WO2016143692A1 - 局側装置および光伝送システム - Google Patents

局側装置および光伝送システム Download PDF

Info

Publication number
WO2016143692A1
WO2016143692A1 PCT/JP2016/056776 JP2016056776W WO2016143692A1 WO 2016143692 A1 WO2016143692 A1 WO 2016143692A1 JP 2016056776 W JP2016056776 W JP 2016056776W WO 2016143692 A1 WO2016143692 A1 WO 2016143692A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical transceiver
circuit
control circuit
frame
Prior art date
Application number
PCT/JP2016/056776
Other languages
English (en)
French (fr)
Inventor
晶子 大輝
奈美子 池田
彩希 八田
重松 智志
田中 伸幸
健治 川合
順一 加藤
川村 智明
寛之 鵜澤
勇輝 有川
直樹 三浦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US15/555,960 priority Critical patent/US10193630B2/en
Priority to EP16761662.2A priority patent/EP3267630B1/en
Priority to JP2017505299A priority patent/JP6306798B2/ja
Publication of WO2016143692A1 publication Critical patent/WO2016143692A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to an OLT in an optical transmission system for transferring a frame between a plurality of ONUs (subscriber side apparatuses: Optical Network Unit) connected via a PON (Optical communication network: Passive Network).
  • the present invention relates to an OLT and an optical transmission system that enable efficient communication with a large number of ONUs.
  • 10G-EPON 10Gigabit Ethernet Passive Optical Network: Ethernet is a registered trademark
  • IEEE802.3av a PON used in optical access systems such as FTTH (Fiber To The Home).
  • a feature of 10G-EPON is that 10-times high-speed transmission is possible as compared with GE-PON (Gigabit Ethernet Passive Optical Network: see Non-Patent Document 1) that is already widely used.
  • GE-PON Gigabit Ethernet Passive Optical Network: see Non-Patent Document 1
  • existing GE-PON and 10G-EPON can be used together.
  • WDM Widelength Division Multiplexing
  • 10G downstream signals use different wavelengths for 1G downstream signals and 10G downstream signals, respectively, between 1G downstream signals and between 10G downstream signals.
  • TDM Time Division Multiplexing
  • the uplink signal the same wavelength is used for the 1G uplink signal and the 10G uplink signal, and the 1G uplink signal and the 10G uplink signal are combined to use a TDMA (Time Division Multiple Access) technique. That is, three different wavelengths are used for the 1G downstream signal, the 10G downstream signal, and the upstream signal.
  • TDMA Time Division Multiple Access
  • FIG. 17 is a configuration example showing a conventional GE-PON system.
  • This GE-PON system includes an OLT (station side device) 50, an optical splitter 2, and a plurality of ONUs (subscriber side devices) 3.
  • a plurality of ONUs 3 connected via the optical splitter 2 are connected to the OLT 50. Is housed in.
  • the GE-PON OLT 50 incorporates an optical transceiver 51 and a PON control circuit 52.
  • the optical transceiver 51 performs electrical optical conversion of the downstream frame to the ONU 3 connected to the optical transceiver 51 and optical electrical conversion of the upstream frame from the ONU 3.
  • the PON control circuit 52 transfers the upstream frame from the ONU 3 received by the optical transceiver 51 to a higher-level device (not shown), and transfers the downstream frame received from the higher-level device to the optical transceiver 51.
  • FIG. 18 is another configuration example showing a conventional GE-PON system.
  • the maximum number of ONUs 3 that can be connected to one optical transceiver 51 is 32, which is defined by the IEEE standard. Therefore, when it is necessary to connect 33 or more ONUs 3 as a station that accommodates the ONU 3, a plurality of optical splitters 2 are provided between the OLT 50 and the ONU 3 as shown in FIG.
  • a configuration using a plurality of PON control circuits 52 is a general configuration.
  • the maximum number of ONUs 3 that can be connected to one optical transceiver 51 is 32, which is defined by the IEEE standard.
  • the PON control device for 10G-EPON is the PON control for GE-PON. Higher performance (10 times the data transfer rate) than the device is required, and the device cost (device purchase price, etc.) is also increased. Therefore, as a problem for adopting the 10G-EPON system, it is a problem to reduce the system cost per ONU as much as possible.
  • the optical amplifier has a problem that the cost of the device (the purchase price of the device, etc.) is higher than that of a component for an electric circuit (LSI or the like).
  • the power consumption in the ONU increases with the increase in the scale of the electric circuit, not only the apparatus cost but also the operation cost increases, there is a problem that the system cost per ONU in the optical transmission system increases.
  • the present invention has been made to solve such a problem, and an object thereof is to reduce the system cost per ONU in an optical transmission system.
  • a station-side device includes N (N is an integer of 2 or more) optical splitters, and a plurality of subscriber-side devices connected via these optical splitters.
  • a station-side device used in an optical transmission system including a station-side device that transfers a frame to and from a host device, connected to the optical splitter in a one-to-one relationship, and connected to the optical splitter N optical transceivers for performing optical / electrical conversion of an upstream frame from the subscriber side device to the host device and for performing electrical / optical conversion of a downstream frame from the host device to the subscriber side device, and the host device Exchange the upstream frame and the downstream frame with each other, and transmit the upstream frame from each of the subscriber side devices at different times.
  • the photoelectric conversion by the optical transceiver is performed.
  • One of a selection / distribution circuit that transfers an upstream frame to the PON control circuit and distributes a downstream frame from the PON control circuit to the optical transceiver, and an optical transceiver that is not used for transferring the frame among the optical transceivers And a power supply control circuit for stopping power supply to at least one of the selection / distribution circuits that are not used for transferring the frame.
  • the optical transmission system according to the present invention is configured to transmit frames between N (N is an integer of 2 or more) optical splitters, and a plurality of subscriber-side devices and higher-level devices connected via these optical splitters.
  • An optical transmission system including a station side device that performs transfer processing, wherein the station side device includes any of the station side devices described above.
  • a maximum of N ⁇ 32 ONUs are accommodated in the OLT, and the power supply to some or all of the circuits that are not used for transferring the upstream frame transmitted from these ONUs is stopped. Therefore, the device cost per ONU in the optical transmission system can be reduced, and the operation cost can be reduced by reducing the power consumption in the OLT. As a result, the optical transmission including the device cost and the operation cost can be achieved. It becomes possible to reduce the system cost per ONU in the system.
  • FIG. 1 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the second embodiment.
  • FIG. 3A is a configuration example of a selection circuit according to the second embodiment.
  • FIG. 3B is a configuration example of a distribution circuit according to the second embodiment.
  • FIG. 3C is a configuration example of a selection circuit and a power supply control circuit according to the second embodiment.
  • FIG. 4 is a configuration example of a selection circuit (selector) according to the second embodiment.
  • FIG. 5A is a configuration example of a selection circuit (10G / 1G switching method) according to the second embodiment.
  • FIG. 5B is a configuration example of a distribution circuit (10G / 1G switching method) according to the second exemplary embodiment.
  • FIG. 6 is a configuration example of a selection circuit (10G / 1G parallel system) according to the second embodiment.
  • FIG. 7 is a configuration example of a selection circuit according to the third embodiment.
  • FIG. 8 is a block diagram illustrating the configuration of the optical transmission system and the OLT according to the fourth embodiment.
  • FIG. 9A is a configuration example of a selection circuit according to the fourth embodiment.
  • FIG. 9B is a configuration example of a distribution circuit according to the fourth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the fifth embodiment.
  • FIG. 11 is a configuration example of a selection circuit and a power supply control circuit according to the fifth embodiment.
  • FIG. 12 is a block diagram illustrating the configuration of the optical transmission system and the OLT according to the sixth embodiment.
  • FIG. 13A is a configuration example of a selection circuit and a power supply control circuit according to the sixth embodiment.
  • FIG. 13B is a timing chart showing the operation of the power supply control circuit of FIG. 13A.
  • FIG. 14A is another configuration example of the selection circuit and the power supply control circuit according to the sixth embodiment.
  • FIG. 14B is a timing chart showing the operation of the power supply control circuit of FIG. 14A.
  • FIG. 15 is a block diagram illustrating a configuration of an OLT according to the seventh embodiment.
  • FIG. 16 is a block diagram illustrating a configuration of an OLT according to the eighth embodiment.
  • FIG. 17 is a configuration example showing a conventional GE-PON system.
  • FIG. 18 is another configuration example showing a conventional GE-PON system.
  • FIG. 1 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the first embodiment.
  • the optical transmission system 100 is an optical communication system used in, for example, FTTH (FiberFTo The Home), and a plurality of ONUs (station-side devices: Optical Line Terminal) 1 connected to the OLT 1 via the optical communication network 4.
  • ONUs stations-side devices: Optical Line Terminal
  • a subscriber side device: OpticalOptNetwork Unit) has a function of transferring frames between each ONU 3 and the host device by relay connection with a host device (not shown) by OLT1.
  • frame communication is performed by transmitting and receiving optical signals via the optical splitter 2 and the optical fibers F1 and F2, and between the OLT 1 and the host device.
  • optical communication network 4 examples include PON (Passive Optical Network) systems such as GE-PON standardized in IEEE 802.3ah and 10G-EPON standardized in IEEE 802.3av.
  • PON Passive Optical Network
  • the optical transmission system 100 is composed of a GE-PON system or a 10G-EPON system using a PON such as GE-PON or 10G-EPON as the optical communication network 4 will be described as an example.
  • the present invention can be applied to an optical transmission system using another optical communication network.
  • an optical transmission system 100 includes an OLT (station side device) 1, an optical splitter 2, and an ONU (subscriber side device) 3.
  • the OLT 1 accommodates a plurality of ONUs 3 connected via the optical splitter 2 and the optical fibers F1 and F2.
  • one optical transceiver 11 (TR # 1 to TR # N) is connected to one corresponding optical splitter 2 (SP # 1 to SP # N) via an optical fiber F1, and one optical splitter 2 is connected.
  • Up to 32 ONUs 3 are commonly connected to (SP # 1 to SP # N) via the optical fiber F2.
  • a total of up to N ⁇ 32 ONUs 3 can be connected to the OLT 1 having N optical transceivers 11 (TR # 1 to TR # N).
  • the OLT 1 includes N (N ⁇ 2: N is an integer of 2 or more) optical transceivers 11 (TR # 1 to TR # N) and one PON as main circuit units.
  • a control circuit 12 and one selection / distribution circuit 13 are provided.
  • the optical transceivers 11 are connected one-to-one with the optical splitter 2 (SP # 1 to SP # N) via the optical fiber F1, and the corresponding optical splitter 2 (SP # 1).
  • TR # 1 to TR # N optical splitter 2
  • SP # 1 to SP # N optical splitter 2
  • SP # 1 to SP # N optical splitter 2
  • SP # 1 to SP # N optical splitter 2
  • SP # 1 to SP # N optical splitter 2
  • the PON control circuit 12 transmits / receives an electrical signal to / from an upper network, so that an upstream frame and a downstream frame are exchanged with an upper apparatus, and an upstream frame is transmitted from each ONU 3 at different times. , And a function of allocating a communication band for uplink frame transmission to each of these ONUs 3 in a time division manner.
  • the selection / distribution circuit 13 selects the optical transceiver 11 (TR # 1 to TR # N) corresponding to the upstream frame that arrives from each ONU 3 in a time division manner, so that the upstream frame photoelectrically converted by the selected transceiver 11 is selected. It has a function of transferring to the PON control circuit 12 and a function of distributing the downstream frame received from the host device received by the PON control circuit 12 to each optical transceiver 11 (TR # 1 to TR # N).
  • the difference in configuration between the optical transmission system 100 according to the present embodiment and the conventional GE-PON system shown in FIG. 18 is that there is one PON control circuit 12, and this one PON control circuit.
  • One selection / distribution circuit 13 is provided between 12 and N optical transceivers 11 (TR # 1 to TR # N). As shown in FIG. 1, the selection / distribution circuit 13 according to the present embodiment is provided with a selection circuit 21, a distribution circuit 22, and a power supply control circuit 23 as main circuit units.
  • the selection circuit 21 has a function of selecting any one of the uplink frame outputs RX output from each optical transceiver 11 (TR # 1 to TR # N) and outputting the selected frame output RX to the PON control circuit 12.
  • the distribution circuit 22 has a function of distributing the downstream frame output from the PON control circuit 12 to each optical transceiver 11 (TR # 1 to TR # N).
  • the power supply control circuit 23 supplies power to at least one of the optical transceiver 11 that is not used for frame transfer and the circuit that is not used for transfer of the upstream frame and the downstream frame in the selection / distribution circuit 13. Has the function of stopping.
  • the selection circuit 21 and the distribution circuit 22 are described as independent circuits. However, they may be realized as an integrated circuit.
  • the power supply control circuit 23 is described as a circuit in the selection / distribution circuit 13 and independent of the selection circuit 21, these may be realized as an integrated circuit.
  • the selection / distribution circuit 13 is provided between the N optical transceivers 11 and the PON control circuit 12, and the selection / distribution circuit 13 receives the upstream frame that arrives in time division. Is selected, the upstream frame photoelectrically converted by the transceiver 11 is transferred to the PON control circuit 12, and the downstream frame from the PON control circuit 12 is distributed to each optical transceiver 11 to supply power.
  • the control circuit 23 is at least one of the optical transceivers 11 that are not used for frame transfer among the optical transceivers 11 and the circuit that is not used for frame transfer among the selection / distribution circuit 13. The power supply to one side is stopped.
  • the OLT 1 As a result, in the OLT 1, a maximum of N ⁇ 32 ONUs 3 are accommodated, and power supply to the optical transceiver 11 that is not used for transferring the upstream frame and the downstream frame and the circuits in the selection / distribution circuit 13 are stopped. Therefore, the device cost per ONU in the optical transmission system 100 can be reduced, and the operation cost can be reduced by reducing the power consumption in the OLT 1, and as a result, the optical cost including these device cost and operation cost can be reduced. It becomes possible to reduce the system cost per ONU in the transmission system.
  • FIG. 2 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the second embodiment.
  • the power supply control circuit 23 is set during the suspension of the optical transceivers 11 based on the operation status PS related to the optical transceivers 11. The power supply to the paused optical transceiver 11 is stopped.
  • FIG. 3A is a configuration example of a selection circuit according to the second embodiment.
  • the selection circuit 21 includes N AND circuits (AND # 1 to AND # N) and buffer circuits (corresponding to the N optical transceivers 11 (TR # 1 to TR # N)) and buffer circuits (main circuits). BUF # 1 to BUF # N) and one N-input OR circuit (OR) are provided.
  • the AND circuit (AND # 1 to AND # N) is composed of a general AND gate, and the upstream frame output RX and the LOS output (inversion value) output from the corresponding optical transceiver 11 (TR # 1 to TR # N). ) As an input, and outputs a logical product of the upstream frame output RX and the inverted value of the LOS output.
  • the LOS output is a negative logic signal indicating whether or not the optical signal from the optical splitter 2 is input to the optical transceiver 11 (TR # 1 to TR # N), and no optical signal is input. “1” in the case, and “0” when the optical signal is input.
  • the input upstream frame output RX is output from the AND circuit (AND # 1 to AND # N), and the LOS output is “1”. If there is no optical signal, the AND circuit (AND # 1 to AND # N) stops the output of the upstream frame output RX and outputs “0”. Therefore, in each AND circuit (AND # 1 to AND # N), the upstream frame output RX output from the corresponding optical transceiver 11 (TR # 1 to TR # N) is masked with the LOS output (inverted value). ).
  • the OR circuit (OR) includes a general N-input OR gate, and the PON control circuit 12 uses the logical sum of N logical product outputs from the AND circuits (AND # 1 to AND # N) as an upstream frame output RD. Has a function to output.
  • the upstream frame output RX from TR # i (i is an integer of 1 to N) to which the optical signal is input corresponds to either AND. It is input to the OR circuit (OR) via the circuits (AND # 1 to AND # N), and the logical sum is output as the upstream frame output RD.
  • the uplink frame outputs RX from the plurality of optical transceivers 11 are not simultaneously input to the OR circuit (OR). It is necessary to mask these upstream frame outputs RX by time division in each AND circuit (AND # 1 to AND # N). For this, the PON control circuit 12 performs time-sharing control so that all the ONUs 3 that have established a connection with the OLT 1 via each optical splitter 2 do not emit light (uplink frame transmission) at the same time. realizable.
  • each OLT is configured by an algorithm such as dynamic bandwidth allocation (DBA) so that a plurality of ONUs connected to one optical splitter do not emit light (uplink frame transmission) at the same time.
  • DBA dynamic bandwidth allocation
  • the uplink bandwidth allocation (grant allocation) is performed for the ONU.
  • a maximum of N ⁇ 32 ONUs 3 connected to the N optical splitters 2 (SP # 1 to SP # N) in the PON control circuit 12 Uplink allocation for allocating a communication band for uplink frame transmission in a time-sharing manner so that all ONUs 3 that have established session connections with OLT 1 emit light (upstream frame transmission) from these ONUs 3 at different times. (Grant allocation). As a result, only one ONU 3 among the ONUs 3 emits light (uplink frame transmission), and only the LOS output from one optical transceiver 11 that accommodates the ONU 3 becomes “0”.
  • a registration request (Register Request) frame which is a control frame used for a request for connection of a new ONU 3, etc.
  • a registration request (Register Request) frame is allowed by the IEEE standard to allow a plurality of ONUs 3 to emit light simultaneously (uplink frame transmission). Therefore, during the period (Discovery Window) in which the transmission of the registration request (Register Request) frame is permitted, the LOS outputs of the plurality of optical transceivers 11 may become 0 at the same time.
  • the PON control circuit 12 may not be able to normally receive a registration request (Register Request) frame.
  • the OLT 1 has a specification that a registration request (Register Request) frame that cannot be normally received may be ignored (discarded).
  • the OLT 1 of the present embodiment also has a specification that registration request (Register Request) frames that cannot be normally received by the PON control circuit 12 may be ignored (discarded).
  • FIG. 3B is a configuration example of the distribution circuit according to the second embodiment.
  • this distribution circuit 22 as a main circuit unit, the downstream frame output TD output from the PON control circuit 12 is transmitted in parallel to the N optical transceivers 11 (TR # 1 to TR # N).
  • a buffer circuit BUF that distributes the output TX is provided.
  • the downstream frame output TD from the PON control circuit 12 is distributed in parallel as the downstream frame output TX from the buffer circuit to each of the optical transceivers 11 (TR # 1 to TR # N).
  • each ONU 3 confirms the destination of the downstream frame received from the OLT 1 and checks its own. Discard downstream frames that are not addressed. For this reason, even if a downstream frame is distributed to each ONU 3 at the same time, it is not erroneously received. This mechanism is the same as that of the conventional PON system.
  • the PON control circuit 12 prevents a plurality of ONUs 3 from simultaneously emitting light (upstream frame transmission) to all the ONUs 3 connected to the optical splitters 2 (SP # 1 to SP # N).
  • the mobile station has a function of performing forward frame and downstream frame transfer processing in the same manner as a conventional PON control circuit.
  • FIG. 3C is a configuration example of the selection circuit and the power supply control circuit according to the second embodiment, and shows a configuration example in which a power supply control circuit 23 is provided for the selection circuit 21 of FIG. 3A.
  • the distribution circuit 22 may have the configuration example shown in FIG. 3B.
  • the selection circuit 21 includes N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N). ) Amplifies and outputs the upstream frame signal photoelectrically converted in (1), and generates an OR output of the upstream frame signals output from these buffer circuits (BUF # 1 to BUF # N) by an OR circuit (OR), It has a function of outputting to the PON control circuit 12.
  • N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N).
  • the power supply control circuit 23 selects these optical transceivers 11 (TR # 1 to TR # N). Among these, a part of or all of the circuits used for transferring the upstream frame output from the pause optical transceiver 11 in the selection circuit 21. And a function of stopping the power supply to the.
  • the power control circuit 23 includes, as main circuit portions, a first power switch (SWA # 1 to SWA # N), a second power switch (SWB # 1 to SWB # N), A power switch control circuit 23A is provided.
  • the first power switches (SWA # 1 to SWA # N) are provided for each of the optical transceivers 11 (TR # 1 to TR # N), and in response to an instruction from the power switch control circuit 23A, It has a function of switching and supplying any one of the ground potentials GND to the corresponding optical transceivers 11 (TR # 1 to TR # N).
