WO2016147265A1 - 単結晶製造装置および単結晶製造方法 - Google Patents
単結晶製造装置および単結晶製造方法 Download PDFInfo
- Publication number
- WO2016147265A1 WO2016147265A1 PCT/JP2015/057540 JP2015057540W WO2016147265A1 WO 2016147265 A1 WO2016147265 A1 WO 2016147265A1 JP 2015057540 W JP2015057540 W JP 2015057540W WO 2016147265 A1 WO2016147265 A1 WO 2016147265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- single crystal
- infrared
- seed crystal
- melting zone
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
- C30B13/22—Heating of the molten zone by irradiation or electric discharge
- C30B13/24—Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
- C30B13/22—Heating of the molten zone by irradiation or electric discharge
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/28—Controlling or regulating
- C30B13/285—Crystal holders, e.g. chucks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/32—Mechanisms for moving either the charge or the heater
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/66—Crystals of complex geometrical shape, e.g. tubes, cylinders
Definitions
- the present invention relates to a single crystal manufacturing apparatus and a single crystal manufacturing method, and more particularly to an apparatus and a method for manufacturing a single crystal by melting a raw material using infrared rays.
- a melting zone method (floating zone method) using concentrated heating by an infrared lamp is known (for example, Patent Document 1).
- an infrared lamp is arranged at one focal point of the spheroid mirror.
- a rod-shaped raw material is arranged at the other focal point.
- a rod-shaped raw material is disposed in the top-to-bottom direction (hereinafter also referred to as “upward”)
- a rod-shaped seed crystal is disposed in the top-and-bottom direction (hereinafter also referred to as “downward”).
- the raw material and the seed crystal are brought close to each other.
- a single crystal is grown by forming a melting zone using infrared rays irradiated by an infrared lamp and cooling the melting zone. In this method, since a relatively inexpensive infrared lamp is used and a crucible is not used in spite of the single crystal manufacturing apparatus, the manufacturing cost of the single crystal can be reduced.
- Patent Documents 2 and 3 It is suggested in Patent Documents 2 and 3 that the method is changed from heating by an infrared lamp to heating by a laser.
- Patent Document 2 spot heating is performed on a raw material by laser light while the raw material is heated by an infrared lamp.
- Patent Document 3 specializing in heating with a laser describes that although the raw material is completely melted in the condensing portion by the infrared lamp, the temperature is lowered around the material, and thus partial melting occurs. . For this reason, it is described that a portion where a solid portion and a liquid portion coexist in a raw material is generated, and the portion expands during the manufacturing process of the single crystal, so that the shape and size of the single crystal are not stable (Patent Literature). 3 [0005]). By heating with laser light, the melting zone is kept at a high temperature and the solid part other than the melting zone is kept sufficiently low, the partial melting is reduced, and the dripping from the melting zone to the solidifying single crystal. (Patent Document 3 [0020] [0063]).
- spot heating with laser light in the melting zone method can make the temperature gradient at the solid-liquid interface steep, and the melting zone does not need to be inadvertently lengthened. The risk of ruining the seed crystal due to dripping of the melting zone is also reduced.
- the present invention uses an infrared ray and does not use a crucible to significantly reduce the production cost of a single crystal, and even if the raw material is melted using infrared rays, the molten raw material does not sag on the seed crystal. It is an object of the present invention to propose a single crystal manufacturing apparatus and a single crystal manufacturing method capable of easily manufacturing a single crystal of good quality.
- Patent Documents 2 and 3 The reason for introducing the laser beam is that spot heating can be performed on the raw material.
- the reason for performing spot heating on the raw material is to clarify the solid-liquid interface, which is the boundary between the melting zone and the solid portion, and to reduce the portion where dripping or partial melting occurs. If this sag extends to the seed crystal disposed below, the seed crystal is spoiled. Therefore, Patent Documents 2 and 3 introduce a laser light source so as to make the temperature gradient of the solid-liquid interface as steep as possible.
- the present inventor paid attention to the arrangement of the raw material and the seed crystal in the single crystal production apparatus by the conventional melting zone method.
- the raw material and the seed crystal in the single crystal manufacturing apparatus are arranged in the vertical direction.
- the inventor reverses this arrangement, arranges the seed crystal at the top position in the top and bottom direction, and places the raw material at the top position in the top and bottom direction, and the droop from the melting zone may extend to the seed crystal.
- the melting zone may be expanded or lengthened to some extent as long as the possibility of drooping from the melting zone extending to the seed crystal can be completely eliminated. As a result, it is not necessary to make the temperature gradient at the solid-liquid interface steep.
- the present inventor who has focused on this point is quite easily reversible while using the melt zone method by relaxing the temperature gradient between the melt zone and the solid portion in the raw material, contrary to the conventional idea. It was also found as a preferable example of the present invention that a simple single crystal can be produced.
- the first aspect of the present invention is: The raw material gripping portion and the seed crystal gripping portion are arranged in the vertical direction, and are brought close to each other, thereby bringing the raw material gripped by the raw material gripping portion and the seed crystal gripped by the seed crystal gripping portion close to each other.
- the heating unit has infrared generation means,
- the seed crystal gripping part is disposed at a top position in the top and bottom direction, and the raw material gripping part is disposed at a ground position in the top and bottom direction.
- At least a part of the raw material gripped by the raw material gripping part can be surrounded in the horizontal direction, and the infrared rays generated from the infrared ray generating means and irradiated on the raw material are transmitted from the molten portion of the raw material in the vertical direction. It has an infrared shielding part that can moderate the temperature gradient of the raw material by shielding in a stepwise direction.
- a plurality of cutouts are formed in the top end of the infrared shielding portion in the top-to-bottom direction, and the notches are formed when the infrared shielding portion is viewed from the top in the top-to-bottom direction. It is formed in the position which becomes symmetrical centering on.
- the heating unit has a plurality of the infrared generation means and a plurality of spheroid mirrors as the reflection means, and the spheroid mirror has a common focus, and the other focus is the common focus.
- the infrared ray generating means is disposed at the other focal point.
- the raw material gripping portion has a shape that can be engaged with a pellet-shaped raw material
- the seed crystal gripping portion has a shape that can grip a rod-shaped seed crystal
- the raw material gripping part is free to grip a raw material having a columnar shape and a diameter of 10 mm or more,
- the diameter of the manufactured single crystal is 1 mm or more.
- the seventh aspect of the present invention is in the single crystal manufacturing method of manufacturing the single crystal by forming the melting zone after arranging the raw material and the seed crystal in the vertical direction and cooling the melting zone,
- This is a method for producing a single crystal in which a seed crystal is arranged at a top position in the top and bottom direction, a raw material is placed at a top position in the top and bottom direction, and the raw material is melted by irradiation with infrared rays.
- Patent Document 1 describes a shield that surrounds a “seed crystal” in the horizontal direction. This is provided so as not to melt the seed crystal and to make the temperature gradient of the solid-liquid interface in the raw material steep.
- the “infrared control plate” in the “infrared shielding part” described in the embodiments described later surrounds at least a part of the “raw material” in the horizontal direction.
- the infrared shielding part in this invention is for relieving the temperature gradient of the raw material from the fusion
- Patent Document 3 using heating specialized for laser light describes that the raw material may be disposed below and the seed crystal may be disposed above.
- the effect of the invention is achieved by using laser light instead of an infrared lamp.
- an infrared lamp it is described that when an infrared lamp is used, sagging occurs in the seed crystal (conventional example described in [0064] of Patent Document 3).
- the size of the light condensing region is significantly different between the laser light source and the infrared lamp. Therefore, in the technique described in Patent Document 3, it is difficult to change the laser beam to infrared rays to form a melting zone.
- Patent Document 3 it is impossible for those skilled in the art to apply the method of Patent Document 3 to a method using infrared rays as in the present invention.
