WO2016143812A1 - 熱間圧延鋼材および鋼部品 - Google Patents

熱間圧延鋼材および鋼部品 Download PDF

Info

Publication number
WO2016143812A1
WO2016143812A1 PCT/JP2016/057342 JP2016057342W WO2016143812A1 WO 2016143812 A1 WO2016143812 A1 WO 2016143812A1 JP 2016057342 W JP2016057342 W JP 2016057342W WO 2016143812 A1 WO2016143812 A1 WO 2016143812A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fracture
steel
hot
fracture surface
Prior art date
Application number
PCT/JP2016/057342
Other languages
English (en)
French (fr)
Inventor
卓 吉田
真也 寺本
久保田 学
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177024689A priority Critical patent/KR101998496B1/ko
Priority to CN201680014080.3A priority patent/CN107406941B/zh
Priority to JP2017505370A priority patent/JP6414319B2/ja
Publication of WO2016143812A1 publication Critical patent/WO2016143812A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel part and a hot-rolled steel material that is a raw material thereof.
  • Automotive engine parts and undercarriage parts are obtained by forming steel by hot forging and optionally performing heat treatment (tempering) such as quenching and tempering.
  • tempering heat treatment
  • Parts that have been tempered are referred to as tempered parts, and parts that have not been tempered are referred to as non-tempered parts.
  • the mechanical properties required for the applied parts are ensured.
  • many parts that are not tempered, that is, non-tempered parts are widely used.
  • connecting rods hereinafter referred to as connecting rods.
  • This component is a component that transmits power when the piston reciprocating motion is converted into rotational motion by the crankshaft in the engine.
  • the connecting rod is composed of a cap portion and a rod portion.
  • the connecting portion is assembled to the crankshaft by sandwiching and fastening the eccentric portion of the crankshaft called the pin portion between the cap portion and the rod portion. Power is transmitted by a moving mechanism.
  • the fracture separation type connecting rod is formed by forming the cap part and the rod part into an integrated shape by performing hot forging etc. on the steel, and then cutting the part corresponding to the boundary between the cap part and the rod part. And connecting rods are obtained by a method of breaking and separating.
  • the mating surface of the cap part and the rod part obtained by this method is a fractured surface having irregularities obtained by fracture separation.
  • alignment when the connecting rod is assembled to the crankshaft can be performed. Accordingly, in the manufacture of the break-separated connecting rod, it is possible to omit machining for enhancing the alignment of the mating surfaces and machining for providing the alignment surfaces with irregularities for alignment. Therefore, the break-separated connecting rod can greatly reduce the parts processing steps, and can greatly improve the economic efficiency at the time of manufacturing the parts.
  • C70S6 is widely used in Europe and the United States as a material for fracture separation type connecting rods.
  • C70S6 is a high carbon non-tempered steel containing 0.7 mass% of C, and its metal structure is composed of a pearlite structure with low ductility and toughness in order to suppress dimensional changes during fracture separation. Since C70S6 has a small amount of plastic deformation in the vicinity of the fracture surface at the time of fracture, it has excellent fracture separation.
  • the breaking separation property of steel is an index for evaluating the fitting property between fracture surfaces of steel obtained by breaking the steel. A steel having a small amount of deformation near the fracture surface, a large brittle fracture area ratio on the fracture surface, and a small amount of chipping during fracture processing is judged to have good fracture separation.
  • C70S6 has a coarser structure than the ferrite-pearlite structure of medium carbon non-tempered steel, which is a normal connecting rod steel, and therefore has a low yield ratio (yield strength / tensile strength) and high buckling. There is a problem that it cannot be applied to a high-strength connecting rod that requires strength.
  • Patent Document 1 and Patent Document 2 describe a technique for improving the fracture separability of steel by adding a large amount of an embrittlement element such as Si or P to steel and reducing the ductility and toughness of the steel. Yes.
  • Patent Document 3 and Patent Document 4 describe a technique for improving the fracture separability of steel by reducing precipitation ductility and toughness of steel using precipitation strengthening of second phase particles.
  • Patent Documents 5 to 7 describe techniques for improving the fracture separability of steel by controlling the form of Mn sulfide in the steel.
  • the present invention reduces the deformation near the fractured surface at the time of fracture separation, increases the irregularities on the fractured surface to improve the fit, and suppresses the amount of chipping at the fractured surface.
  • An object is to provide rolled steel and steel parts.
  • the gist of the present invention is as follows.
  • the hot-rolled steel material according to one aspect of the present invention has chemical components of C: 0.35 to 0.45 mass%, Si: 0.6 to 1.0 mass%, Mn: 0.60 to 0.90 mass. %, P: 0.010 to 0.035 mass%, S: 0.06 to 0.10 mass%, Cr: 0.02 to 0.25 mass% or less, V: 0.20 to 0.40 mass%, Zr: 0 .0001 to 0.0050 mass% or less, N: 0.0060 to 0.0150 mass% Ti: 0 to 0.050 mass%, Nb: 0 to 0.030 mass%, Mg: 0 to 0.0050 mass%, and REM: 0 ⁇ 0.0010 mass%, the balance is composed of Fe and impurities, 90% by area or more of the metal structure is composed of ferrite and pearlite, and measured in a cross section parallel to the rolling direction.
  • the average number density of the aspect ratio which is stretched along the rolling direction is 10 super 30
  • the following Mn sulfide is 50 to 200 / mm 2.
  • the chemical components are Ti: 0.005 to 0.050 mass%, Nb: 0.005 to 0.030 mass%, Mg: 0.0005 to 0 .0050 mass%, and REM: 0.0003 to 0.0010 mass%, or one or more selected from the group consisting of 0.0003 to 0.0010 mass% may be contained.
  • the steel component according to another aspect of the present invention has a chemical composition of C: 0.35 to 0.45 mass%, Si: 0.6 to 1.0 mass%, Mn: 0.60 to 0.90 mass%.
  • P 0.010 to 0.035 mass%
  • S 0.06 to 0.10 mass%
  • Cr 0.02 to 0.25 mass% or less
  • V 0.20 to 0.40 mass%
  • Zr 0.0. 0001 to 0.0050 mass% or less
  • N 0.0060 to 0.0150 mass%
  • Ti 0 to 0.050 mass%
  • Nb 0 to 0.030 mass%
  • Mg 0 to 0.0050 mass%
  • REM 0 to Asperum containing 0.0010 mass%
  • the balance being Fe and impurities
  • 90% by area or more of the metal structure is composed of ferrite and pearlite, and measured in a cross section parallel to the rolling direction.
  • the average number density of Ratio of 10 super 30 The following Mn sulfide is 50 to 200 / mm 2.
  • the steel part according to (3) is observed in the cross section parallel to the rolling direction when the steel part is subjected to tensile fracture by a tensile stress parallel to the rolling direction to form a fracture surface.
  • the step having a height difference of 80 ⁇ m or more toward the direction parallel to the tensile stress and having an angle of 45 degrees or less with respect to the direction parallel to the tensile stress is at least two locations per 10 mm on the fracture surface.
  • An angle with respect to the direction parallel to the tensile stress, observed at the cross section parallel to the rolling direction, formed at an average number density, is greater than 45 degrees, and is formed over a length of 80 ⁇ m or more.
  • the average number density of cracks or recesses that have propagated inside the steel part may be limited to less than 3 locations per 10 mm on the fracture surface, and the brittle fracture fracture surface on the fracture surface may be 98 area% or more. .
  • the chemical components are Ti: 0.005 to 0.050 mass%, Nb: 0.005 to 0.030 mass%, Mg: 0.0005.
  • One or more selected from the group consisting of ⁇ 0.0050 mass% and REM: 0.0003 to 0.0010 mass% may be contained.
  • the hot-rolled steel material and steel parts according to one aspect of the present invention have a small amount of plastic deformation near the fracture surface and less occurrence of chipping in the fracture surface when fractured and separated. For this reason, when the fractured surface is fitted, misalignment does not occur, the fitting can be performed with high accuracy, and the accuracy of steel parts and the yield can be improved at the same time.
  • the steel material and steel parts of the present invention the step of scraping off chips can be omitted, and the manufacturing cost can be reduced, which has a great effect on improving industrial economic efficiency. Therefore, the steel material of the present invention is suitable for the use of steel parts obtained by forming by hot forging, and the steel material and steel parts of the present invention are suitable for use in which the fracture surfaces are fitted again after being broken and divided. Suitable.
  • test piece for fracture separability evaluation It is a top view of the test piece for fracture separability evaluation. It is a side view of the test piece for fracture separability evaluation. It is the cross-sectional photograph of the torn surface which observed the uneven
  • the present inventor has found that by controlling the shape of Mn sulfide present in the steel, the size of the fracture surface irregularities obtained by fracture separation can be preferably controlled and the amount of chipping can be suppressed. did.
  • the uneven shape of the fracture surface is affected by the degree of elongation and distribution frequency of the Mn sulfide. If the elongation of Mn sulfide is excessive (that is, the aspect ratio of Mn sulfide is large), the size of the irregularities in the vertical direction of the fracture surface becomes remarkably large. Cracks are generated on the fracture surface, and a gap is generated at the time of fracture surface fitting, resulting in a decrease in fitting performance. On the other hand, when the distribution frequency of the elongated Mn sulfide increases, the number of irregularities on the fracture surface increases and the fitting property improves.
  • the present inventors presume that the above phenomenon is caused by the following mechanism.
  • the Mn sulfide of the steel part is elongated in the rolling direction during hot rolling of the hot rolled steel material that is the material of the steel part.
  • a crack 12 first propagates from the fracture starting point 13 perpendicular to the rolling direction.
  • the propagation direction of the crack 12 changes greatly, and the crack 12 is at the interface between the Mn sulfide and the parent phase of the steel part 10. Along the rolling direction.
  • the propagation direction of the crack 12 changes to the stress direction, and the crack 12 again propagates substantially perpendicular to the rolling direction. It is considered that unevenness is formed on the fracture surface by the break separation progressing while the crack 12 repeats the progress perpendicular to the rolling direction and the progress parallel to the rolling direction.
  • the inventors estimated that the greater the number of Mn sulfides 11, the greater the number of irregularities, and the greater the aspect ratio of the Mn sulfides 11, the greater the size of the irregularities along the rolling direction.
  • the present invention has been obtained based on the findings of the inventors as described above. Below, the chemical composition of hot-rolled steel materials and steel parts according to an embodiment of the present invention, the form of Mn sulfide, and the form of the fracture surface obtained by fracture splitting will be described.
  • the chemical composition of hot-rolled steel is not changed by hot working. Further, since the size of Mn sulfide is very small compared to the size of deformation given by hot working, the form of Mn sulfide of hot rolled steel is hardly changed by hot working. Therefore, the chemical composition of the steel component according to this embodiment and the form of Mn sulfide obtained by hot working the hot-rolled steel material according to this embodiment are the hot rolling according to this embodiment described below. Same as those for steel. In addition, since the form of the fracture surface obtained by break splitting is determined by the chemical composition and the form of Mn sulfide, the form of the fracture surface obtained by fracture split is the hot rolled steel material according to this embodiment and the present embodiment. Such steel parts are the same.
  • the hot-rolled steel material of the present embodiment is a steel material containing C, Si, Mn, P, S, Cr, V, Zr, and N at a predetermined content as chemical components.
  • the hot-rolled steel material of the present embodiment includes a chemical component described below, whereby ductility is preferably controlled, and the ratio of brittle fracture fracture surfaces in fracture surfaces (tensile fracture surfaces) obtained by tensile stress is improved.
  • Mn sulfide can be precipitated to increase the size of the fracture surface irregularities in the direction perpendicular to the fracture surface.
  • the hot-rolled steel material of this embodiment has a fitting property with a high fracture surface obtained when divided by fracture.
  • the hot-rolled steel material of the present embodiment may optionally contain one or more of Ti, Nb, Mg, and REM as chemical components.
  • C has the effect of ensuring the tensile strength of the hot-rolled steel material and steel parts of the present embodiment, and the effect of realizing good fracture separability by reducing the amount of plastic deformation near the fracture surface at the time of fracture. .
  • the C content in the steel was set to 0.35 to 0.45 mass%.
  • the preferable lower limit of C content is 0.36 mass% or 0.37 mass%.
  • the upper limit with preferable C content is 0.44 mass%, 0.42 mass%, or 0.40 mass%.
  • Si strengthens ferrite by solid solution strengthening, thereby reducing the ductility and toughness of hot rolled steel and steel parts. Due to the reduction in ductility and toughness, the amount of plastic deformation in the vicinity of the fracture surface during fracture separation is reduced, and the fracture separation properties of hot-rolled steel and steel parts are improved. In order to obtain this effect, the lower limit of the Si content needs to be 0.6 mass%. On the other hand, if Si is excessively contained, the frequency of occurrence of chipping of the fracture surface increases, so the upper limit of Si content is 1.0 mass%. In addition, the preferable lower limit of Si content is 0.7 mass%. The upper limit with preferable Si content is 0.9 mass%.
  • Mn strengthens ferrite by solid solution strengthening, thereby reducing the ductility and toughness of hot rolled steel materials and steel parts. Due to the reduction in ductility and toughness, the amount of plastic deformation in the vicinity of the fracture surface during fracture separation is reduced, and the fracture separation properties of hot-rolled steel and steel parts are improved. Mn combines with S to form Mn sulfide. When a steel part obtained from the hot-rolled steel material of the present embodiment is broken and divided, cracks propagate along the Mn sulfide elongated in the rolling direction, so that the size of the unevenness of the fracture surface in the rolling direction increases. Therefore, Mn has an effect of preventing misalignment when fitting the fractured surfaces.
  • the Mn content is 0.60 to 0.90 mass%.
  • the preferable lower limit of Mn content is 0.65 mass%, 0.70 mass%, or 0.75 mass%.
  • the upper limit with preferable Mn content is 0.85 mass%, 0.83 mass%, or 0.80 mass%.
  • P 0.010-0.035 mass%
  • P reduces the ductility and toughness of ferrite and pearlite, thereby reducing the ductility and toughness of hot-rolled steel and steel parts. Due to the reduction in ductility and toughness, the amount of plastic deformation in the vicinity of the fracture surface during fracture separation is reduced, and the fracture separation properties of hot-rolled steel and steel parts are improved.
  • P causes embrittlement of the crystal grain boundary and makes it easy to generate a chipped fracture surface. Therefore, it is not preferable to reduce ductility and toughness using P from the viewpoint of preventing the occurrence of chipping.
  • the range of P content is 0.010 to 0.035 mass%.
  • the preferable lower limit of the P content is 0.012 mass%, 0.013 mass%, or 0.015 mass%.
  • the upper limit with preferable P content is 0.030 mass%, 0.028 mass%, or 0.025 mass%.
  • S 0.06-0.10 mass%
  • Mn sulfide When a steel part obtained from the hot-rolled steel material of the present embodiment is fracture-divided, cracks propagate along the Mn sulfide elongated in the rolling direction, so the Mn sulfide is in the direction perpendicular to the fracture surface of the irregularities of the fracture surface There is an effect of preventing the displacement when the size is increased and the fracture surface is fitted. In order to acquire the effect, it is necessary to make the minimum of S content into 0.06 mass%. On the other hand, when S is contained excessively, the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture division increases, and the case where the fracture separability decreases may occur.
  • the preferable range of S is 0.06 to 0.10 mass%.
  • a preferable lower limit of the S content is 0.07 mass%.
  • the upper limit with preferable S content is 0.09 mass%.
  • Cr 0.02-0.25 mass%
  • Cr like Mn
  • the lower limit of the Cr content needs to be 0.02 mass%.
  • Cr when Cr is contained excessively, the lamellar spacing of pearlite is reduced, and the ductility and toughness of pearlite are increased. Therefore, the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture increases, and the fracture separability decreases.
  • the content when Cr is excessively contained, a bainite structure is likely to be generated, and the fracture separability may be significantly reduced. Therefore, when it contains Cr, the content shall be 0.25 mass% or less.
  • a preferable lower limit of the Cr content is 0.05 mass%, 0.08 mass%, or 0.10 mass%.
  • the upper limit with preferable Cr content is 0.23 mass%, 0.20 mass%, or 0.18 mass%.
  • V strengthens ferrite by mainly forming carbide or carbonitride during cooling after hot forging, and lowers the ductility and toughness of hot-rolled steel and steel parts.
  • the decrease in ductility and toughness of hot-rolled steel and steel parts is achieved by reducing the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture of hot-rolled steel and steel parts, and the fracture separation of steel parts made of hot-rolled steel. Make it better.
  • V has the effect of increasing the yield ratio of hot-rolled steel by precipitation strengthening of carbides or carbonitrides. In order to obtain these effects, the lower limit of V content needs to be 0.20 mass%. There is.
  • the upper limit of V content is 0.40 mass%.
  • a preferable lower limit of the V content is 0.23 mass% or 0.25 mass%.
  • the upper limit with preferable V content is 0.38 mass% or 0.35 mass%.
  • Zr forms an oxide, and this Zr oxide becomes a crystallization nucleus or a precipitation nucleus of Mn sulfide, and Mn sulfide is uniformly and finely dispersed.
