A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pressure
control
idle
torque
Prior art date
Application number
PCT/JP2016/053166
Other languages
English (en)
French (fr)
Inventor
広宣 宮石
知幸 水落
堅一 渡邊
真澄 藤川
弘一 小辻
真悟 鈴木
明人 鈴木
徹也 泉
圭介 岩堂
貴宣 毛利
小野山 泰一
青之 島村
章博 豊福
龍一 新井
金子 格三
隆三 野口
聡 春井
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020177026034A priority Critical patent/KR20170120629A/ko
Priority to CN201680015746.7A priority patent/CN107531231B/zh
Priority to US15/558,809 priority patent/US10377368B2/en
Priority to JP2017506133A priority patent/JP6420461B2/ja
Priority to EP16764558.9A priority patent/EP3272607B1/en
Publication of WO2016147727A1 publication Critical patent/WO2016147727A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0014Adaptive controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0085Setting or resetting initial positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0087Resetting start and end points of actuator travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0642Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • B60W2710/082Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • B60W2710/1083Change speed gearings fluid pressure, e.g. oil pressure pressure of control fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a control device for a hybrid vehicle in which motor idle control is performed while the vehicle is stopped in the EV mode.
  • an idle control device for a hybrid vehicle a device that reduces a target idle speed when an automatic transmission is switched from an N range to a D range during an idle operation in which an engine is operating is known (for example, a patent). Reference 1).
  • the present invention has been made paying attention to the above problems, and an object of the present invention is to provide a control device for a hybrid vehicle that suppresses motor power consumption and improves mode fuel efficiency while the vehicle is stopped in the EV mode.
  • the present invention is provided in a drive system with an engine, a motor, a belt-type continuously variable transmission by hydraulic control, and a drive force transmission system between the motor and drive wheels.
  • a friction clutch configured by belting a primary pulley and a secondary pulley, and uses a primary pulley pressure and a secondary pulley pressure as a belt clamp pressure.
  • As a drive mode an EV mode using only a motor as a drive source is provided. When the EV mode is selected, the belt clamp pressure is controlled based on the oil discharged from the oil pump driven by the motor.
  • acquisition means for acquiring a parameter including at least a motor torque value that is a torque value of the motor, and a standby for learning a zero point hydraulic pressure command value at which the friction clutch starts to generate torque capacity based on the parameter
  • the motor idle control means is provided that sets the motor rotation speed to the first motor idle rotation speed.
  • the motor idle control means lowers the rotational speed of the motor to a second motor idle rotational speed that is lower than the first motor idle rotational speed.
  • the rotation speed of the motor is lowered to the second motor idle rotation speed lower than the first motor idle rotation speed. That is, by reducing the first motor idle rotational speed before the learning of the zero point hydraulic pressure command value by the standby learning control means to the second motor idle rotational speed, the motor consumption during the motor idle control by the differential rotational speed is reduced. Power can be reduced. For this reason, a decrease in the battery capacity as a motor power source is suppressed, and the time during which the engine power generation mode in which the motor is driven by the engine to charge the battery is selected is the zero point by the standby learning control means based on the first motor idle speed. Compared to the motor idle control before learning of the hydraulic pressure command value is completed. As a result, while the vehicle is stopped in the EV mode, the power consumption of the motor can be suppressed and the mode fuel efficiency can be improved.
  • 1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied.
  • 3 is a flowchart showing a flow of a motor idle control process executed in the motor controller of the first embodiment.
  • It is a time chart with control which shows each characteristic of number, primary number of rotations, permission minimum number of rotations, secondary number of rotations, motor torque, and the 2nd clutch target torque.
  • Brake switch accelerator opening, range position, secondary indication pressure, secondary lower limit pressure, motor rotation speed, minimum allowed rotation speed when control idle is canceled when motor idle control is stopped in EV stop in FF hybrid vehicle of embodiment 1 -It is a control missing time chart which shows each characteristic of motor torque and the 2nd clutch target torque. It is a characteristic view showing the relationship between the 2nd clutch oil pressure command value of Example 1 and a motor torque value. 6 is a flowchart illustrating second clutch learning correction control according to the first embodiment.
  • the control device in the first embodiment is applied to an FF hybrid vehicle (an example of a hybrid vehicle) in which left and right front wheels are drive wheels and a belt type continuously variable transmission is mounted as a transmission.
  • FF hybrid vehicle an example of a hybrid vehicle
  • left and right front wheels are drive wheels
  • a belt type continuously variable transmission is mounted as a transmission.
  • the configuration of the control device for the FF hybrid vehicle according to the first embodiment will be described by dividing it into an “overall system configuration” and a “motor idle control processing configuration”.
  • FIG. 1 shows an overall system of an FF hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the FF hybrid vehicle will be described with reference to FIG.
  • the drive system of the FF hybrid vehicle includes a horizontally placed engine 2, a first clutch 3 (abbreviated “CL1”), a motor generator 4 (abbreviated “MG”), and a second clutch 5 (abbreviated). "CL2”) and a belt type continuously variable transmission 6 (abbreviated as "CVT").
  • the output shaft of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10R and 10L via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9R and 9L.
  • the left and right rear wheels 11R and 11L are driven wheels.
  • the horizontal engine 2 is an engine disposed in a front room with a starter motor 1 and a crankshaft direction as a vehicle width direction, an electric water pump 12, and a crankshaft rotation sensor 13 for detecting reverse rotation of the horizontal engine 2.
  • This horizontal engine 2 has a “starter start mode” in which cranking is performed by a starter motor 1 using a 12V battery 22 as a power source as a starting method, and an “MG start” in which cranking is performed by a motor generator 4 while slidingly engaging a first clutch 3. Mode ".
  • the “starter start mode” is selected when the low temperature condition or the high temperature condition is satisfied, and the “MG start mode” is selected when the engine is started under conditions other than starter start.
  • the motor generator 4 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 2 via the first clutch 3.
  • the motor generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil via an AC harness 27. Connected.
  • the second clutch 5 is a hydraulically operated wet multi-plate friction clutch interposed between the motor generator 4 and the left and right front wheels 10R and 10L as drive wheels, and is fully engaged / slip engaged by the second clutch hydraulic pressure. / Open is controlled.
  • the second clutch 5 in the first embodiment uses a forward clutch 5a and a reverse brake 5b provided in a forward / reverse switching mechanism using a planetary gear. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
  • the belt-type continuously variable transmission 6 includes a primary pulley 6a, a secondary pulley 6b, and a belt 6c that spans the pulleys 6a and 6b. And it is a transmission which obtains a stepless gear ratio by changing the winding diameter of belt 6c with the primary pressure and secondary pressure supplied to a primary oil chamber and a secondary oil chamber.
  • a control valve unit 6d is provided that generates the first clutch pressure, the second clutch pressure, and the primary pressure and the secondary pressure using the line pressure PL generated by adjusting the pump discharge pressure from the hydraulic power source as a source pressure. Yes.
  • the first clutch 3, the motor generator 4, and the second clutch 5 constitute a hybrid drive system called a one-motor / two-clutch.
  • the main drive modes are “EV mode”, “HEV mode”, “(HEV) “WSC mode”.
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor generator 4 is used as a drive source, and traveling in the “EV mode” is referred to as “EV traveling”.
  • the “HEV mode” is a hybrid vehicle mode in which both the clutches 3 and 5 are engaged and the transverse engine 2 and the motor generator 4 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
  • the “WSC mode” is a CL2 slip engagement mode in which the motor generator 4 is controlled in the motor rotation speed in the “HEV mode” and the second clutch 5 is slip-engaged with an engagement torque capacity corresponding to the required driving force.
  • the “WSC mode” is the CL2 slip between the horizontal engine 2 and the left and right front wheels 10L and 10R, which rotate at the engine idle speed or higher in the starting area from the stop in the “HEV mode” and the stopping area from the low speed. Selected to absorb by fastening. The reason why the “WSC mode” is necessary is that the drive system does not have a rotation difference absorbing joint like a torque converter.
  • the braking system of the FF hybrid vehicle includes a brake operation unit 16, a brake fluid pressure control unit 17, left and right front wheel brake units 18R and 18L, and left and right rear wheel brake units 19R and 19L. ing.
  • a brake operation unit 16 when regeneration is performed by the motor generator 4 during brake operation, regenerative cooperative control is performed in which the hydraulic braking force shares the amount obtained by subtracting the regenerative braking force from the requested braking force with respect to the requested braking force based on the pedal operation. Done.
  • the brake operation unit 16 includes a brake pedal 16a, a negative pressure booster 16b that uses the intake negative pressure of the horizontal engine 2, a master cylinder 16c, and the like.
  • the regenerative cooperative brake unit 16 generates a predetermined master cylinder pressure in accordance with the brake depression force applied from the driver to the brake pedal 16a, and is a unit having a simple configuration that does not use an electric booster.
  • the brake fluid pressure control unit 17 includes an electric oil pump, a pressure increasing solenoid valve, a pressure reducing solenoid valve, an oil path switching valve, and the like.
  • Control of the brake fluid pressure control unit 17 by the brake control unit 85 exhibits a function of generating wheel cylinder fluid pressure when the brake is not operated and a function of adjusting wheel cylinder fluid pressure when the brake is operated.
  • Control using the hydraulic pressure generation function when the brake is not operated includes traction control (TCS control), vehicle behavior control (VDC control), emergency brake control (automatic brake control), and the like.
  • Control using the hydraulic pressure adjustment function at the time of brake operation includes regenerative cooperative brake control, antilock brake control (ABS control), and the like.
  • the left and right front wheel brake units 18R and 18L are provided on the left and right front wheels 10R and 10L, respectively, and the left and right rear wheel brake units 19R and 19L are provided on the left and right rear wheels 11R and 11L, respectively.
  • These brake units 18R, 18L, 19R and 19L have wheel cylinders (not shown) to which the brake fluid pressure generated by the brake fluid pressure control unit 17 is supplied.
  • the power system of the FF hybrid vehicle includes a high-power battery 21 as a power source for the motor generator 4 and a 12V battery 22 as a power source for a 12V system load.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor generator 4, and for example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts the direct current from the DC harness 25 into the three-phase alternating current to the AC harness 27 during power running that drives the motor generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V system load that is a starter motor 1 and auxiliary machines, and for example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 into 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81.
  • the configuration is to be managed.
  • the electronic control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an electronic control unit having an integrated control function for appropriately managing energy consumption of the entire vehicle.
  • HCM hybrid control module
  • Other electronic control units include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • ECM engine control module
  • MC motor controller
  • CVT control unit 84 abbreviation: “CVTCU”.
  • BCU brake control unit 85
  • LBC lithium battery controller
  • CAN is an abbreviation for “Controller-Area-Network” so that bidirectional information can be exchanged, and share information with each other.
  • the hybrid control module 81 performs various integrated controls based on input information from other electronic control units 82, 83, 84, 85, 86, an ignition switch 91, and the like.
  • the engine control module 82 is based on input information from the hybrid control module 81, the engine speed sensor 92, and the like, and controls the start of the horizontal engine 2, fuel injection control, ignition control, fuel cut control, engine idle speed control, etc. I do.
  • the motor controller 83 performs power running control, regenerative control, motor creep control, motor idle control, etc. of the motor generator 4 according to control commands for the inverter 26 based on input information from the hybrid control module 81, the motor rotational speed sensor 93, and the like. Do.
  • the motor controller 83 acquires (acquires) a parameter including at least the torque value (motor torque value) of the motor generator 4. More specifically, the first parameter including at least the first motor torque value that is the torque value of the motor generator 4 is acquired when the travel range is selected, and the first parameter that is at least the torque value of the motor generator 4 is selected when the non-travel range is selected.
  • the second parameter including the two motor torque values is also acquired (first acquisition means and second acquisition means).
  • the CVT control unit 84 outputs a control command to the control valve unit 6d based on input information from the hybrid control module 81, the accelerator opening sensor 94, the vehicle speed sensor 95, the inhibitor switch 96, the ATF oil temperature sensor 97, and the like.
  • the CVT control unit 84 performs the engagement hydraulic pressure control of the first clutch 3, the engagement hydraulic pressure control of the second clutch 5, the transmission hydraulic pressure control by the primary pressure and the secondary pressure of the belt type continuously variable transmission 6, and the like.
  • the CVT control unit 84 calculates a zero point hydraulic pressure command value at which the second clutch 5 starts to generate torque capacity based on the first parameter and the second parameter. This calculation is performed, for example, in the engagement hydraulic pressure control of the second clutch 5.
  • the engagement hydraulic pressure control of the second clutch 5 is performed in the engagement hydraulic pressure control unit of the second clutch 5 provided in the CVT control unit 84, and the relationship between the second clutch hydraulic pressure command value and the second clutch torque capacity coincides.
  • the learning correction is performed as follows. This second clutch learning correction control will be described later.