- the suggestion that “if the raw material is disposed below and the seed crystal is disposed above can eliminate the problem of dripping onto the seed crystal without using laser light” is also disclosed in Patent Document 3. Does not exist. Moreover, even if it is literatures other than patent document 3, there is no literature which described the said content and described having embodied it.
- Patent Documents 2 and 3 solve the problem of dripping onto the seed crystal by using laser light. With respect to the problems that have been solved, no patent document discloses the motive for disposing the raw material downward and the seed crystal upward as in the present invention.
- the manufacturing cost is remarkably reduced, and even if the raw materials are melted using infrared rays, the molten raw material does not sag on the seed crystal, and relatively A high-quality single crystal can be easily manufactured.
- FIG. 1 It is a schematic sectional drawing of the single crystal manufacturing apparatus in this embodiment. It is a schematic plan view of the inside of the single crystal manufacturing apparatus in this embodiment. It is explanatory drawing of the raw material holder in this embodiment, (a) is the schematic at the time of mounting the raw material holder which hold
- FIG. 6 is a schematic cross-sectional view of an infrared shielding part taken along line XY in FIG. 5. It is the flowchart which showed the procedure of the single crystal manufacturing method in this embodiment. It is a schematic sectional drawing which shows the mode of the single crystal growth process in the single crystal manufacturing method of this embodiment, (a) is a schematic sectional drawing at the time of arrange
- a known structure for example, a structure described in Patent Documents 1 to 3 in a technique related to a single crystal manufacturing apparatus by the melting zone method and the method may be adopted as appropriate.
- FIG. 1 is a schematic cross-sectional view of a single crystal manufacturing apparatus 1 in the present embodiment.
- FIG. 2 is a schematic plan view of the inside of the single crystal manufacturing apparatus 1 in the present embodiment.
- the single crystal manufacturing apparatus 1 in the present embodiment mainly has the following configuration.
- ⁇ Raw material gripper 2 that is movable in the vertical direction and rotatable about the vertical direction as the central axis -Seed crystal gripping part 3 that is movable in the vertical direction and rotatable about the vertical direction as a central axis
- the heating unit 4 that heats the raw material M gripped by the raw material gripping unit 2 to melt the raw material M
- Infrared shielding part 5 that can moderate the temperature gradient of the raw material M from the melted part of the raw material M toward the top and bottom.
- a crystal growth furnace for growing a single crystal is sealed with a quartz core tube 11, and the lower shaft flange 12 and the upper shaft flange 13 together with the growth atmosphere in the furnace are isolated from the outside.
- An atmosphere having an appropriate composition can be introduced into the furnace from the atmosphere introduction port 14 and discharged from the atmosphere discharge port 15 to keep the atmosphere components and pressure in the furnace appropriately.
- Raw material gripping part 2 The raw material gripping part 2 in the present embodiment has a configuration in which the raw material M can be gripped.
- “gripping a raw material” means that the raw material M is firmly held as the name implies, and is completely different from simply storing the raw material M in a crucible. Therefore, the expression “raw material gripping part” uniquely derives from not using a crucible.
- the raw material gripping portion 2 is arranged at the position of the ground in the vertical direction. By doing so, the possibility that the sag from the melting zone Ml extends to the seed crystal S can be completely eliminated.
- the melting zone Ml may be expanded or lengthened to some extent. As a result, it is not necessary to make the temperature gradient at the solid-liquid interface steep.
- a configuration infrared shielding part 5
- the present embodiment is also characterized in that a pellet-shaped raw material M is used as the raw material M.
- the raw material gripping portion 2 has a shape that can be engaged with the pellet-shaped raw material M.
- the raw material gripping part 2 of the present embodiment includes a “raw material holder 21” for gripping the raw material M, and a “lower shaft 22” that serves as a rotation axis and a vertical movement axis of the raw material holder 21.
- FIG. 3A and 3B are explanatory views of the raw material holder 21 in the present embodiment, where FIG. 3A is a schematic view when the raw material holder 21 holding the raw material M is placed on a horizontal base, and FIG. 3 is a schematic cross-sectional view of a raw material holder 21.
- FIG. 3A is a schematic view when the raw material holder 21 holding the raw material M is placed on a horizontal base
- FIG. 3 is a schematic cross-sectional view of a raw material holder 21.
- the pellet-shaped raw material M is placed on the raw material stand 211, and the pellet-shaped raw material M is sandwiched between the ceramic clamps 213 provided in the holder 212, and the raw material M is fixed. To do.
- the clamp 213 is fastened with a screw 214 like the holder 212. And the clamped material 213 pinches
- it may be suspended with a metal having a high melting point and corrosion resistance, such as platinum and an alloy containing platinum.
- the raw material M and the holder 212 may be easily fixed on the same axis by sandwiching a washer 215 made of a refractory material between the raw material M and the holder 212.
- the holder 212 is fixed to the lower shaft 22 through the fixing tool 216.
- rod-shaped raw material M is used as raw material M.
- the production of the rod-shaped raw material M itself requires a considerable skill level.
- the rod-shaped raw material M itself becomes expensive.
- the user of the single crystal manufacturing apparatus 1 is forced to purchase an expensive rod-shaped raw material M, and the single crystal manufacturing apparatus 1 is inexpensive. The effect will fade.
- the raw material gripping portion 2 (more specifically, the raw material holder 21, more specifically, the raw material table 211) has a shape that can be engaged with the pellet-shaped raw material M.
- pellet shape refers to a substantially cylindrical lump unlike a long rod-like shape.
- the pellet-shaped raw material M is preferably a columnar raw material M having a diameter of 10 mm to 50 mm and a height of 10 mm to 100 mm.
- gripping part 2 also has a shape which can hold
- the present invention is not limited to the diameter and the height, and the raw material is not a pellet, but a rod-shaped raw material (for example, 20 mm in diameter and 200 mm in length) formed for the melting zone method is used. It doesn't matter.
- the raw material holder 21 of the single crystal manufacturing apparatus 1 according to the present invention is not limited to a shape that can be engaged with the pellet-shaped raw material M, but has a shape that allows the rod-shaped raw material M to be gripped as in the prior art. Of course you don't mind. However, as described above, the raw material holder 21 of the present invention is completely different from the crucible.
- engagement refers to a relationship in which the raw material M is fixed by a combination of the shape of the raw material holder 21 and the shape of the raw material M.
- the specific shape of the raw material holder 21 is not limited to the above-described configuration, and any material shape can be used as long as the raw material M can be gripped.
- the conventional raw material holder 21 may be used.
- the raw material holder 21 may be configured to fit the pellet-shaped raw material M (for example, a cap-shaped gripping portion).
- the cap-shaped raw material holder 21 can be employed.
- FIG. 4 is a diagram illustrating an example of the engagement between the raw material gripping portion 2 and the raw material M.
- a male screw is provided at the bottom of the pellet-shaped raw material M.
- the lower portion of the pellet-shaped raw material M may be processed into a male screw shape, or another male screw member may be fixed to the lower portion of the raw material M.
- the “raw material” refers to “a raw material to which the other male screw member is fixed”.
- an internal thread is provided in the upper part (raw material stand 211) of the raw material holder 21.
- the raw material M can be easily fixed to the raw material table 211 by screwing the pellet-shaped raw material M into the raw material holder 21. This is also a fixing method that is very difficult with the rod-shaped raw material M, and is possible because the raw material M is formed into a pellet.
- a female screw is provided below the pellet-shaped raw material M, and a male screw is provided on the raw material table 211.
- the raw material table 211 may be processed into a male screw shape, or another male screw member may be fixed to the raw material table 211.
- said example is an example when the raw material holder 21 employ
- the raw material M may be fixed by fixing the raw material stand 211 and the raw material M with a refractory material cement, for example.
- a known material may be used for the material holder 21.
- a refractory material may be used.
- alumina, zirconia, silica, or a mixture thereof may be used.
- the raw material gripping part 2 has a configuration that is movable in the vertical direction and rotatable about the vertical direction as a central axis.