  • This finely dispersed Mn sulfide serves as a crack propagation path at the time of fracture division, and has the effect of reducing the amount of plastic deformation in the vicinity of the fracture surface of hot-rolled steel and steel parts and improving fracture separation.
  • the upper limit of the Zr content is set to 0.0050 mass%.
  • the lower limit of the Zr content is set to 0.0001 mass%.
  • a preferable lower limit of the Zr content is 0.0005 mass% or 0.0010 mass%.
  • the upper limit with preferable Zr content is 0.0045 mass%, 0.0040 mass%, or 0.0030 mass%.
  • N (N: 0.0060 to 0.0150 mass%) N promotes ferrite transformation by forming V nitride or V carbonitride mainly during cooling after hot forging and acting as a transformation nucleus of ferrite. Thereby, N has an effect which suppresses the production
  • the lower limit of the N content is set to 0.0060 mass%.
  • the upper limit of the N content is set to 0.0150 mass%.
  • the preferable lower limit of N content is 0.0065 mass%, 0.0070 mass%, or 0.0080 mass%.
  • the upper limit with preferable N content is 0.0140 mass%, 0.0130 mass%, or 0.0120 mass%.
  • Ti 0.050 mass% or less
  • Nb 0.030 mass% or less
  • Mg 0.0050 mass% or less
  • REM One or more selected from the group consisting of 0.0010 mass% or less can be selected and contained.
  • the hot-rolled steel material and steel part according to the present embodiment can solve the problem, so the lower limit value of Ti, Nb, Mg, and REM is 0 mass%.
  • Ti mainly forms carbides or carbonitrides during cooling after hot forging and strengthens ferrite by precipitation strengthening, thereby reducing the ductility and toughness of hot rolled steel materials and steel parts.
  • the decrease in ductility and toughness reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture, thereby improving the fracture separation of hot rolled steel and steel parts.
  • the upper limit of the Ti content is 0.050 mass%.
  • the lower limit of the Ti content is preferably set to 0.005 mass%.
  • a more preferable lower limit of the Ti content is 0.015 mass%, 0.018 mass%, or 0.020 mass%.
  • a more preferable upper limit of the Ti content is 0.040 mass%, 0.035 mass%, or 0.030 mass%.
  • Nb 0 to 0.030 mass%
  • Nb mainly forms carbides or carbonitrides during cooling after hot forging and strengthens ferrite by precipitation strengthening, thereby reducing the ductility and toughness of hot rolled steel materials and steel parts.
  • the decrease in ductility and toughness reduces the amount of plastic deformation in the vicinity of the fracture surface at the time of fracture, thereby improving the fracture separation of hot rolled steel and steel parts.
  • the upper limit of the Nb content is set to 0.030 mass%.
  • the lower limit of the Nb content is preferably set to 0.005 mass%.
  • a more preferred lower limit of the Nb content is 0.010 mass%.
  • the upper limit value of the Nb content is more preferably 0.030 mass%, 0.028 mass%, or 0.025 mass%.
  • Mg forms an oxide to form crystallization nuclei or precipitation nuclei of the Mn sulfide, thereby uniformly and finely dispersing the Mn sulfide.
  • This Mn sulfide becomes a crack propagation path at the time of fracture division, reduces the amount of plastic deformation in the vicinity of the fracture surface, and improves the fracture separability of hot-rolled steel and steel parts.
  • the upper limit of the Mg content is set to 0.0050 mass%.
  • the lower limit of the Mg content is 0.0005 mass%.
  • a more preferable lower limit of the Mg content is 0.0006 mass%.
  • the upper limit value of the Mg content is more preferably 0.0045 mass%, 0.0040 mass%, 0.0035 mass%, 0.0030 mass%, or 0.0025 mass%.
  • REM 0 to 0.0010 mass%
  • REM forms oxysulfides to become crystallization nuclei or precipitation nuclei of Mn sulfides, thereby uniformly and finely dispersing Mn sulfides.
  • This Mn sulfide becomes a crack propagation path at the time of fracture division, reduces the amount of plastic deformation in the vicinity of the fracture surface, and improves the fracture separability of hot-rolled steel and steel parts.
  • the upper limit of the REM content is set to 0.0010 mass%.
  • the lower limit of the REM content it is preferable to set the lower limit of the REM content to 0.0003 mass%.
  • a more preferable lower limit of the REM content is 0.0004 mass% or 0.0005 mass%.
  • a more preferable upper limit value of the REM content is 0.0009 mass%, 0.0008 mass%, or 0.0007 mass%.
  • the term “REM” refers to a total of 17 elements composed of Sc, Y, and a lanthanoid, and the “content of REM” means the total content of these 17 elements. When lanthanoid is used as REM, REM is added industrially in the form of misch metal.
  • the balance of chemical components of the hot-rolled steel and steel parts according to this embodiment is Fe and impurities. Impurities are mixed from raw materials such as ores and scraps and the manufacturing environment, and do not affect the characteristics of the hot-rolled steel and steel parts according to this embodiment. Further, the hot-rolled steel material and steel part according to the present embodiment, in addition to the above components, 0 to 0.01% Te, 0 to 0.01% Zn, and 0 as long as the effects thereof are not impaired. It can contain up to 0.01% Sn or the like.
  • the metal structure of the hot-rolled steel material and steel part of the present embodiment is a so-called ferrite-pearlite structure.
  • bainite or the like is included in the metal structure, but bainite is not preferable because it impairs fracture partitionability. Therefore, the present inventors have defined that the hot rolled steel material and the metal structure of the steel part of the present embodiment contain a total of 90 area% or more of ferrite and pearlite. By this rule, the amount of bainite is limited to 10% by area or less, and the fracture splitting property of the hot-rolled steel material and the steel parts is kept good.
  • the metal structure of the hot rolled steel material and the steel part of the present embodiment may include a total of 92 area%, 95 area%, or 98 area% or more of ferrite and pearlite.
  • the ratio of both is not particularly limited. For example, even when ferrite or pearlite is 0 area%, good fracture splitting property is maintained.
  • the structure of the remainder of the metal structure is not particularly limited. The amount of ferrite and pearlite contained in the metal structure is determined by taking an optical micrograph of the polished and etched cross section and analyzing the image.
  • Mn sulfide is formed inside the hot-rolled steel material and steel parts of the present embodiment.
  • the Mn sulfide is elongated along the rolling direction of the hot-rolled steel material.
  • the elongated Mn sulfide is an inclusion essential for forming an uneven shape on the fracture surface obtained by pulling and breaking the hot rolled steel material and the steel part.
  • the elongated Mn sulfide having an aspect ratio of more than 10 and 30 or less with the rolling direction as the long axis side is distributed at 50 or more and 200 or less per 1 mm 2.
  • the elongated Mn sulfide forms irregularities in the tensile direction on the fracture surface formed by tensile fracture in the rolling direction, and improves the fit between the fracture surfaces.
  • Mn sulfide having an aspect ratio of more than 10 and 30 or less can optimize the size of the unevenness in the tensile direction. Further, when the number of Mn sulfides having an aspect ratio of more than 10 and 30 or less is 50 to 200 / mm 2 , the number of irregularities can be optimized.
  • Mn sulfide having an aspect ratio of 10 or less cannot sufficiently increase the size of the unevenness of the fractured surface in the tensile direction, and does not contribute to improvement in fitting property between the fractured surfaces.
  • Mn sulfide having an aspect ratio exceeding 30 makes the fractured surface uneven and conspicuous, but the frequency of cracking and chipping increases, so the fitting property between the fractured surfaces is impaired. Accordingly, it is preferable that the number density of Mn sulfide having an aspect ratio of 10 or less or more than 30 is smaller.
  • the number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less is within the above range, and the contents of Mn and S that are sources of Mn sulfide are within the above range, chemical components Mn and S contained therein are consumed by Mn sulfide having an aspect ratio of more than 10 to 30 or less, and generation of Mn sulfide having an aspect ratio of 10 or less or more than 30 is sufficiently suppressed. Therefore, the number density of Mn sulfide having an aspect ratio of 10 or less or more than 30 is not particularly limited.
  • the average number density of Mn sulfide having an aspect ratio of more than 10 and less than 30 is less than the lower limit value, the number of irregularities on the fractured surface is reduced, and the fitability of the fractured surface after fracture separation becomes insufficient. Further, when the average number density of Mn sulfide having an aspect ratio of more than 10 or less than 30 is less than the lower limit value, the number density of Mn sulfide having an aspect ratio of less than 10 or more than 30 is increased and the break separation property is impaired. There is a fear. On the other hand, when the average number density of Mn sulfide having an aspect ratio of more than 10 and less than 30 exceeds the upper limit, cracks and chips are generated at the fracture surface, and in this case, the fitting property at the fracture surface is also impaired.
  • the method for measuring the average number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less, which is stretched along the rolling direction, in the hot rolled steel material and steel parts is as follows. First, a hot rolled steel material and a steel part are cut in parallel to the rolling direction, and the cut surface is polished. Since Mn sulfide extends along the rolling direction, when cutting hot rolled steel and steel parts, the extending direction of Mn sulfide can be regarded as the rolling direction of hot rolled steel and steel parts. Next, an enlarged photograph of the cut surface is taken with an optical microscope or an electron microscope. The magnification at this time is not particularly limited, but is preferably about 100 times.
  • the region for taking a photograph is not particularly limited. Then, by analyzing the image of the photograph, the number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less in the region where the photograph is taken can be obtained. Note that some elongated Mn sulfides are divided and aggregated and distributed in a row in the rolling direction. However, two Mn sulfides having a distance of 10 ⁇ m or less are regarded as one extended Mn sulfide.
  • Two Mn sulfides arranged in the extension direction and having a distance of 10 ⁇ m or less are one Mn in that a crack generated when a hot-rolled steel material or steel part is subjected to tensile fracture is propagated in the tensile direction. It is because it is thought that it has the same effect as sulfide. Furthermore, by repeating photography and analysis at least 10 times, and averaging the number density obtained thereby, the aspect ratio stretched along the rolling direction in the hot-rolled steel material and steel parts is more than 10-30. The following average number density of Mn sulfide is determined.
  • the method of manufacturing a hot rolled steel according to the present embodiment includes a step of obtaining a bloom by melting and continuously casting steel having the same chemical composition as the hot rolled steel according to the present embodiment, And a step of hot-rolling the billet to obtain a round bar, and Zr is added in the initial stage of secondary refining in the melting,
  • the area reduction rate is 80% or more, and the area reduction rate at 1000 ° C. or less in hot rolling is 50% or more.
  • the method of manufacturing a steel part according to this embodiment includes a step of heating the hot-rolled steel material according to this embodiment to 1150 to 1280 ° C. for hot forging, and hot-forging the hot-rolled steel material to room temperature or There is a step of blast cooling, a step of cold forging the hot rolled steel material according to the present embodiment, and a step of cutting the cooled hot rolled steel material to obtain a steel part having a predetermined shape.
  • Details of the method of manufacturing the hot rolled steel according to the present embodiment are as follows. First, bloom having the same chemical composition as that of the hot rolled steel according to the present embodiment is melted in a converter and continuously cast to produce bloom. During converter melting, Zr is added to the molten steel before or during secondary refining. In order to sufficiently float and separate coarse Zr oxide from molten steel, and to finely disperse Mn sulfide formed using Zr oxide as a nucleus in the molten steel (for example, RH (Ruhrstahl-Heraeus) It is necessary to add Zr before degassing the molten steel using), etc., or during degassing with RH and within 15 minutes after the start of processing).
  • Mn sulfide coarsens When the Mn sulfide in the bloom is coarsened, the Mn sulfide is excessively stretched in the subsequent bloom rolling process, the Mn sulfide having an aspect ratio of more than 30 is increased, and the Mn sulfide having an aspect ratio of more than 10 and 30 or less. The number density of objects is insufficient.
  • the obtained bloom is further converted into billets through a block rolling process and the like.
  • the obtained billet is further formed into a round bar by hot rolling.
  • the hot rolled steel material of this embodiment is manufactured.
  • the rolling area reduction rate when the billet is formed into a round bar shape is preferably 80% or more.
  • hot rolling is performed in a temperature range in which the high-temperature hardness of Mn sulfide is relatively low with respect to the steel material, that is, a temperature range in which elongation of Mn sulfide is easy. It is necessary. Specifically, it is necessary to make the rolling area reduction rate at 1000 ° C.
  • the hot-rolled steel material after hot rolling may be cooled to room temperature, and may be further subjected to hot forging before cooling.
  • the hot-rolled steel obtained by the above method is heated to, for example, 1150 to 1280 ° C. and hot forged, and then cooled to room temperature by air cooling (cooling in the atmosphere) or blast cooling (winding the steel to cool it). Cooling. By cutting the forged material after cooling, a steel part having a predetermined shape is obtained.
  • forging hot-rolled steel it is not limited to hot forging, and cold forging may be used.
  • the hot-rolled steel material and steel parts of the present embodiment are observed in a cross section parallel to the rolling direction and in a direction parallel to the tensile stress when the fracture surface is formed by tensile fracture by a tensile stress parallel to the rolling direction.
  • a step having a height difference of 80 ⁇ m or more and an angle of 45 degrees or less with respect to the direction parallel to the tensile stress is formed on the fracture surface at an average number density of 2 or more per 10 mm, and is a cross section parallel to the rolling direction.
  • the average number density of cracks or recesses observed at 1 is more than 45 degrees with respect to the direction parallel to the tensile stress and formed over a length of 80 ⁇ m or more, and a part of the cracks or recesses propagates inside the steel part.
  • the fracture surface is limited to less than 3 locations per 10 mm, and the brittle fracture surface at the fracture surface is 98% by area or more.
  • the inventors of the present invention have found that when the step formed by the unevenness has an angle with respect to the direction parallel to the tensile stress of 45 degrees or less and has a height difference of 80 ⁇ m or more in the direction parallel to the tensile stress, the unevenness was determined to contribute to the fit.
  • the larger the size in the tensile direction of the level difference of the fracture surface the more reliably the displacement during stress application can be prevented.
  • the amount of chipping has a correlation with the presence of cracks in the fracture surface direction of the fracture surface or recesses in the fracture surface direction. That is, the greater the number of cracks in the fracture surface direction or the number of recesses in the fracture surface direction, the greater the amount of chipping. It is considered that when the fractured surfaces are fitted, cracks or recesses in the direction of the fracture surface act as stress concentration parts and break finely to cause chipping. The inventors of the present invention have found that it is necessary to minimize the number of cracks or recesses in the direction of the fracture surface in order to suppress the amount of chipping on the fracture surface.
  • the angle with respect to the direction parallel to the tensile stress observed in the cross section parallel to the rolling direction is more than 45 degrees, and the length exceeds 80 ⁇ m.
  • the inventors have found that the average number density of cracks or recesses formed and some of which have propagated inside the steel part should be limited to less than 3 per 10 mm.
  • the morphology and dispersion state of Mn sulfide have a large effect on the fracture surface shape
  • the morphology and dispersion state of Mn sulfide are controlled in order to maximize the roughness of the fracture surface within a range that does not cause chipping. This is very important. More specifically, extending Mn sulfide, which is a path for crack propagation, within a proper range and dispersing in a large amount contributes to increasing the size of the unevenness of the fracture surface in the tensile direction. . Therefore, in the present embodiment, the fracture surface uneven shape that can be experimentally realized within a range in which no fracture of the fracture surface occurs at the time of fracture is defined as described above.
  • the hot rolled steel and steel parts according to the present embodiment are preferably controlled in chemical composition, 90% by area or more of the metal structure is made of ferrite and pearlite, and Mn sulfide having a predetermined form is dispersed inside. Therefore, 98% by area or more of the fracture surface obtained by dividing the hot-rolled steel material and steel parts according to the present embodiment by the tensile stress parallel to the rolling direction is a brittle fracture surface. Since the ductile fracture surface is deformed, the ductile fracture surface impairs the fitting property of the fracture surface. When 98 area% or more of the fracture surface is a brittle fracture surface, the fitting property of the fracture surface is preferably maintained.
  • the evaluation method of the fracture surface shape is as follows.
  • the area ratio of the brittle fracture surface to the fracture surface is the area where a brittle fracture surface composed of cleaved cracks, pseudo-cleavage cracks, or intergranular cracks is generated by analyzing the photograph according to the usual fracture surface analysis method. And the ratio of the area of the brittle fracture surface area to the total fracture surface area is calculated.