  • the second power switches (SWB # 1 to SWB # N) are provided for each of the optical transceivers 11 (TR # 1 to TR # N), and in response to an instruction from the power switch control circuit 23A, A function of switching and supplying any one of the ground potential GND to a circuit unit corresponding to the optical transceiver 11 (TR # 1 to TR # N) of the selection circuit 21, for example, a buffer circuit (BUF # 1 to BUF # N).
  • a buffer circuit (BUF # 1 to BUF # N).
  • the power switch control circuit 23A selects the corresponding first of the optical transceivers 11 (TR # 1 to TR # N) for TR # i (i is an integer from 1 to N) indicating that the operation status PS is in operation.
  • TR # i is an integer from 1 to N
  • a function for instructing power supply to the power switch (SWA # i) and the second power switch (SWB # i), and TR # j (j is an integer from 1 to N) indicating that the operation status PS is inactive Has a function of instructing the corresponding first power switch (SWA # j) and second power switch (SWB # j) to stop power supply.
  • the operating status PS is setting information indicating the operating status of each optical transceiver 11 (TR # 1 to TR # N), and is set in advance by an operator from an external device such as a PC connected to the OLT 1.
  • an optical transceiver 11 that is not used for frame communication by the ONU 3 may occur.
  • the operation status PS of the optical transceiver 11 used for frame communication by the ONU 3 is set to be in use, and the operation status PS of the optical transceiver 11 not used for frame communication by the ONU 3 is inactive. Is set.
  • the operation status PS is managed by the PON control circuit 12 and stored in its internal memory, but may be managed and stored in another circuit unit in the OLT 1 such as the selection / distribution circuit 13.
  • the optical transceiver 11 (TR # 1 to TR # N) is connected to the connected optical splitter 2 when the operating potential Vcc is supplied from the corresponding first power switch (SWA # 1 to SWA # N). And a function of stopping the optical communication operation when the ground potential GND is supplied from the first power switch (SWA # 1 to SWA # N).
  • the buffer circuits are composed of amplifier circuits such as operational amplifiers.
  • Vcc operating potential supplied from the corresponding second power switch (SWB # 1 to SWB # N)
  • SWB # 1 to SWB # N The function of amplifying the upstream frame signal input from the transceiver 11 (TR # 1 to TR # N) and outputting the amplified signal to the OR circuit (OR), and the second power switch (SWB # 1 to SWB # N)
  • the ground potential GND When the ground potential GND is supplied, it has a function of stopping the amplification operation and outputting the ground potential (GND).
  • TR # j (j is an integer of 1 to N) indicating that the operation status PS is in operation corresponds to an instruction from the power switch control circuit 23A. Accordingly, the operating potential Vcc is supplied from the corresponding SWA # j to the TR # j, and the operating potential Vcc is supplied from the SWB # j to the BUF # j corresponding to the TR # j.
  • TR # i indicating that the operation status PS is inactive corresponds to the corresponding SWA # i according to an instruction from the power switch control circuit 23A.
  • the ground potential GND is supplied to TR # i, and the ground potential GND is supplied from SWB # i to BUF # i corresponding to the TR # i.
  • power supply to the inactive TR # i and the corresponding BUF # i is stopped, and power consumption in these circuit units is reduced.
  • the optical transceiver 11 (TR # 1 to TR # N) and the buffer circuit (BUF # 1 to BUF #) corresponding to the optical transceiver 11 (TR # 1 to TR # N) according to the operation status PS of each optical transceiver 11 (TR # 1 to TR # N).
  • the buffer circuits (BUF # 1 to BUF # N) are based on the uplink bandwidth allocation status US allocated to each ONU 3 by time division. You may control the power supply to.
  • the uplink bandwidth allocation status US is generated by the PON control circuit 12 for each optical transceiver 11 (TR # 1 to TR # N) based on the allocation status of the uplink frame transmission communication bandwidth allocated to each ONU 3 in a time division manner. This is information indicating the arrival period of the upstream frame that arrives in time division from each ONU 3 connected to the TR # i.
  • This uplink bandwidth allocation status US is composed of, for example, an uplink frame arrival time Ts and an uplink frame length Tl from each ONU 3, and is output for each optical transceiver 11 (TR # 1 to TR # N).
  • the power switch control circuit 23A Based on the upstream bandwidth allocation status US, the power switch control circuit 23A adjusts the BUF # corresponding to the TR # i in accordance with the arrival period of the upstream frame to each optical transceiver 11 (TR # 1 to TR # N). It is only necessary to instruct SWB # i corresponding to the optical transceiver 11 to supply power to i. As a result, the operation potential Vcc is applied from SWB # i to the BUF # i corresponding to TR # i in operation in the optical transceiver 11 (TR # 1 to TR # N) during the period when the upstream frame arrives. The supply of the operating potential Vcc from the SWB #i to the BUF #i is stopped during a period in which the up frame is not supplied.
  • the upstream frame output RX is masked (gated) by the upstream bandwidth allocation status US by the buffer circuits (BUF # 1 to BUF # N). Will be.
  • FIG. 3A is a configuration example of a selection circuit (selector) according to the second embodiment.
  • SEL selector
  • FIG. 4 is a configuration example of a selection circuit (selector) according to the second embodiment.
  • SEL multi-stage connected two-input selector
  • the distribution circuit 22 may have the configuration example shown in FIG. 3B.
  • This selection circuit 21 is premised on the case where eight optical transceivers 11 (TR # 1 to TR # 8) are provided in the OLT 1, and seven two-input selectors (SEL) for selecting and outputting one of the inputs. # 1 to SEL # 7) are connected in a tree shape in three stages.
  • the AND circuits (# 1 to # 4) send switching signals for SEL # 5 to # 7 based on the LOS outputs from the optical transceivers 11 (TR # 1 to TR # 4, TR # 6 to TR # 8). Generate.
  • the lowermost selector (SEL # 1 to SEL # 4) receives the upstream frame from the optical transceiver 11 (TR # 1 to TR # 8) as an input, and the next stage Subsequent selectors (SEL # 5 to SEL # 6) receive the selection output from the immediately preceding selector (SEL # 1 to SEL # 4), and the uppermost selector (SEL # 7) receives the immediately preceding stage 2
  • One of the selectors (SEL # 5 to SEL # 6) is selected and output to the PON control circuit 12.
  • SEL # 1 to SEL # 4 that receives two upstream frame outputs RX from TR # 1 to TR # 8 as the inputs are the first stage, and the selection output from SEL # 1 to SEL # 4 is 2 SEL # 5 to SEL # 6 that are input one by one are connected to the second stage, and SEL # 7 that receives two selection outputs from SEL # 5 to SEL # 6 are connected to the third stage.
  • the LOS outputs of TR # 2, TR # 4, TR # 6, and TR # 8 are input as switching signals to SEL # 1 to SEL # 4.
  • the logical product output of the LOS outputs from TR # 3 to TR # 4 output from AND # 2 is input to SEL # 5 as a switching signal.
  • the logical product output of the LOS outputs from TR # 7 to TR # 8 output from AND # 3 is input to SEL # 6 as a switching signal.
  • a logical sum output from AND # 4 which receives a logical product output of LOS outputs from TR # 1 to TR # 2 output from AND # 1 and a logical product output from AND # 2, is SEL #. 7 is input as a switching signal.
  • one of the LOS outputs from TR # 1 to TR # 8 is “ 0 ”or all“ 1 ”. Therefore, for example, when only the LOS output of TR # 5 is “0”, the output of TR # 5 is output to the PON control circuit 12. Further, when only the LOS output of TR # 4 is “0”, SEL # 2, SEL # 5, and SEL # 7 select and output the input on the “0” side, so that the upstream frame from TR # 4 The output RX passes through SEL # 2, SEL # 5, and SEL # 7, and is output to the PON control circuit 12 as an upstream frame output RD.
  • the 10G-EPON optical transceiver 11 may have two outputs of 10 Gbit / s and 1 Gbit / s as the uplink frame output RX.
  • the PON control circuit 12 outputs 10 Gbit / s output and 1 Gbit / s output as the downstream frame output TD. There is one output, and both outputs need to be output (distributed) to all the optical transceivers 11.
  • FIG. 5A is a configuration example of a selection circuit (10G / 1G switching method) according to the second embodiment.
  • a configuration example in the case where the selection circuit 21 of FIG. 3A is applied to a 10G-EPON system is shown. Has been.
  • the selection circuit 21 includes, as main circuit units, an AND circuit (AND # 1 to AND # N), a buffer circuit (BUF # 1 to BUF # N), and an N-input OR circuit (OR) shown in FIG. 3A.
  • N selectors (SEL # 1 to SEL # N) respectively corresponding to the N optical transceivers 11 (TR # 1 to TR # N) are provided.
  • the selectors (SEL # 1 to SEL # N) can output 10 Gbit / s output from the corresponding optical transceiver 11 (TR # 1 to TR # N).
  • One of the upstream frame output RX_10G for 1 Gbit and the upstream frame output RX_1G for 1 Gbit / s is selected and output to the corresponding buffer circuit (BUF # 1 to BUF # N).
  • each optical transceiver 11 (TR # 1 to TR # N) of the OLT 1 includes an output port for 10 Gbit / s and an output port for 1 Gbit / s as output ports for upstream frames, and serves as an input port for downstream frames. Assume that a 10 Gbit / s input port and a 1 Gbit / s input port are provided.
  • the LOS output is output according to whether or not an optical signal is input from the optical splitter 2 regardless of 10 Gbit / s and 1 Gbit / s.
  • the PON control circuit 12 of the OLT 1 is configured so that the upstream frame input can handle both 10 Gbit / s and 1 Gbit / s inputs, and the 10 Gbit / s output port and the 1 Gbit are output ports for the downstream frame. / S output port. Further, the PON control circuit 12 recognizes whether to allow frame transmission at 10 Gbit / s or frame transmission at 1 Gbit / s at the time of uplink bandwidth allocation to each ONU 3, and to set the transmission speed thereof. It is assumed that it has a function of outputting the output (10G / 1G) to the selection / distribution circuit 13.
  • the 10 Gbit / s upstream frame transmitted from the ONU 3 is output from the 10 Gbit / s output port of the optical transceiver 11 (TR # 1 to TR # N), and the selectors (SEL # 1 to SEL # N) are output.
  • Output to the corresponding buffer circuit (BUF # 1 to BUF # N) and then output to the PON control circuit 12 via the corresponding AND circuit (AND # 1 to AND # N) and the OR circuit (OR).
  • the 1 Gbit / s upstream frame transmitted from the ONU 3 is output from the 1 Gbit / s output port of the optical transceiver 11 (TR # 1 to TR # N) and passes through the selectors (SEL # 1 to SEL # N).
  • FIG. 5B is a configuration example of the distribution circuit (10G / 1G switching method) according to the second embodiment.
  • a configuration example in the case where the distribution circuit 22 of FIG. 5B is applied to a 10G-EPON system is shown. Has been.
  • the 10 Gbit / s downstream frame output TD_10G output from the PON control circuit 12 is supplied to N optical transceivers 11 (TR # 1 to TR # N).
  • the buffer circuit BUF # 1 that distributes the 10 Gbit / s downlink frame output TX_10G in parallel and the 1 Gbit / s downlink frame output TD_1G output from the PON control circuit 12 are connected to N optical transceivers 11 (TR # 1 to TR # N) is provided in parallel with a buffer circuit BUF # 2 that distributes the downlink frame output TX_1G for 1 Gbit / s.
  • the downstream frame output TD_10G output from the 10 Gbit / s output port of the PON control circuit 12 is transmitted in parallel from the BUF # 1 to the 10 Gbit / s input ports of the TR # 1 to TR # N.
  • the downlink frame output TD_1G output from the 1 Gbit / s output port of the PON control circuit 12 is a downlink frame in parallel with the 1 Gbit / s input port of each TR # 1 to TR # N from the BUF # 2.
  • the selection circuit 21 includes the selection circuit 21 shown in FIG. 3A instead of the configuration example shown in FIGS. 5A and 5B.
  • Two independent selection circuits 21 for 10 Gbit / s and 1 Gbit / s may be provided in parallel.
  • FIG. 6 is a configuration example of the selection circuit (10G / 1G parallel system) according to the second embodiment.
  • a 1 Gbit / s selection circuit 21B comprising the selection circuit 21 shown in FIG. 3A is provided in parallel.
  • the distribution circuit 22 may have the configuration example shown in FIG. 5B.
  • the 10 Gbit / s selection circuit 21A selects any one of the 10 Gbit / s upstream frame outputs RX output from the optical transceivers 11 (TR # 1 to TR # N) and outputs the selected one to the PON control circuit 12. It has a function to do.
  • the 1 Gbit / s selection circuit 21B selects one of the 1 Gbit / s uplink frame outputs RX output from the optical transceivers 11 (TR # 1 to TR # N) and outputs the selected one to the PON control circuit 12. It has a function to do.
  • each optical transceiver 11 (TR # 1 to TR # N) of the OLT 1 includes an output port for 10 Gbit / s and an output port for 1 Gbit / s as output ports for upstream frames, and serves as an input port for downstream frames. Assume that a 10 Gbit / s input port and a 1 Gbit / s input port are provided.
  • the LOS output is output according to whether or not an optical signal is input from the optical splitter 2 regardless of 10 Gbit / s and 1 Gbit / s.
  • the PON control circuit 12 of the OLT 1 is configured so that the upstream frame input can handle both 10 Gbit / s and 1 Gbit / s inputs, and the 10 Gbit / s output port and the 1 Gbit are output ports for the downstream frame. / S output port, and 10 Gbit / s input port and 1 Gbit / s input port as upstream frame input ports. Further, the PON control circuit 12 recognizes whether to allow each ONU 3 to transmit a frame at 10 Gbit / s or to transmit a frame at 1 Gbit / s when an upstream band is allocated. It is assumed that it has a function of outputting a speed setting output (10G / 1G) to the selection / distribution circuit 13.
  • the 10 Gbit / s upstream frame transmitted from the ONU 3 is output from the 10 Gbit / s output ports TR # 1 to TR # N, and is input to the 10 Gbit / s selection circuit 21A, and each TR # 1. After being selected based on the LOS output from TR # N, it is input to the 10 Gbit / s input port of the PON control circuit 12.
  • the 1 Gbit / s upstream frame transmitted from the ONU 3 is output from the 1 Gbit / s output port TR # 1 to TR # N, and is input to the 1 Gbit / s selection circuit 21B. After being selected based on the LOS output from TR # N, it is input to the 1 Gbit / s input port of the PON control circuit 12.
  • the selection / distribution circuit 13 is provided between the N optical transceivers 11 and the PON control circuit 12, and the selection / distribution circuit 13 receives the upstream frame that arrives in time division. Is selected, the upstream frame photoelectrically converted by the transceiver 11 is transferred to the PON control circuit 12, and the downstream frame from the PON control circuit 12 is distributed to each optical transceiver 11 to supply power. Based on the operation status PS of the optical transceiver 11 set for each optical transceiver 11, the control circuit 23 stops the power supply to the dormant optical transceiver 11 that is set to be dormant among these optical transceivers 11. In the selection / distribution circuit 13, the upstream frame output from the pause optical transceiver 11 is transferred. It is obtained so as to stop the power supply to some or all of the circuitry used.
  • the OLT 1 As a result, in the OLT 1, a maximum of N ⁇ 32 ONUs 3 are accommodated, and the resting optical transceiver 11 and a part or all of the circuits used for transferring the uplink frame output from the resting optical transceiver 11 are used. Power supply is stopped. Therefore, the device cost per ONU in the optical transmission system 100 can be reduced, and the operation cost can be reduced by reducing the power consumption in the OLT 1, and as a result, the optical cost including these device cost and operation cost can be reduced. It becomes possible to reduce the system cost per ONU in the transmission system.
  • the system cost per ONU of the optical transmission system 100 using the OLT 1 of the first embodiment described above is compared with the conventional PON system shown in FIG.
  • the configuration of the OLT 1 of the present embodiment has the selection / distribution circuit 13 added, but the PON control circuit 12 The number of is small.
  • the device cost of the selection / distribution circuit 13 (price of necessary parts, board price increase due to increase in board area due to increase in the number of parts, etc.) is compared with the device cost of the PON control circuit 12, selection / distribution Since the cost of the circuit 13 is smaller than the device cost of the PON control circuit 12, the configuration of the OLT 1 of the present embodiment has a lower device cost. In particular, when the configuration of FIG. 3 is used, it is possible to use small parts at a low price, so that the apparatus cost can be further reduced. In the case of the 10G-EPON system, it is assumed that the price of the PON control circuit 12 is higher than that of the PON control circuit 12 for GE-PON. growing.
  • the power consumed by the circuit is also reduced.
  • power is wasted even in a circuit unit that is not used for frame transfer.
  • a part or all of the circuit unit that is not used for frame transfer is used. Since power consumption is also reduced, the operation cost is lower in the configuration of the OLT 1 of the present embodiment.
  • the system cost per ONU can be made smaller than that of the conventional PON system.
  • FIG. 7 is a configuration example of a selection circuit according to the third embodiment.
  • the selectors (SEL # 1 to SEL # 7) are controlled not using the LOS output of the optical transceiver 11 but using the upstream bandwidth allocation status US from the PON control circuit 12. It is. Therefore, the selection circuit 21 of the selection / distribution circuit 13 is provided with a selector control circuit SC that controls the operations of SEL # 1 to SEL # 7.
  • Other configurations of the OLT 1 according to the present embodiment are the same as those of the second embodiment.
  • the PON control circuit 12 Since the PON control circuit 12 performs upstream bandwidth allocation (frame transmission permission) for each ONU 3, if the optical transceiver 11 is connected to which optical transceiver 11 is connected, the signal from the ONU 3 that has permitted frame transmission is transmitted to the PON control circuit 12.
  • the operation of SEL # 1 to SEL # 7 can be controlled so as to output the signal.
  • the correspondence with the optical transceiver 11 connected to the individual ID (MAC address or other serial number) of the ONU 3 can be set for the selector control circuit SC.
  • SEL # 1 to SEL # 1 to output only the input from one specific optical transceiver 11 to the PON control circuit 12 in a period (DiscoverycoverWindow) in which transmission of a registration request (RegisterRegRequest) frame is permitted.
  • SEL # 7 is set.
  • the MAC address of the ONU 3 that has transmitted the registration request (Register Request) frame during the setting period is associated with the ID of the specific optical transceiver 11.
  • the ONUs 3 connected to all the optical transceivers 11 It is possible to correspond to the reception of the registration request (Register Request) frame and the ID of the optical transceiver 11 to which the MAC address of each ONU 3 is connected.
  • the selector control circuit SC controls the operations of SEL # 1 to SEL # 7 based on the uplink bandwidth allocation status US from the PON control circuit 12 according to the setting of the connection relationship between the ONU 3 and the optical transceiver 11. It has a function of selecting the upstream frame output RX of one optical transceiver 11 from TR # 1 to TR # 8 and outputting it to the PON control circuit 12.
  • the uplink bandwidth allocation status US is generated by the PON control circuit 12 for each optical transceiver 11 (TR # 1 to TR # N) based on the allocation status of the uplink frame transmission communication bandwidth allocated to each ONU 3 in a time division manner.
  • This uplink bandwidth allocation status US is composed of, for example, the uplink frame arrival time and uplink frame length from each ONU 3, and is output for each optical transceiver 11 (TR # 1 to TR # N).
  • the configuration of the present embodiment can be applied to the 10G-EPON system.
  • the configuration of the second embodiment is equivalent to the configuration of the first embodiment, and the cost is lower than the conventional configuration.
  • FIG. 8 is a block diagram illustrating the configuration of the optical transmission system and the OLT according to the fourth embodiment.
  • the difference from the configuration of FIG. 2 is that two PON control circuits 12 are connected to the selection / distribution circuit 13.
  • PONC # 1 is provided as an operational PON control circuit 12
  • PONC # 2 is provided as a standby PON control circuit 12.
  • FIG. 9A is a configuration example of a selection circuit according to the fourth embodiment.
  • FIG. 9B is a configuration example of a distribution circuit according to the fourth embodiment. The difference from the configuration of FIGS. 3A and 3B is that one upstream frame output RD output from the OR circuit (OR) is output to the two PON control circuits 12 (PONC # 1, PONC # 2).