- the lower shaft 22 is the central axis.
- gripping part 2 is abbreviate
- the seed crystal gripping portion 3 in the present embodiment has a configuration that allows the seed crystal S to be gripped, and includes, for example, a seed crystal holder 31 and an upper shaft 32.
- the seed crystal gripping part 3 may adopt a known configuration.
- one of the major features in the present embodiment is that the seed crystal gripping part 3 is disposed at the top position in the vertical direction in correspondence with the raw material gripping section 2 being disposed at the top position in the vertical direction. There is in being. By doing so, the possibility that the sag from the melting zone Ml extends to the seed crystal S can be completely eliminated.
- the shape of the seed crystal S in the present embodiment may be arbitrary as long as it can finally produce a high-quality single crystal.
- a case where a rod-shaped seed crystal S is used as in the conventional case will be described.
- a single crystal is preferable as the crystal structure of the seed crystal S, but when a single crystal is not available, a ceramic having the same quality as the raw material or a single crystal having a composition and crystal structure similar to the target single crystal is used. It doesn't matter.
- the seed crystal gripping part 3 also has a configuration that is movable in the vertical direction and is rotatable about the vertical direction.
- illustration of the drive source which drives the seed crystal holding part 3 is abbreviate
- both the raw material gripping part 2 and the seed crystal gripping part 3 are movable in the vertical direction and are rotatable around the vertical direction.
- either the raw material gripping part 2 or the seed crystal gripping part 3 may be configured to be movable in the vertical direction.
- the raw material gripping part 2 and the seed crystal gripping part 3 are movable in the vertical direction.
- both may not be rotatable about the top-and-bottom direction as a central axis, but both preferably have a rotatable configuration in order to produce a high-quality single crystal without defects.
- the heating unit 4 in the present embodiment includes infrared generation means 41a to 41d, and has a function of heating the raw material M gripped by the raw material gripping unit 2 to melt the raw material M.
- the heating unit 4 in the present embodiment also has reflecting means 42a to 42d for reflecting infrared rays to the raw material M to improve the irradiation efficiency.
- the spheroid mirrors 42a and 42b as the reflecting means 42 have a common focal point F0.
- the spheroid mirror 42a has a focal point F1 above the focal point F0.
- the spheroid mirror 42b has a focal point F2 above the focal point F0.
- 41a and 41b of the infrared ray generating means 41a to 41d and 42a and 42b of the spheroid mirrors 42a to 42d as examples.
- infrared generation means 41 and spheroid mirror 42 when collectively referred to, they are referred to as infrared generation means 41 and spheroid mirror 42.
- Infrared light generating means 41a and 41b are disposed at the focal points F1 and F2, respectively.
- the infrared heating generating means itself may adopt a known configuration. For example, a halogen lamp, a xenon arc lamp, or a combination thereof may be used.
- a common focal point F0 of the spheroid mirror 42 becomes a heated portion, and a configuration is adopted in which a melting zone Ml formed by contacting the melted raw material M and the seed crystal S is arranged in the heated portion. . Then, the melting zone Ml is cooled by separating the raw material gripping part 2 and the seed crystal gripping part 3 from each other so that the melting zone Ml deviates from the heated portion, and a single crystal is grown.
- the infrared ray generating means 41 is arranged at the top position (upward) in the top and bottom direction from the melting zone Ml. In other words, by configuring the infrared ray generating means 41 and the spheroid mirror 42 so that each infrared ray generating means 41 is disposed above the common focal point F0 of each spheroid mirror 42, the following effects can be obtained. Play.
- the lower end of the raw material M and the seed crystal S are brought into contact with each other, and the melting zone Ml is formed by heating using infrared rays. At this time, the seed crystal S is also melted. Thereafter, while increasing the distance between the raw material M and the seed crystal S, the melting zone Ml is shifted from the infrared condensing part (F0) to cool it. However, a portion that grows from the melting zone Ml to a single crystal (hereinafter referred to as “growth portion Mc”) is sometimes referred to as “Mc” because the raw material gripping portion 2 is disposed below. ) To move upward, the raw material gripping part 2 and the seed crystal gripping part 3 are moved relative to each other.
- the infrared ray generating means 41 is arranged at the horizontal position of the melting zone Ml, when the growth portion Mc moves upward, the growth portion Mc easily deviates from the region where the infrared rays concentrate, and the growth portion Mc It will be cooled at once. Then, the temperature gradient becomes steep in the growth of the single crystal. However, if the infrared generation means 41 is arranged above the melting zone Ml as in the present embodiment, even if the growth portion Mc moves upward, the infrared generation means 41 is also above, so that the growth portion Mc is somewhat. Continue to be heated. For this reason, the temperature gradient becomes gentle during the growth of the single crystal. Hereinafter, the effectiveness of relaxing the temperature gradient will be described.
- Patent Documents 1 to 3 unless the temperature gradient is steep, the melting zone Ml expands or becomes long and the seed crystal S droops. . For this reason, taking into account the difficulty in manufacturing, there is a situation in which a steep temperature gradient has to be provided inside the raw material M. The reason why laser light is employed in Patent Documents 2 and 3 is also due to such circumstances.
- the temperature gradient inside the raw material M can be relaxed, and the melting zone Ml in the raw material M can be appropriately maintained.
- a specific configuration for relaxing the temperature gradient is the arrangement of the infrared generation means 41 as described above. In this way, the growth portion Mc can be heated to some extent, in other words, it can be cooled mildly. As a result, the temperature gradient inside the raw material M can be relaxed, and the melting zone Ml in the raw material M can be maintained appropriately. As a result, it becomes possible to produce a high-quality single crystal.
- Patent Document 3 it is described that the raw material M is irradiated obliquely with a laser beam. However, this laser light irradiation is described as a modification of making the temperature gradient in the raw material M steep, and “cooling the raw material M mildly to loosen the temperature gradient” as in this embodiment. Is the exact opposite. Therefore, from the contents of Patent Document 3 specialized for laser light, “arranging the infrared ray generating means 41 at a celestial position in the vertical direction with respect to the melting zone Ml” is an item that cannot be easily conceived.
- the infrared ray generating means 41 is preferably arranged at a position 15 to 45 degrees above the horizontal direction of the melting zone Ml of the raw material M. If it is 15 degrees or more, when the single crystal grows while the melting zone Ml moves upward, the melting zone Ml can be continuously heated to some extent, and the temperature gradient becomes gentle. As a result, the generation of crystal interfaces and low-angle grain boundaries is suppressed, and crystallinity is improved. If it is 45 degrees or less, it becomes possible to concentrate infrared rays moderately with respect to the melting zone Ml, and it is possible to appropriately form and maintain the melting zone Ml. More preferably, the infrared ray generating means 41 is arranged at a position 30 to 45 degrees above. This is because the generation of crystal interfaces and small-angle grain boundaries can be almost completely suppressed when the angle is 30 degrees or more.
- FIG. 2 which is a schematic plan view of the inside of the single crystal manufacturing apparatus 1 in the present embodiment
- four spheroid mirrors 42a to 42d are provided as the reflecting means 42.
- the infrared generation means 41 corresponding to each spheroid mirror 42 is disposed at the top position in the top direction of the melting zone Ml and at one (upward) focal position of the spheroid mirror 42.
- the other (lower) focal position is the melting zone Ml.
- four spheroid mirrors 42 and infrared generation means 41 are provided, but of course other numbers of spheroid mirrors 42 and infrared generation means 41 may be provided.
- a laser light generating means may be provided below the spheroid mirror 42.
- the raw material M may be irradiated with laser light in addition to infrared rays by the laser light generating means.
- the solid phase deposited in the melting zone Ml is irradiated with laser light in a concentrated manner, so that the raw material M is partially heated, and the solid phase is applied to the melting zone Ml. It can be dissolved again. Thereby, stable single crystal growth is possible.