  • the amount of deformation due to fracture splitting is determined by measuring the difference between the inner diameter in the direction perpendicular to the fracture direction and the inner diameter in the direction perpendicular to the fracture direction by bolting the hot-rolled steel or steel part after fracture. It is obtained by considering the amount of deformation due to division.
  • the amount of chipping on the fractured surface is determined by combining the fractured surfaces and tightening them with bolts with a torque of 20 N ⁇ m, then loosening the bolts and releasing the fractured surfaces 10 times. , And the total weight is determined by considering the amount of chipping on the fracture surface.
  • a step (tensile step) having a height difference of 80 ⁇ m or more in a direction parallel to the tensile stress, observed at a cross section parallel to the rolling direction, and having an angle of 45 degrees or less with respect to the direction parallel to the tensile stress.
  • the number density and the angle with respect to the direction parallel to the tensile stress, observed in a cross section parallel to the rolling direction, are over 45 degrees and formed over a length of 80 ⁇ m or more, part of which extends inside the steel part.
  • the number density of cracks or recesses is evaluated by the following method. First, a hot-rolled steel material or steel part on which a fracture surface is formed is cut parallel to the tensile direction so that the fracture surface shape can be observed from a direction perpendicular to the tensile direction.
  • the fracture surface shape may be maintained at the time of cutting by filling the fracture surface with resin before cutting.
  • the cut surface can be formed at any location on the test piece as long as it is parallel to the tensile direction, but for convenience, it is preferable to form the cut surface so that the fracture surface at the cut surface is as large as possible. .
  • the observation is carried out with five or more arbitrary visual fields on the cut surface, and the number density per 10 mm of the tensile direction step and the fracture surface direction crack in each visual field is measured and the average value thereof is obtained. Thereby, the number density of the step in the tensile direction and the crack in the fracture surface direction is obtained.
  • the method of breaking the hot-rolled steel material and the steel part according to the present embodiment is not particularly limited, but it is preferable to break using a tensile stress parallel to the rolling direction. Since the hot-rolled steel material and the Mn sulfide of the steel part according to the present embodiment are stretched parallel to the rolling direction, a tensile surface parallel to the rolling direction is applied to form a fracture surface substantially perpendicular to the rolling direction. Thus, the effect of forming irregularities by Mn sulfide is maximized. Moreover, in order to improve break separation property, it is preferable to perform notch processing before applying tensile stress to the location where the fracture surface is formed.
  • the method of notching is not particularly limited, and for example, notching may be performed by broaching or laser processing.
  • a bloom was produced by continuously casting steels 1-28 and steels 101-115 melted in a converter having the chemical compositions shown in Table 1-1 and Table 1-2. After that, a billet of 162 mm square was formed into a round bar having a diameter of 56 mm by hot rolling. When melting steel 1-28, steel 101-112, steel 114, and steel 115, Zr is added to the molten steel before degassing the molten steel using RH or within 15 minutes after the start of degassing. did. Zr was not added to the steel 113. When the billet was hot-rolled into a round bar, the total area reduction was 90%, and the area reduction in the temperature range of 1000 ° C. or lower was 80%.
  • Examples 1-28 and Comparative Examples 101-115 obtained by the method described above, Mn having an aspect ratio stretched along the rolling direction of more than 10 and not more than 30 as measured in a cross section parallel to the rolling direction
  • the average number density of sulfides was calculated by the following method. First, Examples 1-28 and Comparative Examples 101-115 were cut parallel to the rolling direction, and the cut surfaces were polished. Next, enlarged photographs of the cut surfaces of Examples 1 to 28 and Comparative Examples 101 to 115 were taken with an optical microscope or an electron microscope. The magnification at this time was 100 times.
  • Mn sulfide having an aspect ratio of more than 10 and 30 or less in the region where the photograph was taken was obtained by image analysis of the photograph.
  • Two Mn sulfides having a distance of 10 ⁇ m or less were regarded as one extended Mn sulfide.
  • the photography and analysis were repeated 10 times, and the number density obtained thereby was averaged, so that the aspect ratio of Examples 1-28 and Comparative Examples 101-115 stretched along the rolling direction was 10
  • the average number density of Mn sulfides exceeding 30 or less was determined.
  • “Mn sulfide number density” in Table 1-1 and Table 1-2 refers to Mn sulfide having an aspect ratio of more than 10 and less than 30, which is measured along a cross section parallel to the rolling direction. Is the average number density.
  • test pieces 1 to 28 and 101 to 115 corresponding to forged connecting rods were prepared by hot forging. Specifically, steels 1 to 28 and steels 101 to 115, which have been made into raw steel bars having a diameter of 56 mm and a length of 100 mm by the above-described steps, are heated to 1150 to 1280 ° C. and then forged perpendicularly to the length direction of the steel bars. The thickness was 20 mm. Steels 1 to 27 and steels 101 to 115 were cooled to room temperature by air cooling (cooling in the atmosphere), and steel 28 was cooled to room temperature by blast cooling (air was sent to the test piece and cooled). From the forged material after cooling, a JIS No.
  • test piece and a test piece for evaluation of fracture separation having a shape corresponding to the connecting rod large end were cut.
  • a JIS No. 4 tensile test piece was sampled along the longitudinal direction of the forged material at a position of 30 mm from the side surface of the forged material.
  • the test piece for fracture separation evaluation is a plate-shaped central portion of 80 mm ⁇ 80 mm and thickness 18 mm with a 50 mm diameter hole formed on the inner surface of the 50 mm diameter hole.
  • V-notch processing of 45 ° with a depth of 1 mm and a tip curvature of 0.5 mm was performed at two positions of ⁇ 90 ° with respect to the length direction of the steel bar which is a material before forging.
  • a through hole having a diameter of 8 mm was opened as a bolt hole so that the center line thereof was located at a position of 8 mm from the side surface on the notch processing side.
  • the test device for fracture separation evaluation is composed of a split mold and a falling weight tester.
  • the split mold is a shape in which a 46.5 mm diameter cylinder formed on a rectangular steel material is divided into two along the center line. One side is fixed and one side moves on the rail. Wedge holes are machined on the mating surfaces of the two semi-cylinders.
  • a hole with a diameter of 50 mm of the test piece is fitted into this split mold with a diameter of 46.5 mm, and a wedge is placed on the falling weight.
  • the falling weight has a mass of 200 kg and is a mechanism that falls along the guide. When the falling weight is dropped, a wedge is driven and the test piece is pulled and broken in two.
  • the tensile stress applied to the test piece at the time of tensile fracture is made parallel to the hot rolling direction. Note that the periphery of the test piece is fixed so as to be pressed against the split mold so that the test piece is not released from the split mold at the time of breaking.
  • the measurement method of the area ratio (brittle fracture area ratio) of the brittle fracture surface in the fracture surface was as follows. First, the test piece was broken at a falling weight height of 100 mm, and an optical micrograph of the fracture surface was taken. By analyzing the photograph according to the normal fracture surface analysis method, a region where a brittle fracture surface composed of cleavage cracks, pseudo-cleavage cracks or grain boundary cracks is generated is defined, and the area of this brittle fracture surface region is The ratio to the total area of the fracture surface was calculated.
  • the measuring method of the deformation amount at the time of break separation was as follows.
  • the test pieces after the fracture were put together and bolted, and the difference between the inner diameter in the breaking direction and the inner diameter in the direction perpendicular to the breaking direction was measured. This difference was defined as the amount of deformation due to fracture division.
  • the method for measuring the amount of chipping on the fracture surface was as follows. After measuring the amount of deformation, the fracture surfaces were brought together and assembled by tightening the bolts with a torque of 20 N ⁇ m, and then loosening the bolts and releasing the fracture surfaces 10 times. The total weight of the pieces that fell off was measured, and this total weight was defined as the amount of chipping on the fracture surface.
  • Steel with good fracture separation is steel in which the fracture mode of the fracture surface is brittle and the deformation near the fracture surface due to fracture separation is small.
  • the inventors have obtained a sample having an area ratio of a brittle fracture surface of 98% or more, a deformation amount near the fracture surface of 100 ⁇ m or less, and a chip generation amount of 1.0 mg or less, and having a fracture separability.
  • a good sample was considered.
  • the angle with respect to the direction parallel to the tensile stress observed in the cross section parallel to the rolling direction is more than 45 degrees, and it is formed over a length of 80 ⁇ m or more.
  • a sample in which a fracture surface in which the average number density of cracks or recesses (fracture surface direction cracks) was limited to less than 3 per 10 mm was formed was regarded as a sample having good fracture separation.
  • the unevenness of the fractured surface is large in the tensile direction (that is, the size of the step formed by the irregularities) and that the irregularities are present at a high frequency. is there.
  • the present inventors have observed a cross section parallel to the rolling direction, having a height difference of 80 ⁇ m or more toward the direction parallel to the tensile stress, and a step having an angle with respect to the direction parallel to the tensile stress of 45 degrees or less.
  • a sample on which a fracture surface having a number density of (step in the tensile direction) of 2 or more per 10 mm was formed was regarded as a sample having high fitting properties.
  • the tensile density step on the fracture surface and the number density of fracture surface direction cracks were measured by the following methods. First, the test piece was cut in parallel with the tensile direction so that the fracture surface shape could be observed from a direction perpendicular to the tensile direction. By observing the fracture surface shape on the above-mentioned cut surface, the irregularities in the tensile direction and the irregularities in the fracture surface direction were observed. The cut surface was formed to include the center of the fracture surface. The observation was carried out with arbitrary five visual fields on the cut surface. At the time of observation, the number density per 10 mm of the tensile direction step and the fracture surface direction crack in each visual field was measured, and the average value thereof was obtained.
  • corrugation state of the torn surface shown above is shown in FIG.
  • Examples 1 to 28 the average number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less that was stretched along the rolling direction was 50 or more per 1 mm 2 . Further, the chemical components of Examples 1 to 28 were within the specified range of the present invention. As a result, all of Examples 1 to 28 were excellent in break separation property and at the same time good fitting property. In other words, Examples 1 to 28 are excellent fractures in which the amount of plastic deformation in the vicinity of the fractured surface is small and the occurrence of chipping in the fractured surface is small when fracture splitting is performed after air cooling or air blast cooling after hot forging. It had separability.
  • Examples 1 to 28 can fit the fractured surface with high accuracy without causing a displacement when fitting the fractured surface. Improve manufacturing yield. In addition, due to this feature, Examples 1 to 28 can omit the step of scraping off chips, leading to a reduction in manufacturing cost, which is extremely effective in the industry.
  • Comparative Examples 101 to 115 the content of any one of C, Si, Mn, P, S, Cr, V, Zr, and N is out of the scope of the present invention. These do not meet the requirements of the present invention for the following reasons.
  • Comparative Examples 101, 103, 107, 112, and 115 since the contents of C, Si, P, V, and N were less than the lower limit of the range of the present invention, the amount of plastic deformation at break separation was 100 ⁇ m. Exceeded. Accordingly, it was determined that Comparative Examples 101, 103, 107, 112, and 115 did not have good break separation. In Comparative Examples 102, 104, 106, and 108, the contents of C, Si, Mn, and P exceeded the upper limit of the range of the present invention, so the occurrence of chipping at break separation exceeded 1.0 mg. . Accordingly, it was determined that Comparative Examples 102, 104, 106, and 108 did not have good break separation.
  • Comparative Example 105 since the Mn content is less than the lower limit of the range of the present invention, the average number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less drawn along the rolling direction is 50 per 1 mm 2. That is, the number of Mn sulfides and the degree of elongation were insufficient. As a result, it was determined that Comparative Example 105 lacked the number of irregularities on the fracture surface and did not have good fitting properties. In Comparative Example 109, since the S content exceeded the upper limit of the range of the present invention, the average number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less stretched along the rolling direction was 200 per 1 mm 2. Exceeded.
  • Comparative Example 109 the occurrence of chipping at the time of breaking exceeded 1.0 mg, and the amount of plastic deformation at the time of breaking separation exceeded 100 ⁇ m, and it was determined that there was no good breaking separation.
  • Comparative Example 110 since the S content was less than the lower limit of the range of the present invention, the average number density of the Mn sulfide having an aspect ratio of more than 10 and 30 or less stretched along the rolling direction was 50 per 1 mm 2. That is, the number of Mn sulfides and the degree of elongation were insufficient. Accordingly, it was determined that Comparative Example 110 lacked the number of irregularities on the fracture surface and did not have good fitting properties.
  • Comparative Example 111 since the Cr content exceeded the upper limit of the range of the present invention, the amount of plastic deformation at the time of break separation exceeded 100 ⁇ m, and it was determined that the material did not have good break separation properties.
  • Comparative Example 113 does not contain Zr, and the aspect ratio is less than 50 in 1 mm 2 in MnS steel having an aspect ratio of more than 10 and 30 or less, the distribution of Mn sulfide is roughly dispersed, The number of irregularities did not satisfy the requirements of the present invention, and the amount of plastic deformation during break separation exceeded 100 ⁇ m, which is a condition for good break separation.
  • Comparative Example 114 the N content exceeded the upper limit of the range of the present invention, and soot was frequently generated in the steel material production stage, that is, the casting and hot rolling stages. Therefore, Comparative Example 114 was determined to be an inappropriate example of a fracture splitting material, and the fracture splitting property was not evaluated.
  • Comparative Example 115 since the N content is less than the lower limit of the range of the present invention, the ferrite transformation is not promoted, and the amount of plastic deformation at the time of break separation exceeds 100 ⁇ m, and it is determined that there is no good break separation property. It was done.
  • Mn sulfide number density is the aspect ratio Is the number density (pieces / mm 2 ) of Mn sulfide of more than 10 and 30 or less.
  • the production conditions not listed in Table 3 were the same as those in Examples 1-28 and Comparative Examples 101-115.
  • Steel 1 had both the chemical composition and the production conditions within the scope of the present invention. Therefore, the number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less (Mn sulfide number) Density) was within the scope of the present invention.
  • Mn sulfide number Mn sulfide number Density
  • Table 3 although the chemical components of the steels 1-2 to 1-4 were within the scope of the present invention, the manufacturing conditions were outside the scope of the present invention. The number density of the following Mn sulfides was below the range of the present invention.
  • Steel 1-2 is an example in which Zr was added after more than 15 minutes from the start of the degassing process.
  • Steel 1-3 is an example in which the total area reduction rate during hot rolling is less than 80%
  • Steel 1-4 is a temperature range of 1000 ° C. or less, which is a temperature range in which Mn sulfide is easily stretched. In this example, the area reduction rate is less than 50%. Since the Mn sulfide was not sufficiently stretched during hot rolling, it is estimated that the number density of Mn sulfide having an aspect ratio of more than 10 and 30 or less was insufficient in the steels 1-3 and 1-4.
  • the hot-rolled steel material and steel parts of the present embodiment have a small amount of plastic deformation in the vicinity of the fracture surface and less occurrence of chipping in the fracture surface when fractured and separated. For this reason, when the fractured surface is fitted, misalignment does not occur, the fitting can be performed with high accuracy, and the accuracy of steel parts and the yield can be improved at the same time. Further, by using the hot-rolled steel material and steel parts of the present embodiment, it is possible to omit the step of scraping off the chip, and to reduce the manufacturing cost, thereby greatly improving the industrial economic efficiency. There is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 本発明の一態様に係る熱間圧延鋼材は、所定の化学成分を有し、残部がFe及び不純物からなり、金属組織の90面積%以上がフェライトとパーライトとから構成され、圧延方向に平行な断面で測定される、前記圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が50~200個/mmである。