  • the brake control unit 85 outputs a control command to the brake fluid pressure control unit 17 based on input information from the hybrid control module 81, the brake switch 98, the brake stroke sensor 99, and the like.
  • the brake control unit 85 performs TCS control, VDC control, automatic brake control, regenerative cooperative brake control, ABS control, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21 based on input information from the battery voltage sensor 100, the battery temperature sensor 101, and the like.
  • FIG. 2 shows a motor idle control process flow during EV stop executed by the motor controller 83 of the first embodiment (motor idle control means).
  • motor idle control means the motor controller 83 of the first embodiment
  • step S1 it is determined whether or not a control permission region determination condition including a creep cut condition that does not require creep torque by the motor generator 4 is satisfied. If YES (control permission area determination condition is satisfied), the process proceeds to step S2, and if NO (control permission area determination condition is not satisfied), the process proceeds to the end.
  • the “creep torque” refers to a torque at which the vehicle starts to move in the motor idling state without stepping on the accelerator pedal, and is a torque necessary to prevent the vehicle from sliding down when stopping on a slope road.
  • the “creep cut condition” is a condition when the vehicle is stopped and the second clutch target torque (TTCL2) acquired by feedforward control (FF control) is equal to or less than a predetermined value and is equivalent to creep torque on a flat road. It is determined that it is established.
  • the conditions listed below are given as “control permission region determination conditions” other than the creep cut conditions.
  • (a) D range selection (b) EV mode selection (c) Vehicle speed ⁇ stop threshold (d) Brake ON (e) Accelerator OFF (f) ATF oil temperature ⁇ specified temperature (g) The abnormality is not determined. When all of these conditions (a) to (g) are satisfied, it is determined that the control permission region determination condition is satisfied.
  • step S2 following the determination that the control permission region determination condition is satisfied in step S1, it is determined whether or not CL2 standby learning has been completed. If it has been completed, the process proceeds to step S3.
  • CL2 standby learning will be described later.
  • step S3 following the determination of completion of CL2 standby learning in step S2, a first secondary lower limit pressure Pmin1 that is a lower limit value of the secondary command pressure is set, and the process proceeds to step S3.
  • step 4 a control command for reducing the secondary command pressure for controlling the secondary pressure Psec to the secondary pulley 6b toward the second secondary lower limit pressure Pmin2 is output, and the process proceeds to step S5.
  • step S5 it is determined whether or not the stopped state is determined from the determination that the vehicle has stopped.
  • step S6 The determination of the stop is determined based on whether or not a predetermined time (stop determination time) has elapsed since the determination of “stop”. If the predetermined time has elapsed, it is determined that the stop has been determined.
  • a second secondary lower limit pressure Pmin2 that is a lower limit value of the secondary command pressure is set, and the process proceeds to step S7.
  • step S7 it is determined whether or not the secondary command pressure has become equal to or lower than a first predetermined value that is higher than a second secondary lower limit pressure Pmin2 (for example, about 0.75 Mpa). If YES (secondary command pressure ⁇ first predetermined value), the process proceeds to step S8. If NO (secondary command pressure> first predetermined value), the determination in step S7 is repeated.
  • step S8 following the determination in step S7 that the secondary command pressure ⁇ predetermined value, a command for lowering the stop motor speed to the first motor idle speed Nma1 is output, and the process proceeds to step S9.
  • the “first motor idle speed Nma1” is obtained when creep cut is performed when the vehicle is stopped in EV mode and CL2 standby learning is not completed even if the control permission area determination condition is satisfied.
  • the motor rotation speed (for example, about 600 rpm) necessary for generating a belt clamp pressure that does not cause belt slip.
  • the highest oil pressure is the secondary pressure Psec.
  • the line pressure PL is directly used as the secondary pressure Psec. Therefore, the first motor idle rotation speed Nma1 can be said to be a motor rotation speed necessary for generating the secondary pressure Psec that does not cause belt slip.
  • step S9 following the first motor idle speed command in step S8, it is determined whether or not a stable condition for the secondary pressure Psec is established. If YES (Psec stability condition is satisfied), the process proceeds to step S10. If NO (Psec stability condition is not satisfied), the determination in step S9 is repeated.
  • the “stable condition of the secondary pressure Psec” is determined to be satisfied when the secondary pressure Psec reaches the second secondary lower limit pressure Pmin2 and experiences the state where the second secondary lower limit pressure Pmin2 is maintained for a predetermined time. .
  • step S10 following the determination that the Psec stability condition is satisfied in step S9, it is determined whether or not the motor rotation speed stability condition is satisfied. If YES (motor rotational speed stability condition is satisfied), the process proceeds to step S11. If NO (motor rotational speed stability condition is not satisfied), the determination in step S10 is repeated.
  • the “motor rotation speed stability condition” is determined to be established by experiencing for a predetermined time that the motor rotation speed has reached the first motor idle rotation speed Nma1 and maintained at the first motor idle rotation speed Nma1. Is done.
  • step S11 following the determination that the motor rotational speed stabilization condition is satisfied in step S10, the motor rotational speed is decreased to the second motor idle rotational speed Nma2, and the process proceeds to step S12.
  • the “second motor idle speed Nma2” is lower than the first motor idle speed Nma1, and the motor speed necessary for generating the second secondary lower limit pressure Pmin2 (for example, about 0.75 Mpa) ( For example, about 300 rpm).
  • Pmin2 for example, about 0.75 Mpa
  • a gradient in which the rotational speed gradually decreases with the passage of time is provided.
  • step S12 following the motor rotation speed reduction in step S11, it is determined whether a return (prohibition) determination condition is satisfied. If YES (return determination condition is satisfied), the process proceeds to step S13. If NO (return determination condition is not satisfied), the determination in step S12 is repeated.
  • the “return determination condition” the same conditions as the control permission area determination conditions (a) to (g) are given. If at least one of the conditions (a) to (g) is not satisfied, it is determined that the return determination condition is satisfied.
  • step S13 following the determination that the return determination condition is satisfied in step S12, the secondary command pressure is returned to the normal control value, and the process proceeds to step S14.
  • the “normal control value” refers to a value set according to the motor torque when the EV is stopped.
  • the motor torque is returned with an ascending gradient in which the torque gradually increases after the waiting time has elapsed.
  • step S16 following the determination that CL2 standby learning has not been completed in step S2, the third secondary lower limit pressure Pmin3, which is the lower limit value of the secondary command pressure, is set, and the process proceeds to step S17.
  • step 17 a control command for decreasing the secondary command pressure for controlling the secondary pressure Psec to the secondary pulley 6b toward the third secondary lower limit pressure Pmin3 is output, and the process proceeds to step S18.
  • the pressure value at which belt slip does not occur (for example, about 1.6 MPa) is set.
  • step S18 it is determined whether or not the secondary command pressure has become equal to or lower than a second predetermined value that is higher than a third secondary lower limit pressure Pmin3 (for example, about 1.6 MPa).
  • step S19 If YES (secondary command pressure ⁇ second predetermined value), the process proceeds to step S19. If NO (secondary command pressure> second predetermined value), the determination in step S18 is repeated.
  • the “second predetermined value” is set to a value higher than the first secondary lower limit pressure Pmin1 (for example, about 1.1 Mpa) corresponding to the secondary lower limit pressure until the stop is determined.
  • step S19 following the determination in step S18 that the secondary command pressure is equal to or less than the second predetermined value, a command for lowering the stop motor speed to the first motor idle speed Nma1 is output, and the process proceeds to step S12.
  • step S1 a first secondary lower limit pressure Pmin1 that is a lower limit value of the secondary command pressure is set.
  • a control command for decreasing the secondary command pressure for controlling the secondary pressure Psec to the secondary pulley 6b toward the second secondary lower limit pressure Pmin2 is output.
  • step S5 it is determined whether or not the vehicle has been stopped.
  • step S6 a second secondary lower limit pressure Pmin2 that is a lower limit value of the secondary command pressure is set.
  • step S7 it is determined whether or not the secondary command pressure has become a predetermined value or less. While it is determined that the secondary command pressure is greater than the predetermined value, the determination in step S7 is repeated.
  • step S7 When it is determined in step S7 that the reduced secondary command pressure has become equal to or lower than the first predetermined value, the process proceeds from step S7 to step S8 to step S9 in the flowchart of FIG.
  • step S8 a command for lowering the motor rotation speed at the time of stopping to the first motor idle rotation speed Nma1, which is a normal control value in motor idle control, is output.
  • step S9 it is determined whether or not the stability condition for the secondary pressure Psec is satisfied. While it is determined that the Psec stability condition is not satisfied, the determination in step S9 is repeated.
  • step S9 it is determined whether the stable condition of the secondary pressure Psec is established.
  • step S10 it is determined whether the motor rotation speed stability condition is satisfied. While it is determined that the motor rotation speed stabilization condition is not satisfied, the determination in step S10 is repeated. If it is determined in step S10 that the motor rotation speed stabilization condition is satisfied, the process proceeds from step S10 to step S11 in the flowchart of FIG. In step S11, the motor rotational speed is decreased from the first motor idle rotational speed Nma1 to the second motor idle rotational speed Nma2 with a decreasing gradient that gradually decreases with time.
  • step S11 the motor torque is reduced by controlling the rotational speed of the motor. That is, when the secondary pressure stabilization condition and the motor rotation speed stabilization condition are both satisfied, the motor idle rotation speed is decreased and the motor torque is decreased.
  • the above is the control entering process for starting the motor idle control.
  • the second motor idle rotation speed Nma2 and the creep cut torque Tmc_cut are maintained.
  • step S12 it is determined whether or not the return determination condition is satisfied, and step S12 determination is repeated while the return determination condition is not satisfied. If it is determined in step S12 that the return determination condition is satisfied, the process proceeds from step S12 to step S13 ⁇ step S14 ⁇ step S15 ⁇ end in the flowchart of FIG. In step S13, the secondary command pressure is returned to the normal control value, and in step S14, the motor rotation speed, which has been reduced by the motor rotation speed reduction, is returned to the normal control value.
  • step S15 the low-creep creep cut torque Tmc_cut is returned to the normal control value creep torque Tmc by giving the motor torque a rising gradient in which the torque gradually increases after the waiting time has elapsed, and the motor idle control is performed. finish.
  • the above is the control loss process for canceling the motor idle control. If at least one of the return determination conditions (a) to (g) is not satisfied, it is determined that the return determination condition is satisfied and the normal motor idle control is performed. Return.
  • the motor idle control proposed in this application corresponds to each of the problems (1) to (8) according to the following (1) to (8).
  • the balance thrust ratio is reduced to achieve the secondary lower limit pressure, so the low gear ratio cannot be fixed by the mechanism, but there is no stroke because there is no rotation.
  • Low rotation is allowed within ⁇ several percent as flat ground.
  • the actual secondary pressure is monitored, and if the pressure falls below the predetermined pressure with respect to the secondary lower limit pressure, the low rotation is immediately released.
  • time t1 is a stop time.
  • Time t2 is the stoppage confirmation time.
  • Time t3 is the motor rotation speed reduction time.
  • Time t4 is the motor rotation speed reduction time.
  • the area from creeping with the accelerator decelerated to stopping at time t1 is an area above creep, and as the time approaches t1, the target gear ratio and the actual gear ratio shift to the lowest gear ratio, and the lowest gear ratio is maintained. Stop. At this time, when the secondary command pressure, the secondary pressure Psec, and the secondary lower limit pressure rise prior to the transition to the lowest gear ratio, and the lowest gear ratio is maintained, the secondary command pressure, the secondary pressure Psec, and the secondary lower limit pressure are maintained. Decreases. Further, the primary rotation speed and the secondary rotation speed of the bell type continuously variable transmission 6 are reduced to 0 (stopped) as the vehicle speed decreases and the time t1 is approached.
  • the second clutch target torque TTCL2 decreases while the secondary command pressure increases, and is kept constant when the secondary command pressure decreases.
  • the secondary command pressure is reduced by the offset of the line pressure PL, and then is directed to the second secondary lower limit pressure Pmin2.
  • the control command to decrease is output.
  • the secondary lower limit pressure is reduced to the first secondary lower limit pressure Pmin1 and the second clutch target torque TTCL2 is also reduced from the target torque before the stop with the PL offset cutting of the secondary command pressure.
  • the secondary lower limit pressure is reduced from the first secondary lower limit pressure Pmin1 to the second secondary lower limit pressure Pmin2.
  • the motor rotation speed at the time of stop from time t1 to time t3 is The first motor idle speed Nma1, which is a normal control value in idle control, is lowered at a predetermined decrease gradient.
  • the motor rotational speed has a decreasing gradient that gradually decreases from the first motor idle rotational speed Nma1 over time.
  • Nma2 motor speed characteristics surrounded by an arrow A. Since the motor is controlled by the rotational speed control, the motor torque decreases at the same time as the rotational speed decreases. That is, the transition to time t4 is a low rotation region where the motor idle rotation speed is reduced and a region where the motor torque is also reduced.