  • One of the point of distributing output as RD (RD1, RD2) and the downstream frame outputs TD1, TD2 from the two PON control circuits 12 (PONC # 1, PONC # 2) is sent to the optical transceiver 11 (TR # 1 to TR # N) to control the operation of the selector SEL according to the selector SEL to be selected as the downstream frame TD and the operation statuses ST1 and ST2 (ST) from the PON control circuit 12 (PONC # 1 and PONC # 2).
  • a selector control circuit SC Other configurations of the OLT 1 according to the present embodiment are the same as those of the second embodiment.
  • the OLT 1 of the present embodiment is equipped with two PON control circuits 12 (PONC # 1, PONC # 2), one of which is reserved. In this example, PONC # 2 is reserved.
  • PONC # 1 notifies the SC that it is operating at ST1
  • the spare PONC # 2 notifies the SC that it is waiting at ST2.
  • the SC controls the operation of the SEL so as to select the downstream frame output TD1 of PONC # 1 in operation. Thereby, the downstream frame output TD1 of PONC # 1 selected by SEL is distributed to the optical transceiver 11 (TR # 1 to TR # N).
  • PONC # 1 In this state, if a failure occurs in PONC # 1, PONC # 1 notifies the SC of the failure by ST1, and changes from standby to operation to PONC # 2 by ST3. Instruct. PONC # 2 receives an instruction to change to operation from ST3 from PONC # 1, and notifies to SC that it has been changed from standby to operation by ST2. After confirming that PONC # 2 has changed during operation in ST2, the SC controls the operation of the SEL so as to select the downlink frame output TD2 of PONC # 2 that has been changed during operation. As a result, the downlink frame output TD2 of PONC # 2 selected by SEL is distributed to TR # 1 to TR # N.
  • the board on which the PONC # 1 is mounted is replaced during operation in the PONC # 2.
  • the basic configuration of the OLT 1 of the present embodiment is the same as that of the OLT 1 of the second embodiment, it has the same effect as the OLT 1 of the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of the optical transmission system and the OLT according to the fifth embodiment.
  • the power supply control circuit 23 is configured for each optical transceiver 11 extracted from the sleep status SS of the ONU 3 set for each ONU 3. Based on the sleep status of each optical transceiver, power supply to the sleeping optical transceiver 11 in which all ONUs 3 connected to the optical transceiver 11 are in the sleep state is stopped.
  • FIG. 11 is a configuration example of the selection circuit and the power supply control circuit according to the fifth embodiment, and shows a configuration example in which a power supply control circuit 23 is provided for the selection circuit 21 of FIG. 3A.
  • the distribution circuit 22 may have the configuration example shown in FIG. 3B.
  • the selection circuit 21 includes N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N). ) Amplifies and outputs the upstream frame signal photoelectrically converted in (1), and generates an OR output of the upstream frame signals output from these buffer circuits (BUF # 1 to BUF # N) by an OR circuit (OR), It has a function of outputting to the PON control circuit 12.
  • N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N).
  • the power supply control circuit 23 extracts the sleep state for each optical transceiver 11 (TR # 1 to TR # N) from the sleep state SS from the PON control circuit 12 set for each ONU 3, and these functions. Based on the sleep status of each optical transceiver, among the optical transceivers 11 (TR # 1 to TR # N), all the ONUs 3 connected to the optical transceiver 11 (TR # 1 to TR # N) are in the sleep state. Used to stop power supply to the sleeping optical transceiver TR # i (i is an integer from 1 to N) and to transfer the upstream frame output from the sleeping optical transceiver TR # i in the selection circuit 21 A function of stopping power supply to part or all of the circuit.
  • the power control circuit 23 includes, as main circuit units, a first power switch (SWA # 1 to SWA # N), a second power switch (SWB # 1 to SWB # N), A power switch control circuit 23A is provided.
  • the first power switches (SWA # 1 to SWA # N) are provided for each of the optical transceivers 11 (TR # 1 to TR # N), and in response to an instruction from the power switch control circuit 23A, It has a function of switching and supplying any one of the ground potentials GND to the corresponding optical transceivers 11 (TR # 1 to TR # N).
  • the second power switches (SWB # 1 to SWB # N) are provided for each of the optical transceivers 11 (TR # 1 to TR # N), and in response to an instruction from the power switch control circuit 23A, A function of switching and supplying any one of the ground potential GND to a circuit unit corresponding to the optical transceiver 11 (TR # 1 to TR # N) of the selection circuit 21, for example, a buffer circuit (BUF # 1 to BUF # N).
  • a buffer circuit (BUF # 1 to BUF # N).
  • the power switch control circuit 23A except for the optical transceiver TR # i during sleep, among the optical transceivers 11 (TR # 1 to TR # N), the corresponding first power switch (SWA # i) and second power supply For the function of instructing the switch (SWB # i) to supply power, and the sleeping optical transceiver TR # i, the corresponding first power switch (SWA # j) and second power switch (SWB # j) Has a function of instructing the power supply to be stopped.
  • the optical transceiver 11 (TR # 1 to TR # N) is connected to the connected optical splitter 2 when the operating potential Vcc is supplied from the corresponding first power switch (SWA # 1 to SWA # N). And a function of stopping the optical communication operation when the ground potential GND is supplied from the first power switch (SWA # 1 to SWA # N).
  • the buffer circuits are composed of amplifier circuits such as operational amplifiers.
  • Vcc operating potential supplied from the corresponding second power switch (SWB # 1 to SWB # N)
  • SWB # 1 to SWB # N The function of amplifying the upstream frame signal input from the transceiver 11 (TR # 1 to TR # N) and outputting the amplified signal to the OR circuit (OR), and the second power switch (SWB # 1 to SWB # N)
  • the ground potential GND When the ground potential GND is supplied, it has a function of stopping the amplification operation and outputting the ground potential (GND).
  • the PON control circuit 12 of the OLT 1 assigns an arbitrary sleep period to the ONU 3, and in this sleep period There is a case where a function for instructing the ONU 3 from the OLT 1 is provided to shift to the power saving state, that is, the sleep state.
  • the sleep status SS is information indicating the sleep period assigned to each ONU 3 and includes, for example, a start time of the sleep period and a sleep period length.
  • the sleep period of each ONU 3 is assigned depending on the retention status of the uplink data in each ONU 3, but each of the ONUs 3 connected to any one of the optical transceivers 11 (TR # 1 to TR # N). There is a case where the sleep periods of the ONUs 3 overlap, and all these ONUs 3 are in the sleep state only during the sleep overlap period. In such a case, frame communication is not substantially performed between the optical transceiver 11 and the corresponding optical splitter 2.
  • the connection is made among the optical transceivers 11 (TR # 1 to TR # N).
  • the power supply is stopped only during the sleep overlap period with respect to the sleeping optical transceiver TR # i in which all of the ONUs 3 are sleeping.
  • the power switch is set for the sleeping optical transceiver TR # i in which all of the connected ONUs 3 are sleeping.
  • the ground potential GND is supplied from the corresponding SWA # i to the TR # i, and the corresponding SWB # i corresponds to the TR # i.
  • the ground potential GND is supplied to BUF # i.
  • the corresponding SWA # j The operating potential Vcc is supplied to the TR # j, and the operating potential Vcc is supplied from the corresponding SWB # j to the BUF # j corresponding to the TR # j.
  • the power supply control is performed for the operation of extracting the sleep state for each optical transceiver 11 (TR # 1 to TR # N) from the sleep state SS from the PON control circuit 12 set for each ONU 3.
  • the PON control circuit 12 extracts the sleep status for each optical transceiver, identifies the sleeping optical transceiver TR # i in which all connected ONUs 3 are in the sleep state, and the sleep overlap period, and the power control circuit 23
  • the power supply to TR # 1 may be stopped based on the TR # i notified from the PON control circuit 12 and the power supply stop information indicating the sleep overlap period.
  • each optical transceiver 11 (TR # 1 to TR # N) for each optical transceiver, the optical transceiver 11 (TR # 1 to TR # N) and the buffer circuit (BUF #) corresponding thereto.
  • the buffer circuit (BUF # 1 to BUF # 1 to BUF # 1 to BUF # 1 to BUF # N) The power supply to BUF # N) may be controlled.
  • the uplink bandwidth allocation status US is generated by the PON control circuit 12 for each optical transceiver 11 (TR # 1 to TR # N) based on the allocation status of the uplink frame transmission communication bandwidth allocated to each ONU 3 in a time division manner.
  • the information indicates the arrival period of the uplink frame that arrives in time division from each ONU 3 connected to the TR # k (k is an integer of 1 to N).
  • This uplink bandwidth allocation status US is composed of, for example, an uplink frame arrival time Ts and an uplink frame length Tl from each ONU 3, and is output for each optical transceiver 11 (TR # 1 to TR # N).
  • the power switch control circuit 23A Based on the uplink bandwidth allocation status US, the power switch control circuit 23A adjusts the BUF # corresponding to the TR # k in accordance with the arrival period of the uplink frame to each optical transceiver 11 (TR # 1 to TR # N). It is only necessary to instruct SWB # k corresponding to the optical transceiver 11 to supply power to k. As a result, the operation potential Vcc is applied from SWB #k to BUF #k corresponding to TR #k in operation among optical transceivers 11 (TR # 1 to TR #N) during the period when the upstream frame arrives. The supply of the operating potential Vcc from the SWB #k to the BUF #k is stopped during a period in which the uplink frame is not supplied.
  • the upstream frame output RX is masked (gated) by the upstream bandwidth allocation status US by the buffer circuits (BUF # 1 to BUF # N). Will be.
  • selection circuit 21 of FIG. 10 is not limited to the configuration example shown in FIG. 11 and is similar to the second embodiment described above with reference to FIGS. 3A and 4 described above.
  • the selection circuit 21 shown in FIG. Further, the selection circuit 21 of FIG. 7 may be applied in the same manner as in the third embodiment.
  • the selection shown in FIGS. 5A and 5B is performed in the same manner as in the second embodiment.
  • the circuit 21 and the distribution circuit 22 may be applied, or the selection circuit 21 shown in FIG. 6 described above may be applied instead of the selection circuit 21 in FIG. 5A.
  • the selection / distribution circuit 13 of FIG. 10 when the selection / distribution circuit 13 of FIG. 10 according to the present embodiment is applied to a plurality of PON control circuits 12, as in the fourth embodiment, the above-described FIGS.
  • the selection / distribution circuit 13, the selection circuit 21, and the distribution circuit 22 shown in FIG. 9B may be applied.
  • FIG. 12 is a block diagram illustrating the configuration of the optical transmission system and the OLT according to the sixth embodiment.
  • the power supply control circuit 23 is based on the uplink bandwidth allocation situation US indicating the arrival period of the uplink frame that arrives in time division.
  • the selection / distribution circuit 13 the power supply to a part or all of the circuits not used for the transfer of the uplink frame is stopped.
  • FIG. 13A is a configuration example of a selection circuit and a power supply control circuit according to the sixth embodiment, and shows a configuration example in which a power supply control circuit 23 is provided for the selection circuit 21 of FIG. 3A.
  • the distribution circuit 22 may have the configuration example shown in FIG. 3B.
  • the selection circuit 21 includes N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N). ) Amplifies and outputs the upstream frame signal photoelectrically converted in (1), and generates an OR output of the upstream frame signals output from these buffer circuits (BUF # 1 to BUF # N) by an OR circuit (OR), It has a function of outputting to the PON control circuit 12.
  • N buffer circuits (BUF # 1 to BUF # N) provided for each optical transceiver 11 (TR # 1 to TR # N), and the optical transceiver 11 (TR # 1 to TR # N).
  • the power supply control circuit 23 uses the power supply switches (SW # 1 to SW # N) based on the upstream bandwidth allocation status US output from the PON control circuit 12 and related to the optical transceivers 11 (TR # 1 to TR # N). And has a function of controlling power supply to the buffer circuits (BUF # 1 to BUF # N) corresponding to the optical transceiver 11 (TR # 1 to TR # N).
  • the power control circuit 23 includes a power switch control circuit 23A and N power switches corresponding to the optical transceivers 11 (TR # 1 to TR # N) as main circuit sections. (SW # 1 to SW # N) are provided.
  • the power switch control circuit 23A synchronizes with the upstream frame output RX output from each optical transceiver 11 (TR # 1 to TR # N) based on the upstream bandwidth allocation status US output from the PON control circuit 12, It has a function of controlling power switches (SW # 1 to SW # N) corresponding to the optical transceivers (TR # 1 to TR # N).
  • the power switches (SW # 1 to SW # N) select either the operation potential Vcc or the ground potential GND from the optical transceiver 11 (TR # 1 to TR # 1 to TR # 1) in the selection circuit 21.
  • TR # N for example, a buffer circuit (BUF # 1 to BUF # N).
  • the buffer circuits are composed of amplifier circuits such as operational amplifiers.
  • the optical transceiver 11 When the operating potential Vcc is supplied from the power switches (SW # 1 to SW # N), the optical transceiver 11 (TR # 1 to TR # 1 to BUF # 1 to BUF # N) is supplied.
  • the function of amplifying the upstream frame signal input from TR # N) and outputting the amplified signal to the OR circuit (OR), and amplification when the ground potential GND is supplied from the power switch (SW # 1 to SW # N) A function of stopping the operation and outputting a ground potential (GND).
  • FIG. 13B is a timing chart showing the operation of the power supply control circuit of FIG. 13A.
  • the uplink bandwidth allocation status US is generated by the PON control circuit 12 for each optical transceiver 11 (TR # 1 to TR # N) based on the allocation status of the uplink frame transmission communication bandwidth allocated to each ONU 3 in a time division manner. This is information indicating the arrival period of the upstream frame that arrives in time division from each ONU 3 connected to the optical transceiver 11 (TR # 1 to TR # N).
  • This uplink bandwidth allocation status US is composed of, for example, an uplink frame arrival time Ts and an uplink frame length Tl from each ONU 3, as shown in FIG. 13B, and is output for each optical transceiver 11 (TR # 1 to TR # N). Is done.
  • the power switch control circuit 23A Based on the uplink bandwidth allocation status US, the power switch control circuit 23A adjusts the optical transceiver 11 (TR # 1 to TR # 1 to TR # 1 to TR # N) according to the arrival period of the uplink frame to each optical transceiver 11 (TR # 1 to TR # N). Power switch (SW # 1 to SW # N) corresponding to the optical transceiver 11 (TR # 1 to TR # N) so as to supply power to the buffer circuit (BUF # 1 to BUF # N) corresponding to TR # N) )
  • the power switch control circuit 23A takes the rise time from Ts in consideration of the rise delay of the power switches (SW # 1 to SW # N) and the buffer circuits (BUF # 1 to BUF # N) and the delay of the upstream frame. It is also possible to specify a power supply period that allows for a margin from the time point traced back by Ton to the time point when the delay time ⁇ Te has elapsed from the upstream frame end time Ts + Tl, and instruct power supply over this power supply period.
  • the OLT 1 includes a plurality of optical transceivers 11 (TR # 1 to TR # N)
  • the power supply to the subsequent circuit provided for each of the optical transceivers 11 is accurately performed. Can be controlled. Therefore, it is possible to realize stable operation while appropriately reducing power consumption in these subsequent circuits and suppressing the influence on the upstream frame transfer operation due to the power consumption reduction in these subsequent circuits.
  • the power supply period may be included in the upstream frame transmission communication band by the PON control circuit 12, but for this purpose, the band allocation is performed using the operation characteristics such as the start-up time of the circuit components subject to power control as parameters. A unique bandwidth allocation algorithm that is loaded during processing is required, which leads to complexity of the bandwidth allocation algorithm. According to the present embodiment, since the power supply control period is specified by the power switch control circuit 23A based on the communication band allocation status notified to each ONU 3, there is no need to change the band allocation algorithm. In addition, any band allocation algorithm can be supported, and an extremely highly adaptable OLT 1 can be realized.
  • the operating potential Vcc is supplied from the power switches (SW # 1 to SW # N) to the buffer circuits (BUF # 1 to BUF # N) during the period when the upstream frame arrives, and the upstream frame does not arrive.
  • the supply of the operating potential Vcc from the power switches (SW # 1 to SW # N) to the buffer circuits (BUF # 1 to BUF # N) is stopped. Therefore, since the supply of the operating potential Vcc is stopped for the buffer circuits (BUF # 1 to BUF # N) from which no upstream frame has arrived, useless power consumption is suppressed, and power consumption in the selection circuit 21 is suppressed. Is reduced.
  • the upstream frame output RX is masked (gated) by the upstream bandwidth allocation status US by the buffer circuits (BUF # 1 to BUF # N). Will be.
  • selection circuit 21 of FIG. 12 is not limited to the configuration example shown in FIG. 13A, and similar to the second embodiment, the above-described FIG. 3A and FIG.
  • the selection shown in FIGS. 5A and 5B is performed in the same manner as in the second embodiment.
  • the circuit 21 and the distribution circuit 22 may be applied, or the selection circuit 21 shown in FIG. 6 described above may be applied instead of the selection circuit 21 in FIG. 5A.
  • the selection / distribution circuit 13 of FIG. 12 when the selection / distribution circuit 13 of FIG. 12 according to the present embodiment is applied to a plurality of PON control circuits 12, as in the fourth embodiment, the above-described FIGS.
  • the selection / distribution circuit 13, the selection circuit 21, and the distribution circuit 22 shown in FIG. 9B may be applied.
  • the selection circuit 21 of FIG. 12 may be applied in the same manner as the third embodiment.
  • the power supply to the circuit units corresponding to the optical transceivers 11 (TR # 1 to TR # N) to which the optical signal from the optical splitter 2 is not input can be stopped, and the power consumption can be reduced.
  • FIG. 14A is another configuration example of the selection circuit and the power supply control circuit according to the sixth embodiment, and shows a configuration example in which a power supply control circuit 23 is provided for the selection circuit 21 of FIG.
  • the distribution circuit 22 may have the configuration example shown in FIG. 3B.
  • the power supply control circuit 23 controls the selectors (SEL # 1 to SEL # 7) with a plurality of power switches (SW # 0 to SW # 1). Based on the switching control state, it has a function of stopping power supply to some or all of the selectors (SEL # 1 to SEL # 7) that do not pass the upstream frame.
  • the power control circuit 23 is provided with power switches # 0 and # 1 as main circuit portions.
  • the power switch (SW # 0) selects either the operating potential Vcc or the ground potential GND based on the switching signal (inverted value) from the selection circuit 21 input to the selector (SEL # 7). To SEL # 2 and SEL # 5).
  • the power switch (SW # 1) selects either the operating potential Vcc or the ground potential GND based on the switching signal from the selection circuit 21 input to the selector (SEL # 7). , SEL # 6).
  • FIG. 14B is a timing chart showing the operation of the power supply control circuit of FIG. 14A.
  • the uplink bandwidth allocation status US is generated by the PON control circuit 12 for each optical transceiver 11 (TR # 1 to TR # N) based on the allocation status of the uplink frame transmission communication bandwidth allocated to each ONU 3 in a time division manner. This is information indicating the arrival period of the upstream frame that arrives in time division from each ONU 3 connected to the optical transceiver 11 (TR # 1 to TR # N).
  • This uplink bandwidth allocation status US is composed of an uplink frame arrival time Ts and an uplink frame length Tl from each ONU 3, for example, as shown in FIG. 14B, and is output for each optical transceiver 11 (TR # 1 to TR # N). Is done.
  • the selection circuit 21 selects the “0” side for the uplink frame arrival period for TR # 1 to TR # 4 among TR # 1 to TR # N with respect to SEL # 7. Instructing switching to input, and instructing SEL # 7 to switch to “1” side input for the uplink frame arrival period for TR # 5 to TR # 8.
  • SW # 0 supplies the operating potential Vcc to SEL # 1 to SEL # 2, SEL # 5, and SW # 1 is SEL # 3 to stop power supply to SEL # 4 and SEL # 6.
  • SW # 0 stops supplying power to SEL # 1 to SEL # 2 and SEL # 5
  • SW # 1 is selected from SEL # 3 to SEL.
  • the operating potential Vcc is supplied to # 4 and SEL # 6. Therefore, since supply of the operating potential Vcc is stopped for half of SEL # 1 to SEL # 6, useless power consumption is suppressed, and power consumption in the selection circuit 21 is reduced.
  • FIG. 15 is a block diagram illustrating a configuration of an OLT according to the seventh embodiment.
  • the difference from the configuration of FIG. 3C described above is that the optical splitter 2 (SP # 1 to SP # N) is connected between the optical splitter 2 (SP # 1 to SP # N) and the optical transceiver 11 (TR # 1 to TR # N).