Description

熱間圧延鋼材および鋼部品
 本発明は、鋼部品およびその素材である熱間圧延鋼材に関わる。
 本願は、2015年3月9日に、日本に出願された特願2015-045855号に基づき優先権を主張し、その内容をここに援用する。
 自動車のエンジン用部品および足廻り用部品は、鋼を熱間鍛造で成形し、任意に焼入れ焼き戻しといった熱処理(調質)を行うことで得られる。調質が行われた部品を調質部品と称し、調質されなかった部品を非調質部品と称する。いずれの場合においても、適用する部品に必要な機械特性が確保される。最近は、製造工程における経済効率性の観点から、調質を省略した部品、すなわち、非調質部品が多く普及している。
 自動車エンジン用部品の事例として、コネクティングロッド(以降、コンロッドとする)が挙げられる。この部品は、エンジン内でピストン往復運動をクランクシャフトによる回転運動に変換する際に、動力を伝達する部品である。コンロッドは、キャップ部とロッド部とから構成され、ピン部と称されるクランクシャフトの偏芯部位をキャップ部とロッド部とで挟み込んで締結することによりクランクシャフトに組み付けられ、ピン部と回転摺動する機構によって動力を伝達する。
 キャップ部とロッド部との整合性を向上させるために、通常のコンロッドを製造する際には、キャップ部とロッド部との合わせ面を平滑にする必要がある。また、ピン部をキャップ部とロッド部とで挟み込んで締結する際には、キャップ部とロッド部とを位置合わせする必要があるので、通常のコンロッドを製造する際には、キャップ部とロッド部との合わせ面に位置合わせ用の凹凸を設ける必要がある。合わせ面を平滑にし、且つ合わせ面に凹凸を設けるための機械加工工程は、コンロッドの製造時間及び製造コストを増大させる。この凹凸を設けるための機械加工工程を省略するために、近年、破断分離型コンロッドが多く採用されている。
 破断分離型コンロッドとは、鋼に熱間鍛造等を行うことにより、キャップ部とロッド部とが一体となった形状に成形した後、キャップ部とロッド部との境界に相当する部分に切欠きを入れて、コンロッドを破断分離する工法により得られるものである。この工法により得られるキャップ部及びロッド部の合わせ面は、破断分離により得られた、凹凸を有する破面である。脆性破壊破面の凹凸同士を嵌合させることにより、コンロッドをクランクシャフトに組み付ける際の位置合わせを行うことができる。従って、破断分離型コンロッドの製造では、合わせ面の整合性を高めるための機械加工も、位置合わせ用の凹凸を合わせ面に設けるための機械加工も省略できる。従って、破断分離型コンロッドは、部品の加工工程を大幅に削減でき、部品製造時の経済効率性を大幅に向上させることができる。
 破断分離型コンロッドの材料として、欧米で普及しているのは、DIN規格のC70S6である。C70S6は、0.7mass%のCを含む高炭素非調質鋼であり、破断分離時の寸法変化を抑えるために、その金属組織が延性、及び靭性の低いパーライト組織からなる。C70S6は、破断時の破断面近傍の塑性変形量が小さいので破断分離性に優れる。鋼の破断分離性とは、鋼を破断加工することによって得られた鋼の破面同士の嵌合性を評価する指標である。破面近傍の変形量が小さく、破面の脆性破壊面積率が大きく、破断加工時の欠け発生量が小さい鋼は、破断分離性が良好であると判断される。しかし、C70S6は、通常のコンロッド用鋼である中炭素非調質鋼のフェライト-パーライト組織に比べて組織が粗大であるので、降伏比(降伏強さ/引張強さ)が低く、高い座屈強度が要求される高強度コンロッドには適用できないという問題がある。
 鋼の降伏比を高めるためには、鋼の炭素量を低く抑さえ、鋼のフェライト分率を増加させることが必要である。しかしながら、鋼のフェライト分率を増加させた場合、鋼の延性が向上して、破断分離時に破面近傍の塑性変形量が大きくなるので、クランクシャフトのピン部に締結されるコンロッド摺動部の形状変形が増大し、コンロッド摺動部の真円度が低下するといった部品性能上の問題が発生する。
 また、近年は高出力ディーゼルエンジンあるいはターボエンジンの普及によるエンジン出力増大に伴い、コンロッドのキャップ部とロッド部とのずれ防止、すなわち、嵌合性向上及び締結力向上等のニーズがある。このうち、嵌合性向上については、破断分離させた面の凹凸を大きくするように、鋼材の組織を制御することが有効である。
 高強度の破断分離型コンロッドに好適な鋼材として、いくつかの非調質鋼が提案されている。特許文献1および特許文献2には、SiまたはPのような脆化元素を鋼に多量に添加し、鋼の延性及び靭性を低下させることによって鋼の破断分離性を改善する技術が記載されている。特許文献3および特許文献4には、第二相粒子の析出強化を利用して、鋼のフェライトの延性および靭性を低下させることによって鋼の破断分離性を改善する技術が記載されている。さらに、特許文献5~7には、鋼中のMn硫化物の形態を制御することによって鋼の破断分離性を改善する技術が記載されている。
 これらの技術は、破断分離した部位の変形量を小さくする一方で、材料を脆くする。従って、これら技術により得られた鋼は、破断分離時、あるいは破断面同士を嵌合させたときに欠けが生じる。破断面の欠けが生じると、嵌合部の位置ずれが生じ、精度よく嵌合できないといった問題が発生する。特に、破断面の凹凸を大きくすると、破断時に欠けやひびが発生する頻度が高くなるので、破断面の凹凸の増大と、破断時の欠け及びひびの発生防止との両方を同時に達成可能な鋼が求められていた。欠け、ひびの発生防止の解決策としては、特許文献8に示されるようにVの偏析を低減することが挙げられる。なお、Vは高強度化を目的として添加する化学成分である。
 しかしながら、Vの偏析の他にも欠け、ひびを生じさせる原因がある。実際には、破断面の凹凸が過度に大きい場合、欠け、ひびの発生頻度が高くなる傾向にある。これは、破断面の引張方向の凹凸が形成される際に、破面方向に進展するき裂または凹部も形成されるからである。破面同士を嵌合して、破面を締結するために破面に応力を印加する際、破面方向に進展したき裂または凹部が応力集中部となって、ここで微細な破壊が生じると考えられる。一方、破面同士の嵌合性を高めるためには、破断面の凹凸を大きくする必要がある。以上説明したように、破断面凹凸の巨大化による嵌合性向上と、欠け及びひびの発生防止とは背反の関係があり、その両方の達成は現行の工法では解決できなかった。
日本国特許第3637375号公報 日本国特許第3756307号公報 日本国特許第3355132号公報 日本国特許第3988661号公報 日本国特許第4314851号公報 日本国特許第3671688号公報 日本国特許第4268194号公報 日本国特許第5522321号公報
 本発明は上記の事情に鑑み、破断分離時の破断面近傍変形量を小さくし、かつ、破断面の凹凸を大きくして嵌合性を高め、且つ破断面の欠け発生量を抑制した熱間圧延鋼材および鋼部品を提供することを目的とする。
 本発明の要旨は以下のとおりである。
(1)本発明の一態様に係る熱間圧延鋼材は、化学成分がC:0.35~0.45mass%、Si:0.6~1.0mass%、Mn:0.60~0.90mass%、P:0.010~0.035mass%、S:0.06~0.10mass%、Cr:0.02~0.25mass%以下、V:0.20~0.40mass%、Zr:0.0001~0.0050mass%以下、N:0.0060~0.0150mass%Ti:0~0.050mass%、Nb:0~0.030mass%、Mg:0~0.0050mass%、およびREM:0~0.0010mass%を含有し、残部がFe及び不純物からなり、金属組織の90面積%以上がフェライトとパーライトとから構成され、圧延方向に平行な断面で測定される、前記圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が50~200個/mmである。
(2)上記(1)に記載の熱間圧延鋼材は、前記化学成分が、Ti:0.005~0.050mass%、Nb:0.005~0.030mass%、Mg:0.0005~0.0050mass%、及びREM:0.0003~0.0010mass%からなる群から選択される1種または2種以上を含有してもよい。
(3)本発明の別の態様に係る鋼部品は、化学成分がC:0.35~0.45mass%、Si:0.6~1.0mass%、Mn:0.60~0.90mass%、P:0.010~0.035mass%、S:0.06~0.10mass%、Cr:0.02~0.25mass%以下、V:0.20~0.40mass%、Zr:0.0001~0.0050mass%以下、N:0.0060~0.0150mass%Ti:0~0.050mass%、Nb:0~0.030mass%、Mg:0~0.0050mass%、およびREM:0~0.0010mass%を含有し、残部がFe及び不純物からなり、金属組織の90面積%以上がフェライトとパーライトとから構成され、圧延方向に平行な断面で測定される、アスペクト比が10超30以下のMn硫化物の平均個数密度が50~200個/mmである。
(4)上記(3)に記載の鋼部品は、前記鋼部品を前記圧延方向に平行な引張応力によって引張破断させて破面を形成した場合に、前記圧延方向に平行な前記断面で観察される、前記引張応力に平行な方向に向けて80μm以上の高低差を有し、前記引張応力に平行な前記方向に対する角度が45度以下である段差が、前記破面に10mmあたり2箇所以上の平均個数密度で形成され、前記圧延方向に平行な前記断面で観察される、前記引張応力に平行な前記方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が前記鋼部品の内部に進展したき裂または凹部の平均個数密度が、前記破面において10mmあたり3箇所未満に制限され、前記破面における脆性破壊破面が98面積%以上であってもよい。
(5)上記(3)または(4)に記載の鋼部品は、前記化学成分が、Ti:0.005~0.050mass%、Nb:0.005~0.030mass%、Mg:0.0005~0.0050mass%、及びREM:0.0003~0.0010mass%からなる群から選択される1種または2種以上を含有してもよい。
 本発明の一態様に係る熱間圧延鋼材及び鋼部品は、破断分離した際に、破断面近傍の塑性変形量が小さく、かつ、破断面の欠け発生が少なくなる。このため、破断面の嵌合をさせた場合、位置ずれが生じず、精度よく嵌合でき、鋼部品の精度向上、歩留向上を同時に実現できる。また、本発明の鋼材及び鋼部品を用いることにより、欠けを振るい落とす工程を省略することができ、製造コストを低減でき、これにより、産業上の経済効率性の向上に大きな効果がある。従って、本発明の鋼材は、熱間鍛造で成形して得られる鋼部品の用途に適し、本発明の鋼材及び鋼部品は、破断分割した後に再び破断面同士を嵌合して使用する用途に適する。
破断分離性評価用試験片の平面図である。 破断分離性評価用試験片の側面図である。 破断面の凹凸状況を観察した破断面の断面写真である。 本実施形態に係る鋼部品のき裂進展の模式図である。
 以下、本発明の実施形態である熱間圧延鋼材及び鋼部品について説明する。
 本発明者は、鋼中に存在するMn硫化物の形状を制御することにより、破断分離によって得られる破面の凹凸の破面垂直方向の大きさを好ましく制御し、欠け量を抑制できることを知見した。
 本発明者らが知見したところによれば、破面の凹凸形状は、Mn硫化物の伸長化程度および分布頻度に影響される。Mn硫化物の伸長化が過剰である(即ちMn硫化物のアスペクト比が大きい)場合は、凹凸の破面垂直方向のサイズが著しく大きくなることにより、破断分離時や破面嵌合時に欠けやひびが破面で発生し、破面嵌合時に空隙が生じて嵌合性が低下する。一方、伸長化されたMn硫化物の分布頻度が増加すると、破面の凹凸の個数が増加して嵌合性が向上する。
 本発明者らは、上述の現象は、以下の機構によって生じたものであると推測している。鋼部品のMn硫化物は、鋼部品の材料である熱間圧延鋼材の熱間圧延の際に、圧延方向に伸長化される。図3に示されるように、圧延方向とほぼ垂直な方向に鋼部品10を破断分離する際、まず破断起点13から圧延方向に垂直にき裂12が進展する。しかし、圧延方向に伸長化されたMn硫化物11にき裂12が到達すると、き裂12の進展方向が大きく変化し、き裂12はMn硫化物と鋼部品10の母相との界面に沿って圧延方向に略平行に進展すると考えられる。き裂12がMn硫化物12の端部に到達すると、き裂12の進展方向が応力方向に変化し、き裂12は再び圧延方向と略垂直に進展する。き裂12が圧延方向に垂直な進展と圧延方向に平行な進展とを繰り返しながら破断分離が進むことにより、破面に凹凸が形成されると考えられる。本発明者らは、以上の理由により、Mn硫化物11が多ければ凹凸の個数が多くなり、Mn硫化物11のアスペクト比が大きければ凹凸の圧延方向に沿ったサイズが大きくなると推定した。
 本発明は、上述された本発明者らの知見によって得られたものである。以下に、本発明の実施形態に係る熱間圧延鋼材及び鋼部品の化学成分、Mn硫化物の形態、及び破断分割によって得られる破面の形態について説明する。
 なお、熱間圧延鋼材の化学成分は、熱間加工によって変化しない。また、Mn硫化物のサイズは熱間加工によって与えられる変形のサイズと比べて非常に微小であるので、熱間圧延鋼材のMn硫化物の形態も、熱間加工によってほとんど変化しない。従って、本実施形態に係る熱間圧延鋼材を熱間加工して得られる本実施形態に係る鋼部品の化学成分及びMn硫化物の形態は、以下に説明される本実施形態に係る熱間圧延鋼材のそれらと同じである。また、破断分割によって得られる破面の形態は、化学成分及びMn硫化物の形態によって決まるので、破断分割によって得られる破面の形態について、本実施形態に係る熱間圧延鋼材と本実施形態に係る鋼部品とは同一である。