  • time t5 is the return determination condition establishment time.
  • Time t6 is the motor torque return start time.
  • Time t7 is the motor torque return end time.
  • the motor torque is maintained during the waiting time from time t5 to time t6, but at time t6, the creep cut torque Tmc_cut, which has been reduced by torque reduction, gradually increases the motor torque after the waiting time has elapsed. Is increased to creep torque Tmc, which is a normal control value, and the motor torque is increased until time t7 (motor torque characteristics surrounded by arrow B). That is, when at least one of the return determination conditions (a) to (g) including the driver operation condition and the environmental condition is not satisfied, the return determination condition is determined to be satisfied and the normal motor idle control is resumed.
  • the time during which the engine power generation mode in which the high-power battery 21 is charged by driving the motor generator 4 by the horizontally mounted engine 2 is selected is the normal motor idle control by the first motor idle rotation speed Nma1. Decrease compared to time. Therefore, when the vehicle is stopped in the EV mode, the power consumption of the motor generator 4 is suppressed, and the mode fuel efficiency is improved.
  • the second secondary lower limit pressure Pmin2 is a pressure value at which no belt slip occurs when creep cut is performed in a state where the control permission region determination condition is satisfied and the CL2 standby learning is completed after the EV stops.
  • the second motor idle rotation speed Nma2 is set to a motor rotation speed necessary for generating the second secondary lower limit pressure Pmin2. That is, during the low rotation by the second motor idle rotation speed Nma2, the torque input via the second clutch 5 is stabilized by completing the CL2 standby learning, so that the second secondary lower limit pressure that does not cause the belt slip is generated. Pmin2 will be realized.
  • the first embodiment is configured to determine that the creep cut condition is satisfied when the vehicle is stopped and the second clutch target torque TTCL2 acquired by the FF control is equal to or less than a predetermined value. For example, if the creep cut condition is determined based on the target CL2 torque capacity after feedback control (FB control), if the second clutch 5 remains on the grip side in FB control, the creep cut condition is not satisfied when the vehicle stops. On the other hand, the use of the second clutch target torque TTCL2 acquired by the FF control is used to determine whether or not the creep cut condition is satisfied, so that the creep cut condition is determined with high accuracy.
  • FB control target CL2 torque capacity after feedback control
  • the motor is controlled by the rotational speed control, and the torque of the motor generator 4 is reduced as the motor idle rotational speed is lowered.
  • the torque of the motor generator 4 is reduced as the motor idle rotational speed is lowered.
  • the torque required to maintain the motor speed is also reduced, and the motor generator 4 is consumed while the vehicle is stopped in the EV mode. Electricity is reduced and mode fuel efficiency is improved.
  • Example 1 when the creep cut condition is satisfied when the vehicle stops in the EV mode, the secondary command pressure is reduced toward the second secondary lower limit pressure Pmin2.
  • the motor rotation speed at the time of stopping is reduced to the first motor idle rotation speed Nma1.
  • the motor rotation speed is immediately lowered to the first motor idle rotation speed Nma1 in the normal control when the vehicle is stopped, the oil amount balance is insufficient, and belt slipping or the like may occur.
  • the secondary pressure Psec has decreased sufficiently and performing a decrease in the motor rotation speed
  • a hydraulic pressure stabilization condition for maintaining the secondary command pressure at the second secondary lower limit pressure Pmin2 is satisfied, and the motor rotation speed is maintained at the first motor idle rotation speed Nma1.
  • the timing is set so that the rotational speed stability condition is satisfied. For example, if a decrease in the motor rotational speed is started at a timing when at least one of the hydraulic pressure stability condition and the rotational speed stability condition is not satisfied, there is a risk that the oil amount balance is insufficient and belt slipping or the like occurs.
  • a decrease in the motor idle rotation speed can be achieved after stopping the vehicle while suppressing the shortage of the oil amount balance.
  • the motor rotational speed when the motor rotational speed is decreased from the first motor idle rotational speed Nma1 to the second motor idle rotational speed Nma2, a configuration in which the rotational speed gradually decreases with the passage of time is provided.
  • the motor rotational speed when the motor rotational speed is decreased stepwise to the second motor idle rotation speed Nma2, the pump discharge amount from the main oil pump 14 is suddenly reduced, and an undershoot may occur in the actual secondary pressure.
  • the motor rotational speed by providing the motor rotational speed with a decreasing gradient, the motor rotational speed can be reduced to the second motor idle rotational speed Nma2 without causing an undershoot in the actual secondary pressure. Since the decreasing gradient depends on the temperature sensitivity that determines the hydraulic pressure response, it is preferable that the decreasing gradient is variably set according to the ATF oil temperature, such as a gentler gradient as the ATF oil temperature is lower.
  • the secondary command pressure and the motor rotation speed are returned to the normal control values, and the torque is gradually increased after the waiting time (time t5 to time t6) has elapsed. It was set as the structure which has the ascending gradient which goes up and returns. For example, if the motor torque, which is the driving torque in the EV mode, is increased immediately after the return condition is satisfied, the oil amount balance is insufficient due to a delay in the hydraulic response to the motor torque response, and belt slipping or the like may occur.
  • the waiting time and the rising gradient depend on the temperature sensitivity that determines the hydraulic pressure response, it is preferable to variably set the waiting time and the rising gradient according to the ATF oil temperature.
  • FIG. 5 is a characteristic diagram showing the relationship between the second clutch hydraulic pressure command value and the motor torque value.
  • the second clutch hydraulic pressure command value and the second clutch torque are substantially increased.
  • (C) in FIG. 5 represents the relationship between the torque capacity actually generated with respect to the command value
  • (A) in FIG. 5 shows that a desired torque capacity can be generated with a lower command value as an initial setting characteristic.
  • FIG. 5B shows the characteristics when recognizing that the desired torque capacity can be generated with a higher command value as the initial setting characteristics.
  • P0 is the second clutch command hydraulic pressure at the actual zero point.
  • the second clutch torque capacity characteristic is shifted due to individual differences, secular changes, and the like. It is particularly important to properly learn the zero point, which is the point at which the second clutch 5 begins to generate torque capacity, because it affects the start response and durability. Therefore, in the first embodiment, the second clutch hydraulic pressure command value at the zero point is calculated early.
  • the torque capacity of the second clutch 5 is expressed by the following formula (1).
  • TCL2 is represented by the following formula (6).
  • TCL2 Tmgwsc ⁇ Tmgn
  • P0 Pwsc ⁇ (Tmgwsc ⁇ Tmgn) / ( ⁇ ⁇ N ⁇ D ⁇ A / i)
  • Equation (7) the second zero point hydraulic pressure command value P0 at the zero point is the second clutch hydraulic pressure command value Pwsc at the time of WSC, the motor torque Tmgwsc at this time, and the motor torque acquired at the time of N It can be calculated from Tmgn.
  • the characteristic (C) of FIG. 5 since the characteristic gradient is defined by Y, the characteristic can be determined by the motor torque Tmgwsc corresponding to Pwsc.
  • the command value corresponding to Tmgn becomes the second zero point hydraulic pressure command value P0 at the zero point, and the second zero point hydraulic pressure command value P0 can be instantaneously calculated backward. Therefore, in Example 1, the second zero point hydraulic pressure command value P0 at the zero point is calculated by calculation.
  • the motor torque value can be calculated instantaneously with high accuracy from, for example, the motor current value, the acquisition time when acquiring parameters such as Tmgwsc and Tmgn is short. Therefore, the opportunity for acquiring these parameters can be increased, and the learning frequency can be increased.
  • FIG. 6 is a flowchart showing the second clutch learning correction control of the first embodiment.
  • step S21 it is determined whether or not the vehicle is in the travel range (D, R range). If it is the travel range, the process proceeds to step S22. If it is the non-travel range (N, P range), the process proceeds to step S24.
  • step S22 it is determined whether or not the WSC mode is in effect. If it is in the WSC mode, the process proceeds to step S23. Otherwise, this step is repeated.
  • step S23 second clutch temperatures temp_wsc, Pwsc, Tmgwsc (hereinafter, each information is referred to as a first parameter) are acquired.
  • step S24 it is determined whether or not the vehicle is in the EV mode and the vehicle is stopped due to brake ON (hereinafter referred to as a non-traveling range learning condition). If the non-driving range learning condition is satisfied, step S24 is performed. Proceed to S25, otherwise repeat this step.
  • step S25 the second clutch temperature temp_n and Tmgn (hereinafter, each piece of information is referred to as a second parameter) when the motor generator MG is rotated with the second clutch 5 in the fully released state are acquired.
  • step S26 it is determined whether or not both the first parameter and the second parameter have been acquired. If acquired, the process proceeds to step S27. Otherwise, the process returns to step S21.
  • step S27 a correction amount of Tmgn is calculated based on the difference between temp_wsc and temp_n, and Tmgn is corrected.
  • step S28 P0 is calculated based on Pwsc, Tmgwsc, and corrected Tmgn.
  • An eaves drive system includes an engine 2, a motor (motor generator 4), a hydraulically controlled transmission (belt-type continuously variable transmission 6), a motor (motor generator 4), and driving wheels (left and right front wheels 10R, 10L), and a friction clutch (second clutch 5) interposed in the driving force transmission system between the belt 6c and the pulley 6a, 6b.
  • the belt 6c is stretched over the primary pulley 6a and the secondary pulley 6b, and the primary pulley pressure and the secondary pulley pressure are belt clamp pressures.
  • the drive mode is an EV mode using only the motor (motor generator 4) as a drive source.
  • a motor controller 83 acquires at least a parameter including a torque value (motor torque value) of the motor generator 4, specifically, when a travel range is selected
  • Step S23 first acquisition means for acquiring a first parameter including at least Tmgwsc (first motor torque value) that is a torque value of the motor generator MG, and at least a torque value of the motor generator MG when the non-traveling range is selected.
  • Step S25 (second acquisition means) for acquiring a second parameter including Tmgn (second motor torque value) and a friction clutch (second clutch 5) based on the acquired parameters (first parameter and second parameter) Zero point hydraulic finger starts to generate torque capacity
  • step S28 standby learning control means
  • step S28 standby learning control means that calculates and learns the value P0 and a creep cut condition that does not require creep torque by the motor (motor generator 4) when the vehicle stops in the EV mode
  • the motor rotation speed is set to the first value.
  • Motor idle control means (motor controller 83) for providing motor idle rotation speed Nma1 is provided, and the motor idle control means (motor controller 83, FIG.
  • the motor idle control means (motor controller 83, FIG. 2) sets a lower limit line pressure (second secondary lower limit pressure Pmin2) that ensures a belt clamp pressure that prevents the belt 6c from slipping during motor idle control.
  • a lower limit line pressure (second secondary lower limit pressure Pmin2)
  • Pmin2 the lower limit line pressure
  • Nma2 the second motor idle speed
  • a friction clutch (second clutch 5) is interposed in the driving force transmission system between the saddle motor (motor generator 4) and the drive wheels 10L and 10R, and the motor idle control means (motor controller 83, FIG. 2)
  • the friction clutch target torque (second clutch target torque TTCL2) acquired by feedforward control (FF control) is equal to or less than a predetermined value
  • FF control feedforward control
  • the use of the friction clutch target torque (second clutch target torque TTCL2) for the creep cut condition determination can accurately determine whether the creep cut condition is satisfied. .
  • the motor idle control means (motor controller 83, FIG. 2) lowers the target motor idle rotational speed by rotational speed control for controlling the rotational speed of the motor (motor generator 4). For this reason, in addition to the effect of (3), while suppressing slipping of the friction clutch (second clutch 5), the power consumption of the motor (motor generator 4) during motor idle control can be suppressed, and the mode fuel efficiency can be improved. .
  • the eaves transmission is a belt-type continuously variable transmission 6 in which the belt 6c is stretched between the primary pulley 6a and the secondary pulley 6b, and the primary pulley pressure Ppri and the secondary pulley pressure Psec are used as the transmission oil pressure.
  • the motor controller 83, FIG. 2) reduces the secondary command pressure toward the secondary lower limit pressure (second secondary lower limit pressure Pmin2) and sets the secondary lower limit pressure (second secondary pressure) when the creep cut condition is satisfied when the vehicle stops in the EV mode.
  • first secondary lower limit pressure Pmin1 higher than the lower limit pressure Pmin2
  • the stop-time motor speed is reduced to the first motor idle speed Nma1.
  • the motor rotation speed can be reduced from the motor rotation speed when the vehicle stops to the first motor idle rotation speed Nma1 while suppressing the shortage of the oil balance. Can do.
  • the motor idle control means (motor controller 83, FIG. 2) stabilizes the hydraulic pressure so that the secondary command pressure keeps the secondary lower limit pressure (second secondary lower limit pressure Pmin2) at the start timing of lowering the motor speed and motor torque.