- the laser light generating means may be arranged with an inclination angle toward the melting zone Ml, similarly to the spheroid mirror 42.
- the laser light generating means a structure capable of arbitrarily controlling the vertical and horizontal and tilt angles may be employed.
- the apparatus provided with the laser light generating means is expensive, basically, only the infrared generating means 41 is provided, and the single crystal manufacturing apparatus 1 that can be equipped with the laser light generating means as an option is provided. It is preferable.
- an infrared shielding unit 5 is provided as a more preferable configuration.
- the infrared shielding part 5 in the present embodiment has a configuration in which at least a part of the raw material M gripped by the raw material gripping part 2 can be surrounded in the horizontal direction.
- a notch 53 is provided at the upper end of a cylindrical infrared control plate 51 that shields the irradiated infrared rays.
- FIG. 5 is a schematic view of the infrared shielding unit 5 in the present embodiment, where (a) is a plan view and (b) is a side view.
- FIG. 6 is a schematic cross-sectional view of the infrared shielding unit 5 taken along line XY of FIG.
- a plurality of cutouts 53 are formed at the top of the infrared control plate 51 on the top side in the top-to-bottom direction.
- the cutout 53 is formed at a position that is symmetric with respect to the raw material gripping portion 2 when the infrared control plate 51 is viewed from the top direction. More specifically, four cutouts 53 are provided at equal intervals on the upper end of the infrared control plate 51 that has a donut shape in plan view. This is also in order to make the crystal growth environment as a rotation target as much as possible.
- the exposed area of the raw material M can be reduced stepwise. As a result, the temperature gradient of the raw material M can be relaxed downward from the melted portion of the raw material M.
- the raw material M is disposed above and the seed crystal S is disposed below. For this reason, it has been unavoidable that the drooping from the melting zone Ml extends to the seed crystal S, and the improvement has to be continued.
- the technical idea of the present invention is to reverse such an idea and arrange the seed crystal S upward and the raw material M downward. Without the technical idea of the present invention, it is difficult to come up with the idea of relaxing the temperature gradient of the raw material M.
- the effect brought about by the 1-D) heating unit 4 described above relates to the vicinity (growth portion Mc) of the portion in contact with the upper seed crystal S in the melting zone Ml of the pellet-shaped raw material M. That is, by making the temperature gradient in the vicinity mild, there is an effect that the quality of the single crystal grown from the growth portion Mc is improved.
- 1-E) The effect brought about by the infrared shielding part 5 is that the temperature gradient of the raw material M is relaxed downward from the melted portion of the raw material M, rather than the quality of the single crystal. The main effect is to eliminate defects during the process.
- the temperature gradient of the raw material M is extremely large from the melting part of the raw material M downward, a temperature difference is excessively generated between the melting zone Ml and the solid part Ms, and a solid phase is precipitated in the melting zone Ml. Is also possible. In a worse case, the raw material M of the solid part Ms may be cracked. Therefore, it is preferable to provide the notch 53 in the infrared control plate 51 so as to gradually reduce the exposed area of the raw material M, rather than simply providing the infrared control plate 51.
- the infrared control plate 51 without the notch 53 is used, even if the infrared rays can be shielded from the raw material M, heat is likely to be generated between the raw material M and the infrared control plate 51. An excessive temperature difference may occur between the inner wall on the raw material M side and the outer wall on the opposite side. As a result, not only the solid part Ms of the raw material M but also the possibility that the infrared control plate 51 which is a member of the single crystal manufacturing apparatus 1 is damaged cannot be denied.
- the infrared control plate 51 by providing a cutout 53 in the infrared control plate 51, it is possible to release heat between the raw material M and the infrared control plate 51. As a result, the temperature difference between the inner wall and the outer wall of the infrared control plate 51 can be reduced. Of course, the temperature difference between the melting zone Ml and the solid part Ms can also be reduced.
- the single crystal manufacturing apparatus 1 is spreading not only in Japan but also overseas including China.
- the width of the cutout 53 (the length in the horizontal direction) may be any value as long as the effects of the present invention can be achieved. However, it is preferable to open a width (for example, 2 mm to 3 mm) in which the positional relationship and shape between the raw material M and the melting zone Ml can be observed.
- the height (length in the vertical direction) of the notch 53 may be any value as long as the effects of the present invention can be achieved. However, if the height of the notch 53 is too small, a temperature gradient substantially similar to that in the case where the notch 53 does not exist is generated. Therefore, the height of the notch 53 is preferably 1 mm to 20 mm, and more preferably 5 mm to 10 mm.
- the number of the notches 53 may be any number as long as the effects of the present invention can be obtained.
- the notch 53 not ⁇ 4.
- An infrared shielding part 5 in which a plurality of holes as shown in ⁇ Modified Example> is formed may be adopted.
- a taper 54 or a roundness may be formed on the outer side of the upper end of the infrared control plate 51 (when the side facing the raw material M is the inner side, the side facing it).
- the heating light from the lower part of the spheroid mirror 42 is shielded by the infrared control plate 51, but by forming the taper 54 or roundness, the infrared light reflected by the spheroid mirror 42 is reflected. Loss can be reduced and infrared rays emitted from the infrared ray generating means 41 can be used efficiently.
- the infrared shielding part 5 has a structure that can move in the vertical direction relative to the raw material gripping part 2. The reason for adopting this configuration is as follows.
- the pellet-shaped raw material M gripped by the raw material gripping portion 2 is melted by the heating portion 4 to form a melting zone Ml.
- the single crystal Mc grows from the melting zone Ml by moving both so that the distance between the raw material gripping part 2 and the seed crystal gripping part 3 is increased. Since the single crystal Mc grows one after another, the solid portion Ms of the raw material M gradually decreases. Then, the height of the raw material M in the vertical direction gradually decreases. If the infrared shielding part 5 cannot move relative to the raw material gripping part 2, when the growth of the single crystal Mc proceeds, the raw material M is completely hidden by the infrared control plate 51 and the raw material M is melted. It becomes impossible to do. Therefore, the infrared shielding part 5 has a configuration that can move relative to the raw material gripping part 2.
- having this configuration makes it possible to adjust the amount of infrared rays applied to the raw material M.
- the size of the appropriate melting zone Ml may change.
- the infrared shielding part 5 capable of relative movement as described above, the amount of infrared radiation applied to the raw material M can be adjusted as appropriate, and an appropriate size of the melting zone Ml can be realized.
- FIG. 6 is a schematic cross-sectional view of the infrared shielding unit 5 taken along line XY of FIG.
- an interval [(D2-D1) / 2] is provided between the pellet-shaped raw material M and the infrared control plate 51. If this interval is too large, infrared rays to be shielded will enter from the interval, and the side surface of the solid portion Ms that should not be melted will be melted by heating. If so, it becomes difficult to maintain the melting zone Ml. On the other hand, if this interval is too small, it is difficult to install the raw material M and the infrared control plate 51 in the first place. It is also conceivable that the melting zone Ml during crystal growth interferes with the infrared control plate 51.
- the preferable interval [(D2-D1) / 2] is 1 mm to 20 mm, preferably 2 mm to 16 mm, more preferably 2 mm to 10 mm. However, the present invention is not limited to this.
- the infrared shielding part 5 is not necessarily required. Even when the infrared shielding part 5 is not provided, the effect brought about by arranging the seed crystal gripping part 3 on the upper side and the raw material gripping part 2 on the lower side is not inferior.
- the restriction by the conventional melting zone method can be lifted by disposing the seed crystal gripping part 3 above and the raw material gripping part 2 below. Since the folding angle and the restriction are removed, it is extremely preferable to adopt a configuration in which the temperature gradient is gentle. That is, it is extremely preferable to provide the single crystal manufacturing apparatus 1 with the infrared shielding part 5 in the present embodiment. This can also be said to arrange the infrared ray generating means 41 at the top position in the vertical direction with respect to the melting zone Ml.
- FIG. 7 is a flowchart showing the procedure of the single crystal manufacturing method in the present embodiment.