  • SP # N) and an optical transceiver 11 are provided with an N ⁇ N optical switch 10 for arbitrarily switching connection.
  • the optical transmission system 100 is generally provided with a mechanism in which a failure occurrence in the optical transceiver 11 is detected as a communication abnormality by the OLT 1 and other communication devices connected to the OLT 1 and notified to the operator. ing. Therefore, as the restoration work by the operator in response to this notification, as described with reference to FIG. 2C, the operation status PS of the optical transceiver 11 in which the failure has occurred is changed during suspension, and the operation status PS of the alternative optical transceiver 11 is changed. Settings will be changed during operation.
  • the operational status PS of each optical transceiver 11 (TR # 1 to TR # N) managed by the PON control circuit 12 indicates that a failure has occurred in the optical transceiver 11 (TR # 1 to TR # N). Focusing on the fact that the setting is changed by the operator according to the operation status PS, the optical switch 10 is switched from the PON control circuit 12 based on the operation status PS, so that the switching connection of the optical splitter 2 is performed. is there.
  • the operation status PS of the first optical transceiver 11 (TR # i) among the TR # 1 to TR # N is changed during the suspension, and the first
  • the optical switch 10 is switched by the optical switch control signal CNT, and the first optical transceiver (TR # i) is switched. It has a function of switching and connecting the connected optical splitter 2 to the second optical transceiver 11 (TR # j).
  • the optical switch 10 is automatically switched by the PON control circuit 12 in accordance with the change in the operation status PS of TR # i and TR # j due to the operator's recovery work. Therefore, since SP # i connected to the TR # i where the failure has occurred is switched to the alternative TR # j, the frame communication of the ONU 3 accommodated in the SP # i can be restored. .
  • the power switch control circuit 23A of the power control circuit 23 causes the first and second power switches (SWA) corresponding to the TR # i where the failure has occurred. #I, SWB # i) is instructed to stop power supply, and power is supplied to the first and second power switches (SWA # j, SWB # j) corresponding to the alternative TR # j Instruct the start of. As a result, power supply from SWA # i and SWB # i to TR # i and BUF # i is stopped, and power supply from SWA # j and SWB # j to TR # j and BUF # j is started.
  • each optical transceiver 11 (TR # 1 to TR # N) is controlled by PON.
  • the PON control circuit 12 autonomously changes the operation status PS and switches the optical switch 10 without waiting for the operator to change the operation status PS. Good.
  • the frame interval of the upstream frame transferred from the selection / distribution circuit 13 is monitored for each TR # 1 to TR # N. Then, when TR # i occurs when the frame interval exceeds a predetermined monitoring period, the TR # i may be determined as the faulty optical transceiver 11 (TR # i).
  • one optical transceiver 11 # j other than TR # i, which is in the operating state PS and is usable may be selected as TR # j.
  • the optical transceivers 11 (TR # 1 to TR # N) whose operation status PS is inactive include those that are out of order and cannot be used. Therefore, the operation status PS includes the TR # 1 to TR # N. What is necessary is just to attach the information which shows the usability.
  • TR # i when any one of TR # 1 to TR # N is determined as the fault optical transceiver 11 (TR # i), the PON control circuit 12 is inactive and using the operation status PS of the TR # i.
  • the operation status PS is suspended, and another usable alternative optical transceiver 11 (TR # j) is selected and the operation status PS is changed to the operation status.
  • the optical splitter 2 connected to the fault TR # i may be switched and connected to the alternative TR # j by switching control.
  • the operation status PS is autonomously changed by the PON control circuit 12 without waiting for the operator to change the operation status PS, and the optical switch 10 is controlled to be switched.
  • the first power switch (SWA # 1 to SWA # N) and the second power switch (SWB # 1 to SWB # N) respond to the failure TR # i.
  • the power supply to the BUF # i is automatically stopped, and the power supply to the alternative TR # j and the corresponding BUF # j is automatically started.
  • the optical switch 10 according to the present embodiment illustrated in FIG. 15 may be applied not only to the configuration example illustrated in FIG. 3C but also to the configuration examples illustrated in FIG. 11 and FIG. 13A described above.
  • FIG. 16 is a block diagram illustrating a configuration of an OLT according to the eighth embodiment.
  • the difference from the configuration of FIG. 11 is that the optical splitter 2 (SP # 1 to SP # N) is between the optical splitter 2 (SP # 1 to SP # N) and the optical transceiver 11 (TR # 1 to TR # N).
  • N) and the optical transceiver 11 (TR # 1 to TR # N) are provided with an N ⁇ N optical switch 10 that arbitrarily switches and connects, and a different downstream wavelength is used for each optical transceiver 11. .
  • any one of the optical transceivers 11 (TR # 1 to TR # N), the sleep periods of the connected ONUs 3 are overlapped, and all of these ONUs 3 are in the sleep state only during the sleep overlap period. In this case, frame communication is not substantially performed between the optical transceiver 11 and the corresponding optical splitter 2. Accordingly, if such a situation is created intentionally, that is, if the sleeping ONU 3 is switched and connected to the specific optical transceiver 11, the power supply to the optical transceiver 11 can be stopped.
  • the OLT 1 among the maximum N ⁇ 32 ONUs 3 connected to the N optical splitters 2 (SP # 1 to SP # N) Uplink allocation (grant allocation) for allocating a communication band for uplink frame transmission in a time-sharing manner so that all ONUs 3 that have established session connections emit light (uplink frame transmission) from these ONUs 3 at different times. It is to do.
  • an optical switch 10 is provided between the optical splitter 2 (SP # 1 to SP # N) and the optical transceiver 11 (TR # 1 to TR # N) to allocate the upstream bandwidth to the ONU 3.
  • Each ONU 3 can be individually connected to an arbitrary optical transceiver 11 by switching control of the optical switch 10 in accordance with the timing.
  • the ONU 3 to be connected can be of a variable wavelength type, and the optical transceiver 11 to be connected can be connected to any optical transceiver 11 by selecting the downstream wavelength of the optical transceiver 11 in accordance with an instruction from the OLT 1.
  • the sleeping ONU 3 is switched to the specific optical transceiver 11 and the power supply to the optical transceiver 11 is stopped. That is, the PON control circuit 12 according to the present embodiment controls the ONU 3 and the function for switching control of the optical switch 10 by the optical switch control signal CNT based on the sleep status and the upstream bandwidth allocation status US of each subscriber side device. It has a function to do.
  • the power control circuit 23 has a function of stopping power supply to the optical transceiver TR # i during sleep.
  • TR # i when power supply to the optical transceiver TR # i during sleep is intermittently stopped for a specific power supply stop period, TR # i is only supplied to the TR # i during the power supply stop period.
  • TR # i only the ONU 3 that is in a sleep state is connected, and the ONU 3 that is in a communication state must not be connected.
  • TR # i for stopping the power supply there is a method of selecting any one as TR # i from the optical transceivers 11 (TR # 1 to TR # N) by a technique such as round robin. Conceivable. Further, by selecting the optical transceiver 11 (TR # 1 to TR # N) having the largest number of sleeping ONUs 3 or the smallest number of communicating ONUs 3, the switching operation in the optical switch 10 is performed. May be reduced.
  • any of the optical transceivers 11 (TR # 1 to TR # N)
  • the power supply to the optical transceiver 11 is stopped in the sleep overlap period in which the sleep periods of the connected ONUs 3 overlap.
  • power supply to the sleeping optical transceiver TR # i can be stopped more frequently. Therefore, the power consumption of the entire OLT 1 can be reduced more efficiently.
  • the upstream wavelength is changed for each optical transceiver 11 of the OLT 1
  • the optical switch 10 is a wavelength selection type switch
  • the ONU 3 is a wavelength variable type
  • the upstream wavelength of the ONU 3 is changed by an instruction from the OLT 1.
  • a configuration for performing switching connection may be employed. In this case, switching control of the optical switch 10 in accordance with the timing of the upstream bandwidth allocation status US is not required (it is automatically switched according to the wavelength).
  • the optical switch 10 may be switched and connected by adding identification information of the optical transceiver 11 connected to the head of data output from the ONU 3.
  • switching control of the optical switch 10 in accordance with the timing of the upstream bandwidth allocation status US is not required (it is automatically switched according to the identification information), and the optical transceiver 11 and the ONU 3 of the OLT 1 all use the same wavelength upstream. It is possible (it is not necessary to use a wavelength variable type).
  • the optical switch 10 according to the present embodiment shown in FIG. 16 may be applied not only to the configuration example shown in FIG. 11 but also to the configuration examples shown in FIG. 3C and FIG. 13A described above.
  • the optical transceiver 11 and the selection circuit 21 in FIGS. 4, 5A, 6, 7, and 9A are not subject to power control, but are similar to the optical transceiver 11 and the selection circuit 21 in FIG. 3C. It is possible to change to perform power supply control. Note that the power control of the selection circuit 21 may be performed not for each optical transceiver 11 but for a plurality of optical transceivers 11 as a unit. For example, when the selection circuit 21 of FIG. 7 is the target of power control, when power supply to both TR # 1 and TR # 2 is stopped, power supply to SEL # 1 is also stopped. When the selection circuit 21 shown in FIG. 7 performs power control based on the upstream bandwidth allocation status US, power supply to four selectors of SEL # 1 to SEL # 7 except for three selectors that require power supply. May be stopped.