  • the timing is satisfied when the condition is satisfied and the rotational speed stability condition is maintained for maintaining the motor rotational speed at the first motor idle rotational speed Nma1. For this reason, in addition to the effect of (5), it is possible to achieve a decrease in the motor idle speed and a decrease in the motor torque after the vehicle is stopped while suppressing the shortage of the oil amount balance.
  • the motor idle control means (motor controller 83, FIG. 2) gradually reduces the rotational speed as time elapses when the motor rotational speed is decreased from the first motor idle rotational speed Nma1 to the second motor idle rotational speed Nma2. Have a gradual decline. For this reason, in addition to the effect of (6), it is possible to reduce the motor speed to the second motor idle speed Nma2 without causing an undershoot in the actual secondary pressure.
  • the motor idle control means (motor controller 83, FIG. 2) returns the motor command pressure and the motor lower limit rotation to the normal control values, and sets the motor torque to the waiting time (time After a lapse of time t5 to time t6), the torque is returned with a rising gradient that gradually increases. For this reason, in addition to the effects (5) to (7), at the time of return from the motor idle control, the increase of the motor torque can be achieved while suppressing the shortage of the oil amount balance.
  • Example 1 As mentioned above, although the control apparatus of the hybrid vehicle of this invention was demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The invention which concerns on each claim of a claim Design changes and additions are permitted without departing from the gist of the present invention.
  • a belt type continuously variable transmission 6 is used as a transmission, in which a belt 6c is stretched between the primary pulley 6a and the secondary pulley 6b, and the primary pulley pressure Ppri and the secondary pulley pressure Psec are used as the transmission oil pressure.
  • the transmission may be an example of a stepped transmission having a plurality of shift stages.
  • Example 1 shows an example in which the control device of the present invention is applied to an FF hybrid vehicle.
  • the control device of the present invention can also be applied to an FR hybrid vehicle.
  • the present invention can be applied to a hybrid vehicle having an EV mode other than a one-motor / two-clutch drive type and a drive division mechanism or the like.
  • the drive system has an engine, a motor, and a hydraulically controlled transmission, and has an EV mode as a drive mode. When the EV mode is selected, the line pressure is controlled based on oil discharged from an oil pump driven by the motor. Any hybrid vehicle can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

EVモードの選択時、モータジェネレータ(4)により駆動されるメインオイルポンプ(14)の吐出油に基づきベルトクランプ圧を制御する。このFFハイブリッド車両の制御装置において、EVモードでの停車時、モータジェネレータ(4)によるクリープトルクを必要としないクリープカット条件が成立すると、モータ回転数を第1モータアイドル回転数Nma1とする制御を行うモータコントローラ(83)を設ける。モータコントローラ(83)は、EVモードでの停車時、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了すると、モータジェネレータ(4)の回転数を、第1モータアイドル回転数Nma1より低い第2モータアイドル回転数Nma2まで下げる。

Description

ハイブリッド車両の制御装置
 本発明は、EVモードでの停車中にモータアイドル制御が行われるハイブリッド車両の制御装置に関する。
 従来、ハイブリッド車両のアイドル制御装置として、エンジンが動作しているアイドル運転中に自動変速機をNレンジからDレンジへ切り換えると、目標アイドル回転数を低下させるものが知られている(例えば、特許文献1参照)。
 しかしながら、従来装置において、EVモードでの停車中、モータ回転数をアイドル回転数とするモータアイドル制御を行うと、渋滞路等のように停車頻度が高い走行シーンでは、モータを駆動するための消費電力が増加し、バッテリ容量が低下することで、トータルエネルギー収支によりモード燃費を悪化させてしまう、という問題があった。
特開2012-91552号公報
 本発明は、上記問題に着目してなされたもので、EVモードでの停車中、モータの消費電力を抑え、モード燃費を向上させるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、駆動系に、エンジンと、モータと、油圧制御によるベルト式無段変速機と、前記モータと駆動輪との間の駆動力伝達系に介装された摩擦クラッチと、を備える。ベルト式無段変速機は、プライマリプーリとセカンダリプーリにベルトを掛け渡して構成され、プライマリプーリ圧とセカンダリプーリ圧をベルトクランプ圧とする。駆動モードとして、モータのみを駆動源とするEVモードを有する。EVモードの選択時、モータにより駆動されるオイルポンプの吐出油に基づきベルトクランプ圧を制御する。このハイブリッド車両の制御装置において、少なくともモータのトルク値であるモータトルク値を含むパラメータを取得する取得手段と、パラメータに基づき、摩擦クラッチがトルク容量を発生し始めるゼロ点油圧指令値を学習するスタンバイ学習制御手段と、EVモードでの停車時、モータによるクリープトルクを必要としないクリープカット条件が成立すると、モータ回転数を第1モータアイドル回転数とするモータアイドル制御手段を設ける。モータアイドル制御手段は、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了すると、モータの回転数を、第1モータアイドル回転数より低い第2モータアイドル回転数まで下げる。
 よって、EVモードでの停車時、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了すると、モータの回転数が、第1モータアイドル回転数より低い第2モータアイドル回転数まで下げられる。即ち、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了する前の第1モータアイドル回転数から第2モータアイドル回転数に低下させることで、その差回転数によってモータアイドル制御中のモータ消費電力が抑えられる。このため、モータ電源であるバッテリ容量の低下が抑えられ、エンジンによりモータを駆動させてバッテリを充電するエンジン発電モードが選択される時間が、第1モータアイドル回転数によるスタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了する前のモータアイドル制御時に比べて減少する。この結果、EVモードでの停車中、モータの消費電力を抑え、モード燃費を向上させることができる。
実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。 実施例1のモータコントローラにおいて実行されるモータアイドル制御処理の流れを示すフローチャートである。 実施例1のFFハイブリッド車両においてEVモードでの停車中にモータアイドル制御が開始される制御入りのときの車速・目標変速比・実変速比・セカンダリ指示圧・セカンダリ圧・セカンダリ下限圧・モータ回転数・プライマリ回転数・許可最低回転数・セカンダリ回転数・モータトルク・第2クラッチ目標トルクの各特性を示す制御入りタイムチャートである。 実施例1のFFハイブリッド車両においてEV停車中のモータアイドル制御が解除される制御抜けのときのブレーキスイッチ・アクセル開度・レンジ位置・セカンダリ指示圧・セカンダリ下限圧・モータ回転数・許可最低回転数・モータトルク・第2クラッチ目標トルクの各特性を示す制御抜けタイムチャートである。 実施例1の第2クラッチ油圧指令値とモータトルク値との関係を表す特性図である。 実施例1の第2クラッチ学習補正制御を表すフローチャートである。
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。実施例1における制御装置は、左右前輪を駆動輪とし、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両(ハイブリッド車両の一例)に適用したものである。以下、実施例1のFFハイブリッド車両の制御装置の構成を、「全体システム構成」、「モータアイドル制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の制御装置が適用されたFFハイブリッド車両の全体システムを示す。以下、図1に基づいて、FFハイブリッド車両の全体システム構成を説明する。
 FFハイブリッド車両の駆動系は、図1に示すように、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータジェネレータ4(略称「MG」)と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9R,9Lを介し、左右の前輪10R,10Lに駆動連結される。なお、左右の後輪11R,11Lは、従動輪としている。
 前記横置きエンジン2は、スタータモータ1と、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。この横置きエンジン2は、始動方式として12Vバッテリ22を電源とするスタータモータ1によりクランキングする「スタータ始動モード」と、第1クラッチ3を滑り締結しながらモータジェネレータ4によりクランキングする「MG始動モード」と、を有する。「スタータ始動モード」は、低温時条件又は高温時条件の成立により選択され、「MG始動モード」は、スタータ始動以外の条件でのエンジン始動時に選択される。
 前記モータジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータである。このモータジェネレータ4は、後述する強電バッテリ21を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ26が、ACハーネス27を介して接続される。
 前記第2クラッチ5は、モータジェネレータ4と駆動輪である左右の前輪10R,10Lとの間に介装された油圧作動による湿式多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1における第2クラッチ5は、遊星ギヤによる前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5とされる。
 前記ベルト式無段変速機6は、プライマリプーリ6aと、セカンダリプーリ6bと、両プーリ6a,6bに掛け渡されたベルト6cと、を有する。そして、プライマリ油室とセカンダリ油室へ供給されるプライマリ圧とセカンダリ圧により、ベルト6cの巻き付き径を変えることで無段階の変速比を得る変速機である。ベルト式無段変速機6には、油圧源として、モータジェネレータ4のモータ軸(=変速機入力軸)により回転駆動されるメインオイルポンプ14(メカ駆動)と、補助ポンプとして用いられるサブオイルポンプ15(モータ駆動)と、を有する。そして、油圧源からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧とし、第1クラッチ圧と第2クラッチ圧、及び、プライマリ圧とセカンダリ圧を作り出すコントロールバルブユニット6dを備えている。