- the contents of the following steps are ⁇ 1.
- the techniques described in Patent Documents 1 to 3 and known techniques may be adopted as appropriate.
- each component necessary for the single crystal manufacturing apparatus 1 is described in ⁇ 1. Arrangement as described in the single crystal manufacturing apparatus 1>. Further, the pellet-shaped raw material M is engaged with the raw material gripping portion 2 provided below, and the rod-shaped seed crystal S is gripped by the seed crystal gripping portion 3 provided above. That is, the raw material M and the seed crystal S are arranged to face each other. Then, by bringing the raw material gripping part 2 and the seed crystal gripping part 3 close to each other, the raw material M gripped by the raw material gripping part 2 and the seed crystal S gripped by the seed crystal gripping part 3 are brought close to each other.
- the infrared control plate 51 in which the notch 53 is formed is also moved upward together therewith.
- the ascending speed of the infrared shielding part 5 does not need to coincide with the ascending speed of the lower shaft 22 of the raw material gripping part 2.
- the rising speed of the infrared shielding part 5 may be adjusted while adjusting so that the melting zone Ml does not expand excessively and does not become too long.
- the single-crystal manufacturing apparatus 1 you may control the vertical movement of the seed crystal holding part 3, the raw material holding part 2, and the infrared shielding part 5, and those speeds by a control part (not shown).
- the operator of the single crystal manufacturing apparatus 1 sends an instruction to the control unit by an operation unit (not shown) while observing the state of the melting zone Ml from the notch 53 of the infrared control plate 51.
- the vertical movement of the seed crystal gripping part 3, the raw material gripping part 2 and the infrared shielding part 5 and the speed thereof may be adjusted.
- the growth part Mc in the melting zone Ml is cooled, and for example, a large-diameter single crystal having a diameter of 1 mm or more (preferably 50 mm or more) can be formed. Then, when a predetermined amount of single crystal is formed, the production of the single crystal is completed while appropriately performing necessary work.
- FIG. 8 is a schematic cross-sectional view showing the state of the single crystal growth step in the single crystal manufacturing method of the present embodiment, and (a) is a schematic cross-sectional view when the infrared ray generating means 41 is arranged at the horizontal position of the melting zone Ml. (B) is a schematic cross-sectional view when the infrared ray generating means 41 is disposed above the melting zone Ml.
- the spheroid mirror 42 is arranged horizontally as shown in FIG. In that case, most of the infrared rays are blocked by the infrared control plate 51. Even if the notch 53 is provided in the infrared control plate 51, a significant decrease in the amount of infrared irradiation is unavoidable. This is a new problem found by the present inventors.
- the melting zone method using an infrared lamp has a problem that “dripping from the melting zone M1” may occur.
- spot heating with laser light has been performed.
- the seed crystal S is arranged at the celestial position in the vertical direction
- the raw material M is arranged at the celestial position in the vertical direction
- the dripping from the melting zone Ml is the seed crystal S. The possibility of extending to the distance can be completely eliminated.
- the method of the present embodiment it is possible to remove the restrictions in the conventional melting zone method. For example, if it is possible to completely eliminate the possibility that the sag from the melting zone Ml extends to the seed crystal S, the melting zone Ml may be expanded or lengthened to some extent. As a result, it is not necessary to make the temperature gradient at the solid-liquid interface steep. As a result, it is possible to adopt the above preferred form. As an example, by relaxing the temperature gradient between the melting zone Ml and the solid portion Ms in the raw material M, a high-quality single crystal can be manufactured relatively easily while using the melting zone method. In other words, this embodiment is a bridge guard for adopting the various preferred examples listed above.
- this embodiment can contribute to the research on the physical properties of single crystals and the development of new single crystal products.
- the manufacturing cost of the single crystal is remarkably reduced, and even if the raw material M is melted using infrared rays, Since M does not sag on the seed crystal S, a relatively good quality single crystal can be easily manufactured.
- the infrared control plate 51 has two parts, a part where the notch 53 is provided and a part where the notch 53 is not provided. That is, the temperature gradient is relaxed between the part where the raw material M is completely exposed and the part where the raw material M is completely surrounded by the infrared control plate 51 in one stage.
- the temperature gradient may be relaxed in two or more stages.
- a relatively large notch 53 may be provided at the upper end of the infrared control plate 51 and a relatively small notch 53 may be provided below the notch 53.
- a hole may be provided instead of the notch 53.
- a process of providing a horizontal slit above the infrared control plate 51 (first stage) and reducing the number of slits below (second stage) may be performed.
- holes may be provided instead of slits.
- the size, number, and shape of the holes may be appropriately changed as long as the temperature gradient can be relaxed.
- the temperature gradient may be continuously reduced downward from the melting zone Ml.
- the notch 53 when the notch 53 is provided at the upper end of the infrared control plate 51, a process of continuously reducing the width of the notch 53 from the upper side to the lower side may be performed.
- the number of holes when the notch 53 is not provided, the number of holes may be decreased from the upper side to the lower side.
- the hole size may be gradually reduced. Even in this case, the size, number, and shape of the notches 53 or the holes may be appropriately changed as long as the temperature gradient can be reduced.
- the infrared control plate 51 may be configured by using a member having a relatively low infrared shielding capability at the upper end of the infrared control plate 51 and using a member having a relatively high infrared shielding capability for the other portions. Absent. By doing so, in the raw material M, from the top to the bottom, the part that is completely exposed to the infrared rays ⁇ the part that is surrounded by the infrared control plate 51 but has a high temperature to some extent due to the low infrared shielding ability ⁇ the infrared rays Since it is surrounded by the infrared control plate 51 having a high shielding ability, it is possible to realize a gentle temperature gradient, such as a portion where the temperature is low.
- the configuration conceived by the present inventor by paying attention to this function is as follows. “By placing the raw material gripping portion 2 and the seed crystal gripping portion 3 in the vertical direction and bringing them close to each other, the raw material M gripped by the raw material gripping portion 2 and the seed crystal gripping portion 3 are gripped. The seed crystal S is brought close to each other, and a portion where the raw material M is heated and melted by the heating unit 4 is brought into contact with the seed crystal S to form a melting zone Ml, and the melting zone Ml is cooled to thereby obtain a single crystal.
- the heating unit 4 has laser light generating means,
- the seed crystal gripping part 3 is disposed at the top position in the top and bottom direction, and the raw material gripping part 2 is disposed at the top position in the top and bottom direction, At least a part of the raw material M gripped by the raw material gripping part 2 can be surrounded in the horizontal direction, and the laser light generated from the laser light generating means and applied to the raw material M is melted into the raw material M.
- a single crystal manufacturing apparatus 1 having a temperature gradient relaxation unit that can moderate the temperature gradient of the raw material M by shielding in a stepwise manner from the portion toward the earth.
- the “infrared shielding part 5” may be referred to as a “temperature gradient relaxation part”.
- the “infrared control plate 51” may be referred to as an “irradiation amount control plate”.
- the problem 2 described in the problem of the present invention does not change.