 本実施形態の熱間圧延鋼材は、化学成分として、C、Si、Mn、P、S、Cr、V、Zr及びNを所定の含有率で含む鋼材である。本実施形態の熱間圧延鋼材は、以下に説明する化学成分を含むことで、延性が好ましく制御され、引張応力によって得られる破面(引張破面)における脆性破壊破面の割合を向上させ、かつ、Mn硫化物を析出させて破面の凹凸の破面垂直方向のサイズを大きくすることができる。これにより、本実施形態の熱間圧延鋼材は、破断分割した際に得られる破面が高い嵌合性を有する。また、本実施形態の熱間圧延鋼材は、化学成分として任意に、Ti、Nb、Mg、REMのうちの1種または2種以上を含有してもよい。
 以下、本実施形態の熱間圧延鋼材および鋼部品の化学成分の限定理由について述べる。以下、特に断りが無い限り、熱間圧延鋼材の化学成分の限定理由は、鋼部品の化学成分の限定理由と等しい。
(C:0.35~0.45mass%)
 Cは、本実施形態の熱間圧延鋼材及び鋼部品の引張強さを確保する効果、および、破断時の破断面近傍の塑性変形量を小さくして良好な破断分離性を実現する効果を有する。Cの増加に伴い、パーライト組織の体積分率が上昇することにより、引張強さが上昇し、並びに延性および靭性が低下する。これらの効果を最大限に発揮させるために、鋼中のC含有量を0.35~0.45mass%に設定した。C含有量がこの上限量を超えると、熱間圧延鋼材のパーライト分率が過大となり、破断時の欠けの発生頻度が高くなる。また、C含有量が下限量に満たない場合は、熱間圧延鋼材の破断面近傍の塑性変形量が増加し、破断面の嵌合性が低下する。なお、C含有量の好ましい下限値は0.36mass%、または0.37mass%である。C含有量の好ましい上限値は0.44mass%、0.42mass%、または0.40mass%である。
(Si:0.6~1.0mass%)
 Siは、固溶強化によってフェライトを強化させ、これにより熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下により、破断分離時の破断面近傍の塑性変形量が小さくなり、熱間圧延鋼材及び鋼部品の破断分離性が向上する。この効果を得るためには、Si含有量の下限を0.6mass%にする必要がある。他方、Siが過剰に含有されると、破断面の欠けが発生する頻度が上昇するので、Si含有量の上限は1.0mass%とする。なお、Si含有量の好ましい下限値は0.7mass%である。Si含有量の好ましい上限値は0.9mass%である。
(Mn:0.60~0.90mass%)
 Mnは、固溶強化によってフェライトを強化させ、これにより熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下により、破断分離時の破断面近傍の塑性変形量が小さくなり、熱間圧延鋼材及び鋼部品の破断分離性が向上する。また、MnはSと結合してMn硫化物を形成する。本実施形態の熱間圧延鋼材から得られる鋼部品を破断分割させる際に、圧延方向に伸長したMn硫化物に沿ってき裂が伝播するので、破断面の凹凸の圧延方向のサイズが増大する。従って、Mnは、破断面を嵌合する際に位置ずれを防止する効果がある。他方、Mnが過剰に含有する場合、フェライトが硬くなりすぎて破断時の欠けが発生する頻度が増加する。これらに鑑み、Mn含有量は0.60~0.90mass%である。なお、Mn含有量の好ましい下限値は0.65mass%、0.70mass%、または0.75mass%である。Mn含有量の好ましい上限値は0.85mass%、0.83mass%、または0.80mass%である。
(P:0.010~0.035mass%)
 Pは、フェライト及びパーライトの延性及び靭性を低下させ、これにより熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下により、破断分離時の破断面近傍の塑性変形量が小さくなり、熱間圧延鋼材及び鋼部品の破断分離性が向上する。ただし、Pは結晶粒界の脆化を引き起こし、破断面の欠けを発生しやすくする。従って、Pを利用して延性及び靭性を低下させることは、欠け発生の防止の観点からは好ましくない。以上を考慮して、P含有量の範囲は0.010~0.035mass%とする。P含有量の好ましい下限値は0.012mass%、0.013mass%、または0.015mass%である。P含有量の好ましい上限値は0.030mass%、0.028mass%、または0.025mass%である。
(S:0.06~0.10mass%)
 SはMnと結合してMn硫化物を形成する。本実施形態の熱間圧延鋼材から得られる鋼部品を破断分割させる際に、圧延方向に伸長したMn硫化物に沿ってき裂が伝播するので、Mn硫化物は破断面の凹凸の破面垂直方向のサイズを大きくし、破断面を嵌合する際に位置ずれを防止する効果がある。その効果を得るためには、S含有量の下限を0.06mass%にする必要がある。他方、Sが過剰に含有されると、破断分割時の破断面近傍の塑性変形量が増大し、破断分離性が低下する場合が発生する。さらに、過剰量のSは破断面の欠けを助長することがある。以上の理由により、Sの好適な範囲を0.06~0.10mass%とする。S含有量の好ましい下限値は0.07mass%である。S含有量の好ましい上限値は0.09mass%である。
(Cr:0.02~0.25mass%)
 Crは、Mnと同様に固溶強化によってフェライトを強化し、熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし、熱間圧延鋼材及び鋼部品の破断分離性を向上させる。その効果を得るためには、Cr含有量の下限を0.02mass%にする必要がある。しかし、Crを過剰に含有すると、パーライトのラメラー間隔が小さくなり、パーライトの延性及び靭性が高くなる。そのため、破断時の破断面近傍の塑性変形量が大きくなり、破断分離性が低下する。さらに、Crを過剰に含有するとベイナイト組織が生成しやすくなり、破断分離性が大幅に低下する場合がある。従って、Crを含有させる場合、その含有量を0.25mass%以下とする。Cr含有量の好ましい下限値は0.05mass%、0.08mass%、または0.10mass%である。Cr含有量の好ましい上限値は0.23mass%、0.20mass%、または0.18mass%である。
(V:0.20~0.40mass%)
 Vは、熱間鍛造後の冷却時に主に炭化物又は炭窒化物を形成することにより、フェライトを強化し、熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。熱間圧延鋼材及び鋼部品の延性及び靭性の低下は、熱間圧延鋼材及び鋼部品の破断時の破断面近傍の塑性変形量を小さくして、熱間圧延鋼材からなる鋼部品の破断分離性を良好にする。また、Vは、炭化物又は炭窒化物の析出強化により、熱間圧延鋼材の降伏比を高めるという効果がある、これら効果を得るためには、V含有量の下限を0.20mass%にする必要がある。一方、Vを過剰に含有してもその効果は飽和するので、V含有量の上限は0.40mass%である。V含有量の好ましい下限値は0.23mass%、または0.25mass%である。V含有量の好ましい上限値は0.38mass%、または0.35mass%である。
(Zr:0.0001~0.0050mass%)
 Zrは酸化物を形成し、このZr酸化物はMn硫化物の晶出核または析出核となり、Mn硫化物を均一に微細に分散させる。この微細分散されたMn硫化物が、破断分割時のき裂の伝播経路となり、熱間圧延鋼材及び鋼部品の破断面近傍の塑性変形量を小さくし、破断分離性を高める効果がある。ただし、Zrが過剰に含有されてもその効果は飽和するので、Zr含有量の上限を0.0050mass%とする。この効果を十分に発揮するためにはZr含有量の下限を0.0001mass%とする。Zr含有量の好ましい下限値は0.0005mass%、または0.0010mass%である。Zr含有量の好ましい上限値は0.0045mass%、0.0040mass%、または0.0030mass%である。
(N:0.0060~0.0150mass%)
 Nは、熱間鍛造後の冷却時に主にV窒化物又はV炭窒化物を形成してフェライトの変態核として働くことによって、フェライト変態を促進する。これにより、Nは、熱間圧延鋼材から得られる鋼部品の破断分離性を大幅に損なうベイナイト組織の生成を抑制する効果がある。この効果を得るためには、N含有量の下限を0.0060mass%とする。Nを過剰に含有すると、熱間圧延鋼材及び鋼部品の熱間延性が低下し、熱間加工時に割れ又は疵が発生しやすくなる場合がある。従って、N含有量の上限を0.0150mass%とする。なお、N含有量の好ましい下限値は0.0065mass%、0.0070mass%、または0.0080mass%である。N含有量の好ましい上限値は0.0140mass%、0.0130mass%、または0.0120mass%である。
 本実施形態に係る熱間圧延鋼材は、その効果をさらに顕著にするために、更に、Ti:0.050mass%以下、及び、Nb:0.030mass%以下、Mg:0.0050mass%以下、REM:0.0010mass%以下からなる群から選択される1種または2種以上を選択して含有することができる。しかしながら、これら元素が含有されない場合でも、本実施形態に係る熱間圧延鋼材及び鋼部品は課題を解決することができるので、Ti、Nb、Mg、およびREMの下限値は0mass%である。
(Ti:0~0.050mass%)
 Tiは、熱間鍛造後の冷却時に主に炭化物又は炭窒化物を形成して、析出強化によりフェライトを強化し、これにより熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし、これにより熱間圧延鋼材及び鋼部品の破断分離性を向上させる。しかし、Tiを過剰に含有すると、その効果が飽和する。上述の効果を得るためにTiを含有させる場合は、Ti含有量の上限を0.050mass%とする。Tiの効果を十分に発揮させるためには、Ti含有量の下限を0.005mass%とすることが好ましい。より好適なTi含有量の下限値は0.015mass%、0.018mass%、または0.020mass%である。より好適なTi含有量の上限値は0.040mass%、0.035mass%、または0.030mass%である。
(Nb:0~0.030mass%)
 Nbは、熱間鍛造後の冷却時に主に炭化物又は炭窒化物を形成して、析出強化によりフェライトを強化し、これにより熱間圧延鋼材及び鋼部品の延性及び靭性を低下させる。延性及び靭性の低下は、破断時の破断面近傍の塑性変形量を小さくし、これにより熱間圧延鋼材及び鋼部品の破断分離性を向上させる。しかし、Nbを過剰に含有すると、その効果が飽和する。上述の効果を得るためにNbを含有させる場合は、Nb含有量の上限を0.030mass%とする。Nbの効果を十分に発揮させるにためには、Nb含有量の下限を0.005mass%とすることが好ましい。より好適なNb含有量の下限値は0.010mass%である。より好適なNb含有量の上限値は0.030mass%、0.028mass%、または0.025mass%である。
(Mg:0~0.0050mass%)
 Mgは、酸化物を形成してMn硫化物の晶出核または析出核となり、これによりMn硫化物を均一に微細に分散させる。このMn硫化物が、破断分割時のき裂の伝播経路となり、破断面近傍の塑性変形量を小さくし、熱間圧延鋼材及び鋼部品の破断分離性を高める。ただし、Mgが過剰に含有されてもその効果が飽和するので、Mg含有量の上限を0.0050mass%とする。この効果を十分に発揮するためには、Mg含有量の下限を0.0005mass%とすることが好ましい。より好適なMg含有量の下限値は0.0006mass%である。より好適なMg含有量の上限値は0.0045mass%、0.0040mass%、0.0035mass%、0.0030mass%、または0.0025mass%である。
(REM:0~0.0010mass%)
 REMは、酸硫化物を形成してMn硫化物の晶出核または析出核となり、これによりMn硫化物を均一に微細に分散させる。このMn硫化物が、破断分割時のき裂の伝播経路となり、破断面近傍の塑性変形量を小さくし、熱間圧延鋼材及び鋼部品の破断分離性を高める。ただし、REMが過剰に含有されると、鋼材製造段階において、鋳造工程でのノズル詰り等の不具合が生じる。従って、REM含有量の上限を0.0010mass%とする。この効果を十分に発揮するためにはREM含有量の下限を0.0003mass%とすることが好ましい。より好適なREM含有量の下限値は0.0004mass%、または0.0005mass%である。より好適なREM含有量の上限値は0.0009mass%、0.0008mass%、または0.0007mass%である。なお、「REM」との用語は、Sc、Yおよびランタノイドのからなる合計17元素を指し、上記「REMの含有量」とは、これらの17元素の合計含有量を意味する。ランタノイドをREMとして用いる場合、工業的には、REMはミッシュメタルの形で添加される。
 本実施形態に係る熱間圧延鋼材及び鋼部品の化学成分の残部は、Fe及び不純物である。不純物とは、鉱石やスクラップ等の原材料及び製造環境から混入するものであって、本実施形態に係る熱間圧延鋼材及び鋼部品の特性に影響を及ぼさないものをいう。さらに、本実施形態に係る熱間圧延鋼材及び鋼部品は、上記成分の他に、その効果を損なわない範囲で、0~0.01%のTe、0~0.01%のZn、及び0~0.01%のSn等を含有することができる。
(金属組織:90面積%以上がフェライトとパーライトとから構成される)
 本実施形態の熱間圧延鋼材及び鋼部品の金属組織は、いわゆるフェライト-パーライト組織とされる。金属組織中にベイナイト等が含まれる場合があるが、ベイナイトは破断分割性を損なうので好ましくない。そこで本発明者らは、本実施形態の熱間圧延鋼材及び鋼部品の金属組織が、合計90面積%以上のフェライトおよびパーライトを含むことと規定した。この規定により、ベイナイト量が10面積%以下に制限され、熱間圧延鋼材及び鋼部品の破断分割性が良好に保たれる。本実施形態の熱間圧延鋼材及び鋼部品の金属組織は、合計で92面積%、95面積%、又は98面積%以上のフェライト及びパーライトを含んでも良い。