 前記第1クラッチ3とモータジェネレータ4と第2クラッチ5により、1モータ・2クラッチと呼ばれるハイブリッド駆動システムが構成され、主な駆動態様として、「EVモード」、「HEVモード」、「(HEV)WSCモード」を有する。「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータジェネレータ4のみを駆動源に有する電気自動車モードであり、「EVモード」による走行を「EV走行」という。「HEVモード」は、両クラッチ3,5を締結して横置きエンジン2とモータジェネレータ4を駆動源に有するハイブリッド車モードであり、「HEVモード」による走行を「HEV走行」という。「WSCモード」は、「HEVモード」においてモータジェネレータ4をモータ回転数制御とし、第2クラッチ5を要求駆動力相当の締結トルク容量にてスリップ締結するCL2スリップ締結モードである。「WSCモード」は、「HEVモード」での停車からの発進域や低速からの停車域において、エンジンアイドル回転数以上で回転する横置きエンジン2と左右前輪10L,10Rの回転差を、CL2スリップ締結により吸収するために選択される。なお、「WSCモード」が必要な理由は、駆動系にトルクコンバータのような回転差吸収継手を持たないことによる。
 FFハイブリッド車両の制動系は、図1に示すように、ブレーキ操作ユニット16と、ブレーキ液圧制御ユニット17と、左右前輪ブレーキユニット18R,18Lと、左右後輪ブレーキユニット19R,19Lと、を備えている。この制動系では、ブレーキ操作時にモータジェネレータ4により回生を行うとき、ペダル操作に基づく要求制動力に対し、要求制動力から回生制動力を差し引いた分を、液圧制動力で分担する回生協調制御が行われる。
 前記ブレーキ操作ユニット16は、ブレーキペダル16a、横置きエンジン2の吸気負圧を用いる負圧ブースタ16b、マスタシリンダ16c、等を有する。この回生協調ブレーキユニット16は、ブレーキペダル16aへ加えられるドライバからのブレーキ踏力に応じ、所定のマスタシリンダ圧を発生するもので、電動ブースタを用いない簡易構成によるユニットとされる。
 前記ブレーキ液圧制御ユニット17は、図示していないが、電動オイルポンプ、増圧ソレノイドバルブ、減圧ソレノイドバルブ、油路切り替えバルブ、等を有して構成される。ブレーキコントロールユニット85によるブレーキ液圧制御ユニット17の制御により、ブレーキ非操作時にホイールシリンダ液圧を発生する機能と、ブレーキ操作時にホイールシリンダ液圧を調圧する機能と、を発揮する。ブレーキ非操作時の液圧発生機能を用いる制御が、トラクション制御(TCS制御)や車両挙動制御(VDC制御)やエマージェンシーブレーキ制御(自動ブレーキ制御)、等である。ブレーキ操作時の液圧調整機能を用いる制御が、回生協調ブレーキ制御、アンチロックブレーキ制御(ABS制御)、等である。
 前記左右前輪ブレーキユニット18R,18Lは、左右前輪10R,10Lのそれぞれに設けられ、左右後輪ブレーキユニット19R,19Lは、左右後輪11R,11Lのそれぞれに設けられ、各輪に液圧制動力を付与する。これらのブレーキユニット18R,18L,19R,19Lには、ブレーキ液圧制御ユニット17で作り出されたブレーキ液圧が供給される図外のホイールシリンダを有する。
 FFハイブリッド車両の電源系は、図1に示すように、モータジェネレータ4の電源としての強電バッテリ21と、12V系負荷の電源としての12Vバッテリ22と、を備えている。
 前記強電バッテリ21は、モータジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。
 前記強電バッテリ21とモータジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。
 前記12Vバッテリ22は、スタータモータ1及び補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等に搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。
 FFハイブリッド車両の電子制御系は、図1に示すように、車両全体の消費エネルギーを適切に管理する統合制御機能を担う電子制御ユニットとして、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。他の電子制御ユニットとして、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、を有する。さらに、ブレーキコントロールユニット85(略称:「BCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。これらの電子制御ユニット81,82,83,84,85,86は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続され、互いに情報を共有する。
 前記ハイブリッドコントロールモジュール81は、他の電子制御ユニット82,83,84,85,86、イグニッションスイッチ91等からの入力情報に基づき、様々な統合制御を行う。
 前記エンジンコントロールモジュール82は、ハイブリッドコントロールモジュール81、エンジン回転数センサ92等からの入力情報に基づき、横置きエンジン2の始動制御や燃料噴射制御や点火制御や燃料カット制御、エンジンアイドル回転制御、等を行う。
 前記モータコントローラ83は、ハイブリッドコントロールモジュール81、モータ回転数センサ93等からの入力情報に基づき、インバータ26に対する制御指令によりモータジェネレータ4の力行制御や回生制御、モータクリープ制御、モータアイドル制御、等を行う。また、前記モータコントローラ83は、少なくともモータジェネレータ4のトルク値(モータトルク値)を含むパラメータを取得する(取得手段)する。より具体的には、走行レンジ選択時に、少なくともモータジェネレータ4のトルク値である第1モータトルク値を含む第1パラメータを取得し、非走行レンジ選択時に、少なくともモータジェネレータ4のトルク値である第2モータトルク値を含む第2パラメータも取得する(第1取得手段及び第2取得手段)。
 前記CVTコントロールユニット84は、ハイブリッドコントロールモジュール81、アクセル開度センサ94、車速センサ95、インヒビタースイッチ96、ATF油温センサ97等からの入力情報に基づき、コントロールバルブユニット6dへ制御指令を出力する。このCVTコントロールユニット84では、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6のプライマリ圧とセカンダリ圧による変速油圧制御、等を行う。前記CVTコントロールユニット84は、第1パラメータと第2パラメータとに基づき、第2クラッチ5がトルク容量を発生し始めるゼロ点油圧指令値を演算する。この演算は、例えば、第2クラッチ5の締結油圧制御において行われる。第2クラッチ5の締結油圧制御は、CVTコントロールユニット84内に設けられた第2クラッチ5の締結油圧制御部において実施され、第2クラッチ油圧指令値と第2クラッチトルク容量との関係が一致するように学習補正を行う。この第2クラッチ学習補正制御について後述する。
 前記ブレーキコントロールユニット85は、ハイブリッドコントロールモジュール81、ブレーキスイッチ98、ブレーキストロークセンサ99等からの入力情報に基づき、ブレーキ液圧制御ユニット17へ制御指令を出力する。このブレーキコントロールユニット85では、TCS制御、VDC制御、自動ブレーキ制御、回生協調ブレーキ制御、ABS制御、等を行う。
 前記リチウムバッテリコントローラ86は、バッテリ電圧センサ100、バッテリ温度センサ101等からの入力情報に基づき、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。
 [モータアイドル制御処理構成]
 図2は、実施例1のモータコントローラ83にて実行されるEV停車中のモータアイドル制御処理流れを示す(モータアイドル制御手段)。以下、EV停車中のモータアイドル制御処理構成をあらわす図2の各ステップについて説明する。
 ステップS1では、モータジェネレータ4によるクリープトルクを必要としないクリープカット条件を含む制御許可領域判定条件が成立しているか否かを判断する。YES(制御許可領域判定条件成立)の場合はステップS2へ進み、NO(制御許可領域判定条件不成立)の場合は終了へ進む。ここで、「クリープトルク」とは、アクセルペダルを踏むことなく、モータアイドリング状態で車両が動き出すトルクをいい、勾配路停車時において、車両のずり下がりを防止するために必要なトルクである。「クリープカット条件」は、停車状態で、かつ、フィードフォワード制御(FF制御)により取得される第2クラッチ目標トルク(TTCL2)が、所定値以下であり、平坦路でのクリープトルク相当のとき条件成立と判定する。クリープカット条件以外の「制御許可領域判定条件」としては、下記に列挙する条件が与えられる。
(a) Dレンジの選択
(b) EVモードの選択
(c) 車速<停車閾値
(d) ブレーキON
(e) アクセルOFF
(f) ATF油温<指定温度
(g) 異常判定していない
そして、これらの条件(a)~(g)の全てが成立したとき、制御許可領域判定条件が成立と判断される。
 ステップS2では、ステップS1での制御許可領域判定条件成立との判断に続き、CL2スタンバイ学習が完了したか否かを判定し、完了していれば、ステップS3へ進む。CL2スタンバイ学習の説明については後述する。ステップS3では、ステップS2でのCL2スタンバイ学習完了の判定に続き、セカンダリ指示圧の下限値である第1セカンダリ下限圧Pmin1を設定し、ステップS3へ進む。ステップ4では、セカンダリプーリ6bへのセカンダリ圧Psecを制御するセカンダリ指示圧を、第2セカンダリ下限圧Pmin2に向かって低下させる制御指令を出力し、ステップS5へ進む。ステップS5では、車両が停車したとの判定から停車している状態が確定したか否かを判定し、確定した判断すれば、ステップS6へ進む。停車確定の判定は、「停車」の判定から所定時間(停車確定時間)が経過したか否かで判定し、所定時間が経過していれば停車確定と判定する。ステップS6では、停車確定との判断に続き、セカンダリ指示圧の下限値である第2セカンダリ下限圧Pmin2を設定し、ステップS7へ進む。ここで、「第2セカンダリ下限圧Pmin2(=下限ライン圧)」は、EV停車後、制御許可領域判定条件が成立し、CL2スタンバイ学習が完了した状態で、クリープカットを実施した場合に、ベルトスリップが発生しない圧力値(例えば、0.75Mpa程度)に設定される。
 ステップS7では、セカンダリ指示圧が、第2セカンダリ下限圧Pmin2(例えば、0.75Mpa程度)よりも高い第1所定値以下になったか否かを判断する。YES(セカンダリ指示圧≦第1所定値)の場合はステップS8へ進み、NO(セカンダリ指示圧>第1所定値)の場合はステップS7の判断を繰り返す。ここで、「第1所定値」は、停車が確定するまでのセカンダリ下限圧に相当する第1セカンダリ下限圧Pmin1(例えば、1.1Mpa程度)とする。これは、停車判断時、セカンダリ指示圧とセカンダリ圧Psecのオフセット分だけセカンダリ下限圧を低下させ、このセカンダリ下限圧(=第1セカンダリ下限圧Pmin1)を、停車が確定するまで維持することによる。
 ステップS8では、ステップS7でのセカンダリ指示圧≦所定値であるとの判断に続き、停車時モータ回転数を第1モータアイドル回転数Nma1まで下げる指令を出力し、ステップS9へ進む。ここで、「第1モータアイドル回転数Nma1」は、EVモードでの停車時、制御許可領域判定条件が成立しても、CL2スタンバイ学習が完了していない状態で、クリープカットを実施した場合に、ベルトスリップが発生しないベルトクランプ圧を発生させるために必要なモータ回転数(例えば、600rpm程度)をいう。なお、ライン圧PLを元圧とする制御油圧のうち、最も高い油圧はセカンダリ圧Psecであり、片調圧方式の場合にはライン圧PLをそのままセカンダリ圧Psecとする。よって、第1モータアイドル回転数Nma1は、ベルトスリップを生じさせないセカンダリ圧Psecを発生させるために必要なモータ回転数ということもできる。
 ステップS9では、ステップS8での第1モータアイドル回転数指令に続き、セカンダリ圧Psecの安定条件が成立しているか否かを判断する。YES(Psec安定条件成立)の場合はステップS10へ進み、NO(Psec安定条件不成立)の場合はステップS9の判断を繰り返す。ここで、「セカンダリ圧Psecの安定条件」は、セカンダリ圧Psecが第2セカンダリ下限圧Pmin2に到達し、第2セカンダリ下限圧Pmin2を保っている状態を所定時間経験することにより成立と判断される。
 ステップS10では、ステップS9でのPsec安定条件成立との判断に続き、モータ回転数の安定条件が成立しているか否かを判断する。YES(モータ回転数安定条件成立)の場合はステップS11へ進み、NO(モータ回転数安定条件不成立)の場合はステップS10の判断を繰り返す。ここで、「モータ回転数の安定条件」は、モータ回転数が第1モータアイドル回転数Nma1に到達し、第1モータアイドル回転数Nma1を保っている状態を所定時間経験することにより成立と判断される。
 ステップS11では、ステップS10でのモータ回転数安定条件成立との判断に続き、モータ回転数を第2モータアイドル回転数Nma2まで下げ、ステップS12へ進む。ここで、「第2モータアイドル回転数Nma2」は、第1モータアイドル回転数Nma1よりも低圧で、第2セカンダリ下限圧Pmin2(例えば、0.75Mpa程度)を発生させるために必要なモータ回転数(例えば、300rpm程度)とする。そして、モータ回転数を第1モータアイドル回転数Nma1から第2モータアイドル回転数Nma2へと低下させるとき、時間の経過に従って徐々に回転数が低下する低下勾配を持たせる。
 ステップS12では、ステップS11でのモータ回転数ダウンに続き、復帰(禁止)判定条件が成立しているか否かを判断する。YES(復帰判定条件成立)の場合はステップS13へ進み、NO(復帰判定条件不成立)の場合はステップS12の判断を繰り返す。ここで、「復帰判定条件」としては、上記制御許可領域判定条件(a)~(g)と同じ条件が与えられる。そして、条件(a)~(g)の少なくとも一つの条件が不成立であると、復帰判定条件が成立と判断される。
 ステップS13では、ステップS12での復帰判定条件成立であるとの判断に続き、セカンダリ指示圧を通常制御値に戻し、ステップS14へ進む。ここで、「通常制御値」とは、EV停車時、モータトルクに応じて設定される値をいう。
 ステップS14では、ステップS13でのセカンダリ指示圧の復帰に続き、モータ回転数ダウンにより低回転化したモータ回転数(=第2モータアイドル回転数Nma2)を、通常制御値(=第1モータアイドル回転数Nma1)に戻し、ステップS15へ進む。