- the effects described in the above-mentioned 1-E) infrared shielding part 5 and 2-C) single crystal growth step are exhibited.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Geometry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
赤外線ランプにより照射される赤外線を用いて溶融帯域を形成し、当該溶融帯域を冷却することにより、単結晶を成長させる。この方法では、比較的廉価な赤外線ランプを用いるため、かつ、単結晶製造装置にもかかわらずるつぼを用いないため、単結晶の製造コストを低減させることが可能となる。
効果をもたらすためということが記載されている(特許文献2の[0008])。そうなると、溶融帯域は不用意に長尺にならなくなる。その結果、溶融帯域の下方に配置された種結晶に、溶融した原料が自重で垂れなくなり、溶融帯域の安定維持が可能となることが同段落に記載されている。
そして、レーザー光を用いた加熱を行うことにより、溶融帯域は高温、溶融帯域以外の固体部分は十分に低温に保ち、部分融解を少なくし、固化しつつある単結晶への溶融帯域からの垂れを少なくすることが記載されている(特許文献3の[0020][0063])。
それに対し、レーザー光を用いず赤外線ランプ(ハロゲンランプ)を用いて原料を加熱する場合、部分融解や固化しつつある単結晶への溶融帯域からの垂れのみならず、種結晶への溶融帯域からの垂れも生じることが記載されている(特許文献3の[0064]に記載の従来例)。
(課題1)レーザー光源が必要となるため、赤外線ランプを用いた装置よりも、装置が高価となる。
(課題2)そもそも従来の溶融帯域法を用いた手法(例えば特許文献1~3)では、溶融帯域を維持しつつ単結晶を成長させる作業を行うにはかなりの熟練度が必要となり、失敗すると、下方にある種結晶が台無しになるという大きなリスクが存在する。
(課題3)本来、単結晶の成長においては、結晶成長部分の温度勾配は急峻であるよりも緩やかであるほうが良質の結晶育成が可能である。ところが、溶融帯域法にてレーザー光源を用いて単結晶を成長させる場合、固液界面(結晶成長部分)の温度勾配が急峻となるため、良質な単結晶を成長させようとしても、その品質については自ずと限界が生じる。
(課題4)課題3に加え、レーザー光による溶融帯域法では、レーザーの特性上、集光領域が小さくなり、棒状の原料ひいては成長後の単結晶の直径は非常に小さなものに限られてしまう。
本発明の第1の態様は、
原料把持部と種結晶把持部とを互いに天地方向に配置させた上で両者を近接させることにより、前記原料把持部に把持された原料と前記種結晶把持部に把持された種結晶とを近接させ、加熱部により溶融帯域を形成し、当該溶融帯域を冷却することにより単結晶を製造する単結晶製造装置において、
前記加熱部は、赤外線発生手段を有し、
天地方向の天の位置に前記種結晶把持部が配置されており、かつ、天地方向の地の位置に前記原料把持部が配置されている、単結晶製造装置である。
前記原料把持部にて把持される原料における少なくとも一部を水平方向に包囲自在であり、かつ、前記赤外線発生手段から発生して原料に照射される赤外線を、原料の溶融部分から天地方向の地の方向に向かって段階的に遮蔽していくことにより原料の温度勾配を緩和自在な赤外線遮蔽部を有する。
前記赤外線遮蔽部における天地方向の天の側の端部には切り欠きが複数形成されており、当該切り欠きは、天地方向の天の方向から前記赤外線遮蔽部を見たときに前記原料把持部を中心として対称となる位置に形成されている。
前記加熱部は、前記赤外線発生手段を複数有し、かつ、反射手段として複数の回転楕円鏡を有し、当該回転楕円鏡は共通の焦点を有しつつ、もう一方の焦点は当該共通の焦点から見て天地方向の天の方向に存在しており、前記赤外線発生手段は、当該もう一方の焦点に配置されている。
前記原料把持部は、ペレット状の原料と係合自在な形状を有しており、かつ、前記種結晶把持部は、棒状の種結晶を把持自在な形状を有している。
前記原料把持部は、円柱状かつ直径10mm以上の大きさの原料を把持自在であり、
製造される単結晶の直径は1mm以上である。
原料と種結晶とを互いに天地方向に配置した上で溶融帯域を形成し、当該溶融帯域を冷却することにより単結晶を製造する単結晶製造方法において、
天地方向の天の位置に種結晶を配置し、かつ、天地方向の地の位置に原料を配置し、赤外線の照射により原料を溶融させる、単結晶製造方法である。
1.単結晶製造装置
1-A)単結晶製造装置の概要
1-B)原料把持部
1-C)種結晶把持部
1-D)加熱部
1-E)赤外線遮蔽部
2.単結晶製造方法
2-A)準備工程
2-B)加熱工程
2-C)単結晶成長工程
3.実施の形態による効果
4.変形例等
1-A)単結晶製造装置の概要
本実施形態における単結晶製造装置1の基本的構成について、図1および図2を用いて説明する。図1は、本実施形態における単結晶製造装置1の概略断面図である。図2は、本実施形態における単結晶製造装置1の内部の概略平面図である。
・天地方向に移動自在かつ天地方向を中心軸として回転自在な原料把持部2
・天地方向に移動自在かつ天地方向を中心軸として回転自在な種結晶把持部3
・原料把持部2に把持された原料Mを加熱して原料Mを溶融させる加熱部4
・原料Mの溶融部分から天地方向の地の方向に向かって原料Mの温度勾配を緩和自在とする赤外線遮蔽部5
以下、上記で列挙した各構成について主に説明する。
本実施形態における原料把持部2は、原料Mを把持自在な構成を有する。なお、本明細書における「原料を把持」は、その名の通り原料Mをしっかりと掴むことを意味し、るつぼに原料Mを単に収納することとは全く異なる。そのため、「原料把持部」という表現により、るつぼを用いないことは一義的に導き出される。
なお、このとき、原料Mとホルダー212との間に、耐火材製の座金215を挟み込む事で原料Mとホルダー212を容易に同軸上に固定するようにしても良い。
ちなみに、ホルダー212は固着具216を介して下部シャフト22に固定される。
また、本発明における単結晶製造装置1の原料ホルダー21は、ペレット状の原料Mと係合自在な形状に限定されるものではなく、従来のように棒状の原料Mを把持自在な形状を有していてももちろん構わない。ただ、先に述べたように、本発明の原料ホルダー21は、るつぼとは全く異なる。
本実施形態における種結晶把持部3は、種結晶Sを把持自在な構成を有し、例えば種結晶ホルダー31と上部シャフト32とを有する。なお、種結晶把持部3は、公知の構成を採用しても構わない。ただ、本実施形態における大きな特徴の一つは、天地方向の地の位置に原料把持部2が配置されていることに対応して、天地方向の天の位置に種結晶把持部3が配置されていることにある。こうすることにより、溶融帯域Mlからの垂れが種結晶Sに延びるおそれを完全に無くすることができる。
その他の構成については、原料把持部2と同様の構成を適宜採用しても構わない。
本実施形態における加熱部4は、赤外線発生手段41a~dを有し、原料把持部2に把持された原料Mを加熱して原料Mを溶融させる機能を有する。また、本実施形態における加熱部4は、赤外線発生手段41の他に、赤外線を原料Mへと反射して照射効率を向上させるための反射手段42a~dも有している。
しかしながら本実施形態のように、赤外線発生手段41を溶融帯域Mlよりも上方に配置すると、成長部分Mcが上方に移動したとしても、赤外線発生手段41が同じく上方にあるため、成長部分Mcはある程度加熱され続ける。そのため、単結晶の成長において温度勾配が緩くなる。
以下、温度勾配を緩めることの有効性について説明する。
15度以上ならば、溶融帯域Mlが上方に移動しつつ単結晶が成長する際に、溶融帯域Mlをある程度加熱し続けることが可能となり、温度勾配が緩くなる。その結果、結晶界面および小傾角粒界の発生が抑制され、結晶性が向上する。
45度以下ならば、溶融帯域Mlに対して適度に赤外線を集中することが可能となり、溶融帯域Mlを適切に形成および維持することが可能となる。
なお、30度~45度上方の位置に赤外線発生手段41を配置するのが更に好ましい。30度以上ならば、結晶界面および小傾角粒界の発生をほぼ完全に押さえられるためである。
本実施形態においては、更に好適な構成として、赤外線遮蔽部5を設けている。本実施形態における赤外線遮蔽部5は、原料把持部2にて把持される原料Mの少なくとも一部を水平方向に包囲自在な構成を有しており、赤外線発生手段41から発生して原料Mに照射される赤外線を遮蔽する円筒状の赤外線制御板51の上端に切り欠き53を設けたものである。こうすることにより、原料Mの溶融部分から天地方向の地の方向に向かって、原料Mの露出面積を段階的に減少させている。別の言い方をすると、原料Mに照射される赤外線を、段階的に遮蔽していく。これにより、原料Mの溶融部分から天地方向の地の方向に向かって、原料Mの温度勾配を緩和している。
以下、図5および図6を用いて、赤外線遮蔽部5について説明する。図5は、本実施形態における赤外線遮蔽部5の概略図であり、(a)は平面図、(b)は側面図である。図6は、図5のX-Y線における、赤外線遮蔽部5の概略断面図である。