  • SYMBOLS 100 Optical transmission system, 1 ... OLT (station side apparatus), 2, SP ... Optical splitter, 3 ... ONU (subscriber side apparatus), 10 ... Optical switch, 11, TR ... Optical transceiver, 12, PON ... PON control Circuit: 13 ... Selection / distribution circuit, 21 ... Selection circuit, 21A ... Selection circuit for 10Gbit / s, 21B ... Selection circuit for 1Gbit / s, 22 ... Distribution circuit, 23 ... Power supply control circuit, 23A ... Power supply switch control circuit, AND ... AND circuit, OR ... OR circuit, BUF ... buffer circuit, SEL ... selector, SC ... selector control circuit, F1, F2 ...
  • optical fiber RX, RD ... upstream frame output, TX, TD ... downstream frame output, LOS ... LOS output, PS ... operation status, SS ... sleep status, US ... upband allocation status, ST ... operation status, CNT ... optical switch control signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

 N個の光トランシーバ(11)と1個のPON制御回路(12)との間に選択・分配回路(13)を設け、選択・分配回路(13)が、時分割で到来する上りフレームに対応する光トランシーバ(11)を選択することにより、当該トランシーバ(11)で光電変換された上りフレームをPON制御回路(12)に転送するとともに、PON制御回路(12)からの下りフレームを各光トランシーバ(11)に分配し、電源制御回路(23)が、各光トランシーバ(11)のうちフレームの転送に使用されていない光トランシーバ(11)のいずれか、および、選択・分配回路(13)のうちフレームの転送に使用されていない回路のうち、少なくともいずれか一方に対する電源供給を停止する。これにより、光伝送システムにおけるONU1台あたりのシステムコストを低減できる。

Description

局側装置および光伝送システム
 この発明は、PON(光通信網:Passive Optical Network)を介して接続された複数のONU(加入者側装置:Optical Network Unit)と上位装置との間でフレームを転送処理する光伝送システムにおけるOLT(局側装置:Optical Line Terminal)及び光伝送システムに関し、特に、多数のONUとの効率的な通信を可能とするOLT及び光伝送システムに関するものである。
 近年、FTTH(Fiber To The Home)などの光アクセスシステムで利用されるPONとして、2009年にIEEE802.3avにおいて10G-EPON(10 Gigabit Ethernet Passive Optical Network:Ethernetは登録商標)の標準化が完了した。10G-EPONの特徴は、既に広く普及しているGE-PON(Gigabit Ethernet Passive Optical Network:非特許文献1参照)の10倍の高速伝送が可能なことである。さらに、既存のGE-PONと10G-EPONを混在させて利用できるという特徴がある。
 GE-PONと10G-EPONを混在させて利用する場合は、1G下り信号と10G下り信号で異なる波長を使用するWDM(Wavelength Division Multiplexing)技術を用い、1G下り信号間と10G下り信号間のそれぞれにおいてTDM(Time Division Multiplexing )技術を用いる。上り信号においては、1G上り信号と10G上り信号で同一の波長を使用し、1G上り信号と10G上り信号をまとめてTDMA(Time Division Multiple Access)技術を用いる。すなわち、1G下り信号、10G下り信号、および、上り信号で異なる3種類の波長を用いる。
 このようなGE-PONや10G-EPONを用いた光伝送システムを、GE-PONシステムや10G-EPONシステムと呼ぶ。
 図17は、従来のGE-PONシステムを示す構成例である。このGE-PONシステムは、OLT(局側装置)50、光スプリッタ2、および複数のONU(加入者側装置)3から構成されており、光スプリッタ2を介して接続された複数のONU3がOLT50に収容されている。
 GE-PON用のOLT50は、光トランシーバ51とPON制御回路52とを内蔵している。OLT50において、光トランシーバ51は、光トランシーバ51に接続されたONU3への下りフレームの電気光変換とONU3からの上りフレームの光電気変換を行う。PON制御回路52は、光トランシーバ51で受信したONU3からの上りフレームを上位装置(図示せず)へ転送し、上位装置から受信した下りフレームを光トランシーバ51へ転送する。
 図18は、従来のGE-PONシステムを示す他の構成例である。OLT50において、1個の光トランシーバ51に接続可能なONU3の台数は最大で32台とIEEE規格で規定されている。そのため、ONU3を収容する局として、33台以上のONU3を接続する必要がある場合は、図18に示すように、OLT50とONU3との間に複数の光スプリッタ2を設け、複数の光トランシーバ51と、複数のPON制御回路52とを使用する構成が一般的な構成となる。
特開2012-19353号公報
「技術基礎講座〔GE-PON技術〕第1回 PONとは」、NTT技術ジャーナル、Vol.17、No.8、pp.71-74、2005.
 10G-EPONシステムにおいても1個の光トランシーバ51に接続可能なONU3の台数は最大で32台とIEEE規格で規定されているが、10G-EPON用のPON制御装置はGE-PON用のPON制御装置より高性能(10倍のデータ転送速度)が要求され、装置コスト(装置の購入価格等)も高くなる。したがって、10G-EPONシステムを採用するための課題として、ONU1台あたりのシステムコストをできるだけ小さくすることが課題となっている。
 上記の課題の対策の1つとして、1個の光トランシーバに接続可能なONUの台数を拡大することにより、光トランシーバとPON制御回路の使用個数を減らすことが考えられる。例えば、光増幅器を使用することにより33台以上のONUを接続可能とする技術が提案されている(例えば、特許文献1参照)。
 しかし、光増幅器は装置のコスト(装置の購入価格等)が電気回路用の部品(LSI等)と比較すると高くなるという課題がある。また、電気回路の規模増大に応じてONUにおける消費電力も増大して、装置コストだけでなく運用コストも増大するため、光伝送システムにおけるONU1台あたりのシステムコストが増加するという課題がある。
 本発明は、このような課題を解決するためになされたもので、その目的とするところは、光伝送システムにおけるONU1台あたりのシステムコストを低減することにある。
 このような目的を達成するために、本発明にかかる局側装置は、N(Nは2以上の整数)個の光スプリッタと、これら光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備える光伝送システムで用いられる前記局側装置であって、前記光スプリッタと1対1で接続されて、当該光スプリッタに接続された前記加入者側装置から前記上位装置への上りフレームの光電気変換を行うとともに、前記上位装置から前記加入者側装置への下りフレームの電気光変換を行うN個の光トランシーバと、前記上位装置との間で前記上りフレームおよび前記下りフレームをやり取りするとともに、前記加入者側装置のそれぞれから異なる時刻に前記上りフレームが送信されるよう、これら加入者側装置に対して上りフレーム送信用の通信帯域を時分割で割り当てるPON制御回路と、時分割で到来する前記上りフレームに対応する前記光トランシーバを選択することにより、当該光トランシーバで光電変換された前記上りフレームを前記PON制御回路に転送するとともに、前記PON制御回路からの下りフレームを前記光トランシーバに分配する選択・分配回路と、前記光トランシーバのうち前記フレームの転送に使用されない光トランシーバのいずれか、および、前記選択・分配回路のうち前記フレームの転送に使用されない回路、のうち、少なくともいずれか一方に対する電源供給を停止する電源制御回路とを備えている。
 また、本発明にかかる光伝送システムは、N(Nは2以上の整数)個の光スプリッタと、これら光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備える光伝送システムであって、前記局側装置が、前出したいずれかの局側装置からなるものである。
 本発明によれば、OLTにおいて、最大N×32台のONUが収容されるとともに、これらONUから送信された上りフレームの転送に使用されない回路の一部または全部に対する電源供給が停止される。したがって、光伝送システムにおけるONU1台あたりの装置コストを削減することができるとともに、OLTにおける消費電力の低減により運用コストを削減することができ、結果として、これら装置コストと運用コストを含む、光伝送システムにおけるONU1台あたりのシステムコストを低減することが可能となる。
図1は、第1の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。 図2は、第2の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。 図3Aは、第2の実施の形態にかかる選択回路の構成例である。 図3Bは、第2の実施の形態にかかる分配回路の構成例である。 図3Cは、第2の実施の形態にかかる選択回路および電源制御回路の構成例である。 図4は、第2の実施の形態にかかる選択回路(セレクタ)の構成例である。 図5Aは、第2の実施の形態にかかる選択回路(10G/1G切替方式)の構成例である。 図5Bは、第2の実施の形態にかかる分配回路(10G/1G切替方式)の構成例である。 図6は、第2の実施の形態にかかる選択回路(10G/1G並列方式)の構成例である。 図7は、第3の実施の形態にかかる選択回路の構成例である。 図8は、第4の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。 図9Aは、第4の実施の形態にかかる選択回路の構成例である。 図9Bは、第4の実施の形態にかかる分配回路の構成例である。 図10は、第5の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。 図11は、第5の実施の形態にかかる選択回路および電源制御回路の構成例である。 図12は、第6の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。 図13Aは、第6の実施の形態にかかる選択回路および電源制御回路の構成例である。 図13Bは、図13Aの電源制御回路の動作を示すタイミングチャートである。 図14Aは、第6の実施の形態にかかる選択回路および電源制御回路の他の構成例である。 図14Bは、図14Aの電源制御回路の動作を示すタイミングチャートである。 図15は、第7の実施の形態にかかるOLTの構成を示すブロック図である。 図16は、第8の実施の形態にかかるOLTの構成を示すブロック図である。 図17は、従来のGE-PONシステムを示す構成例である。 図18は、従来のGE-PONシステムを示す他の構成例である。
 次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
 まず、図1を参照して、本発明の第1の実施の形態にかかる光伝送システム100およびOLT(局側装置)1について説明する。図1は、第1の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。
 光伝送システム100は、例えばFTTH(Fiber To The Home)で利用される光通信システムであり、光通信網4を介してOLT(局側装置:Optical Line Terminal)1に接続された複数のONU(加入者側装置:Optical Network Unit)を、OLT1により上位装置(図示せず)と中継接続することにより、各ONU3と上位装置との間でフレームを相互に転送する機能を有している。
 このような光伝送システム100では、OLT1とONU3との間については、光スプリッタ2および光ファイバF1,F2を介して光信号を送受信することによりフレーム通信を行い、OLT1と上位装置との間については、例えばインターネットなどの上位ネットワーク(図示せず)を介してフレーム通信を行うものとなっている。
 光通信網4の具体例としては、IEEE 802.3ahで標準化されているGE-PONやIEEE802.3avで標準化されている10G-EPONなどのPON(Passive Optical Network)システムがある。
 本発明では、光伝送システム100が、光通信網4としてGE-PONや10G-EPONなどのPONを用いたGE-PONシステムや10G-EPONシステムからなる場合を例として説明するが、これらに限定されるものではなく、他の光通信網を用いた光伝送システムに適用することも可能である。
[光伝送システム]
 図1に示すように、本発明にかかる光伝送システム100は、OLT(局側装置)1、光スプリッタ2、およびONU(加入者側装置)3から構成されている。
 OLT1には、光スプリッタ2および光ファイバF1,F2を介して接続された複数のONU3が収容されている。このうち、1つの光トランシーバ11(TR#1~TR#N)は、光ファイバF1を介して対応する1つの光スプリッタ2(SP#1~SP#N)に接続され、1つの光スプリッタ2(SP#1~SP#N)には光ファイバF2を介して最大で32台のONU3が共通接続される。これにより、N個の光トランシーバ11(TR#1~TR#N)を有するOLT1には、全体で最大N×32台のONU3が接続できることになる。
[OLT]
 図1に示すように、OLT1には、主な回路部として、N(N≧2:Nは2以上の整数)個の光トランシーバ11(TR#1~TR#N)と、1個のPON制御回路12と、1つの選択・分配回路13とが設けられている。
 光トランシーバ11(TR#1~TR#N)は、光ファイバF1を介して光スプリッタ2(SP#1~SP#N)と1対1で接続されて、対応する光スプリッタ2(SP#1~SP#N)に接続されたONU3から上位装置(図示せず)への上りフレームの光電気変換を行う機能と、上位装置からONU3への下りフレームの電気光変換とを行う機能とを有している。
 PON制御回路12は、上位ネットワークとの間で電気信号を送受信することにより、上位装置との間で上りフレームおよび下りフレームをやり取りする機能と、各ONU3から異なる時刻に上りフレームが送信されるよう、これら各ONU3に対して上りフレーム送信用の通信帯域を時分割で割り当てる機能とを有している。
 選択・分配回路13は、各ONU3から時分割で到来する上りフレームに対応する光トランシーバ11(TR#1~TR#N)を選択することにより、選択したトランシーバ11で光電変換された上りフレームをPON制御回路12に転送する機能と、PON制御回路12で受信した上位装置からの下りフレームを各光トランシーバ11(TR#1~TR#N)に分配する機能とを有している。
 本実施の形態にかかる光伝送システム100と、前述の図18に示した従来のGE-PONシステムとの構成上の違いは、PON制御回路12が1個とされ、この1個のPON制御回路12とN個の光トランシーバ11(TR#1~TR#N)との間に1つの選択・分配回路13が設けられていることである。
 図1に示すように、本実施の形態にかかる選択・分配回路13には、主な回路部として、選択回路21、分配回路22、および電源制御回路23が設けられている。
 選択回路21は、各光トランシーバ11(TR#1~TR#N)から出力された上りフレーム出力RXのいずれか1つを選択してPON制御回路12へ出力する機能を有している。
 分配回路22は、PON制御回路12から出力された下りフレームを各光トランシーバ11(TR#1~TR#N)へ分配する機能を有している。
 電源制御回路23は、フレームの転送に使用されない光トランシーバ11のいずれか、および、選択・分配回路13のうち上りフレームや下りフレームの転送に使用されない回路、のうち、少なくともいずれか一方に対する電源供給を停止する機能を有している。
 なお、本実施の形態では、選択回路21と分配回路22とが独立した回路として説明するが、これらは一体の回路として実現してもよい。また、電源制御回路23は、選択・分配回路13内であって、かつ、選択回路21とは独立した回路として説明するが、これらは一体の回路として実現してもよい。
[第1の実施の形態の効果]
 このように、本実施の形態は、N個の光トランシーバ11と1個のPON制御回路12との間に選択・分配回路13を設け、選択・分配回路13が、時分割で到来する上りフレームに対応する光トランシーバ11を選択することにより、当該トランシーバ11で光電変換された上りフレームをPON制御回路12に転送するとともに、PON制御回路12からの下りフレームを各光トランシーバ11に分配し、電源制御回路23が、各光トランシーバ11のうちフレームの転送に使用されていない光トランシーバ11のいずれか、および、選択・分配回路13のうちフレームの転送に使用されていない回路のうち、少なくともいずれか一方に対する電源供給を停止するようにしたものである。
 これにより、OLT1において、最大N×32台のONU3が収容されるとともに、上りフレームや下りフレームの転送に使用されない光トランシーバ11や、選択・分配回路13内の回路に対する電源供給が停止される。
 したがって、光伝送システム100におけるONU1台あたりの装置コストを削減することができるとともに、OLT1における消費電力の低減により運用コストを削減することができ、結果として、これら装置コストと運用コストを含む、光伝送システムにおけるONU1台あたりのシステムコストを低減することが可能となる。
[第2の実施の形態]
 次に、図2を参照して、本発明の第1の実施の形態にかかる光伝送システム100およびOLT(局側装置)1について説明する。図2は、第2の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。
 本実施の形態は、前述した第1の実施の形態における電源供給制御の具体例として、電源制御回路23が、光トランシーバ11に関する運用状況PSに基づいて、これら光トランシーバ11のうち休止中に設定されている休止光トランシーバ11に対する電源供給を停止するようにしたものである。
[選択・分配回路の構成例1]
 まず、図3Aおよび図3Bを参照して、本実施の形態にかかる選択・分配回路13の構成例1について説明する。
 図3Aは、第2の実施の形態にかかる選択回路の構成例である。この選択回路21には、主な回路部として、N個の光トランシーバ11(TR#1~TR#N)にそれぞれ対応するN個のAND回路(AND#1~AND#N)およびバッファ回路(BUF#1~BUF#N)と、1つのN入力OR回路(OR)とが設けられている。
 AND回路(AND#1~AND#N)は、一般的なANDゲートからなり、対応する光トランシーバ11(TR#1~TR#N)から出力された、上りフレーム出力RXとLOS出力(反転値)とを入力として、これら上りフレーム出力RXとLOS出力の反転値との論理積を出力する機能を有している。
 ここで、LOS出力は、光トランシーバ11(TR#1~TR#N)に光スプリッタ2からの光信号が入力されているか否かを示す負論理の信号であり、光信号が入力されていない場合は「1」となり、光信号が入力されている場合は「0」となる。
 これにより、LOS出力が「0」であり光信号が入力されている場合、入力された上りフレーム出力RXがAND回路(AND#1~AND#N)から出力され、LOS出力が「1」であり光信号が入力されていない場合、AND回路(AND#1~AND#N)により上りフレーム出力RXの出力が停止されて「0」が出力される。
 したがって、各AND回路(AND#1~AND#N)では、対応する光トランシーバ11(TR#1~TR#N)から出力された上りフレーム出力RXが、LOS出力(反転値)でマスク(ゲーティング)されることになる。
 OR回路(OR)は、一般的なN入力のORゲートからなり、AND回路(AND#1~AND#N)からのN個の論理積出力の論理和を上りフレーム出力RDとしてPON制御回路12に対して出力する機能を有している。
 これにより、光トランシーバ11(TR#1~TR#N)のうち、光信号が入力されているTR#i(iは1~Nの整数)からの上りフレーム出力RXが、いずれか対応するAND回路(AND#1~AND#N)を介してOR回路(OR)に入力され、その論理和が上りフレーム出力RDとして出力されることになる。
 したがって、各上りフレーム出力RXを正しく受信するためには、OR回路(OR)に対して、複数の光トランシーバ11(TR#1~TR#N)からの上りフレーム出力RXが同時に入力されないよう、各AND回路(AND#1~AND#N)でこれら上りフレーム出力RXを時分割でマスクする必要がある。
 これについては、PON制御回路12が、各光スプリッタ2を介してOLT1とセッションを接続確立しているすべてのONU3に対して、同時に発光(上りフレーム送信)しないように、時分割制御することにより実現できる。
 従来のPONシステムでは、1つの光スプリッタに接続されている複数のONUが同時に発光(上りフレーム送信)しないように、例えば動的帯域割当(DBA:Dynamic Bandwidth Allocation)などのアルゴリズムにより、OLTが各ONUに対して上り帯域割当(grant割当)を行うものとなっている。
 本実施の形態のOLT1では、このようなアルゴリズムを応用して、PON制御回路12において、N個の光スプリッタ2(SP#1~SP#N)に接続されている最大N×32個のONU3のうち、OLT1とセッションを接続確立しているすべてのONU3に対して、これらONU3から異なる時刻に発光(上りフレーム送信)されるよう、上りフレーム送信用の通信帯域を時分割で割り当てる上り帯域割当(grant割当)を行う。
 これにより、各ONU3のうち1台のONU3だけが発光(上りフレーム送信)し、当該ONU3を収容する1つの光トランシーバ11からのLOS出力のみが「0」となる。
 なお、新しいONU3の接続の要求等に使用される制御用フレームである登録要求(Register Request)フレームについては、IEEE規格で、複数のONU3が同時に発光(上りフレーム送信)することを許容しているため、登録要求(Register Request)フレームの送信が許可されている期間(Discovery Window)については、複数の光トランシーバ11のLOS出力が同時に0になる可能性が有り、同時に0になった場合にはPON制御回路12で登録要求(Register Request)フレームを正常に受信できないことがある。
 しかし、登録要求(Register Request)フレームの送信が許可されている期間(Discovery Window)については、従来のPONシステムでも、同じ光スプリッタに接続されている複数のONUが同時に登録要求(Register Request)フレームを送信する可能性があり、そのような場合、OLT1は正常受信できない登録要求(Register Request)フレームを無視(破棄)して良いという仕様となっている。本実施の形態のOLT1においても、PON制御回路12において正常受信できない登録要求(Register Request)フレームを無視(破棄)して良いという仕様とする。
 図3Bは、第2の実施の形態にかかる分配回路の構成例である。この分配回路22には、主な回路部として、PON制御回路12から出力された下りフレーム出力TDを、N個の光トランシーバ11(TR#1~TR#N)に対して並列的に下りフレーム出力TXとして分配するバッファ回路BUFが設けられている。これにより、PON制御回路12から下りフレーム出力TDが、バッファ回路から各光トランシーバ11(TR#1~TR#N)に対して並列的に下りフレーム出力TXとして分配される。
 この際、各光トランシーバ11(TR#1~TR#N)を介して各ONU3に対し、下りフレームが同時に分配されるが、各ONU3では、OLT1から受信した下りフレームの宛先を確認し、自己宛てではない下りフレームを破棄する。このため、各ONU3に下りフレームが同時に分配されても、誤って受信処理されることはない。この仕組みについては、従来のPONシステムと同様である。
 PON制御回路12は、上述した様に、各光スプリッタ2(SP#1~SP#N)に接続されているすべてのONU3に対して、複数のONU3が同時に発光(上りフレーム送信)しないように、上り帯域割当(grant割当)を行う機能のほか、従来のPON制御回路と同様、上りフレームおよび下りフレームの転送処理を行う機能を有している。