 ステップS15では、ステップS14でのモータ回転数の復帰に続き、クリープカットにより低トルク化したモータトルク(=クリープカットトルクTmc_cut)を、通常制御値(クリープトルクTmc)に戻し、終了へ進む。ここで、クリープカットトルクTmc_cutをクリープトルクTmcに戻すとき、モータトルクを待ち時間の経過後に徐々にトルクが上昇する上昇勾配を持たせて復帰させる。また、ステップS2で、CL2スタンバイ学習が完了していないと判定した場合、ステップS16へ進む。ステップS16では、ステップS2でのCL2スタンバイ学習が完了していないとの判定に続き、セカンダリ指示圧の下限値である第3セカンダリ下限圧Pmin3を設定し、ステップS17へ進む。ステップ17では、セカンダリプーリ6bへのセカンダリ圧Psecを制御するセカンダリ指示圧を、第3セカンダリ下限圧Pmin3に向かって低下させる制御指令を出力し、ステップS18へ進む。ここで、「第3セカンダリ下限圧Pmin3(=下限ライン圧)」は、EV停車後、制御許可領域判定条件が成立し、CL2スタンバイ学習が完了していない状態で、クリープカットを実施した場合に、ベルトスリップが発生しない圧力値(例えば、1.6Mpa程度)に設定される。ステップS18では、セカンダリ指示圧が、第3セカンダリ下限圧Pmin3(例えば、1.6Mpa程度)よりも高い第2所定値以下になったか否かを判断する。YES(セカンダリ指示圧≦第2所定値)の場合はステップS19へ進み、NO(セカンダリ指示圧>第2所定値)の場合はステップS18の判断を繰り返す。ここで、「第2所定値」は、停車が確定するまでのセカンダリ下限圧に相当する第1セカンダリ下限圧Pmin1(例えば、1.1Mpa程度)より高い値とする。ステップS19では、ステップS18でのセカンダリ指示圧≦第2所定値であるとの判断に続き、停車時モータ回転数を第1モータアイドル回転数Nma1まで下げる指令を出力し、ステップS12へ進む。
 次に、作用を説明する。実施例1のFFハイブリッド車両の制御装置における作用を、「モータアイドル制御処理作用」、「モータアイドル制御作用」、「モータアイドル制御の特徴作用」に分けて説明する。
 [モータアイドル制御処理作用]
 以下、図2のフローチャートに基づき、モータアイドル制御処理作用を説明する。クリープカット条件を含む制御許可領域判定条件が成立し、CL2スタンバイ学習が完了していると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7へと進む。ステップS2では、CL2スタンバイ学習が完了したか否かを判定する。ステップS3では、セカンダリ指示圧の下限値である第1セカンダリ下限圧Pmin1を設定する。ステップ4では、セカンダリプーリ6bへのセカンダリ圧Psecを制御するセカンダリ指示圧を、第2セカンダリ下限圧Pmin2に向かって低下させる制御指令が出力される。ステップS5では、車両の停車が確定したか否かを判定する。ステップS6では、セカンダリ指示圧の下限値である第2セカンダリ下限圧Pmin2を設定する。ステップS7では、セカンダリ指示圧が所定値以下になったか否かが判断され、セカンダリ指示圧>所定値と判断されている間は、ステップS7の判断が繰り返される。
 そして、ステップS7にて、低下しているセカンダリ指示圧が第1所定値以下になったと判断されると、図2のフローチャートにおいて、ステップS7らステップS8→ステップS9へと進む。ステップS8では、停車時モータ回転数を、モータアイドル制御での通常制御値である第1モータアイドル回転数Nma1まで下げる指令が出力される。ステップS9では、セカンダリ圧Psecの安定条件が成立しているか否かが判断され、Psec安定条件が不成立と判断されている間は、ステップS9の判断が繰り返される。
 そして、ステップS9にて、セカンダリ圧Psecの安定条件が成立したとの判断がなされると、図2のフローチャートにおいて、ステップS9からステップS10へ進む。ステップS10では、モータ回転数の安定条件が成立しているか否かが判断され、モータ回転数安定条件不成立と判断されている間は、ステップS10の判断が繰り返される。そして、ステップS10にて、モータ回転数安定条件が成立したと判断されると、図2のフローチャートにおいて、ステップS10からステップS11へ進む。ステップS11では、モータ回転数が第1モータアイドル回転数Nma1から、時間の経過に従って徐々に回転数が低下する低下勾配を持たせて第2モータアイドル回転数Nma2まで下げられる。同時に、ステップS11では、モータの回転数制御によりモータトルクが下る。即ち、セカンダリ圧安定条件とモータ回転数安定条件が共に成立すると、モータアイドル回転数を低下してモータのトルクが低下する。以上がモータアイドル制御を開始する制御入り処理であり、ステップS12で復帰判定条件が不成立と判断されているモータアイドル制御中、第2モータアイドル回転数Nma2とクリープカットトルクTmc_cutが維持される。
 ステップS12では、復帰判定条件が成立しているか否かが判断され、復帰判定条件が不成立である間は、ステップS12判断が繰り返される。そして、ステップS12にて、復帰判定条件が成立したと判断されると、図2のフローチャートにおいて、ステップS12からステップS13→ステップS14→ステップS15→終了へと進む。ステップS13では、セカンダリ指示圧が通常制御値に戻され、ステップS14では、モータ回転数ダウンにより低回転化したモータ回転数が、通常制御値に戻される。ステップS15では、低トルク化したクリープカットトルクTmc_cutが、モータトルクを待ち時間の経過後に徐々にトルクが上昇する上昇勾配を持たせて通常制御値であるクリープトルクTmcに戻され、モータアイドル制御を終了する。以上がモータアイドル制御を解除する制御抜け処理であり、復帰判定条件(a)~(g)の少なくとも一つの条件が不成立であると、復帰判定条件が成立と判断されて通常のモータアイドル制御に復帰する。
 [モータアイドル制御作用]
 まず、アイドル回転数の最適化及び低回転化を目指すモータアイドル制御の構想中、本発明車等から抽出された課題は、下記に列挙する通りである。
(1)CL2推定温度が高い領域では、低回転禁止すること。
(2)ハイ変速比での停車時は、低回転禁止すること(低回転中はメカによりロー変速比を固定すること)。
(3)平地以外では、低回転禁止すること。
(4)実ライン圧が出ていない場合は、低回転禁止すること。
(5)スタンバイ学習の影響を与えないこと。
(6)セレクト制御に影響を与えないこと。
(7)復帰時、油圧応答悪化による容量不足を生じないこと。
(8)停車中、油量収支が不足している領域では、オイルポンプ回転を上げること。
 これら(1)~(8)のそれぞれの課題に対し、以下の(1)~(8)のそれぞれにより対応したものが、本願で提案するモータアイドル制御である。
(1)CL2推定温度が所定温度以下の時、低回転化を許可する。
(2)停車時変速比が、所定変速比以上の時、低回転化を許可する。なお、低回転中は、バランス推力比を削ってセカンダリ下限圧を実現するので、メカによりロー変速比を固定することはできないが、無回転なのでストロークは無い。
(3)±数%以内は平地として、低回転化を許可する。
(4)低回転中は、実セカンダリ圧を監視し、セカンダリ下限圧に対して所定圧を下回ったら、低回転を即解除する。
(5)スタンバイ学習後(収束判定後)のみ第2モータアイドル回転数Nma2への低回転化を許可する。
(6)セレクト制御中は低回転化を禁止する。
(7)低回転中はトルクダウンを要求する。解除時も油圧復帰時間ディレイと復帰レートを温度軸で設定できるようにする。
(8)油温と指示圧に応じて、下限回転を要求する。
 次に、図3に示す制御入りタイムチャートに基づき、モータアイドル制御の制御入り作用を説明する。図3において、時刻t1は停車時刻である。時刻t2は停車確定時刻である。時刻t3はモータ回転数下げ時刻である。時刻t4はモータ回転数下げ時刻である。
 アクセル足離し減速走行から時刻t1にて停車する領域までは、クリープ以上の領域であり、時刻t1に近づくに従って目標変速比と実変速比が最ロー変速比へ移行し、最ロー変速比を保って停車する。このとき、セカンダリ指示圧とセカンダリ圧Psecとセカンダリ下限圧が最ロー変速比への移行に先行して上昇し、最ロー変速比が保たれると、セカンダリ指示圧とセカンダリ圧Psecとセカンダリ下限圧が低下する。また、ベル式無段変速機6のプライマリ回転数とセカンダリ回転数は、車速の低下に従って時刻t1に近づくに従って回転数=0(停止)する。第2クラッチ目標トルクTTCL2は、セカンダリ指示圧が上昇する間は低下し、セカンダリ指示圧が下降すると一定に保たれる。
 そして、時刻t1での停車時に、CL2スタンバイ学習が完了した状態で、制御許可領域判定条件が成立すると、セカンダリ指示圧がライン圧PLのオフセット分削られた後、第2セカンダリ下限圧Pmin2に向かって低下させる制御指令が出力される。時刻t1では、セカンダリ指示圧のPLオフセット削りに伴い、セカンダリ下限圧が第1セカンダリ下限圧Pmin1まで落とされ、第2クラッチ目標トルクTTCL2も停車前の目標トルクから落とされる。そして、時刻t1から時刻t2まで待って時刻t2にて停車が確定すると、セカンダリ下限圧が第1セカンダリ下限圧Pmin1から第2セカンダリ下限圧Pmin2まで落とされる。
 そして、時刻t3にて、低下していたセカンダリ指示圧が所定値(=第1セカンダリ下限圧Pmin1)以下になったと判断されると、時刻t1から時刻t3までの停車時モータ回転数が、モータアイドル制御での通常制御値である第1モータアイドル回転数Nma1まで所定の低下勾配にて下げられる。
 そして、時刻t3移行において、セカンダリ圧Psecの安定条件の成立判断と、モータ回転数の安定条件の成立判断が行われる。そして、セカンダリ圧Psecとモータ回転数の安定条件が共に成立する時刻t4になると、モータ回転数が第1モータアイドル回転数Nma1から、時間の経過に従って徐々に回転数が低下する低下勾配を持たせて第2モータアイドル回転数Nma2まで下げられる(矢印Aで囲まれるモータ回転数特性)。モータは回転数制御で制御されているため、回転数が下がると同時に、モータトルクも下がる。即ち、時刻t4移行がモータアイドル回転数が低下した低回転領域で、且つ、モータトルクも低下した領域になる。
 次に、図4に示す制御抜けタイムチャートに基づき、モータアイドル制御の制御抜け作用を説明する。なお、図4において、時刻t5は復帰判定条件成立時刻である。時刻t6はモータトルク復帰開始時刻である。時刻t7はモータトルク復帰終了時刻である。
 ブレーキ足離し操作とアクセル踏み込み操作とレンジ位置をDレンジからの他のレンジへのセレクト操作とのうち、何れか一つの操作を行うと復帰判定条件が成立する。例えば、ブレーキ足離し操作により時刻t5にて復帰判定条件が成立すると、セカンダリ指示圧がセカンダリ下限圧の上昇に伴い通常制御値に戻される。又、モータ回転数ダウンにより低回転化したモータ回転数(=第2モータアイドル回転数Nma2)が、許可最低回転数の上昇に伴い通常制御値(=第1モータアイドル回転数Nma1)に戻される。又、時刻t5から時刻t6までの待ち時間は、モータトルクが維持されるが、時刻t6になると、トルクダウンにより低トルク化したクリープカットトルクTmc_cutが、モータトルクを待ち時間の経過後に徐々にトルクが上昇する上昇勾配を持たせて通常制御値であるクリープトルクTmcに戻され、モータトルクが時刻t7まで高められる(矢印Bで囲まれるモータトルク特性)。即ち、ドライバ操作条件と環境条件を含む復帰判定条件(a)~(g)の少なくとも一つの条件が不成立になると、復帰判定条件が成立と判断されて通常のモータアイドル制御に復帰する。
 [モータアイドル制御の特徴作用]
 実施例1では、EVモードでの停車時、モータジェネレータ4によるクリープトルクを必要としないクリープカット条件が成立し、CL2スタンバイ学習が完了すると、モータジェネレータ4の回転数を、第1モータアイドル回転数Nma1より低い第2モータアイドル回転数Nma2まで下げる構成とした。即ち、通常制御での第1モータアイドル回転数Nma1から第2モータアイドル回転数Nma2に低下させることで、その差回転数によってモータアイドル制御中のモータ消費電力が抑えられる。このため、モータ電源である強電バッテリ21のバッテリ容量の低下が抑えられる。バッテリ容量の低下が抑えられると、横置きエンジン2によりモータジェネレータ4を駆動させて強電バッテリ21を充電するエンジン発電モードが選択される時間が、第1モータアイドル回転数Nma1による通常のモータアイドル制御時に比べて減少する。従って、EVモードでの停車中、モータジェネレータ4の消費電力が抑えられ、モード燃費が向上する。
 実施例1では、EV停車後、制御許可領域判定条件が成立し、CL2スタンバイ学習が完了した状態で、クリープカットを実施した場合に、ベルトスリップが発生しない圧力値である第2セカンダリ下限圧Pmin2を設定する。そして、第2モータアイドル回転数Nma2を、第2セカンダリ下限圧Pmin2を発生させるために必要なモータ回転数とする構成とした。即ち、第2モータアイドル回転数Nma2による低回転中は、CL2スタンバイ学習が完了したことで第2クラッチ5を介して入力されるトルクが安定することから、ベルトスリップを生じさせない第2セカンダリ下限圧Pmin2を実現するものとなる。
 実施例1では、停車状態で、かつ、FF制御により取得される第2クラッチ目標トルクTTCL2が所定値以下であるとき、クリープカット条件が成立したと判定する構成とした。例えば、フィードバック制御(FB制御)後の目標CL2トルク容量によりクリープカット条件を判定すると、FB制御において第2クラッチ5が掴み側に留まったままであると、停車時にクリープカット条件が成立しない。これに対し、クリープカット条件の成立/不成立の判定に、FF制御により取得される第2クラッチ目標トルクTTCL2を用いたことで、精度良くクリープカット条件の成立が判定される。
 実施例1では、モータを回転数制御で制御し、モータアイドル回転数を下げるのに合わせ、モータジェネレータ4のトルクが下がる構成とした。例えば、モータアイドル回転数を下げるとき、第2クラッチ5の容量が同じであれば、モータの回転数を維持するために必要なトルクも低くなり、EVモードでの停車中、モータジェネレータ4の消費電力が抑えられ、モード燃費が向上する。
 実施例1では、EVモードでの停車時にクリープカット条件が成立すると、セカンダリ指示圧を第2セカンダリ下限圧Pmin2に向かって低下させる。そして、第2セカンダリ下限圧Pmin2よりも高い第1セカンダリ下限圧Pmin1に到達したら、停車時モータ回転数を第1モータアイドル回転数Nma1まで下げる構成とした。例えば、停車時、モータ回転数を直ちに通常制御での第1モータアイドル回転数Nma1まで下げると、油量収支が不足し、ベルト滑り等を生じるおそれがある。これに対し、セカンダリ圧Psecが十分に低下したことを確認し、モータ回転数の低下を実施することで、停車後、第1モータアイドル回転数Nma1までのモータ回転数低下が、油量収支の不足を抑えて達成される。
 実施例1では、モータ回転数を低下する低下開始タイミングを、セカンダリ指示圧が第2セカンダリ下限圧Pmin2を保つ油圧安定条件が成立し、かつ、モータ回転数が第1モータアイドル回転数Nma1を保つ回転数安定条件が成立するタイミングとする構成とした。例えば、油圧安定条件と回転数安定条件の少なくとも一方の条件が不成立であるタイミングでモータ回転数の低下を開始すると、油量収支が不足し、ベルト滑り等を生じるおそれがある。これに対し、油圧安定条件と回転数安定条件の両条件が成立するタイミングでモータ回転数を低下することで、停車後、モータアイドル回転数の低下が、油量収支の不足を抑えて達成される。
 実施例1では、モータ回転数を第1モータアイドル回転数Nma1から第2モータアイドル回転数Nma2へと低下させるとき、時間の経過に従って徐々に回転数が低下する低下勾配を持たせる構成とした。例えば、第1モータアイドル回転数Nma1からステップ的に第2モータアイドル回転数Nma2へと低下させると、メインオイルポンプ14からのポンプ吐出量が急減し、実セカンダリ圧にアンダーシュートが生じるおそれがある。これに対し、モータ回転数に低下勾配を持たせることで、モータ回転数の第2モータアイドル回転数Nma2への低下が、実セカンダリ圧にアンダーシュートが生じることなく達成される。なお、低下勾配は、油圧応答を決める温度感度に依存するため、ATF油温が低油温であるほど緩やかな勾配にする等、ATF油温に応じて可変に設定するのが好ましい。