 フェライト及びパーライトの合計量が上述の範囲内である限り、両者の割合は特に限定されない。例えばフェライトまたはパーライトが0面積%であっても、良好な破断分割性が保たれる。また、フェライト及びパーライトの合計量が上述の範囲内である限り、金属組織の残部の構成は特に限定されない。金属組織に含まれるフェライトおよびパーライトの量は、研磨及びエッチングされた断面の光学顕微鏡写真を撮影し、この写真を画像解析することで求められる。
(圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度:50~200個/mm
 本実施形態の熱間圧延鋼材及び鋼部品の内部には、Mn硫化物が形成される。Mn硫化物は、熱間圧延鋼材の圧延方向に沿って伸長化している。伸長化されたMn硫化物は、熱間圧延鋼材及び鋼部品を引っ張り破断させることにより得られた破面に凹凸形状を形成するために必須の介在物である。Mn硫化物の伸長化のためには、鋼材を熱間圧延で製造する際の、ビレットから棒鋼までの減面率を少なくとも80%以上にする必要がある。
 本実施形態に係る熱間圧延鋼材及び鋼部品では、圧延方向を長軸側としてアスペクト比が10超、30以下の伸長化されたMn硫化物が1mmあたり50個以上、200個以下で分布する。伸長化されたMn硫化物は、圧延方向の引張破断によって形成された破断面に、引張方向に凹凸を形成して、破断面同士の嵌合性を高める。アスペクト比が10超30以下のMn硫化物は、凹凸の引張方向のサイズを適正化することができる。また、アスペクト比が10超30以下のMn硫化物の個数が50~200個/mmである場合、凹凸の個数を適正化することができる。
 アスペクト比が10以下であるMn硫化物は、破断面の凹凸の引張方向のサイズを十分に大きくすることができず、破断面同士の嵌合性の向上に寄与しない。アスペクト比が30を超えるMn硫化物は、破断面の凹凸を顕著にするが、割れや欠けの頻度が高くなるため、破断面同士の嵌合性を損なわせる。従って、アスペクト比が10以下または30超であるMn硫化物の個数密度は少ない方が好ましい。ただし、アスペクト比が10超30以下のMn硫化物の個数密度が上述の範囲内であり、且つMn硫化物の生成源となるMn及びSの含有量が上述の範囲内である場合、化学成分中のMn及びSが、アスペクト比が10超30以下のMn硫化物によって消費され、アスペクト比が10以下または30超であるMn硫化物の生成が十分に抑制される。従って、アスペクト比が10以下または30超であるMn硫化物の個数密度は特に制限されない。
 アスペクト比が10超30以下のMn硫化物の平均個数密度が下限値に満たない場合は、破断面の凹凸の個数が少なくなり、破断分離後の破断面の嵌合性が不十分となる。さらに、アスペクト比が10超30以下のMn硫化物の平均個数密度が下限値に満たない場合、アスペクト比が10未満または30超のMn硫化物の個数密度が増大して、破断分離性を損なう恐れがある。一方、アスペクト比が10超30以下のMn硫化物の平均個数密度が上限値を超える場合は、破断面において割れ、欠けが発生し、この場合も破断面の嵌合性が損なわれる。
 熱間圧延鋼材及び鋼部品中の、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度の測定方法は以下の通りである。
 まず、熱間圧延鋼材及び鋼部品を圧延方向に平行に切断し、切断面を研磨する。Mn硫化物は圧延方向に沿って延伸するので、熱間圧延鋼材及び鋼部品を切断する際は、Mn硫化物の延伸方向を、熱間圧延鋼材及び鋼部品の圧延方向とみなすことができる。
 次いで、切断面の拡大写真を、光学顕微鏡または電子顕微鏡によって撮影する。この際の倍率は特に限定されないが、100倍程度が好ましい。Mn硫化物はほぼ均一に分布しているので、写真撮影を行う領域は特に限定されない。
 そして、写真を画像解析することで、その写真が撮影された領域におけるアスペクト比が10超30以下のMn硫化物の個数密度を求めることができる。なお、伸長化されたMn硫化物のなかには、分断されて圧延方向に列状に凝集して分布するものもある。しかし、間隔が10μm以下である2つのMn硫化物は、1つの伸長Mn硫化物とみなす。伸長方向に並んでおり、且つ間隔が10μm以下である2つのMn硫化物は、熱間圧延鋼材または鋼部品を引張破断させる際に生じるき裂を引張方向に伝播させるという点において、1つのMn硫化物と同じ効果を有していると考えられるからである。
 さらに、写真撮影と解析とを少なくとも10回繰り返し、これにより得られた個数密度を平均することにより、熱間圧延鋼材及び鋼部品中の、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が求められる。
(熱間圧延鋼材及び鋼部品の製造方法)
 次に、本実施形態に係る熱間圧延鋼材及び鋼部品の製造方法について説明する。本実施形態に係る熱間圧延鋼材の製造方法は、本実施形態に係る熱間圧延鋼材と同じ化学成分を有する鋼を溶製及び連続鋳造してブルームを得る工程と、ブルームに分塊圧延等の熱間加工をしてビレットを得る工程と、ビレットを熱間圧延して丸棒を得る工程とを含み、Zrが溶製における二次精錬の初期段階で添加され、熱間圧延での総減面率が80%以上であり、且つ熱間圧延での1000℃以下での減面率が50%以上であることを特徴とする。本実施形態に係る鋼部品の製造方法は、本実施形態に係る熱間圧延鋼材を1150~1280℃に加熱して熱間鍛造する工程および熱間鍛造された熱間圧延鋼材を室温まで空冷または衝風冷却する工程、または本実施形態に係る熱間圧延鋼材を冷間鍛造する工程と、冷却された熱間圧延鋼材を切削加工して所定形状を有する鋼部品を得る工程とを有する。
 本実施形態に係る熱間圧延鋼材の製造方法の詳細は以下の通りである。まず、本実施形態に係る熱間圧延鋼材と同じ化学成分を有する鋼を、転炉で溶製し、連続鋳造することによりブルームを製造する。転炉溶製の際に、二次精錬前または二次精錬中にZrを溶鋼に添加する。粗大なZr酸化物を十分に溶鋼から浮上分離させ、且つZr酸化物を核として生成するMn硫化物を溶鋼中に微細に分散させるために、二次精錬初期の段階(例えばRH(Ruhrstahl-Heraeus)等を用いて溶鋼に脱ガス処理を行う以前、またはRHによる脱ガス処理の間であって処理開始後15分以内)でZrを添加することが必要である。Zrの添加が、RH等を用いた脱ガス処理開始後15分より後に行われた場合、Zr酸化物を用いたMn硫化物の微細化のための時間が不十分となるので、ブルーム中のMn硫化物が粗大化する。ブルーム中のMn硫化物が粗大化した場合、後のブルーム圧延工程においてMn硫化物が過剰に延伸され、アスペクト比が30超のMn硫化物が増大し、アスペクト比が10超30以下のMn硫化物の個数密度が不足する。
 得られたブルームを、更に分塊圧延工程等を経てビレットとする。得られたビレットをさらに熱間圧延によって丸棒とする。このようにして本実施形態の熱間圧延鋼材を製造する。Mn硫化物を伸長させるために、ビレットを丸棒形状にする際の圧延減面率は80%以上とすることが好ましい。さらに、Mn硫化物の伸長化を顕著にするため、Mn硫化物の高温硬さが鋼材に対して相対的に低い温度域、即ちMn硫化物の伸長が容易となる温度域で熱間圧延することが必要である。具体的には、1000℃以下での圧延減面率を50%以上とすることが必要である。これにより、鋼中のMn硫化物を伸長化させることができる。これら圧延条件が満たされなかった場合、Mn硫化物が十分に延伸されない。なお、熱間圧延後の熱間圧延鋼材は室温まで冷却されてもよく、冷却前にさらに熱間鍛造に供されてもよい。
 本実施形態に係る鋼部材の製造方法の詳細は以下の通りである。上述の方法によって得られた熱間圧延鋼材を例えば1150~1280℃に加熱して熱間鍛造し、空冷(大気中での放冷)または衝風冷却(鋼に風を送り冷却)によって室温まで冷却する。冷却後の鍛造材を切削加工することにより、所定の形状の鋼部品とする。熱間圧延鋼材を鍛造する際は、熱間鍛造に限らず、冷間鍛造してもよい。
 本実施形態の熱間圧延鋼材及び鋼部品は、圧延方向に平行な引張応力によって引張破断させて破面を形成した場合、圧延方向に平行な断面で観察される、引張応力に平行な方向に向けて80μm以上の高低差を有し、引張応力に平行な方向に対する角度が45度以下である段差が、破面に10mmあたり2箇所以上の平均個数密度で形成され、圧延方向に平行な断面で観察される、引張応力に平行な方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が鋼部品の内部に進展したき裂または凹部の平均個数密度が、破面において10mmあたり3箇所未満に制限され、破面における脆性破壊破面が98面積%以上である。
 破面の性状について規定した理由を以下に述べる。引張破断により形成された破面同士を嵌合させ、破断面に水平方向に応力を加えると、その応力は破面の凹凸によって、水平方向および2つの法線方向(面内で90°の傾き方向、および、破断面と垂直方向)に3次元的に分散される。この場合、印加された応力は、破面の凹凸の引張方向のサイズが大きいほど分散される。発明者らは、凹凸によって形成される段差が、引張応力に平行な方向に対する角度が45度以下であり、且つ引張応力に平行な方向に向けて80μm以上の高低差を有する場合に、この凹凸が嵌合性に寄与すると判断した。また、破面の欠けが生じない限り、破面の段差の引張方向のサイズが大きいほど、応力印加時の位置ずれをさらに確実に防ぐことができる。
 欠け発生量は、破断面の破面方向のき裂又は破面方向の凹部の存在と相関がある。すなわち、ある一定の大きさ以上の破面方向のき裂もしくは破面方向の凹部が多いほど、欠けの発生量が増加する。破断面を嵌合する際に、破面方向のき裂又は凹部が応力集中部として作用して微細に破断することにより、欠けが発生すると考えられる。本発明者らは、破断面の欠け発生量を抑制するためには、破面方向のき裂もしくは凹部の箇所を最小限に抑えることが必要であることを知見した。具体的には、欠け発生量を十分に抑制するためには、圧延方向に平行な断面で観察される、引張応力に平行な方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が鋼部品の内部に進展したき裂または凹部の平均個数密度を10mmあたり3箇所未満に制限すべきであることを本発明者らは見出した。
 特にMn硫化物の形態および分散状態が破面形状に大きな影響を及ぼすので、欠けを生じさせない範囲で破面の凹凸を最大化するためには、Mn硫化物の形態と分散状態とを制御することが重要である。より具体的には、き裂伝播の経路となるMn硫化物を適正な範囲内で伸長化させ、かつ多量に分散させることが、破断面の凹凸の引張方向のサイズを大きくすることに寄与する。そこで、本実施形態では、破断時に破断面の欠けを発生させない範囲で実験的に実現可能である破断面凹凸形状を上記の通りに規定した。
 また、本実施形態に係る熱間圧延鋼材および鋼部品は、化学組成が好ましく制御され、金属組織の90面積%以上がフェライトおよびパーライトとされ、さらに所定の形態を有するMn硫化物が内部に分散されているので、本実施形態に係る熱間圧延鋼材および鋼部品を圧延方向に平行な引張応力によって分割して得られる破面の98面積%以上は、脆性破面となる。延性破面では変形が生じているので、延性破面は破面の嵌合性を損なう。破面の98面積%以上が脆性破面である場合、破面の嵌合性が好ましく保たれる。
 破面形状の評価方法は以下の通りである。
 破断面に占める脆性破面の面積率は、通常の破面解析の手法に従って写真を分析することにより、へき開割れ、擬へき開割れもしくは粒界割れなどで構成される脆性破面が生じている領域を画定し、この脆性破面領域の面積が破断面全体の面積に占める割合を算出することにより求められる。
 破断分割による変形量は、破断後の熱間圧延鋼材または鋼部品をつき合わせてボルト締めし、破断方向の内径と、破断方向に垂直な方向の内径との差を測定し、この差を破断分割による変形量とみなすことにより求められる。
 破断面の欠け発生量は、破断面をつき合わせて20N・mのトルクでボルト締めして組み付け、次にボルトを緩めて破断面を放す作業を10回繰り返し、これにより脱落した破片の総重量を測定し、この総重量を破断面の欠け発生量みなすことにより求められる。
 圧延方向に平行な断面で観察される、引張応力に平行な方向に向けて80μm以上の高低差を有し、引張応力に平行な方向に対する角度が45度以下である段差(引張方向段差)の個数密度、および圧延方向に平行な断面で観察される、引張応力に平行な方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が鋼部品の内部に進展したき裂または凹部(破面方向き裂)の個数密度は、以下の方法によって評価される。まず、破面が形成された熱間圧延鋼材または鋼部品を引張方向に平行に切断し、破面形状を引張方向に垂直な方向から観察できるようにする。切断の前に破面を樹脂埋めすることにより、切断の際に破面形状が保たれるようにしてもよい。破面形状を上述の切断面において観察することにより、引張方向の凹凸、及び破面方向の凹凸を観察することができる。なお、切断面は、引張方向に平行である限り試験片の任意の場所に形成することができるが、便宜上、切断面における破面が可能な限り大きくなるように切断面を形成することが好ましい。観察は、切断面における任意の5視野以上で実施し、観察の際に、各視野における引張方向段差及び破面方向き裂の10mmあたりの個数密度を測定し、それらの平均値を求める。これにより、引張方向段差及び破面方向き裂の個数密度が求められる。
 本実施形態に係る熱間圧延鋼材及び鋼部品を破断させる方法は特に限定されないが、圧延方向に平行な引張応力を用いて破断させることが好ましい。本実施形態に係る熱間圧延鋼材及び鋼部品のMn硫化物は圧延方向に平行に延伸しているので、圧延方向に平行な引張応力を加えて圧延方向に略垂直な破面を形成することにより、Mn硫化物による凹凸形成効果が最大化される。また、破断分離性を向上させるために、破面を形成する箇所に、引張応力を加える前にノッチ加工を施しておくことが好ましい。ノッチ加工の方法は特に限定されず、例えばブローチ加工又はレーザー加工によってノッチ加工を行っても良い。