 また、光トランシーバ11として従来のPONシステムと同様のものを用いた場合、本実施の形態のOLT1は、最大で「N×32」台のONU3との通信が可能となる。例えば、N=4の場合は最大128台、N=16の場合は最大512台のONU3との通信が可能となる。
[選択・分配回路の構成例2]
 次に、図3Cを参照して、本実施の形態にかかる選択・分配回路13の構成例2について説明する。
 図3Aの選択回路21に、電源制御回路23を設けた場合、上りフレームが到来していない光トランシーバ11(TR#1~TR#N)に対応する回路部への電源供給を停止することができ、消費電力を削減できる。
 図3Cは、第2の実施の形態にかかる選択回路および電源制御回路の構成例であり、図3Aの選択回路21に対して電源制御回路23を設けた構成例が示されている。なお、分配回路22は、図3Bに示した構成例でよい。
 選択回路21は、光トランシーバ11(TR#1~TR#N)ごとに設けられたN個のバッファ回路(BUF#1~BUF#N)により、当該光トランシーバ11(TR#1~TR#N)で光電気変換された上りフレームの信号を増幅出力し、これらバッファ回路(BUF#1~BUF#N)から出力された上りフレームの信号の論理和出力をOR回路(OR)により生成し、PON制御回路12に出力する機能を有している。
 電源制御回路23は、光トランシーバ11(TR#1~TR#N)ごとに設定されているPON制御回路12からの運用状況PSに基づいて、これら光トランシーバ11(TR#1~TR#N)のうち休止中に設定されている休止光トランシーバ11に対する電源供給を停止する機能と、選択回路21のうち当該休止光トランシーバ11から出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給を停止する機能とを有している。
 図3Cに示すように、電源制御回路23には、主な回路部として、第1の電源スイッチ(SWA#1~SWA#N)、第2の電源スイッチ(SWB#1~SWB#N)、および電源スイッチ制御回路23Aが設けられている。
 第1の電源スイッチ(SWA#1~SWA#N)は、光トランシーバ11(TR#1~TR#N)ごとに設けられて、電源スイッチ制御回路23Aからの指示に応じて、動作電位Vccと接地電位GNDのいずれかを、対応する光トランシーバ11(TR#1~TR#N)へ切替供給する機能を有している。
 第2の電源スイッチ(SWB#1~SWB#N)は、光トランシーバ11(TR#1~TR#N)ごとに設けられて、電源スイッチ制御回路23Aからの指示に応じて、動作電位Vccと接地電位GNDのいずれかを、選択回路21のうち当該光トランシーバ11(TR#1~TR#N)と対応する回路部、例えばバッファ回路(BUF#1~BUF#N)に切替供給する機能を有している。
 電源スイッチ制御回路23Aは、光トランシーバ11(TR#1~TR#N)のうち、運用状況PSが運用中を示すTR#i(iは1~Nの整数)については、対応する第1の電源スイッチ(SWA#i)および第2の電源スイッチ(SWB#i)に対して電源供給を指示する機能と、運用状況PSが休止中を示すTR#j(jは1~Nの整数)については、対応する第1の電源スイッチ(SWA#j)および第2の電源スイッチ(SWB#j)に対して電源供給の停止を指示する機能とを有している。
 運用状況PSは、各光トランシーバ11(TR#1~TR#N)の運用状態を示す設定情報であり、OLT1に接続されたPCなどの外部装置からオペレータにより予め設定される。OLT1の設置環境によっては、収容すべきONU3の台数が少なく、各光トランシーバ11(TR#1~TR#N)のうち、ONU3によるフレーム通信に使用されない光トランシーバ11が発生することがある。このような場合には、ONU3によるフレーム通信に使用されている光トランシーバ11の運用状況PSが使用中と設定され、ONU3によるフレーム通信に使用されていない光トランシーバ11の運用状況PSが休止中と設定される。これら運用状況PSについては、PON制御回路12で管理し、その内部メモリで記憶するものとするが、例えば選択・分配回路13など、OLT1内の他の回路部で管理記憶してもよい。
 一方、光トランシーバ11(TR#1~TR#N)は、対応する第1の電源スイッチ(SWA#1~SWA#N)から動作電位Vccが供給された場合、接続されている光スプリッタ2との間で光通信動作を行う機能と、第1の電源スイッチ(SWA#1~SWA#N)から接地電位GNDが供給された場合、光通信動作を停止する機能とを有している。
 また、バッファ回路(BUF#1~BUF#N)は、オペアンプなどの増幅回路からなり、対応する第2の電源スイッチ(SWB#1~SWB#N)から動作電位Vccが供給された場合、光トランシーバ11(TR#1~TR#N)から入力された上りフレームの信号を増幅して、OR回路(OR)に出力する機能と、第2の電源スイッチ(SWB#1~SWB#N)から接地電位GNDが供給された場合、増幅動作を停止して接地電位(GND)を出力する機能とを有している。
 したがって、光トランシーバ11(TR#1~TR#N)のうち、運用状況PSが運用中を示すTR#j(jは1~Nの整数)については、電源スイッチ制御回路23Aからの指示に応じて、対応するSWA#jから当該TR#jに対して動作電位Vccが供給されるとともに、SWB#jから当該TR#jに対応するBUF#jに対して動作電位Vccが供給される。
 また、光トランシーバ11(TR#1~TR#N)のうち、運用状況PSが休止中を示すTR#iについては、電源スイッチ制御回路23Aからの指示に応じて、対応するSWA#iから当該TR#iに対して接地電位GNDが供給されるとともに、SWB#iから当該TR#iに対応するBUF#iに対して接地電位GNDが供給される。これにより、休止中のTR#iおよびこれに対応するBUF#iへの電源供給が停止されて、これら回路部での消費電力が削減されることになる。
 以上では、各光トランシーバ11(TR#1~TR#N)の運用状況PSに応じて、光トランシーバ11(TR#1~TR#N)およびこれに対応するバッファ回路(BUF#1~BUF#N)への電源供給を制御する場合について説明したが、これに加えて、各ONU3に対して時分割で割り当てた上り帯域割当状況USに基づいて、バッファ回路(BUF#1~BUF#N)への電源供給を制御してもよい。
 上り帯域割当状況USは、各ONU3に対して時分割で割り当てた上りフレーム送信用通信帯域の割当状況に基づいて、光トランシーバ11(TR#1~TR#N)ごとにPON制御回路12が生成した、当該TR#iに接続されている各ONU3から時分割で到来する上りフレームの到来期間を示す情報である。この上り帯域割当状況USは、例えば、各ONU3からの上りフレーム到着時刻Tsと上りフレーム長Tlとからなり、光トランシーバ11(TR#1~TR#N)ごとに出力される。
 電源スイッチ制御回路23Aは、この上り帯域割当状況USに基づいて、各光トランシーバ11(TR#1~TR#N)への上りフレームの到来期間に合わせて、当該TR#iに対応するBUF#iに電源供給するよう、当該光トランシーバ11に対応するSWB#iに対して指示すればよい。
 これにより、光トランシーバ11(TR#1~TR#N)のうち運用中のTR#iに対応するBUF#iに対して、上りフレームが到来する期間には、SWB#iから動作電位Vccが供給され、上りフレームが到来しない期間には、SWB#iからBUF#iに対する動作電位Vccの供給が停止される。
 したがって、上りフレームが到来していないバッファ回路(BUF#1~BUF#N)に対しては、動作電位Vccの供給が停止されるため、無駄な電力消費が抑止され、選択回路21における消費電力が削減される。また、図3AのAND回路(AND#1~AND#N)に代えて、バッファ回路(BUF#1~BUF#N)により、上りフレーム出力RXが、上り帯域割当状況USでマスク(ゲーティング)されることになる。
[選択・分配回路の構成例3]
 次に、図4を参照して、本実施の形態にかかる選択・分配回路13の構成例3について説明する。
 図3Aに示した選択回路21では、AND回路およびOR回路を用いた構成例を説明したが、これらAND回路およびOR回路に代えてセレクタ(SEL)を用いて選択回路21を構成することもできる。
 図4は、第2の実施の形態にかかる選択回路(セレクタ)の構成例であり、ここには、多段接続された2入力のセレクタ(SEL)を用いた選択回路21の構成例が示されている。なお、分配回路22は、図3Bに示した構成例でよい。
 この選択回路21は、OLT1に8個の光トランシーバ11(TR#1~TR#8)を設けた場合を前提としており、いずれか一方の入力を選択出力する7個の2入力のセレクタ(SEL#1~SEL#7)がツリー形状に3段接続されている。AND回路(#1~#4)は、各光トランシーバ11(TR#1~TR#4,TR#6~TR#8)からのLOS出力に基づいて、SEL#5~#7の切替信号を生成する。
 これらセレクタ(SEL#1~SEL#7)のうち、最下段のセレクタ(SEL#1~SEL#4)が光トランシーバ11(TR#1~TR#8)からの上りフレームを入力とし、次段以降のセレクタ(SEL#5~SEL#6)がその直前段のセレクタ(SEL#1~SEL#4)からの選択出力を入力とし、最上段のセレクタ(SEL#7)がその直前段の2つのセレクタ(SEL#5~SEL#6)のうちいずれか一方の選択出力を選択してPON制御回路12に出力するものとなっている。
 具体的には、TR#1~TR#8からの上りフレーム出力RXを2つずつ入力とするSEL#1~SEL#4が1段目、SEL#1~SEL#4からの選択出力を2つずつ入力とするSEL#5~SEL#6が2段目、SEL#5~SEL#6からの2つの選択出力を入力とするSEL#7が3段目に接続されている。
 このうち、TR#2,TR#4,TR#6,TR#8のLOS出力がSEL#1~SEL#4に切替信号として入力されている。また、AND#2から出力されたTR#3~TR#4からのLOS出力の論理積出力がSEL#5に切替信号として入力されている。
 また、AND#3から出力されたTR#7~TR#8からのLOS出力の論理積出力がSEL#6に切替信号として入力されている。また、AND#1から出力されたTR#1~TR#2からのLOS出力の論理積出力と、AND#2からの論理積出力とを入力とするAND#4からの論理和出力がSEL#7に切替信号として入力されている。
 前述したPON制御回路12の上り帯域割当により、いずれか1つのONU3のみが時分割で発光(上りフレーム送信)するため、TR#1~TR#8からのLOS出力は、いずれか1個が「0」となるか、あるいはすべてが「1」となる。
 したがって、例えば、TR#5のLOS出力のみが「0」の場合、TR#5の出力がPON制御回路12に対して出力される。また、TR#4のLOS出力のみが「0」の場合は、SEL#2,SEL#5、SEL#7が「0」側の入力を選択して出力するので、TR#4からの上りフレーム出力RXが、SEL#2,SEL#5,SEL#7を通過し、PON制御回路12に上りフレーム出力RDとして出力される。
 その他のTR#1~TR#3,TR#6~TR#8についても、いずれか1個のTRのLOS出力のみが0になった場合には、それぞれ対応するSEL#1~SEL#7が「0」側の入力を選択して出力することにより、LOS出力が「0」となっているTRの出力がPON制御回路12に対して出力される。
 一方、TR#1~TR#4,TR#6~TR#8のLOS出力が1の場合、各SEL#1~SEL#7は「1」側の入力を選択出力する。このため、TR#5からの上りフレーム出力RXが、SEL#3,SEL#6,SEL#7を通過し、PON制御回路12に上りフレーム出力RDとして出力される。この場合、TR#5に光信号が届いていないと、上りフレーム出力RXは無効なデータとなる。
[選択・分配回路の構成例4]
 次に、図5A,図5Bを参照して、本実施の形態にかかる選択・分配回路13の構成例4について説明する。
 図2に示したOLT1の構成を10G-EPONシステムに適用する場合は、以下の点を考慮する必要が有る。(1)10G-EPON用の光トランシーバ11が、上りフレーム出力RXとして、10Gbit/sの出力と1Gbit/sの出力の2つの出力を持っている場合が有る。(2)10G-EPON用のONU3とGE-PON用のONU3の両方を同じOLT1に接続する場合、PON制御回路12は下りフレーム出力TDとして、10Gbit/sの出力と1Gbit/sの出力の2つの出力を持ち、両方の出力をすべての光トランシーバ11に対して出力(分配)する必要がある。
 図5Aは、第2の実施の形態にかかる選択回路(10G/1G切替方式)の構成例であり、ここでは、図3Aの選択回路21を10G-EPONシステムに適用する場合の構成例が示されている。
 この選択回路21には、主な回路部として、図3AのAND回路(AND#1~AND#N)、バッファ回路(BUF#1~BUF#N)、およびN入力のOR回路(OR)に加え、N個の光トランシーバ11(TR#1~TR#N)にそれぞれ対応するN個のセレクタ(SEL#1~SEL#N)が設けられている。セレクタ(SEL#1~SEL#N)は、PON制御回路12から出力された10G/1G選択信号に基づいて、対応する光トランシーバ11(TR#1~TR#N)から出力された10Gbit/s用の上りフレーム出力RX_10Gと1Gbit/s用の上りフレーム出力RX_1Gのいずれか一方を選択して、対応するバッファ回路(BUF#1~BUF#N)へ出力する機能を有している。
 この場合、OLT1の各光トランシーバ11(TR#1~TR#N)は、上りフレームの出力ポートとして、10Gbit/s用出力ポートと1Gbit/s用出力ポートとを備え、下りフレームの入力ポートとして、10Gbit/s用入力ポートと1Gbit/s用入力ポートとを備えているものとする。また、LOS出力は、10Gbit/sおよび1Gbit/sにかかわらず、光スプリッタ2からの光信号の入力有無に応じて出力されるものとする。
 また、OLT1のPON制御回路12は、上りフレーム入力が10Gbit/sと1Gbit/sの両方の入力に対応可能な構成とされており、下りフレームの出力ポートとして、10Gbit/s用出力ポートと1Gbit/s用出力ポートとを備えているものとする。また、PON制御回路12は、各ONU3に対して上り帯域割当時に10Gbit/sでのフレーム送信を許可するのか、1Gbit/sでのフレーム送信を許可するのかを認識しており、その伝送速度設定出力(10G/1G)を選択・分配回路13に出力する機能を有しているものとする。
 これにより、ONU3から送信された10Gbit/sの上りフレームは、光トランシーバ11(TR#1~TR#N)の10Gbit/s用出力ポートから出力され、セレクタ(SEL#1~SEL#N)を介して対応するバッファ回路(BUF#1~BUF#N)へ出力された後、対応するAND回路(AND#1~AND#N)およびOR回路(OR)を介して、PON制御回路12へ出力される。また、ONU3から送信された1Gbit/sの上りフレームは、光トランシーバ11(TR#1~TR#N)の1Gbit/s用出力ポートから出力され、セレクタ(SEL#1~SEL#N)を介して対応するバッファ回路(BUF#1~BUF#N)へ出力された後、対応するAND回路(AND#1~AND#N)およびOR回路(OR)を介して、PON制御回路12へ出力される。
 図5Bは、第2の実施の形態にかかる分配回路(10G/1G切替方式)の構成例であり、ここでは、図5Bの分配回路22を10G-EPONシステムに適用する場合の構成例が示されている。
 この分配回路22には、主な回路部として、PON制御回路12から出力された10Gbit/s用の下りフレーム出力TD_10Gを、N個の光トランシーバ11(TR#1~TR#N)に対して並列的に10Gbit/s用の下りフレーム出力TX_10Gとして分配するバッファ回路BUF#1と、PON制御回路12から出力された1Gbit/s用の下りフレーム出力TD_1Gを、N個の光トランシーバ11(TR#1~TR#N)に対して並列的に1Gbit/s用の下りフレーム出力TX_1Gとして分配するバッファ回路BUF#2とが設けられている。
 これにより、PON制御回路12の10Gbit/s用出力ポートから出力された下りフレーム出力TD_10Gは、BUF#1から各TR#1~TR#Nの10Gbit/s用入力ポートに対して並列的に下りフレーム出力TX_10Gとして分配される。また、PON制御回路12の1Gbit/s用出力ポートから出力された下りフレーム出力TD_1Gは、BUF#2から各TR#1~TR#Nの1Gbit/s用入力ポートに対して並列的に下りフレーム出力TX_1Gとして分配される。
[選択・分配回路の構成例5]
 次に、図6を参照して、本実施の形態にかかる選択・分配回路13の構成例5について説明する。
 図2に示したOLT1の構成を10G-EPONシステムに適用する場合、選択回路21としては、前述した図5A,図5Bの構成例に代えて、前述の図3Aに示した選択回路21からなる、10Gbit/s用および1Gbit/s用の独立した2つの選択回路21を並列的に設けてもよい。
 図6は、第2の実施の形態にかかる選択回路(10G/1G並列方式)の構成例であり、ここでは、前述の図3Aに示した選択回路21からなる10Gbit/s用選択回路21Aと、前述の図3Aに示した選択回路21からなる1Gbit/s用選択回路21Bとが並列的に設けられている。なお、分配回路22は、図5Bに示した構成例でよい。
 10Gbit/s用選択回路21Aは、各光トランシーバ11(TR#1~TR#N)から出力された10Gbit/s用の上りフレーム出力RXのいずれか1つを選択してPON制御回路12へ出力する機能を有している。1Gbit/s用選択回路21Bは、各光トランシーバ11(TR#1~TR#N)から出力された1Gbit/s用の上りフレーム出力RXのいずれか1つを選択してPON制御回路12へ出力する機能を有している。
 この場合、OLT1の各光トランシーバ11(TR#1~TR#N)は、上りフレームの出力ポートとして、10Gbit/s用出力ポートと1Gbit/s用出力ポートとを備え、下りフレームの入力ポートとして、10Gbit/s用入力ポートと1Gbit/s用入力ポートとを備えているものとする。また、LOS出力は、10Gbit/sおよび1Gbit/sにかかわらず、光スプリッタ2からの光信号の入力有無に応じて出力されるものとする。
 また、OLT1のPON制御回路12は、上りフレーム入力が10Gbit/sと1Gbit/sの両方の入力に対応可能な構成とされており、下りフレームの出力ポートとして、10Gbit/s用出力ポートと1Gbit/s用出力ポートとを備え、上りフレームの入力ポートとして、10Gbit/s用入力ポートと1Gbit/s用入力ポートとを備えているものとする。また、PON制御回路12は、各ONU3に対して上り帯域割当時に10Gbit/sでのフレーム送信を許可するのか、1Gbit/sでのフレーム送信を許可するのかを認識しており、そのフレームの伝送速度設定出力(10G/1G)を選択・分配回路13に出力する機能を有しているものとする。
 これにより、ONU3から送信された10Gbit/sの上りフレームは、TR#1~TR#Nの10Gbit/s用出力ポートから出力され、10Gbit/s用選択回路21Aへ入力されて、各TR#1~TR#NからのLOS出力に基づき選択された後、PON制御回路12の10Gbit/s用入力ポートへ入力される。また、ONU3から送信された1Gbit/sの上りフレームは、TR#1~TR#Nの1Gbit/s用出力ポートから出力され、1Gbit/s用選択回路21Bへ入力されて、各TR#1~TR#NからのLOS出力に基づき選択された後、PON制御回路12の1Gbit/s用入力ポートへ入力される。
[第2の実施の形態の効果]
 このように、本実施の形態は、N個の光トランシーバ11と1個のPON制御回路12との間に選択・分配回路13を設け、選択・分配回路13が、時分割で到来する上りフレームに対応する光トランシーバ11を選択することにより、当該トランシーバ11で光電変換された上りフレームをPON制御回路12に転送するとともに、PON制御回路12からの下りフレームを各光トランシーバ11に分配し、電源制御回路23が、光トランシーバ11ごとに設定されている当該光トランシーバ11の運用状況PSに基づいて、これら光トランシーバ11のうち休止中に設定されている休止光トランシーバ11に対する電源供給を停止するとともに、選択・分配回路13のうち、当該休止光トランシーバ11から出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給を停止するようにしたものである。
 これにより、OLT1において、最大N×32台のONU3が収容されるとともに、休止中の光トランシーバ11および当該休止光トランシーバ11から出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給が停止される。
 したがって、光伝送システム100におけるONU1台あたりの装置コストを削減することができるとともに、OLT1における消費電力の低減により運用コストを削減することができ、結果として、これら装置コストと運用コストを含む、光伝送システムにおけるONU1台あたりのシステムコストを低減することが可能となる。
 ここで、上述した第1の実施の形態のOLT1を用いた光伝送システム100のONU1台あたりのシステムコストを、図18に示した従来のPONシステムと比較する。
 N個のPON制御回路を使用する従来のPONシステムのOLTの構成と比較すると、本実施の形態のOLT1の構成の方が、選択・分配回路13が追加されてはいるが、PON制御回路12の数は少ない。
 選択・分配回路13の装置コスト(必要な部品の価格、部品数の増加に伴うボード面積の増加に伴うボード価格の増加分等)をPON制御回路12の装置コストと比較した場合、選択・分配回路13のコストの方がPON制御回路12の装置コストよりも小さいため、本実施の形態のOLT1の構成の方が、装置コストは低い。特に、図3の構成を用いた場合には、低価格で小さい部品を使用することができるため、より装置コストを低減することができる。
 また、10G-EPONシステムの場合は、PON制御回路12の価格がGE-PON用のPON制御回路12より大きくなることが想定されるので、選択・分配回路13の装置コスト上の優位性がより大きくなる。
 また、このような回路の小規模化に伴って、回路で消費される消費電力も削減される。さらに、従来のOLT構成では、フレーム転送に使用されない回路部でも電力が無駄に消費されていたが、本実施の形態のOLT1によれば、フレーム転送時に使用されない回路部の一部または全部での消費電力も削減されるため、本実施の形態のOLT1の構成の方が、運用コストは低い。
 これにより、本実施の形態のOLT1のような構成とすることにより、ONU1台あたりのシステムコストを従来のPONシステムよりも小さくすることが可能となる。
[第3の実施の形態]
 次に、図7を参照して、本発明の第3の実施の形態にかかるOLT1について説明する。図7は、第3の実施の形態にかかる選択回路の構成例である。
 前述した図4の構成との差分は、光トランシーバ11のLOS出力ではなく、PON制御回路12からの上り帯域割当状況USを用いてセレクタ(SEL#1~SEL#7)を制御している点である。このため、選択・分配回路13の選択回路21には、SEL#1~SEL#7の動作を制御するセレクタ制御回路SCを設けている。本実施の形態にかかるOLT1におけるこのほかの構成は、第2の実施の形態と同様である。
 PON制御回路12はONU3毎に上り帯域割当(フレーム送信許可)を行うので、ONU3がどの光トランシーバ11に接続されているのかが分かれば、フレーム送信を許可したONU3からの信号をPON制御回路12に対して出力するように、SEL#1~SEL#7の動作を制御することができる。
 例えば、ONU3を設置する際に、ONU3の個別ID(MACアドレス、もしくは、その他のシリアル番号等)と接続する光トランシーバ11との対応をセレクタ制御回路SCに対して設定することができる。
 ONU3がどの光トランシーバ11に接続されているのかを設定する別の方法として、以下のような方法もある。(1)登録要求(Register Request)フレームの送信を許可する期間(Discovery Window)において、特定の1個の光トランシーバ11からの入力のみをPON制御回路12に対して出力するようにSEL#1~SEL#7を設定する。(2)上記の設定の期間に登録要求(Register Request)フレームを送信したONU3のMACアドレスを上記の特定の光トランシーバ11のIDに対応させる。(3)登録要求(Register Request)フレームの送信を許可する期間(Discovery Window)におけるSEL#1~SEL#7の設定を周期的に変えることにより、すべての光トランシーバ11に接続されるONU3からの登録要求(Register Request)フレームの受信と、各ONU3のMACアドレスを接続している光トランシーバ11のIDに対応させることが可能となる。