その一方、1-E)赤外線遮蔽部5でもたらされる効果は、単結晶の品質というよりも、原料Mの溶融部分から下方に向かって原料Mの温度勾配を緩和することにより、単結晶の製造の際の欠陥を無くすことが主な効果である。
この間隔が大きすぎると、遮蔽されるべき赤外線が当該間隔から入り込んでしまい、本来溶融されるはずのない固体部分Msの側面が加熱溶融されてしまう。そうなると、溶融帯域Mlの維持が困難となる。
一方、この間隔が小さすぎると、そもそも原料Mおよび赤外線制御板51の設置作業が困難になる。また、結晶成長時の溶融帯域Mlが赤外線制御板51と干渉することも考えられる。
以上を鑑みると、好ましい間隔[(D2-D1)/2]は、1mm~20mm、好ましくは2mm~16mm、より好ましくは2mm~10mmである。但し、本発明がこれに限定されることはない。
なお、このことは、赤外線発生手段41を、溶融帯域Mlよりも天地方向の天の位置に配置することにも言える。
次に、本実施形態における単結晶製造装置1の操作手順について、図7を用いて説明する。図7は、本実施形態における単結晶製造方法の手順を示したフローチャートである。なお、以下の工程の内容は、<1.単結晶製造装置1>にて説明した内容と重複する部分もある。そのため、以下に記載が無い内容については、<1.単結晶製造装置1>にて説明した通りである。また、以下に記載が無い内容については、特許文献1~3に記載の技術や公知の技術を適宜採用しても構わない。
まず、単結晶製造装置1に必要な各構成を、<1.単結晶製造装置1>にて説明したように配置する。また、下方に設けられた原料把持部2にペレット状の原料Mを係合させ、上方に設けられた種結晶把持部3に棒状の種結晶Sを把持させる。つまり、原料Mと種結晶Sは互いに対向した配置となっている。そして、原料把持部2と種結晶把持部3とを近接させることにより、原料把持部2に把持された原料Mと種結晶把持部3に把持された種結晶Sとを近接させる。
次に、本工程においては、赤外線発生手段41から発生させた赤外線を、原料Mに対して直接、および、回転楕円鏡42により反射した上で原料Mに照射する。そうして、直接光および回転楕円鏡42により集光された加熱光により、種結晶Sと対向する部分であってペレット状の原料Mの上端を溶融する。その溶融部分に、多少溶融した種結晶Sを接触させることで溶融帯域Mlが形成される。
本工程では、溶融帯域Mlから単結晶を成長させる。具体的に言うと、種結晶把持部3における上部シャフト32を上昇させる。こうすることにより、溶融帯域Mlが上方へとひっぱりあげられる。しかし、溶融帯域Mlの上方(成長部分Mc)は赤外線照射の焦点から徐々に外れて行き、成長部分Mcの温度は緩やかに下降する。
本実施形態によれば、以下の効果を奏する。
いわば、本実施形態は、上記に挙げた様々な好適例を採用するための橋頭保である。
(効果1)レーザー光源が不要となるため、単結晶製造装置1が廉価となる。更に、原料Mを製造困難な棒状ではなく、ペレット状とすることにより、単結晶の製造コストがより低廉になる。
(効果2)種結晶Sが上方に配置されるため、溶融帯域Mlを維持しつつ単結晶を成長させる際に、種結晶Sが台無しになることが無くなる。更に、好適例として赤外線遮蔽部5を設けることにより、原料Mの割れや装置の損傷を抑制でき、単結晶の製造の際に熟練度に依存する度合いを減らすことができる。また、赤外線発生手段41を溶融帯域Mlの上方に配置することにより、良品質な単結晶を比較的容易に製造することができる。
(効果3)赤外線による溶融帯域法だと、単結晶の成長において、結晶成長部分の温度勾配を緩やかにすることができ、良質の結晶育成が可能となる。
(効果4)赤外線による溶融帯域法だと、集光領域が大きくなり、原料ひいては成長後の単結晶の直径を大きくすることが可能となる。
つまり、近年の要望である、単結晶に求められる品質のレベルを向上させるという要望、および、精密機器に求められる単結晶のサイズを大きくするという要望を、本実施形態により満たすことが可能となる。
本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
上記の実施形態では、赤外線制御板51における上端に切り欠き53を複数形成する場合について述べた。この切り欠き53は、赤外線制御板51によって包囲している原料Mの固体部分Msの露出面積をある程度確保するためのものである。その一方、固体部分Msの露出面積をある程度確保するのならば、切り欠き53以外の加工を赤外線制御板51に行っていても構わない。
原料Mの溶融部分から天地方向の地の方向に向かって段階的に遮蔽していくことにより原料Mの温度勾配を緩和自在な赤外線制御板51の例を、以下に列挙する。
図9(a)に示すように、赤外線制御板51の上端に比較的大きな切り欠き53を設けつつ、その切り欠き53の下方に比較的小さな切り欠き53を設けても構わない。
また、図9(b)に示すように、切り欠き53でなくとも空孔を設けても構わない。例を挙げると、赤外線制御板51の上方(1段目)においては水平方向のスリットを設けておき、その下方(2段目)においては当該スリットの数を減らすという加工を行っても構わない。また、図9(c)に示すように、スリットではなく穴を設けても構わない。
また、空孔の大きさや数や形状については、温度勾配の緩和を行うことができるのならば、適宜変更しても構わない。
本発明においては、赤外線発生手段41を用いることを前提としている。その一方、上記の実施形態で述べた赤外線遮蔽部5の機能、すなわち、「原料Mの溶融部分から天地方向の地の方向に向かって原料Mの温度勾配を緩和」という機能自体が、従来とは真逆の技術的思想である。そのため、この機能に着目するのならば、特許文献2および3に記載のようにレーザー光を用いた場合の単結晶成長装置とは全く異なるし、特許文献2および3の記載からでは想到困難な機能である。
そのため、この機能に着目することにより本発明者により想到された構成は、以下の通りである。
「原料把持部2と種結晶把持部3とを互いに天地方向に配置させた上で両者を近接させることにより、前記原料把持部2に把持された原料Mと前記種結晶把持部3に把持された種結晶Sとを近接させ、加熱部4により原料Mを加熱して溶融させた部分と種結晶Sとを接触させて溶融帯域Mlを形成し、当該溶融帯域Mlを冷却することにより単結晶を製造する単結晶製造装置1において、
前記加熱部4は、レーザー光発生手段を有し、
天地方向の天の位置に種結晶把持部3が配置されており、かつ、天地方向の地の位置に原料把持部2が配置されており、
前記原料把持部2にて把持される原料Mにおける少なくとも一部を水平方向に包囲自在であり、かつ、前記レーザー光発生手段から発生して原料Mに照射されるレーザー光を、原料Mの溶融部分から天地方向の地の方向に向かって段階的に遮蔽していくことにより原料Mの温度勾配を緩和自在な温度勾配緩和部を有する、単結晶製造装置1。」
11……石英炉心管
12……下部シャフトフランジ
13……上部シャフトフランジ
14……雰囲気導入口
15……雰囲気排出口
2………原料把持部
21……原料ホルダー
211…原料台
212…ホルダー
213…クランプ
214…ネジ
215…座金
216…固着具
22……下部シャフト
3………種結晶把持部
31……種結晶ホルダー
32……上部シャフト
4………加熱部
41……赤外線発生手段
42……反射手段(回転楕円鏡)
5………赤外線遮蔽部
51……赤外線制御板
52……フロア
53……切り欠き
54……テーパー
M………原料
Ms……固体部分
Ml……溶融帯域
Mc……成長部分(単結晶)
S………種結晶
Claims (7)
- 原料把持部と種結晶把持部とを互いに天地方向に配置させた上で両者を近接させることにより、前記原料把持部に把持された原料と前記種結晶把持部に把持された種結晶とを近接させ、加熱部により溶融帯域を形成し、当該溶融帯域を冷却することにより単結晶を製造する単結晶製造装置において、
前記加熱部は、赤外線発生手段を有し、
天地方向の天の位置に前記種結晶把持部が配置されており、かつ、天地方向の地の位置に前記原料把持部が配置されている、単結晶製造装置。 - 前記原料把持部にて把持される原料における少なくとも一部を水平方向に包囲自在であり、かつ、前記赤外線発生手段から発生して原料に照射される赤外線を、原料の溶融部から天地方向の地の方向に向かって段階的に遮蔽していくことにより原料の温度勾配を緩和自在な赤外線遮蔽部を有する、請求項1に記載の単結晶製造装置。
- 前記赤外線遮蔽部における天地方向の天の側の端部には切り欠きが複数形成されており、当該切り欠きは、天地方向の天の方向から前記赤外線遮蔽部を見たときに前記原料把持部を中心として対称となる位置に形成されている、請求項2に記載の単結晶製造装置。
- 前記加熱部は、前記赤外線発生手段を複数有し、かつ、反射手段として複数の回転楕円鏡を有し、当該回転楕円鏡は共通の焦点を有しつつ、もう一方の焦点は当該共通の焦点から見て天地方向の天の方向に存在しており、前記赤外線発生手段は、当該もう一方の焦点に配置されている、請求項1ないし3のいずれかに記載の単結晶製造装置。
- 前記原料把持部は、ペレット状の原料と係合自在な形状を有しており、かつ、前記種結晶把持部は、棒状の種結晶を把持自在な形状を有している、請求項1ないし4のいずれかに記載の単結晶製造装置。
- 前記原料把持部は、円柱状かつ直径10mm以上の大きさの原料を把持自在であり、