 本発明を実施例によって以下に詳述する。なお、これら実施例は本発明の技術的意義、及び効果を説明するためのものであり、本発明の範囲を限定するものではない。
 表1-1及び表1-2に示す化学組成を有する、転炉で溶製した鋼1~28および鋼101~115を連続鋳造することによりブルームを製造し、このブルームを、分塊圧延工程を経て162mm角のビレットとし、さらに熱間圧延によって直径が56mmの丸棒とした。鋼1~28、鋼101~112、鋼114、及び鋼115を溶製する際、RHを用いて溶鋼に脱ガス処理を行う前または脱ガス処理開始後15分以内に、溶鋼にZrを添加した。鋼113にはZrを添加しなかった。ビレットを熱間圧延して丸棒にする際、総減面率は90%とし、1000℃以下の温度域での減面率は80%とした。なお、表中の「-」との記号は、記号が記載された箇所に係る元素の含有量が不純物水準であることを示している。分塊圧延前のブルームの加熱温度および加熱時間は、それぞれ1270℃、および140minであり、熱間圧延前のビレットの加熱温度および加熱時間は、それぞれ1240℃、および90minであった。表1-1及び表1-2において下線が付された値は、本発明の範囲外の数値である。
 上述の方法によって得られた実施例1~28および比較例101~115に含まれる、圧延方向に平行な断面で測定される、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度(Mn硫化物個数密度)を、以下の方法で算出した。まず、実施例1~28および比較例101~115を圧延方向に平行に切断し、切断面を研磨した。次いで、実施例1~28および比較例101~115の切断面の拡大写真を、光学顕微鏡または電子顕微鏡によって撮影した。この際の倍率は100倍とした。そして、写真を画像解析することで、その写真が撮影された領域におけるアスペクト比が10超30以下のMn硫化物の個数密度を求めた。なお、間隔が10μm以下である2つのMn硫化物は、1つの伸長Mn硫化物とみなした。さらに、写真撮影と解析とを10回繰り返し、これにより得られた個数密度を平均することにより、実施例1~28および比較例101~115の、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度を求めた。表1-1及び表1-2の「Mn硫化物個数密度」とは、圧延方向に平行な断面で測定される、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度である。
 次に、破断分離性を調べるために、鍛造コンロッド相当の試験片1~28および101~115を熱間鍛造で作成した。具体的には、上述の工程により直径56mm、長さ100mmの素材棒鋼とされた鋼1~28および鋼101~115を、1150~1280℃に加熱後、棒鋼の長さ方向に垂直に鍛造して厚さ20mmとした。そして、鋼1~27及び鋼101~115は空冷(大気中での放冷)によって室温まで冷却し、鋼28は衝風冷却(試験片へ風を送り冷却)によって室温まで冷却した。冷却後の鍛造材から、JIS4号引張試験片と、コンロッド大端部相当形状の破断分離性評価用試験片とを切削加工した。JIS4号引張試験片は、鍛造材の側面から30mm位置で、鍛造材の長手方向に沿って採取した。破断分離性評価用試験片は、図1に示すとおり、80mm×80mmかつ厚さ18mmの板形状の中央部に、直径50mmの穴を開けたものであり、直径50mmの穴の内面上には、鍛造前の素材である棒鋼の長さ方向に対して±90度の位置2ヶ所に、深さ1mmかつ、先端曲率0.5mmの45度のVノッチ加工を施した。更に、ボルト穴として直径8mmの貫通穴を、その中心線がノッチ加工側の側面から8mmの箇所に位置するように開けた。
 破断分離性評価の試験装置は、割型と落錘試験機とから構成されている。割型は長方形の鋼材上に成型した直径46.5mmの円柱を中心線に沿って2分割した形状で、片方が固定され、片方がレール上を移動する。2つの半円柱の合わせ面にはくさび穴が加工されている。破断試験時には、試験片の直径50mmの穴をこの割型の直径46.5mmの円柱にはめ込み、くさびを入れて落錘の上に設置する。落錘は質量200kgであり、ガイドに沿って落下する仕組みである。落錘を落とすと、くさびが打ち込まれ、試験片は2つに引張破断される。引張破断の際に試験片に加えられる引張応力は、熱間圧延方向に平行とされる。なお、破断時に試験片が割型から遊離しないように、試験片は割型に押し付けられるように周囲を固定されている。
 破断面に占める脆性破面の面積率(脆性破壊面積率)の測定方法は、以下の通りとした。まず、落錘高さ100mmで試験片を破断させ、破断面の光学顕微鏡写真を撮影した。通常の破面解析の手法に従って写真を分析することにより、へき開割れ、擬へき開割れもしくは粒界割れなどで構成される脆性破面が生じている領域を画定し、この脆性破面領域の面積が破断面全体の面積に占める割合を算出した。
 破断分離時の変形量の測定方法は、以下の通りとした。破断後の試験片をつき合わせてボルト締めし、破断方向の内径と、破断方向に垂直な方向の内径との差を測定した。この差を、破断分割による変形量とした。
 破断面の欠け発生量の測定方法は、以下の通りとした。上述の変形量測定を行った後、破断面をつき合わせて20N・mのトルクでボルト締めして組み付け、次にボルトを緩めて破断面を放す作業を10回繰り返した。これにより脱落した破片の総重量を測定し、この総重量を破断面の欠け発生量とした。
 破断分離性が良好な鋼とは、破断面の破壊形態が脆性的であり、且つ破断分離による破面近傍の変形量が小さい鋼である。本発明者らは、脆性破面の面積率が98%以上であり、且つ破面近傍の変形量が100μm以下であり、さらに欠け発生量が1.0mg以下である試料を、破断分離性が良好な試料とみなした。また、圧延方向に平行な断面で観察される、引張応力に平行な方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が鋼部品の内部に進展したき裂または凹部(破面方向き裂)の平均個数密度が、10mmあたり3箇所未満に制限された破面が形成された試料を、破断分離性が良好な試料と見なした。
 破面同士の嵌合性を高めるためには、破断面の凹凸の引張方向のサイズ(すなわち、凹凸によって形成される段差のサイズ)が大きいこと、且つ凹凸が高い頻度で存在することが必要である。本発明者らは、圧延方向に平行な断面で観察される、引張応力に平行な方向に向けて80μm以上の高低差を有し、引張応力に平行な方向に対する角度が45度以下である段差(引張方向段差)の個数密度が、10mmあたり2箇所以上である破面が形成された試料を、嵌合性が高い試料とみなした。
 破断面の引張方向段差及び破面方向き裂の個数密度は、以下の方法によって測定した。まず、試験片を引張方向に平行に切断し、破面形状を引張方向に垂直な方向から観察できるようにした。破面形状を上述の切断面において観察することにより、引張方向の凹凸、及び破面方向の凹凸を観察した。切断面は、破面の中心を含むように形成された。観察は、切断面における任意の5視野で実施した。観察の際には、各視野における引張方向段差及び破面方向き裂の10mmあたりの個数密度を測定し、それらの平均値を求めた。上記に示す破断面の凹凸状況の評価に用いた断面観察写真の事例を図2に示す。
 結果を表2-1及び表2-2に示す。
 実施例1~28では、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が、1mmあたり50個以上であった。さらに、実施例1~28の化学成分は本発明の規定範囲内であった。これにより、実施例1~28はいずれも、破断分離性に優れ、同時に嵌合性が良好であった。つまり、実施例1~28は、熱間鍛造後に空冷または衝風冷却した後、破断分割を行った際に、破断面近傍の塑性変形量が小さく且つ破断面の欠け発生が少ない、優れた破断分離性を有した。破断面の塑性変形量が小さく、さらに欠け発生が少ないという特徴により、実施例1~28は、破断面の嵌合時に位置ずれが生じることなく精度良く破断面を嵌合させることができ、部品製造の歩留まりを向上させる。また、この特徴により、実施例1~28は欠けを振るい落とす工程を省略することができ、製造コストの低減につながり、このことは産業上極めて効果が大きい。
 一方、比較例101~115は、C、Si、Mn、P、S、Cr、V、Zr、及びNのうちいずれかの含有量が本発明の範囲から外れている。これらは以下の理由により、本発明の要件を満たしていない。
 比較例101、103、107、112、および115は、それぞれC、Si、P、V、及びNの含有量が本発明の範囲の下限未満であったので、破断分離時の塑性変形量が100μmを超えた。これにより、比較例101、103、107、112、および115は、良好な破断分離性を有しないと判断された。
 比較例102、104、106、および108は、それぞれC、Si、Mn、及びPの含有量が本発明の範囲の上限を超えていたので、破断分離時の欠け発生が1.0mgを超えた。これにより、比較例102、104、106、および108は、良好な破断分離性を有しないと判断された。
 比較例105は、Mnの含有量が本発明の範囲の下限未満であるので、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が1mmあたり50個未満であり、すなわち、Mn硫化物の個数及び伸長化度が不十分であった。これにより、比較例105は、破面の凹凸箇所数が不足し、良好な嵌合性を有しないと判断された。
 比較例109は、Sの含有量が本発明の範囲の上限を超えていたので、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が1mmあたり200個を超えた。これにより、比較例109は、破断時の欠け発生が1.0mgを超えるとともに、破断分離時の塑性変形量が100μmを超え、良好な破断分離性を有しないと判断された。
 比較例110は、Sの含有量が本発明の範囲の下限未満であったので、圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が1mmあたり50個未満となり、即ちMn硫化物の個数及び伸長化度が不十分であった。これにより、比較例110は、破面の凹凸箇所数が不足し、良好な嵌合性を有しないと判断された。
 比較例111は、Crの含有量が本発明の範囲の上限を超えたので、破断分離時の塑性変形量が100μmを超え、良好な破断分離性を有しないと判断された。
 比較例113は、Zrが含有されておらず、アスペクト比が10超、30以下のMnS鋼中において1mmあたりが50個未満であり、Mn硫化物の分布が粗に分散し、破面の凹凸箇所数が本発明の要件を満たさず、破断分離時の塑性変形量が良好な破断分離性の条件である100μmを超えた。
 比較例114は、Nの含有量が本発明の範囲の上限を超えており、鋼材製造段階、すなわち、鋳造および熱間圧延段階で疵を多発させた。従って、比較例114は破断分割材として不適切な例であると判断され、破断分割性の評価は行われなかった。
 比較例115は、Nの含有量が本発明の範囲の下限未満であるので、フェライト変態が促進されず、破断分離時の塑性変形量が100μmを超え、良好な破断分離性を有しないと判断された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1-1に記載の鋼1と同じ化学成分を有する鋼1-2~1-4を、表3に記載の条件で製造し、これら鋼に含まれるアスペクト比10超30以下のMn硫化物の個数密度を測定した。表3の「Zr投入までの時間」は、脱ガス処理開始からZr投入までの時間(分)であり、「総減面率」は、熱間圧延における総減面率(%)であり、「1000℃以下での減面率」は、熱間圧延における、鋼の温度が1000℃以下である期間内の総減面率(%)であり、「Mn硫化物個数密度」は、アスペクト比が10超30以下のMn硫化物の個数密度(個/mm)である。表3に記載されていない製造条件は、実施例1~28および比較例101~115のものと同じとした。
Figure JPOXMLDOC01-appb-T000005
 表1-1に示されるように、鋼1は、化学成分及び製造条件のいずれも本発明の範囲内であったので、アスペクト比10超30以下のMn硫化物の個数密度(Mn硫化物個数密度)が本発明の範囲内となった。一方、表3に示されるように、鋼1-2~1-4は化学成分が本発明の範囲内であったものの、製造条件が本発明の範囲外であったので、アスペクト比10超30以下のMn硫化物の個数密度が本発明の範囲を下回った。
 鋼1-2は、Zrが脱ガス処理開始から15分超経過してから添加された例である。Zr酸化物がMn硫化物を十分に微細化するための時間が確保されなかったので、鋼1-2においてアスペクト比10超30以下のMn硫化物の個数密度が不足したと推定される。
 鋼1-3は、熱間圧延時の総減面率が80%未満である例であり、鋼1-4は、Mn硫化物が延伸しやすい温度域である1000℃以下の温度域での減面率が50%未満である例である。熱間圧延時にMn硫化物が十分に延伸されなかったので、鋼1-3及び1-4においてアスペクト比10超30以下のMn硫化物の個数密度が不足したと推定される。
 本実施形態の熱間圧延鋼材及び鋼部品は、破断分離した際に、破断面近傍の塑性変形量が小さく、かつ、破断面の欠け発生が少なくなる。このため、破断面の嵌合をさせた場合、位置ずれが生じず、精度よく嵌合でき、鋼部品の精度向上、歩留向上を同時に実現できる。また、本実施形態の熱間圧延鋼材及び鋼部品を用いることにより、欠けを振るい落とす工程を省略することができ、製造コストを低減でき、これにより、産業上の経済効率性の向上に大きな効果がある。
1 試験片
2 穴
3 Vノッチ
4 貫通穴
10 鋼部品
11 Mn硫化物
12 き裂
21 破面方向き裂
22 引張方向段差