 実施例1では、モータアイドル制御からの復帰条件が成立すると、セカンダリ指示圧とモータ回転数を通常制御値に復帰させ、モータトルクを待ち時間(時刻t5~時刻t6)の経過後に徐々にトルクが上昇する上昇勾配を持たせて復帰させる構成とした。例えば、EVモードでの駆動トルクであるモータトルクを、復帰条件が成立すると直ちに高めると、モータトルク応答に対する油圧応答の遅れにより、油量収支が不足し、ベルト滑り等を生じるおそれがある。これに対し、セカンダリ圧Psecが立ち上がり復帰するのを待ち、モータトルクの傾き上昇を実施することで、モータアイドル制御からの復帰時、モータトルクの上昇が、油量収支の不足を抑えて達成される。なお、待ち時間及び上昇勾配は、油圧応答を決める温度感度に依存するため、ATF油温に応じて可変に設定するのが好ましい。
 (第2クラッチ学習補正制御処理:CL2スタンバイ学習)
 次に、第2クラッチ5における第2クラッチ油圧指令値と実際に第2クラッチ5が発生する第2クラッチトルク容量との関係を学習補正する第2クラッチ学習補正制御処理(CL2スタンバイ学習)について説明する。上述したように、WSCモードでは、第2クラッチ5をスリップ制御するため、第2クラッチ油圧指令値に対して実際に発生する第2クラッチトルク容量との関係性(以下、第2クラッチトルク容量特性と記載する。)がずれていると、適正なトルクを駆動輪に伝達することができず、所望の動力性能を得ることができない。図5は第2クラッチ油圧指令値とモータトルク値との関係を表す特性図である。尚、モータトルク値の変化特性は、第2クラッチ5がトルク容量を持っているときの第2クラッチトルク容量の変化特性と一致するため、実質的に第2クラッチ油圧指令値と第2クラッチトルク容量との関係を表すものとして以下に述べる。図5中の(C)は指令値に対して実際に発生するトルク容量の関係を表し、図5中の(A)は初期設定の特性として低めの指令値で所望のトルク容量が発生できると認識している場合の特性、図5中の(B)は初期設定の特性として高めの指令値で所望のトルク容量が発生できると認識している場合の特性を表す。また、P0は実際のゼロ点における第2クラッチ指令油圧である。
 例えば、特性(A)と認識してゼロ点に対応する指令値を出力する場合、P0よりも高い指令値を出力することとなる。そうすると、第2クラッチトルク容量が高めに発生(実際には特性(C)のため)してしまい、過剰な駆動トルクが出力される。一方、特性(B)と認識してゼロ点に対応する指令値を出力すると、P0よりも低い指令値を出力することとなる。そうすると、第2クラッチトルク容量が低め(もしくはゼロ点に到達できない)となり、応答性の悪化を招く。第2クラッチトルク容量特性は、個体差や経年変化等によってズレが生じることが想定される。第2クラッチ5がトルク容量を発生し始めるポイントであるゼロ点を適正に学習することは、発進応答性や耐久性に影響を与えるため、特に重要となる。そこで、実施例1では、ゼロ点における第2クラッチ油圧指令値を早期に演算することとした。
 第2クラッチ5のトルク容量は下記式(1)で表される。
〔式(1)〕
TCL2=μ・2N・D/2・(P・A-F)/i=μ・N・D・(P・A-F)/i
ここで、
μ:クラッチ摩擦係数
N:ドライブプレート枚数
D:第2クラッチ直径
P:第2クラッチ油圧
A:第2クラッチ油圧の受圧面積
F:リターンスプリング反力
i:遊星ギヤ比
である。
 ここで、TCL2=0となるクラッチ油圧(ゼロ点における第2クラッチ油圧)を第2ゼロ点油圧指令値P0とすると、下記式(2)で表される。
〔式(2)〕
F=P0・A
この式(2)を式(1)に代入すると、下記式(3)が得られる。
〔式(3)〕
P0=P-Tc/(μ・N・D・A/i)
 また、モータジェネレータMGの釣合式は、WSC時のモータトルクをTmgwsc、第2クラッチ5が完全解放されるニュートラル時(以下、N時と記載する。)のモータトルクをTmgnとすると、それぞれ下記式(4),(5)で表される。
〔式(4)〕
WSC時:Tmgwsc=Tfric_mg+TCL2+Tfric_op
〔式(5)〕
N時:Tmgn=Tfric_mg+Tfric_op
ここで、
Tfric_mg:モータフリクション
Tfric_op:機械式オイルポンプフリクション
である。
 上記式(4),(5)からTCL2は下記式(6)で表される。
〔式(6)〕
TCL2=Tmgwsc-Tmgn
今、WSC時の第2クラッチ油圧指令値をPwscとすると、式(6)を式(3)に代入することで下記式(7)が得られる。
〔式(7)〕
P0=Pwsc-(Tmgwsc-Tmgn)/(μ・N・D・A/i)
 ここで、(μ・N・D・A/i)=Yとすると、Yは車両諸元から求まる定数である。よって、式(7)に示すように、ゼロ点における第2ゼロ点油圧指令値P0は、WSC時の第2クラッチ油圧指令値Pwscと、このときのモータトルクTmgwscと、N時に取得したモータトルクTmgnから算出できる。言い換えると、図5の特性(C)に示すように、特性の勾配はYで定義されるため、Pwscに対応したモータトルクTmgwscによって特性が決定できる。この特性のうち、Tmgnに対応する指令値がゼロ点における第2ゼロ点油圧指令値P0となり、第2ゼロ点油圧指令値P0を瞬時に逆算できる。そこで、実施例1では、演算によりゼロ点における第2ゼロ点油圧指令値P0を算出することとした。また、モータトルク値は、例えばモータ電流値から精度よく瞬時に演算できるため、TmgwscやTmgnといったパラメータを取得する際の取得時間が短い。よって、これらパラメータを取得できる機会を増やすことができ、学習頻度を増大できる。
 図6は実施例1の第2クラッチ学習補正制御を表すフローチャートである。ステップS21では、走行レンジ(D,Rレンジ)か否かを判断し、走行レンジの時はステップS22に進み、非走行レンジ(N,Pレンジ)の時はステップS24に進む。ステップS22では、WSCモード中か否かを判断し、WSCモードのときはステップS23に進み、それ以外のときは本ステップを繰り返す。ステップS23では、第2クラッチ温度temp_wsc,Pwsc,Tmgwsc(以下、これら各情報を第1パラメータと記載する。)を取得する。
 ステップS24では、EVモード中、かつブレーキONによる車両停車中(以下、非走行レンジ時学習条件と記載する。)か否かを判断し、非走行レンジ時学習条件が成立しているときはステップS25に進み、それ以外のときは本ステップを繰り返す。ステップS25では、第2クラッチ温度temp_n,第2クラッチ5が完全解放状態でモータジェネレータMGを回転させたときのTmgn(以下、これら各情報を第2パラメータと記載する。)を取得する。
 ステップS26では、第1パラメータと第2パラメータの両方が取得済みか否かを判断し、取得済みの時はステップS27に進み、それ以外のときはステップS21に戻る。ステップS27では、temp_wscとtemp_nとの差に基づいてTmgnの補正量を算出し、Tmgnを補正する。ステップS28では、Pwscと、Tmgwscと、補正後のTmgnとに基づいて、P0を演算する。
 次に、効果を説明する。実施例1のFFハイブリッド車両の制御装置にあっては、下記に列挙する効果が得られる。
 (1) 駆動系に、エンジン2と、モータ(モータジェネレータ4)と、油圧制御による変速機(ベルト式無段変速機6)と、モータ(モータジェネレータ4)と駆動輪(左右の前輪10R,10L)との間の駆動力伝達系に介装された摩擦クラッチ(第2クラッチ5)と、を備え、ベルト式無段変速機は、両プーリ6a,6bに掛け渡されたベルト6cと、プライマリプーリ6aとセカンダリプーリ6bにベルト6cを掛け渡して構成され、プライマリプーリ圧とセカンダリプーリ圧をベルトクランプ圧とし、駆動モードとして、モータ(モータジェネレータ4)のみを駆動源とするEVモードを有し、EVモードの選択時、モータ(モータジェネレータ4)により駆動されるオイルポンプ(メインオイルポンプ14)の吐出油をクランプ圧として供給するハイブリッド車両(FFハイブリッド車両)の制御装置において、少なくともモータジェネレータ4のトルク値(モータトルク値)を含むパラメータを取得するモータコントローラ83(取得手段)、具体的には、走行レンジ選択時に、少なくともモータジェネレータMGのトルク値であるTmgwsc(第1モータトルク値)を含む第1パラメータを取得するステップS23(第1取得手段)と、非走行レンジ選択時に、少なくともモータジェネレータMGのトルク値であるTmgn(第2モータトルク値)を含む第2パラメータを取得するステップS25(第2取得手段)と、取得した前記パラメータ(第1パラメータ及び第2パラメータ)に基づき、摩擦クラッチ(第2クラッチ5)がトルク容量を発生し始めるゼロ点油圧指令値P0を演算し学習するステップS28(スタンバイ学習制御手段)と、EVモードでの停車時、モータ(モータジェネレータ4)によるクリープトルクを必要としないクリープカット条件が成立すると、モータ回転数を第1モータアイドル回転数Nma1とするモータアイドル制御手段(モータコントローラ83)を設け、モータアイドル制御手段(モータコントローラ83、図2)は、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了すると、モータ(モータジェネレータ4)の回転数を、第1モータアイドル回転数Nma1より低い第2モータアイドル回転数Nma2まで下げる。このため、EVモードでの停車中、モータ(モータジェネレータ4)の消費電力を抑え、モード燃費を向上させることができる。
 (2) モータアイドル制御手段(モータコントローラ83、図2)は、モータアイドル制御時に入力されたベルト6cが滑らないベルトクランプ圧が確保される下限ライン圧(第2セカンダリ下限圧Pmin2)を設定し、第2モータアイドル回転数Nma2を、スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了した後の入力トルクでベルト6cが滑らない下限ライン圧(第2セカンダリ下限圧Pmin2)を発生させるために必要なモータ回転数とする。このため、(1)の効果に加え、モータアイドル回転数の低回転化を達成しながら、より確実にモータアイドル制御時のベルトスリップを抑制することができる。
 (3) モータ(モータジェネレータ4)と駆動輪10L,10Rとの間の駆動力伝達系に摩擦クラッチ(第2クラッチ5)を介装し、モータアイドル制御手段(モータコントローラ83、図2)は、停車状態で、かつ、フィードフォワード制御(FF制御)により取得される摩擦クラッチ目標トルク(第2クラッチ目標トルクTTCL2)が所定値以下であるとき、クリープカット条件が成立したと判定する。このため、(1)又は(2)の効果に加え、クリープカット条件判定に摩擦クラッチ目標トルク(第2クラッチ目標トルクTTCL2)を用いたことで、クリープカット条件の成立を精度良く判定ことができる。
 (4) モータアイドル制御手段(モータコントローラ83、図2)は、モータ(モータジェネレータ4)の回転数を制御する回転数制御によって目標のモータアイドル回転数を下げる。このため、(3)の効果に加え、摩擦クラッチ(第2クラッチ5)の滑りを抑えながら、モータアイドル制御時におけるモータ(モータジェネレータ4)の消費電力を抑え、モード燃費を向上させることができる。
 (5) 変速機は、プライマリプーリ6aとセカンダリプーリ6bにベルト6cを掛け渡し、プライマリプーリ圧Ppriとセカンダリプーリ圧Psecを変速油圧とするベルト式無段変速機6であり、モータアイドル制御手段(モータコントローラ83、図2)は、EVモードでの停車時にクリープカット条件が成立すると、セカンダリ指示圧をセカンダリ下限圧(第2セカンダリ下限圧Pmin2)に向かって低下させ、セカンダリ下限圧(第2セカンダリ下限圧Pmin2)よりも高い所定値(第1セカンダリ下限圧Pmin1)に到達したら、停車時モータ回転数を第1モータアイドル回転数Nma1まで下げる。このため、(1)~(4)の効果に加え、停車後、停車時モータ回転数から第1モータアイドル回転数Nma1までのモータ回転数低下を、油量収支の不足を抑えて達成することができる。
 (6) モータアイドル制御手段(モータコントローラ83、図2)は、モータ回転数とモータトルクを低下する低下開始タイミングを、セカンダリ指示圧がセカンダリ下限圧(第2セカンダリ下限圧Pmin2)を保つ油圧安定条件が成立し、かつ、モータ回転数が第1モータアイドル回転数Nma1を保つ回転数安定条件が成立するタイミングとする。このため、(5)の効果に加え、停車後、モータアイドル回転数の低下とモータトルクの低下を、油量収支の不足を抑えて達成することができる。
 (7) モータアイドル制御手段(モータコントローラ83、図2)は、モータ回転数を第1モータアイドル回転数Nma1から第2モータアイドル回転数Nma2へと低下させるとき、時間の経過に従って徐々に回転数が低下する低下勾配を持たせる。このため、(6)の効果に加え、モータ回転数の第2モータアイドル回転数Nma2への低下を、実セカンダリ圧にアンダーシュートが生じることなく達成することができる。
 (8) モータアイドル制御手段(モータコントローラ83、図2)は、モータアイドル制御からの復帰条件が成立すると、モータ指示圧とモータ下限回転を通常制御値に復帰させ、モータトルクを待ち時間(時刻t5~時刻t6)の経過後に徐々にトルクが上昇する上昇勾配を持たせて復帰させる。このため、(5)~(7)の効果に加え、モータアイドル制御からの復帰時、モータトルクの上昇を、油量収支の不足を抑えて達成することができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、変速機として、プライマリプーリ6aとセカンダリプーリ6bにベルト6cを掛け渡し、プライマリプーリ圧Ppriとセカンダリプーリ圧Psecを変速油圧とするベルト式無段変速機6を用いる例を示した。しかし、変速機としては、複数の変速段を備えた有段変速機の例であっても良い。
 実施例1では、本発明の制御装置を、FFハイブリッド車両に適用する例を示した。しかし、本発明の制御装置は、FRハイブリッド車両に対しても適用することができる。さらに、1モータ・2クラッチの駆動形式以外であって、駆動分割機構等によりEVモードを有するハイブリッド車両にも適用することができる。要するに、駆動系に、エンジンとモータと油圧制御による変速機を備え、駆動モードとしてEVモードを有し、EVモードの選択時、モータにより駆動されるオイルポンプの吐出油に基づきライン圧を制御するハイブリッド車両であれば適用できる。

Claims (8)

  1.  駆動系に、エンジンと、モータと、油圧制御によるベルト式無段変速機と、前記モータと駆動輪との間の駆動力伝達系に介装された摩擦クラッチと、を備え、
     前記ベルト式無段変速機は、プライマリプーリとセカンダリプーリにベルトを掛け渡して構成され、プライマリプーリ圧とセカンダリプーリ圧をベルトクランプ圧とし、
     駆動モードとして、前記モータのみを駆動源とするEVモードを有し、前記EVモードの選択時、前記モータにより駆動されるオイルポンプの吐出油に基づき前記ベルトクランプ圧を制御するハイブリッド車両の制御装置において、
     少なくとも前記モータのトルク値であるモータトルク値を含むパラメータを取得する取得手段と、
     前記パラメータに基づき、前記摩擦クラッチがトルク容量を発生し始めるゼロ点油圧指令値を学習するスタンバイ学習制御手段と、