製造される単結晶の直径は1mm以上である、請求項1ないし5のいずれかに記載の単結晶製造装置。 - 原料と種結晶とを互いに天地方向に配置した上で溶融帯域を形成し、当該溶融帯域を冷却することにより単結晶を製造する単結晶製造方法において、
天地方向の天の位置に種結晶を配置し、かつ、天地方向の地の位置に原料を配置し、赤外線の照射により原料を溶融させる、単結晶製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017505780A JP6343093B2 (ja) | 2015-03-13 | 2015-03-13 | 単結晶製造装置および単結晶製造方法 |
US15/107,095 US9970124B2 (en) | 2015-03-13 | 2015-03-13 | Single crystal production apparatus and single crystal production method |
PCT/JP2015/057540 WO2016147265A1 (ja) | 2015-03-13 | 2015-03-13 | 単結晶製造装置および単結晶製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057540 WO2016147265A1 (ja) | 2015-03-13 | 2015-03-13 | 単結晶製造装置および単結晶製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147265A1 true WO2016147265A1 (ja) | 2016-09-22 |
Family
ID=56918712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057540 WO2016147265A1 (ja) | 2015-03-13 | 2015-03-13 | 単結晶製造装置および単結晶製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9970124B2 (ja) |
JP (1) | JP6343093B2 (ja) |
WO (1) | WO2016147265A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2656331C1 (ru) * | 2017-10-17 | 2018-06-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Устройство для выращивания монокристаллов |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0769774A (ja) * | 1993-08-30 | 1995-03-14 | Nippon Telegr & Teleph Corp <Ntt> | 単結晶作製方法及び単結晶作製装置 |
JPH10251088A (ja) * | 1997-03-12 | 1998-09-22 | Murata Mfg Co Ltd | 単結晶育成方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4218282A (en) * | 1977-06-17 | 1980-08-19 | Kabushiki Kaisha Suwa Seikosha | Method of preparation of chrysoberyl and beryl single crystals |
JP2550344B2 (ja) | 1987-04-30 | 1996-11-06 | ニチデン機械株式会社 | 赤外線加熱単結晶製造装置 |
JPH07315979A (ja) | 1994-05-19 | 1995-12-05 | Nichiden Mach Ltd | 赤外線加熱単結晶製造装置 |
JP2001151595A (ja) * | 1999-11-19 | 2001-06-05 | Murata Mfg Co Ltd | 単結晶製造方法および製造装置 |
JP2002249399A (ja) * | 2001-02-21 | 2002-09-06 | Murata Mfg Co Ltd | 単結晶の製造方法および単結晶 |
JP5181396B2 (ja) | 2010-01-15 | 2013-04-10 | 独立行政法人産業技術総合研究所 | 単結晶育成装置および単結晶育成方法 |
-
2015
- 2015-03-13 US US15/107,095 patent/US9970124B2/en active Active
- 2015-03-13 WO PCT/JP2015/057540 patent/WO2016147265A1/ja active Application Filing
- 2015-03-13 JP JP2017505780A patent/JP6343093B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0769774A (ja) * | 1993-08-30 | 1995-03-14 | Nippon Telegr & Teleph Corp <Ntt> | 単結晶作製方法及び単結晶作製装置 |
JPH10251088A (ja) * | 1997-03-12 | 1998-09-22 | Murata Mfg Co Ltd | 単結晶育成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170114474A1 (en) | 2017-04-27 |
JP6343093B2 (ja) | 2018-06-13 |
JPWO2016147265A1 (ja) | 2018-06-14 |
US9970124B2 (en) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009081811A1 (ja) | 浮遊帯域溶融装置 | |
JP5767299B2 (ja) | 単結晶製造装置および単結晶製造方法 | |
JP4738966B2 (ja) | 浮遊帯域溶融装置 | |
CN101611177B (zh) | 浮区熔化装置 | |
JP2020066555A (ja) | 単結晶育成装置及び単結晶育成方法 | |
JP6343093B2 (ja) | 単結晶製造装置および単結晶製造方法 | |
JP6006191B2 (ja) | 単結晶製造装置および単結晶製造方法 | |
CN1328416C (zh) | 用于制造单晶棒的设备和方法 | |
JP6106815B2 (ja) | 単結晶製造装置および単結晶製造方法 | |
WO2017056616A1 (ja) | 単結晶製造装置および単結晶製造方法 | |
CN208395312U (zh) | 一种激光辅助加热生长晶体的装置 | |
JP2019043788A (ja) | 単結晶育成方法及び単結晶育成装置 | |
JP6122193B1 (ja) | 単結晶製造装置および単結晶製造方法 | |
TW496911B (en) | A method and an apparatus for pulling a silicon monocrystal | |
JP2009269802A (ja) | 単結晶の製造方法および単結晶の製造装置 | |
JP2009051679A (ja) | 単結晶育成装置、単結晶育成方法 | |
TW201522722A (zh) | 自動測量結晶材料的晶種回熔的方法 | |
US20230295832A1 (en) | Laser-based afterheating for crystal growth | |
JP2020037499A (ja) | 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法 | |
JPH0710682A (ja) | 単結晶の引上方法及びその製造装置 | |
JP5949601B2 (ja) | 多層型熱反射板およびこれを用いた酸化物単結晶育成装置 | |
JP2018024565A (ja) | 単結晶製造装置および単結晶製造方法 | |
JP2018002573A (ja) | 結晶育成装置 | |
JP2004107166A (ja) | 単結晶引き上げ装置 | |
LV15452B (lv) | Silīcija kristālu audzēšanas paņēmiens un iekārta tā realizēšanai |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15107095 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15885363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017505780 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15885363 Country of ref document: EP Kind code of ref document: A1 |