 選択回路21において、セレクタ制御回路SCは、ONU3と光トランシーバ11との接続関係の設定に従い、PON制御回路12からの上り帯域割当状況USに基づいて、SEL#1~SEL#7の動作を制御し、TR#1~TR#8から1つの光トランシーバ11の上りフレーム出力RXを選択し、PON制御回路12へ出力する機能を有している。
 上り帯域割当状況USは、各ONU3に対して時分割で割り当てた上りフレーム送信用通信帯域の割当状況に基づいて、光トランシーバ11(TR#1~TR#N)ごとにPON制御回路12が生成した、当該光トランシーバ11に接続されている各ONU3から時分割で到来する上りフレームの到来期間を示す情報である。この上り帯域割当状況USは、例えば、各ONU3からの上りフレーム到着時刻と上りフレーム長とからなり、光トランシーバ11(TR#1~TR#N)ごとに出力される。
 本実施の形態においても、第1の実施の形態と同様に、光トランシーバ11として従来のPONシステムと同様のものを用いた場合、最大で「N×32」台のONU3との通信が可能となる。例えば、N=4の場合は最大128台、N=16の場合は最大512台のONU3との通信が可能となる。
 また、本実施の形態の構成を10G-EPONシステムに適用することも可能である。ONU1台あたりのシステムコストについても、第2の実施の形態の構成は、第1の実施の形態の構成と同等であり、従来の構成よりコストが小さくなる。
[第4の実施の形態]
 次に、図8、図9A、および図9Bを参照して、本発明の第4の実施の形態にかかるOLT1について説明する。
 図8は、第4の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。図2の構成との差分は、PON制御回路12が2個、選択・分配回路13に接続されている点である。この例では、PONC#1が運用用のPON制御回路12として、PONC#2が予備用のPON制御回路12として設けられている。
 図9Aは、第4の実施の形態にかかる選択回路の構成例である。図9Bは、第4の実施の形態にかかる分配回路の構成例である。図3A,図3Bの構成との差分は、OR回路(OR)から出力された1つの上りフレーム出力RDを2個のPON制御回路12(PONC#1,PONC#2)に対して上りフレーム出力RD(RD1,RD2)として分配出力している点と、2個のPON制御回路12(PONC#1,PONC#2)からの下りフレーム出力TD1,TD2の何れか一方を光トランシーバ11(TR#1~TR#N)への下りフレームTDとして選択するセレクタSELと、PON制御回路12(PONC#1,PONC#2)からの動作状況ST1,ST2(ST)に応じてセレクタSELの動作を制御するセレクタ制御回路SCとを備える点である。本実施の形態にかかるOLT1におけるこのほかの構成は、第2の実施の形態と同様である。
 本実施の形態のOLT1は、2個のPON制御回路12(PONC#1,PONC#2)を搭載しており、片方を予備用としている。この例では、PONC#2を予備用とする。
 これにより、PONC#1は、ST1により運用中であることをSCに通知し、予備用のPONC#2は、ST2により待機中であることをSCに通知する。
 SCは、運用中であるPONC#1の下りフレーム出力TD1を選択するように、SELの動作を制御する。これにより、SELで選択されたPONC#1の下りフレーム出力TD1が光トランシーバ11(TR#1~TR#N)へ分配される。
 この状態で、PONC#1に不具合が発生した場合、PONC#1は、SCへ不具合が発生したことをST1により通知するとともに、PONC#2に対して待機中から運用中への変更をST3により指示する。PONC#2は、PONC#1からのST3により運用中への変更の指示を受けて、SCへ待機中から運用中に変更されたことをST2により通知する。
 SCは、ST2によりPONC#2が運用中に変化したことを確認した後、運用中に変更されたPONC#2の下りフレーム出力TD2を選択するように、SELの動作を制御する。これにより、SELで選択されたPONC#2の下りフレーム出力TD2がTR#1~TR#Nへ分配される。
 このようにして、本実施の形態のOLT1では、運用中のPONC#1から予備用のPONC#2に切り替えられるので、PONC#2で運用中に、PONC#1を搭載したボードの交換を行うことができるようにシステムを構成しておくことにより、PONC#1の故障等により通信が停止する期間を極力小さくすることができる。
 また、本実施の形態のOLT1は、その基本構成が第2の実施の形態のOLT1と同じとされているので、第2の実施の形態のOLT1と同様の効果を有している。
[第5の実施の形態]
 次に、図10を参照して、本発明の第5の実施の形態にかかる光伝送システム100およびOLT(局側装置)1について説明する。図10は、第5の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。
 本実施の形態は、前述した第1の実施の形態における電源供給制御の具体例として、電源制御回路23が、ONU3ごとに設定されている当該ONU3のスリープ状況SSから抽出した光トランシーバ11ごとの光トランシーバ別スリープ状況に基づいて、光トランシーバ11のうち、当該光トランシーバ11に接続されているすべてのONU3がスリープ状態にあるスリープ中光トランシーバ11に対する電源供給を停止するようにしたものである。
[選択回路および電源制御回路の構成例]
 図11を参照して、本実施の形態にかかる選択回路21および電源制御回路23の構成例について説明する。
 前述した図3Aの選択回路21に、電源制御回路23を設けた場合、上りフレームが到来していない光トランシーバ11(TR#1~TR#N)に対応する回路部への電源供給を停止することができ、消費電力を削減できる。
 図11は、第5の実施の形態にかかる選択回路および電源制御回路の構成例であり、図3Aの選択回路21に対して電源制御回路23を設けた構成例が示されている。なお、分配回路22は、図3Bに示した構成例でよい。
 選択回路21は、光トランシーバ11(TR#1~TR#N)ごとに設けられたN個のバッファ回路(BUF#1~BUF#N)により、当該光トランシーバ11(TR#1~TR#N)で光電気変換された上りフレームの信号を増幅出力し、これらバッファ回路(BUF#1~BUF#N)から出力された上りフレームの信号の論理和出力をOR回路(OR)により生成し、PON制御回路12に出力する機能を有している。
 電源制御回路23は、ONU3ごとに設定されているPON制御回路12からのスリープ状況SSから、光トランシーバ11(TR#1~TR#N)ごとの光トランシーバ別スリープ状況を抽出する機能と、これら光トランシーバ別スリープ状況に基づいて、光トランシーバ11(TR#1~TR#N)のうち、当該光トランシーバ11(TR#1~TR#N)に接続されているすべてのONU3がスリープ状態にあるスリープ中光トランシーバTR#i(iは1~Nの整数)に対する電源供給を停止する機能と、選択回路21のうち当該スリープ中光トランシーバTR#iから出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給を停止する機能とを有している。
 図11に示すように、電源制御回路23には、主な回路部として、第1の電源スイッチ(SWA#1~SWA#N)、第2の電源スイッチ(SWB#1~SWB#N)、および電源スイッチ制御回路23Aが設けられている。
 第1の電源スイッチ(SWA#1~SWA#N)は、光トランシーバ11(TR#1~TR#N)ごとに設けられて、電源スイッチ制御回路23Aからの指示に応じて、動作電位Vccと接地電位GNDのいずれかを、対応する光トランシーバ11(TR#1~TR#N)へ切替供給する機能を有している。
 第2の電源スイッチ(SWB#1~SWB#N)は、光トランシーバ11(TR#1~TR#N)ごとに設けられて、電源スイッチ制御回路23Aからの指示に応じて、動作電位Vccと接地電位GNDのいずれかを、選択回路21のうち当該光トランシーバ11(TR#1~TR#N)と対応する回路部、例えばバッファ回路(BUF#1~BUF#N)に切替供給する機能を有している。
 電源スイッチ制御回路23Aは、光トランシーバ11(TR#1~TR#N)のうち、スリープ中光トランシーバTR#i以外については、対応する第1の電源スイッチ(SWA#i)および第2の電源スイッチ(SWB#i)に対して電源供給を指示する機能と、スリープ中光トランシーバTR#iについては、対応する第1の電源スイッチ(SWA#j)および第2の電源スイッチ(SWB#j)に対して電源供給の停止を指示する機能とを有している。
 一方、光トランシーバ11(TR#1~TR#N)は、対応する第1の電源スイッチ(SWA#1~SWA#N)から動作電位Vccが供給された場合、接続されている光スプリッタ2との間で光通信動作を行う機能と、第1の電源スイッチ(SWA#1~SWA#N)から接地電位GNDが供給された場合、光通信動作を停止する機能とを有している。
 また、バッファ回路(BUF#1~BUF#N)は、オペアンプなどの増幅回路からなり、対応する第2の電源スイッチ(SWB#1~SWB#N)から動作電位Vccが供給された場合、光トランシーバ11(TR#1~TR#N)から入力された上りフレームの信号を増幅して、OR回路(OR)に出力する機能と、第2の電源スイッチ(SWB#1~SWB#N)から接地電位GNDが供給された場合、増幅動作を停止して接地電位(GND)を出力する機能とを有している。
 光伝送システム100において、各ONU3のうち、OLT1へ送信すべき上りデータを保持していないONU3については、OLT1のPON制御回路12が当該ONU3に対して任意のスリープ期間を割り当て、このスリープ期間において省電力状態すなわちスリープ状態へ移行するよう、OLT1から当該ONU3に指示する機能が設けられる場合がある。スリープ状況SSは、このような各ONU3に割り当てられたスリープ期間を示す情報であり、例えばスリープ期間の開始時刻とスリープ期間長とから構成されている。
 このように、各ONU3のスリープ期間は、それぞれのONU3における上りデータの保持状況等に依存して割り当てられるが、いずれかの光トランシーバ11(TR#1~TR#N)に接続されている各ONU3のスリープ期間が重複して、このスリープ重複期間だけこれらすべてのONU3がスリープ中となる場合がある。このような場合、当該光トランシーバ11と対応する光スプリッタ2との間において、実質的にフレーム通信が行われることはない。
 本実施の形態は、このようなスリープ重複期間に着目し、各ONU3のスリープ状況SSから抽出した光トランシーバ別スリープ状況に基づいて、光トランシーバ11(TR#1~TR#N)のうち、接続されているONU3のすべてがスリープ中であるスリープ中光トランシーバTR#iに対して、スリープ重複期間だけ電源供給を停止するようにしたものである。
 したがって、光トランシーバ別スリープ状況に基づいて、光トランシーバ11(TR#1~TR#N)のうち、接続されているONU3のすべてがスリープ中であるスリープ中光トランシーバTR#iについては、電源スイッチ制御回路23Aからのスリープ重複期間に同期した指示に応じて、対応するSWA#iから当該TR#iに対して接地電位GNDが供給されるとともに、対応するSWB#iから当該TR#iに対応するBUF#iに対して接地電位GNDが供給される。これにより、休止中のTR#iおよびこれに対応するBUF#iへの電源供給が停止されて、これら回路部での消費電力が削減されることになる。
 また、スリープ中光トランシーバTR#i以外の光トランシーバTR#j(jは1~Nのうちi以外の整数)については、電源スイッチ制御回路23Aからの指示に応じて、対応するSWA#jから当該TR#jに対して動作電位Vccが供給されるとともに、対応するSWB#jから当該TR#jに対応するBUF#jに対して動作電位Vccが供給される。
 なお、以上では、ONU3ごとに設定されているPON制御回路12からのスリープ状況SSから、光トランシーバ11(TR#1~TR#N)ごとの光トランシーバ別スリープ状況を抽出する動作について、電源制御回路23が実行する場合を例として説明したが、これに限定されるものではない。例えば、PON制御回路12において、光トランシーバ別スリープ状況を抽出して、接続されているすべてのONU3がスリープ状態にあるスリープ中光トランシーバTR#iとそのスリープ重複期間を特定し、電源制御回路23がPON制御回路12から通知されたTR#iとスリープ重複期間を示す電源停止情報に基づき、TR#1に対する電源供給を停止するようにしてもよい。
 また、以上では、各光トランシーバ11(TR#1~TR#N)の光トランシーバ別スリープ状況に応じて、光トランシーバ11(TR#1~TR#N)およびこれに対応するバッファ回路(BUF#1~BUF#N)への電源供給を制御する場合について説明したが、これに加えて、各ONU3に対して時分割で割り当てた上り帯域割当状況USに基づいて、バッファ回路(BUF#1~BUF#N)への電源供給を制御してもよい。
 上り帯域割当状況USは、各ONU3に対して時分割で割り当てた上りフレーム送信用通信帯域の割当状況に基づいて、光トランシーバ11(TR#1~TR#N)ごとにPON制御回路12が生成した、当該TR#k(kは1~Nの整数)に接続されている各ONU3から時分割で到来する上りフレームの到来期間を示す情報である。この上り帯域割当状況USは、例えば、各ONU3からの上りフレーム到着時刻Tsと上りフレーム長Tlとからなり、光トランシーバ11(TR#1~TR#N)ごとに出力される。
 電源スイッチ制御回路23Aは、この上り帯域割当状況USに基づいて、各光トランシーバ11(TR#1~TR#N)への上りフレームの到来期間に合わせて、当該TR#kに対応するBUF#kに電源供給するよう、当該光トランシーバ11に対応するSWB#kに対して指示すればよい。
 これにより、光トランシーバ11(TR#1~TR#N)のうち運用中のTR#kに対応するBUF#kに対して、上りフレームが到来する期間には、SWB#kから動作電位Vccが供給され、上りフレームが到来しない期間には、SWB#kからBUF#kに対する動作電位Vccの供給が停止される。
 したがって、上りフレームが到来していないバッファ回路(BUF#1~BUF#N)に対しては、動作電位Vccの供給が停止されるため、無駄な電力消費が抑止され、選択回路21における消費電力が削減される。また、図3AのAND回路(AND#1~AND#N)に代えて、バッファ回路(BUF#1~BUF#N)により、上りフレーム出力RXが、上り帯域割当状況USでマスク(ゲーティング)されることになる。
 なお、本実施の形態にかかる図10の選択回路21については、図11に示した構成例に限定されるものではなく、第2の実施の形態と同様にして、前述の図3Aや図4に示した選択回路21を適用してもよい。また、第3の実施の形態と同様にして、図7の選択回路21を適用してもよい。
 また、本実施の形態にかかる図10の選択・分配回路13を10G-EPONシステムに適用する場合には、第2の実施の形態と同様にして、前述の図5Aおよび図5Bに示した選択回路21および分配回路22を適用してもよく、あるいは、図5Aの選択回路21に代えて前述の図6に示した選択回路21を適用してもよい。
 また、本実施の形態にかかる図10の選択・分配回路13を複数のPON制御回路12に適用する場合には、第4の実施の形態と同様にして、前述の図8、図9A、および図9Bに示した選択・分配回路13、選択回路21および分配回路22を適用してもよい。
[第6の実施の形態]
 次に、図12を参照して、本発明の第6の実施の形態にかかる光伝送システム100およびOLT(局側装置)1について説明する。図12は、第6の実施の形態にかかる光伝送システムおよびOLTの構成を示すブロック図である。
 本実施の形態は、前述した第1の実施の形態における電源供給制御の具体例として、電源制御回路23が、時分割で到来する上りフレームの到来期間を示す上り帯域割当状況USに基づいて、選択・分配回路13のうち、当該上りフレームの転送に使用されない回路の一部または全部に対する電源供給を停止するようにしたものである。
[選択回路および電源制御回路の構成例1]
 図13Aおよび図13Bを参照して、本実施の形態にかかる選択回路21および電源制御回路23の構成例について説明する。
 図12の選択回路21に、電源制御回路23を設けた場合、上りフレームが到来していない光トランシーバ11(TR#1~TR#N)に対応する回路部への電源供給を停止することができ、消費電力を削減できる。
 図13Aは、第6の実施の形態にかかる選択回路および電源制御回路の構成例であり、図3Aの選択回路21に対して電源制御回路23を設けた構成例が示されている。なお、分配回路22は、図3Bに示した構成例でよい。
 選択回路21は、光トランシーバ11(TR#1~TR#N)ごとに設けられたN個のバッファ回路(BUF#1~BUF#N)により、当該光トランシーバ11(TR#1~TR#N)で光電気変換された上りフレームの信号を増幅出力し、これらバッファ回路(BUF#1~BUF#N)から出力された上りフレームの信号の論理和出力をOR回路(OR)により生成し、PON制御回路12に出力する機能を有している。
 電源制御回路23は、PON制御回路12から出力された、各光トランシーバ11(TR#1~TR#N)に関する上り帯域割当状況USに基づいて、電源スイッチ(SW#1~SW#N)により、当該光トランシーバ11(TR#1~TR#N)に対応するバッファ回路(BUF#1~BUF#N)への電源供給を制御する機能を有している。
 図13Aに示すように、この電源制御回路23には、主な回路部として、電源スイッチ制御回路23Aと、各光トランシーバ11(TR#1~TR#N)にそれぞれ対応するN個の電源スイッチ(SW#1~SW#N)とが設けられている。
 電源スイッチ制御回路23Aは、PON制御回路12から出力された上り帯域割当状況USに基づいて、各光トランシーバ11(TR#1~TR#N)から出力される上りフレーム出力RXに同期して、当該光トランシーバ(TR#1~TR#N)に対応する電源スイッチ(SW#1~SW#N)を制御する機能を有している。
 電源スイッチ(SW#1~SW#N)は、電源スイッチ制御回路23Aからの指示に基づき、動作電位Vccと接地電位GNDのいずれかを、選択回路21のうち当該光トランシーバ11(TR#1~TR#N)と対応する回路部、例えばバッファ回路(BUF#1~BUF#N)に切替供給する機能を有している。
 バッファ回路(BUF#1~BUF#N)は、オペアンプなどの増幅回路からなり、電源スイッチ(SW#1~SW#N)から動作電位Vccが供給された場合、光トランシーバ11(TR#1~TR#N)から入力された上りフレームの信号を増幅して、OR回路(OR)に出力する機能と、電源スイッチ(SW#1~SW#N)から接地電位GNDが供給された場合、増幅動作を停止して接地電位(GND)を出力する機能とを有している。
 図13Bは、図13Aの電源制御回路の動作を示すタイミングチャートである。上り帯域割当状況USは、各ONU3に対して時分割で割り当てた上りフレーム送信用通信帯域の割当状況に基づいて、光トランシーバ11(TR#1~TR#N)ごとにPON制御回路12が生成した、当該光トランシーバ11(TR#1~TR#N)に接続されている各ONU3から時分割で到来する上りフレームの到来期間を示す情報である。この上り帯域割当状況USは、例えば、図13Bに示すように、各ONU3からの上りフレーム到着時刻Tsと上りフレーム長Tlとからなり、光トランシーバ11(TR#1~TR#N)ごとに出力される。
 電源スイッチ制御回路23Aは、この上り帯域割当状況USに基づいて、各光トランシーバ11(TR#1~TR#N)への上りフレームの到来期間に合わせて、当該光トランシーバ11(TR#1~TR#N)に対応するバッファ回路(BUF#1~BUF#N)に電源供給するよう、当該光トランシーバ11(TR#1~TR#N)に対応する電源スイッチ(SW#1~SW#N)に対して指示する。
 この際、電源スイッチ制御回路23Aが、電源スイッチ(SW#1~SW#N)およびバッファ回路(BUF#1~BUF#N)の立ち上がり遅れや上りフレームの遅延を考慮して、Tsより立ち上がり時間Tonだけ遡った時点から、上りフレーム終端時刻Ts+Tlより遅延時間ΔTeだけ経過した時点までの、余裕を見込んだ電源供給期間を特定し、この電源供給期間にわたり電源供給するよう指示してもよい。
 これにより、複数の光トランシーバ11(TR#1~TR#N)を備えるOLT1であっても、これら光トランシーバ11(TR#1~TR#N)ごとに設けられた後段回路に対する電源供給を正確に制御することができる。したがって、これら後段回路における消費電力を的確に削減しつつ、これら後段回路での消費電力削減に起因する上りフレーム転送動作への影響を抑制して安定動作を実現することが可能となる。
 なお、電源供給期間については、PON制御回路12で上りフレーム送信用通信帯域に含めることも考えられるが、これには電源制御の対象となる回路部品の起動時間などの動作特性をパラメータとして帯域割当処理時に取り込む独自の帯域割当アルゴリズムが必要となり、帯域割当アルゴリズムの複雑化につながる。本実施の形態によれば、各ONU3に通知される通信帯域の割当状況に基づいて、電源スイッチ制御回路23Aで電源供給期間を特定するようにしたので、帯域割当アルゴリズムに変更を加える必要がなく、また、いずれの帯域割当アルゴリズムにも対応することができ、極めて適応性の高いOLT1を実現できる。
 これにより、上りフレームが到来する期間には、電源スイッチ(SW#1~SW#N)からバッファ回路(BUF#1~BUF#N)に対して動作電位Vccが供給され、上りフレームが到来しない期間には、電源スイッチ(SW#1~SW#N)からバッファ回路(BUF#1~BUF#N)に対する動作電位Vccの供給が停止される。
 したがって、上りフレームが到来していないバッファ回路(BUF#1~BUF#N)に対しては、動作電位Vccの供給が停止されるため、無駄な電力消費が抑止され、選択回路21における消費電力が削減される。また、図3AのAND回路(AND#1~#N)に代えて、バッファ回路(BUF#1~BUF#N)により、上りフレーム出力RXが、上り帯域割当状況USでマスク(ゲーティング)されることになる。
 なお、本実施の形態にかかる図12の選択回路21については、図13Aに示した構成例に限定されるものではなく、第2の実施の形態と同様にして、前述の図3Aや図4に示した選択回路21を適用してもよい。
 また、本実施の形態にかかる図12の選択・分配回路13を10G-EPONシステムに適用する場合には、第2の実施の形態と同様にして、前述の図5Aおよび図5Bに示した選択回路21および分配回路22を適用してもよく、あるいは、図5Aの選択回路21に代えて前述の図6に示した選択回路21を適用してもよい。
 また、本実施の形態にかかる図12の選択・分配回路13を複数のPON制御回路12に適用する場合には、第4の実施の形態と同様にして、前述の図8、図9A、および図9Bに示した選択・分配回路13、選択回路21および分配回路22を適用してもよい。
 また、本実施の形態にかかる図12の選択回路21については、第3の実施の形態と同様にして、図7の選択回路21を適用してもよい。これにより、光スプリッタ2からの光信号が入力されていない光トランシーバ11(TR#1~TR#N)に対応する回路部への電源供給を停止することができ、消費電力を削減できる。
[選択回路および電源制御回路の構成例2]
 図14Aは、第6の実施の形態にかかる選択回路および電源制御回路の他の構成例であり、図7の選択回路21に対して電源制御回路23を設けた構成例が示されている。なお、分配回路22は、図3Bに示した構成例でよい。
 電源制御回路23は、セレクタ(SEL#1~SEL#7)の切替制御状態に基づいて、複数の電源スイッチ(SW#0~SW#1)により、セレクタ(SEL#1~SEL#7)の切替制御状態に基づいて、これらセレクタ(SEL#1~SEL#7)のうち上りフレームが通過しないセレクタの一部または全部に対する電源供給を停止する機能を有している。
 電源制御回路23には、主な回路部として、電源スイッチ#0,#1が設けられている。
 電源スイッチ(SW#0)は、セレクタ(SEL#7)に入力される選択回路21からの切替信号(反転値)に基づき、動作電位Vccと接地電位GNDのいずれかを、セレクタ(SEL#1~SEL#2,SEL#5)に切替供給する機能を有している。電源スイッチ(SW#1)は、セレクタ(SEL#7)に入力される選択回路21からの切替信号に基づき、動作電位Vccと接地電位GNDのいずれかを、セレクタ(SEL#3~SEL#4,SEL#6)に切替供給する機能を有している。
 図14Bは、図14Aの電源制御回路の動作を示すタイミングチャートである。上り帯域割当状況USは、各ONU3に対して時分割で割り当てた上りフレーム送信用通信帯域の割当状況に基づいて、光トランシーバ11(TR#1~TR#N)ごとにPON制御回路12が生成した、当該光トランシーバ11(TR#1~TR#N)に接続されている各ONU3から時分割で到来する上りフレームの到来期間を示す情報である。この上り帯域割当状況USは、例えば、図14Bに示すように、各ONU3からの上りフレーム到着時刻Tsと上りフレーム長Tlとからなり、光トランシーバ11(TR#1~TR#N)ごとに出力される。