Claims (5)

  1.  化学成分が
    C:0.35~0.45mass%、
    Si:0.6~1.0mass%、
    Mn:0.60~0.90mass%、
    P:0.010~0.035mass%、
    S:0.06~0.10mass%、
    Cr:0.02~0.25mass%以下、
    V:0.20~0.40mass%、
    Zr:0.0001~0.0050mass%以下、
    N:0.0060~0.0150mass%
    Ti:0~0.050mass%、
    Nb:0~0.030mass%、
    Mg:0~0.0050mass%、および
    REM:0~0.0010mass%
    を含有し、残部がFe及び不純物からなり、
     金属組織の90面積%以上がフェライトとパーライトとから構成され、
     圧延方向に平行な断面で測定される、前記圧延方向に沿って延伸されたアスペクト比が10超30以下のMn硫化物の平均個数密度が50~200個/mmである
    ことを特徴とする熱間圧延鋼材。
  2.  前記化学成分が、
    Ti:0.005~0.050mass%、
    Nb:0.005~0.030mass%、
    Mg:0.0005~0.0050mass%、及び
    REM:0.0003~0.0010mass%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1に記載の熱間圧延鋼材。
  3.  化学成分が
    C:0.35~0.45mass%、
    Si:0.6~1.0mass%、
    Mn:0.60~0.90mass%、
    P:0.010~0.035mass%、
    S:0.06~0.10mass%、
    Cr:0.02~0.25mass%以下、
    V:0.20~0.40mass%、
    Zr:0.0001~0.0050mass%以下、
    N:0.0060~0.0150mass%
    Ti:0~0.050mass%、
    Nb:0~0.030mass%、
    Mg:0~0.0050mass%、および
    REM:0~0.0010mass%
    を含有し、残部がFe及び不純物からなり、
     金属組織の90面積%以上がフェライトとパーライトとから構成され、
     圧延方向に平行な断面で測定される、アスペクト比が10超30以下のMn硫化物の平均個数密度が50~200個/mmである
    ことを特徴とする鋼部品。
  4.  前記鋼部品を前記圧延方向に平行な引張応力によって引張破断させて破面を形成した場合に、
     前記圧延方向に平行な前記断面で観察される、前記引張応力に平行な方向に向けて80μm以上の高低差を有し、前記引張応力に平行な前記方向に対する角度が45度以下である段差が、前記破面に10mmあたり2箇所以上の平均個数密度で形成され、
     前記圧延方向に平行な前記断面で観察される、前記引張応力に平行な前記方向に対する角度が45度超であり、長さ80μm以上に渡って形成され、その一部が前記鋼部品の内部に進展したき裂または凹部の平均個数密度が、前記破面において10mmあたり3箇所未満に制限され、
     前記破面における脆性破壊破面が98面積%以上である
    ことを特徴とする請求項3に記載の鋼部品。
  5.  前記化学成分が、
    Ti:0.005~0.050mass%、
    Nb:0.005~0.030mass%、
    Mg:0.0005~0.0050mass%、及び
    REM:0.0003~0.0010mass%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項3または4に記載の鋼部品。
PCT/JP2016/057342 2015-03-09 2016-03-09 熱間圧延鋼材および鋼部品 WO2016143812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177024689A KR101998496B1 (ko) 2015-03-09 2016-03-09 열간 압연 강재 및 강 부품
CN201680014080.3A CN107406941B (zh) 2015-03-09 2016-03-09 热轧钢材及钢部件
JP2017505370A JP6414319B2 (ja) 2015-03-09 2016-03-09 熱間圧延鋼材および鋼部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045855 2015-03-09
JP2015045855 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143812A1 true WO2016143812A1 (ja) 2016-09-15

Family

ID=56879138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057342 WO2016143812A1 (ja) 2015-03-09 2016-03-09 熱間圧延鋼材および鋼部品

Country Status (4)

Country Link
JP (1) JP6414319B2 (ja)
KR (1) KR101998496B1 (ja)
CN (1) CN107406941B (ja)
WO (1) WO2016143812A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166384A (ja) * 2015-03-09 2016-09-15 新日鐵住金株式会社 破断分離後の破断面同士の嵌合性に優れた鋼部品用の熱間圧延鋼材および鋼部品
CN108138284A (zh) * 2015-10-19 2018-06-08 新日铁住金株式会社 热轧钢材及钢部件
WO2019203348A1 (ja) 2018-04-20 2019-10-24 日本製鉄株式会社 鋼、機械部品及びコネクティングロッド
US11274354B2 (en) 2016-04-05 2022-03-15 Daido Steel Co., Ltd. Steel material, crankshaft, and automobile component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306342A (ja) * 1997-04-28 1998-11-17 Kobe Steel Ltd 冷間加工性に優れた肌焼鋼
JP2002069566A (ja) * 2000-08-30 2002-03-08 Nippon Steel Corp 捩り疲労特性に優れた高周波焼入れ用鋼ならびに高周波焼入れ部品
JP2003301238A (ja) * 2002-04-12 2003-10-24 Sanyo Special Steel Co Ltd 微細硫化物を利用した被削性と破断分割性に優れる機械構造用鋼
JP2006028598A (ja) * 2003-09-29 2006-02-02 Jfe Steel Kk 被削性および疲労特性に優れた鋼材並びに鋼製品とそれらの製造方法
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
WO2009107282A1 (ja) * 2008-02-26 2009-09-03 新日本製鐵株式会社 破断分離性及び被削性に優れた熱間鍛造用非調質鋼及び熱間圧延鋼材、並びに熱間鍛造非調質鋼部品
JP2014101566A (ja) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp 熱間鍛造後、焼ならし省略可能で、高温浸炭性に優れた肌焼鋼および部品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522321A (en) 1978-08-04 1980-02-18 Iony Kk Rotary cylinder system cereal sorter
JPS637375A (ja) 1986-06-27 1988-01-13 Canon Inc マイクロ波プラズマcvd法による機能性堆積膜の形成法及び装置
JP3756307B2 (ja) 1998-01-21 2006-03-15 Jfe条鋼株式会社 高強度低延性の非調質鋼部品の製造方法
JP3355132B2 (ja) 1998-05-01 2002-12-09 新日本製鐵株式会社 破断分離性と耐久強さに優れた機械構造用鋼
JP3671688B2 (ja) 1998-08-28 2005-07-13 株式会社神戸製鋼所 破断分断性に優れた破断分割型コンロッド用熱間鍛造用非調質鋼
JP4314851B2 (ja) 2003-03-14 2009-08-19 大同特殊鋼株式会社 破断分離に適した高強度非調質鋼
JP3988661B2 (ja) 2003-03-18 2007-10-10 住友金属工業株式会社 非調質鋼
JP4264460B1 (ja) * 2007-12-03 2009-05-20 株式会社神戸製鋼所 破断分割性および被削性に優れた破断分割型コネクティングロッド用鋼
CN101883874B (zh) 2008-07-29 2012-01-18 新日本制铁株式会社 高强度断裂分割用非调质钢和断裂分割用钢部件
JP5053218B2 (ja) 2008-09-25 2012-10-17 新日本製鐵株式会社 高強度破断分割用非調質鋼および破断分割用鋼部品
CN103429779B (zh) * 2011-03-18 2015-06-03 新日铁住金株式会社 热轧钢板及其制造方法
JP5713135B1 (ja) * 2013-11-19 2015-05-07 新日鐵住金株式会社 鋼板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306342A (ja) * 1997-04-28 1998-11-17 Kobe Steel Ltd 冷間加工性に優れた肌焼鋼
JP2002069566A (ja) * 2000-08-30 2002-03-08 Nippon Steel Corp 捩り疲労特性に優れた高周波焼入れ用鋼ならびに高周波焼入れ部品
JP2003301238A (ja) * 2002-04-12 2003-10-24 Sanyo Special Steel Co Ltd 微細硫化物を利用した被削性と破断分割性に優れる機械構造用鋼
JP2006028598A (ja) * 2003-09-29 2006-02-02 Jfe Steel Kk 被削性および疲労特性に優れた鋼材並びに鋼製品とそれらの製造方法
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
WO2009107282A1 (ja) * 2008-02-26 2009-09-03 新日本製鐵株式会社 破断分離性及び被削性に優れた熱間鍛造用非調質鋼及び熱間圧延鋼材、並びに熱間鍛造非調質鋼部品
JP2014101566A (ja) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp 熱間鍛造後、焼ならし省略可能で、高温浸炭性に優れた肌焼鋼および部品の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166384A (ja) * 2015-03-09 2016-09-15 新日鐵住金株式会社 破断分離後の破断面同士の嵌合性に優れた鋼部品用の熱間圧延鋼材および鋼部品
CN108138284A (zh) * 2015-10-19 2018-06-08 新日铁住金株式会社 热轧钢材及钢部件
US11274354B2 (en) 2016-04-05 2022-03-15 Daido Steel Co., Ltd. Steel material, crankshaft, and automobile component
WO2019203348A1 (ja) 2018-04-20 2019-10-24 日本製鉄株式会社 鋼、機械部品及びコネクティングロッド

Also Published As

Publication number Publication date
KR101998496B1 (ko) 2019-07-09
JPWO2016143812A1 (ja) 2017-12-28
JP6414319B2 (ja) 2018-10-31
CN107406941B (zh) 2019-05-03
CN107406941A (zh) 2017-11-28
KR20170110132A (ko) 2017-10-10

Similar Documents

Publication Publication Date Title
JP5522321B1 (ja) 非調質鋼材
JP6414319B2 (ja) 熱間圧延鋼材および鋼部品
JP6547847B2 (ja) 鋼部品
JP6750745B2 (ja) コネクティングロッド用鋼材、機械部品及びコネクティングロッド
WO2019203348A1 (ja) 鋼、機械部品及びコネクティングロッド
JP6421907B1 (ja) 圧延h形鋼及びその製造方法
JP2008013812A (ja) 高靭性高張力厚鋼板およびその製造方法
JP2022130746A (ja) 非調質鍛造部品および非調質鍛造用鋼
JP5245544B2 (ja) 疲労特性の優れたコモンレール
JP6488774B2 (ja) 破断分離後の破断面同士の嵌合性に優れた鋼部品用の熱間圧延鋼材および鋼部品
KR102092055B1 (ko) 열간 압연 강재 및 강 부품
WO2018061642A1 (ja) 熱間圧延鋼材および鋼部品
JP2017179475A (ja) 破断分離型コネクティングロッド用成型部品、及びコネクティングロッド、並びに該コネクティングロッドの製造方法
JP6753226B2 (ja) 破断分離後の破断面同士の嵌合性および被削性に優れた鋼部品用の熱間圧延鋼材および鋼部品
JP6620822B2 (ja)
JP6753227B2 (ja) 破断分離後の破断面同士の嵌合性および被削性に優れた鋼部品用の熱間圧延鋼材および鋼部品
JP6379731B2 (ja) 高強度鋼材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505370

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024689

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761779

Country of ref document: EP

Kind code of ref document: A1