     前記EVモードでの停車時、前記モータによるクリープトルクを必要としないクリープカット条件が成立すると、モータ回転数を第1モータアイドル回転数とするモータアイドル制御手段を設け、
     前記モータアイドル制御手段は、前記スタンバイ学習制御手段によるゼロ点油圧指令値の学習が完了すると、前記モータの回転数を、前記第1モータアイドル回転数より低い第2モータアイドル回転数まで下げるハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、モータアイドル制御時に入力されたトルクで前記ベルトが滑らないベルトクランプ圧が確保される下限ライン圧を設定し、前記第2モータアイドル回転数を、前記ゼロ点油圧指令値の学習が完了した後の入力トルクで前記ベルトが滑らない前記下限ライン圧を発生させるために必要なモータ回転数とするハイブリッド車両の制御装置。
  3.  請求項1又は2に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、停車状態で、かつ、フィードフォワード制御により取得される摩擦クラッチ目標トルクが所定値以下であるとき、クリープカット条件が成立したと判定するハイブリッド車両の制御装置。
  4.  請求項3に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、前記モータの回転数を制御する回転数制御によって目標のモータアイドル回転数を下げるハイブリッド車両の制御装置。
  5.  請求項1から4までの何れか一項に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、前記EVモードでの停車時にクリープカット条件が成立すると、セカンダリ指示圧をセカンダリ下限圧に向かって低下させ、前記セカンダリ下限圧よりも高い所定値に到達したら、停車時モータ回転数を第1モータアイドル回転数まで下げるハイブリッド車両の制御装置。
  6.  請求項5に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、前記モータ回転数と前記モータトルクを低下する低下開始タイミングを、前記セカンダリ指示圧がセカンダリ下限圧を保つ油圧安定条件が成立し、かつ、前記モータ回転数が第1モータアイドル回転数を保つ回転数安定条件が成立するタイミングとするハイブリッド車両の制御装置。
  7.  請求項6に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、前記モータ回転数を第1モータアイドル回転数から第2モータアイドル回転数へと低下させるとき、時間の経過に従って徐々に回転数が低下する低下勾配を持たせるハイブリッド車両の制御装置。
  8.  請求項5から7までの何れか一項に記載されたハイブリッド車両の制御装置において、
     前記モータアイドル制御手段は、モータアイドル制御からの復帰条件が成立すると、セカンダリ指示圧とモータ回転数を通常制御値に復帰させ、モータトルクを待ち時間の経過後に徐々にトルクが上昇する上昇勾配を持たせて復帰させるハイブリッド車両の制御装置。
PCT/JP2016/053166 2015-03-17 2016-02-03 ハイブリッド車両の制御装置 WO2016147727A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177026034A KR20170120629A (ko) 2015-03-17 2016-02-03 하이브리드 차량의 제어 장치
CN201680015746.7A CN107531231B (zh) 2015-03-17 2016-02-03 混合动力车辆的控制装置
US15/558,809 US10377368B2 (en) 2015-03-17 2016-02-03 Control device for hybrid vehicle
JP2017506133A JP6420461B2 (ja) 2015-03-17 2016-02-03 ハイブリッド車両の制御装置
EP16764558.9A EP3272607B1 (en) 2015-03-17 2016-02-03 Control device for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-053973 2015-03-17
JP2015053973 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016147727A1 true WO2016147727A1 (ja) 2016-09-22

Family

ID=56920338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053166 WO2016147727A1 (ja) 2015-03-17 2016-02-03 ハイブリッド車両の制御装置

Country Status (6)

Country Link
US (1) US10377368B2 (ja)
EP (1) EP3272607B1 (ja)
JP (1) JP6420461B2 (ja)
KR (1) KR20170120629A (ja)
CN (1) CN107531231B (ja)
WO (1) WO2016147727A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101283A1 (ja) * 2016-12-02 2018-06-07 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801425B2 (en) * 2014-10-22 2020-10-13 Ge Global Sourcing Llc System and method for engine control
KR20170052095A (ko) * 2015-11-03 2017-05-12 현대자동차주식회사 배터리 제어 시스템 및 릴레이 융착 검출 방법
JP7073938B2 (ja) * 2018-06-26 2022-05-24 トヨタ自動車株式会社 ハイブリッド自動車
DE102018212358A1 (de) 2018-07-25 2020-01-30 Continental Automotive Gmbh Verfahren zum Betreiben einer Leerlaufregelvorrichtung, Leerlaufregelvorrichtung und Kraftfahrzeug
US11437898B2 (en) 2018-07-31 2022-09-06 Dana Automotive Systems Group, Llc Brushless direct current motor with dual stators
US11025133B2 (en) 2019-02-20 2021-06-01 Dana Automotive Systems Group, Llc Electric motor brake
KR102645052B1 (ko) * 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
CN111688665B (zh) * 2019-03-11 2021-06-22 上海汽车变速器有限公司 用于机电耦合双离合混合动力系统的驾驶扭矩采集方法
US11560130B2 (en) * 2020-03-20 2023-01-24 Dana Automotive Systems Group, Llc Control allocation for vehicle torque
JP7384775B2 (ja) * 2020-10-09 2023-11-21 トヨタ自動車株式会社 車両の制御装置
CN114909468B (zh) * 2021-02-07 2024-04-19 广汽埃安新能源汽车有限公司 一种车辆降挡控制方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086710A (ja) * 2010-10-21 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両のアイドル制御装置
JP2012091552A (ja) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd ハイブリッド車両のアイドル制御装置
JP2013049327A (ja) * 2011-08-30 2013-03-14 Aisin Aw Co Ltd 制御装置
WO2013077161A1 (ja) * 2011-11-25 2013-05-30 日産自動車株式会社 ハイブリッド車両の制御装置
JP2013151175A (ja) * 2012-01-24 2013-08-08 Jatco Ltd ハイブリッド車のエンジン始動制御装置
JP2014213704A (ja) * 2013-04-25 2014-11-17 日産自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541400B1 (en) * 2002-09-13 2006-08-16 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
JP3982512B2 (ja) * 2004-03-24 2007-09-26 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置及びハイブリッド駆動装置の制御方法
KR100862432B1 (ko) * 2006-12-15 2008-10-08 현대자동차주식회사 Etc가 탑재된 하이브리드 전기자동차의 엔진 토크 제어방법
JP5229571B2 (ja) * 2009-03-09 2013-07-03 本田技研工業株式会社 ハイブリッド車両及びオイルポンプ制御方法
JP2013032119A (ja) * 2011-08-02 2013-02-14 Honda Motor Co Ltd ハイブリッド駆動装置
JP2013035441A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013095260A (ja) * 2011-10-31 2013-05-20 Aisin Aw Co Ltd ハイブリッド駆動装置
JP5993357B2 (ja) * 2013-09-13 2016-09-14 ジヤトコ株式会社 車両の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086710A (ja) * 2010-10-21 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両のアイドル制御装置
JP2012091552A (ja) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd ハイブリッド車両のアイドル制御装置
JP2013049327A (ja) * 2011-08-30 2013-03-14 Aisin Aw Co Ltd 制御装置
WO2013077161A1 (ja) * 2011-11-25 2013-05-30 日産自動車株式会社 ハイブリッド車両の制御装置
JP2013151175A (ja) * 2012-01-24 2013-08-08 Jatco Ltd ハイブリッド車のエンジン始動制御装置
JP2014213704A (ja) * 2013-04-25 2014-11-17 日産自動車株式会社 ハイブリッド車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272607A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101283A1 (ja) * 2016-12-02 2018-06-07 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び制御方法

Also Published As

Publication number Publication date
EP3272607A4 (en) 2018-04-18
CN107531231A (zh) 2018-01-02
KR20170120629A (ko) 2017-10-31
JP6420461B2 (ja) 2018-11-07
EP3272607A1 (en) 2018-01-24
CN107531231B (zh) 2020-01-14
US20180072308A1 (en) 2018-03-15
US10377368B2 (en) 2019-08-13
EP3272607B1 (en) 2021-04-21
JPWO2016147727A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6420461B2 (ja) ハイブリッド車両の制御装置
RU2658614C1 (ru) Устройство рекуперативного управления скоростью транспортного средства
RU2657658C1 (ru) Устройство управления демпфированием для гибридного транспортного средства
RU2660088C1 (ru) Устройство рекуперативного управления скоростью транспортного средства
RU2623284C1 (ru) Устройство управления для электрического транспортного средства с приводом на четыре колеса
JP6706884B2 (ja) 車両のオイルポンプ駆動制御装置
EP3053796B1 (en) Hybrid vehicle control device
RU2627238C1 (ru) Устройство управления гибридного транспортного средства
JP6369210B2 (ja) ハイブリッド車両の制御装置
JP6187057B2 (ja) ハイブリッド車両の制御装置
JP6444488B2 (ja) ハイブリッド車両の制御装置
JP6194735B2 (ja) ハイブリッド車両の制御装置
JP6369209B2 (ja) ハイブリッド車両の制御装置
WO2016021018A1 (ja) 電動車両の発進制御装置
JP6295627B2 (ja) ハイブリッド車両の制御装置
JP6435968B2 (ja) 車両の制御装置
WO2015037042A1 (ja) ハイブリッド車両の制御装置
JP6488798B2 (ja) ハイブリッド車両の制御装置
WO2015037043A1 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026034

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764558

Country of ref document: EP