 選択回路21は、この上り帯域割当状況USに基づいて、TR#1~TR#Nのうち、TR#1~TR#4に関する上りフレーム到来期間については、SEL#7に対して「0」側入力への切り替えを指示し、TR#5~TR#8に関する上りフレーム到来期間については、SEL#7に対して「1」側入力への切り替えを指示する。
 これにより、例えば、SEL#7で「0」側の入力が選択された場合、SW#0がSEL#1~SEL#2,SEL#5に動作電位Vccを供給し、SW#1がSEL#3~SEL#4,SEL#6への電源供給を停止する。一方、SEL#7で「1」側の入力が選択された場合、SW#0がSEL#1~SEL#2,SEL#5への電源供給を停止し、SW#1がSEL#3~SEL#4,SEL#6に動作電位Vccを供給する。
 したがって、SEL#1~SEL#6のうちの半分に対し、動作電位Vccの供給が停止されるため、無駄な電力消費が抑止され、選択回路21における消費電力が削減される。
 なお、選択回路21において、SW#1~SW#2およびSEL#1~SEL#7の立ち上がり遅れや上りフレームの遅延を考慮して、Tsより立ち上がり時間Tonだけ遡った時点から、上りフレーム終端時刻Ts+Tlより遅延時間ΔTeだけ経過した時点までの、余裕を見込んだ電源供給期間を算出し、この電源供給期間にわたり電源供給するよう指示してもよい。これにより、安定した上りフレームの転送処理を実現できる。
[第7の実施の形態]
 次に、図15を参照して、本発明の第7の実施の形態にかかるOLT1について説明する。
 図15は、第7の実施の形態にかかるOLTの構成を示すブロック図である。前述した図3Cの構成との差分は、光スプリッタ2(SP#1~SP#N)と光トランシーバ11(TR#1~TR#N)との間に、これら光スプリッタ2(SP#1~SP#N)と光トランシーバ11(TR#1~TR#N)とを、任意に切替接続するN×Nの光スイッチ10を備える点である。
 光トランシーバ11(TR#1~TR#N)のうち、いずれかで故障が発生した場合、当該光トランシーバ11TR#i(iは1~Nの整数)に接続されていた光スプリッタSP#2に収容されているONU3のフレーム通信を復旧させるため、当該SP#2を他の使用可能な代替となる光トランシーバ11#j(jは1~Nの整数)に接続する必要がある。
 ここで、光伝送システム100には、一般に、光トランシーバ11での故障発生を、通信異常としてOLT1や当該OLT1に接続されている他の通信機器で検出されてオペレータに通知される仕組みが設けられている。したがって、この通知に応じたオペレータによる復旧作業として、図2Cで説明したように、故障発生した光トランシーバ11の運用状況PSが休止中に設定変更され、代替となる光トランシーバ11の運用状況PSが運中に設定変更されることになる。
 本実施の形態では、PON制御回路12で管理されている各光トランシーバ11(TR#1~TR#N)の運用状況PSが、光トランシーバ11(TR#1~TR#N)での故障発生に応じて、オペレータにより設定変更されることに着目し、この運用状況PSに基づきPON制御回路12から光スイッチ10を切替制御することにより、当該光スプリッタ2の切替接続を行うようにしたものである。
 すなわち、本実施の形態にかかるPON制御回路12は、各TR#1~TR#Nのうち、第1の光トランシーバ11(TR#i)の運用状況PSが休止中に変更され、かつ、第2の光トランシーバ11(TR#j)の運用状況PSが運用中に変更された場合、光スイッチ制御信号CNTにより光スイッチ10を切替制御して、当該第1の光トランシーバ(TR#i)に接続されている光スプリッタ2を当該第2の光トランシーバ11(TR#j)に切替接続する機能を有している。
 これにより、オペレータの復旧作業による、TR#iとTR#jの運用状況PSの変更に応じて、PON制御回路12により光スイッチ10が自動的に切替制御される。したがって、故障発生したTR#iに接続されていたSP#iが、代替となるTR#jに切替接続されるため、当該SP#iに収容されているONU3のフレーム通信を復旧することができる。
 また、図3Cと同様に、このような運用状況PSの変更に応じて電源制御回路23の電源スイッチ制御回路23Aが、故障発生したTR#iに対応する第1および第2の電源スイッチ(SWA#i,SWB#i)に対して電源供給の停止を指示するとともに、代替となるTR#jに対応する第1および第2の電源スイッチ(SWA#j,SWB#j)に対して電源供給の開始を指示する。これにより、SWA#i,SWB#iからTR#iおよびBUF#iに対する電源供給が停止され、SWA#j,SWB#jからTR#jおよびBUF#jに対する電源供給が開始される。
 また、以上では、オペレータによる運用状況PSの変更に応じて、光スイッチ10を切替制御する場合を例として説明したが、各光トランシーバ11(TR#1~TR#N)の故障発生をPON制御回路12で監視している場合には、オペレータによる運用状況PSの変更を待つことなく、PON制御回路12が自律的に運用状況PSを変更するとともに、光スイッチ10を切替制御するようにしてもよい。
 PON制御回路12における光トランシーバ11(TR#1~TR#N)の故障監視については、例えば、選択・分配回路13から転送される上りフレームのフレーム間隔をTR#1~TR#Nごとに監視し、当該フレーム間隔が所定の監視期間を超えたTR#iが発生した時点で、当該TR#iを故障光トランシーバ11(TR#i)として判定すればよい。
 また、代替トランシーバ11(TR#j)については、運用状況PSが休止中であってかつ使用可能な、TR#i以外の他の光トランシーバ11#jをTR#jとして1つ選択すればよい。なお、運用状況PSが休止中の光トランシーバ11(TR#1~TR#N)には、故障中で使用不可能なものも含まれるため、運用状況PSに当該TR#1~TR#Nの使用可否を示す情報を添付しておけばよい。
 したがって、PON制御回路12は、いずれかのTR#1~TR#Nが故障光トランシーバ11(TR#i)として判定された場合、当該TR#iの運用状況PSを休止中であってかつ使用不可と変更するとともに、運用状況PSが休止中であってかつ使用可能な他の代替光トランシーバ11(TR#j)を1つ選択して運用状況PSを運用中に変更し、光スイッチ10を切替制御して、当該故障TR#iに接続されている光スプリッタ2を代替TR#jに切替接続すればよい。
 これにより、オペレータによる運用状況PSの変更を待つことなく、PON制御回路12により自律的に運用状況PSが変更されて、光スイッチ10が切替制御されるとともに、この運用状況PSの変更に応じた電源スイッチ制御回路23Aからの指示に応じて、第1の電源スイッチ(SWA#1~SWA#N)および第2の電源スイッチ(SWB#1~SWB#N)により、故障TR#iおよび対応するBUF#iへの電源供給が自動的に停止されるとともに、代替TR#jおよび対応するBUF#jへの電源供給が自動的に開始される。
 したがって、光トランシーバ11(TR#1~TR#N)の故障発生に必要となるオペレータの復旧作業を自動化でき、かかる作業負担を大幅に削減できるとともに、復旧までに要する所要時間を大幅に短縮することが可能となる。
 なお、図15に示した本実施の形態にかかる光スイッチ10については、図3Cに示した構成例だけでなく、前述の図11や図13Aに示した構成例に適用してもよい。
[第8の実施の形態]
 次に、図16を参照して、本発明の第8の実施の形態にかかるOLT1について説明する。
 図16は、第8の実施の形態にかかるOLTの構成を示すブロック図である。図11の構成との差分は、光スプリッタ2(SP#1~SP#N)と光トランシーバ11(TR#1~TR#N)との間に、これら光スプリッタ2(SP#1~SP#N)と光トランシーバ11(TR#1~TR#N)とを、任意に切替接続するN×Nの光スイッチ10を備える点と、光トランシーバ11毎に異なる下りの波長を使用する点である。
 前述したように、光トランシーバ11(TR#1~TR#N)のいずれかにおいて、接続されている各ONU3のスリープ期間が重複して、このスリープ重複期間だけこれらすべてのONU3がスリープ中となった場合、当該光トランシーバ11と対応する光スプリッタ2との間において、実質的にフレーム通信が行われることはない。
 したがって、このような状況を意図して作り出せば、すなわち、スリープ中のONU3を特定の光トランシーバ11に切替接続すれば、当該光トランシーバ11への電源供給を停止することが可能となる。
 ここで、本発明では、前述したように、PON制御回路12において、N個の光スプリッタ2(SP#1~SP#N)に接続されている最大N×32個のONU3のうち、OLT1とセッションを接続確立しているすべてのONU3に対して、これらONU3から異なる時刻に発光(上りフレーム送信)されるよう、上りフレーム送信用の通信帯域を時分割で割り当てる上り帯域割当(grant割当)を行うものとなっている。
 したがって、図16に示すように、光スプリッタ2(SP#1~SP#N)と光トランシーバ11(TR#1~TR#N)との間に光スイッチ10を設けて、ONU3に対する上り帯域割当のタイミングに合わせて光スイッチ10を切替制御することにより、それぞれのONU3を個別に任意の光トランシーバ11に接続することができる。
 下りについては、接続するONU3を波長可変型とし、接続する光トランシーバ11の下り波長をOLT1からの指示により選択することにより任意の光トランシーバ11に接続することができる。
 本実施の形態は、このような仕組みを利用して、スリープ中のONU3を特定の光トランシーバ11に切替接続するとともに、当該光トランシーバ11への電源供給を停止するようにしたものである。
 すなわち、本実施の形態にかかるPON制御回路12は、各加入者側装置のスリープ状況および上り帯域割当状況USに基づいて、光スイッチ制御信号CNTにより光スイッチ10を切替制御する機能とONU3を制御する機能を有している。
 また、電源制御回路23は、スリープ中光トランシーバTR#iに対する電源供給を停止する機能を有している。
 本実施の形態においても、スリープ中光トランシーバTR#iに対する電源供給を、特定の電源停止期間だけ間欠的に停止する際、このTR#iに対して、当該電源停止期間においてだけ、TR#iに対してスリープ中のONU3のみ接続し、通信中のONU3を接続してはならないことになり、電源停止期間以外の期間については、スリープ中のONU3を切替接続してもよい。この電源停止期間については、周期的に設定してもよく、スリープ状況SSに合わせて、より多くのONU3がスリープする期間を選択してもよい。
 したがって、電源を停止するTR#iの選択方法については、ラウンドロビンなどの手法により、光トランシーバ11(TR#1~TR#N)のうちからいずれか1つをTR#iとして選択する方法が考えられる。また、光トランシーバ11(TR#1~TR#N)のうち、スリープ中ONU3の数が最も多いものや、通信中ONU3の数が最も少ないものを選択することにより、光スイッチ10での切替動作を低減させるようにしてもよい。
 これにより、光トランシーバ11(TR#1~TR#N)のいずれかにおいて、接続されている各ONU3のスリープ期間が重複するスリープ重複期間に、当該光トランシーバ11への電源供給を停止する場合と比較して、より高い頻度でスリープ中光トランシーバTR#iへの電源供給を停止することができる。したがって、より効率よく、OLT1全体の消費電力を削減することが可能となる。
 また、図16の構成において、OLT1の光トランシーバ11毎に上りの波長を変え、光スイッチ10を波長選択型のスイッチ、ONU3を波長可変型とし、OLT1からの指示でONU3の上りの波長を変えることにより、切替接続を行う構成としても良い。この場合、上り帯域割当状況USのタイミングに合わせた光スイッチ10の切替制御は不要となる(波長により自動的に切り替わる)。
 図16の構成において、ONU3が出力するデータの先頭部等に接続する光トランシーバ11の識別情報を付加することにより光スイッチ10で切替接続を行う構成としても良い。この場合、上り帯域割当状況USのタイミングに合わせた光スイッチ10の切替制御は不要(識別情報により自動的に切り替わる)となり、OLT1の光トランシーバ11、ONU3ともすべて同じ波長を上りで使用することが可能である(波長可変型にする必要も無い)。
 なお、図16に示した本実施の形態にかかる光スイッチ10については、図11に示した構成例だけでなく、前述の図3Cや図13Aに示した構成例に適用してもよい。
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
 例えば、図4、図5A、図6、図7、及び、図9Aの光トランシーバ11と選択回路21は電源制御の対象となっていないが、図3Cの光トランシーバ11及び選択回路21と同様に電源制御を行うように変更することが可能である。
 なお、選択回路21の電源制御を光トランシーバ11毎ではなく、複数の光トランシーバ11を単位として行っても良い。例えば、図7の選択回路21を電源制御の対象とする場合、TR#1とTR#2の両方への電源供給を停止する場合に、SEL#1への電源供給も停止する。図7の選択回路21で上り帯域割当状況USによる電源制御を行う場合は、SEL#1~SEL#7の内、電源供給が必要な3個のセレクタを除いた4個のセレクタへの電源供給を停止するようにしても良い。
 100…光伝送システム、1…OLT(局側装置)、2,SP…光スプリッタ、3…ONU(加入者側装置)、10…光スイッチ、11,TR…光トランシーバ、12,PON…PON制御回路、13…選択・分配回路、21…選択回路、21A…10Gbit/s用選択回路、21B…1Gbit/s用選択回路、22…分配回路、23…電源制御回路、23A…電源スイッチ制御回路、AND…AND回路、OR…OR回路、BUF…バッファ回路、SEL…セレクタ、SC…セレクタ制御回路、F1,F2…光ファイバ、RX,RD…上りフレーム出力、TX,TD…下りフレーム出力、LOS…LOS出力、PS…運用状況、SS…スリープ状況、US…上り帯域割当状況、ST…動作状況、CNT…光スイッチ制御信号。

Claims (18)

  1.  N(Nは2以上の整数)個の光スプリッタと、これら光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備える光伝送システムで用いられる前記局側装置であって、
     前記光スプリッタと1対1で接続されて、当該光スプリッタに接続された前記加入者側装置から前記上位装置への上りフレームの光電気変換を行うとともに、前記上位装置から前記加入者側装置への下りフレームの電気光変換を行うN個の光トランシーバと、
     前記上位装置との間で前記上りフレームおよび前記下りフレームをやり取りするとともに、前記加入者側装置のそれぞれから異なる時刻に前記上りフレームが送信されるよう、これら加入者側装置に対して上りフレーム送信用の通信帯域を時分割で割り当てるPON制御回路と、
     時分割で到来する前記上りフレームに対応する前記光トランシーバを選択することにより、当該光トランシーバで光電変換された前記上りフレームを前記PON制御回路に転送するとともに、前記PON制御回路からの下りフレームを前記光トランシーバに分配する選択・分配回路と、
     前記光トランシーバのうち前記フレームの転送に使用されない光トランシーバのいずれか、および、前記選択・分配回路のうち前記フレームの転送に使用されない回路、のうち、少なくともいずれか一方に対する電源供給を停止する電源制御回路と
     を備えることを特徴とする局側装置。
  2.  請求項1に記載の局側装置において、
     前記電源制御回路は、前記光トランシーバに関する運用状況に基づいて、これら光トランシーバのうち休止中に設定されている休止光トランシーバに対する電源供給を停止することを特徴とする局側装置。
  3.  請求項2に記載の局側装置において、
     前記電源制御回路は、前記選択・分配回路のうち、前記休止光トランシーバから運用時に出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給を停止することを特徴とする局側装置。
  4.  請求項2に記載の局側装置において、
     前記選択・分配回路は、前記光トランシーバごとに設けられたN個のバッファ回路により、当該光トランシーバで光電気変換された前記上りフレームの信号を増幅出力し、これらバッファ回路から出力された当該上りフレームの信号の論理和出力を、前記PON制御回路に出力する選択回路を有し、
     前記電源制御回路は、前記光トランシーバごとに設けられて、当該光トランシーバの運用状況に基づき当該光トランシーバへの電源供給を制御するN個の第1の電源スイッチと、前記光トランシーバごとに設けられて、当該光トランシーバの運用状況に基づき当該光トランシーバに対応する前記バッファ回路への電源供給を制御するN個の第2の電源スイッチとを有する
     ことを特徴とする局側装置。
  5.  請求項2に記載の局側装置において、
     前記電源制御回路は、時分割で到来する前記上りフレームの到来期間を示す上り帯域割当状況に基づいて、前記選択・分配回路のうち、当該上りフレームの転送に使用されない回路の一部または全部に対する電源供給を停止することを特徴とする局側装置。
  6.  請求項5に記載の局側装置において、
     前記選択・分配回路は、前記光トランシーバごとに設けられたN個のバッファ回路により、当該光トランシーバで光電気変換された前記上りフレームの信号を増幅出力し、これらバッファ回路から出力された前記上りフレームの信号の論理和出力を、前記PON制御回路に出力する選択回路を有し、
     前記電源制御回路は、前記光トランシーバごとに設けられて、当該光トランシーバの運用状況に基づき当該光トランシーバへの電源供給を制御するN個の第1の電源スイッチと、前記光トランシーバごとに設けられて、当該光トランシーバに関する運用状況および上り帯域割当状況に基づき当該光トランシーバに対応する前記バッファ回路への電源供給を制御するN個の第2の電源スイッチとを有する
     ことを特徴とする局側装置。
  7.  請求項1に記載の局側装置において、
     前記電源制御回路は、前記加入者側装置ごとに設定されている当該加入者側装置のスリープ状況から抽出した前記光トランシーバごとの光トランシーバ別スリープ状況に基づいて、前記光トランシーバのうち、当該光トランシーバに接続されているすべての加入者側装置がスリープ状態にあるスリープ中光トランシーバに対する電源供給を停止することを特徴とする局側装置。
  8.  請求項7に記載の局側装置において、
     前記電源制御回路は、前記選択・分配回路のうち、前記スリープ中光トランシーバから運用時に出力される上りフレームの転送に使用される回路の一部または全部に対する電源供給を停止することを特徴とする局側装置。
  9.  請求項7に記載の局側装置において、
     前記選択・分配回路は、前記光トランシーバごとに設けられたN個のバッファ回路により、当該光トランシーバで光電気変換された前記上りフレームの信号を増幅出力し、これらバッファ回路から出力された当該上りフレームの信号の論理和出力を、前記PON制御回路に出力する選択回路を有し、
     前記電源制御回路は、前記光トランシーバごとに設けられて、当該光トランシーバの光トランシーバ別スリープ状況に基づいて、当該光トランシーバへの電源供給を制御するN個の第1の電源スイッチと、当該光トランシーバの光トランシーバ別スリープ状況に基づいて、当該光トランシーバに対応する前記バッファ回路への電源供給を制御するN個の第2の電源スイッチとを有する
     ことを特徴とする局側装置。
  10.  請求項7に記載の局側装置において、
     前記電源制御回路は、時分割で到来する前記上りフレームの到来期間を示す上り帯域割当状況に基づいて、前記選択・分配回路のうち、当該上りフレームの転送に使用されない回路の一部または全部に対する電源供給を停止することを特徴とする局側装置。
  11.  請求項10に記載の局側装置において、
     前記選択・分配回路は、前記光トランシーバごとに設けられたN個のバッファ回路により、当該光トランシーバで光電気変換された前記上りフレームの信号を増幅出力し、これらバッファ回路から出力された前記上りフレームの信号の論理和出力を、前記PON制御回路に出力する選択回路を有し、
     前記電源制御回路は、前記光トランシーバごとに設けられて、当該光トランシーバの光トランシーバ別スリープ状況に基づいて、当該光トランシーバへの電源供給を制御するN個の第1の電源スイッチと、前記光トランシーバごとに設けられて、当該光トランシーバの光トランシーバ別スリープ状況および上り帯域割当状況に基づいて、当該光トランシーバに対応する前記バッファ回路への電源供給を制御するN個の第2の電源スイッチとを有する
     ことを特徴とする局側装置。
  12.  請求項1に記載の局側装置において、
     前記電源制御回路は、時分割で到来する前記上りフレームの到来期間を示す上り帯域割当状況に基づいて、前記選択・分配回路のうち、当該上りフレームの転送に使用されない回路の一部または全部に対する電源供給を停止することを特徴とする局側装置。
  13.  請求項12に記載の局側装置において、
     前記選択・分配回路は、前記光トランシーバごとに設けられたN個のバッファ回路により、当該光トランシーバで光電気変換された前記上りフレームの信号を増幅出力し、これらバッファ回路から出力された前記上りフレームの信号の論理和出力を、前記PON制御回路に出力する選択回路を有し、
     前記電源制御回路は、前記光トランシーバごとに設けられて、前記上り帯域割当状況に基づいて、当該光トランシーバに到来する前記上りフレームの到来期間に合わせて、当該光トランシーバに対応する前記バッファ回路への電源供給を制御するN個の電源スイッチを有する
     ことを特徴とする局側装置。
  14.  請求項12に記載の局側装置において、
     前記選択・分配回路は、前記上り帯域割当状況に基づいて複数のセレクタを切替制御することにより、時分割で到来する前記上りフレームに対応する前記光トランシーバを選択し、当該光トランシーバで光電気変換された当該上りフレームを前記PON制御回路へ転送する選択回路を有し、
     前記電源制御回路は、前記セレクタの切替制御状態に基づいて、これらセレクタのうち前記上りフレームが通過しないセレクタの一部または全部に対する電源供給を停止する複数の電源スイッチを有する
     ことを特徴とする局側装置。
  15.  請求項1に記載の局側装置において、
     前記光スプリッタと前記光トランシーバとを切替接続するN×Nの光スイッチをさらに備え、
     前記PON制御回路は、前記光トランシーバのうち、第1の光トランシーバの運用状況が休止中に変更され、かつ、第2の光トランシーバの運用状況が運用中に変更された場合、前記光スイッチを切替制御して、当該第1の光トランシーバに接続されている前記光スプリッタを当該第2の光トランシーバに切替接続する
     ことを特徴とする局側装置。
  16.  請求項1に記載の局側装置において、
     前記光スプリッタと前記光トランシーバとを切替接続するN×Nの光スイッチをさらに備え、
     前記PON制御回路は、前記選択・分配回路から転送される前記上りフレームのフレーム間隔を前記光トランシーバごとに監視し、当該フレーム間隔が所定の監視期間を超えた光トランシーバが発生した時点で、当該光トランシーバを故障光トランシーバとして判定し、当該運用状況を休止中であってかつ使用不可と変更するとともに、運用状況が休止中であってかつ使用可能な他の光トランシーバを代替光トランシーバとして1つ選択して当該運用状況を運用中に変更し、前記光スイッチを切替制御して、当該故障光トランシーバに接続されている前記光スプリッタを当該代替光トランシーバに切替接続する
     ことを特徴とする局側装置。
  17.  請求項1に記載の局側装置において、
     前記光スプリッタと前記光トランシーバとを切替接続するN×Nの光スイッチをさらに備え、
     前記PON制御回路は、前記加入者側装置のスリープ状態に基づいて、前記光スイッチを切替制御し、
     前記電源制御回路は、前記光トランシーバのうちスリープ中である光トランシーバに対する電源供給を停止する
     ことを特徴とする局側装置。
  18.  N(Nは2以上の整数)個の光スプリッタと、これら光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備える光伝送システムであって、
     前記局側装置が、請求項1~請求項17のいずれかに記載の局側装置からなることを特徴とする光伝送システム。
PCT/JP2016/056776 2015-03-06 2016-03-04 局側装置および光伝送システム WO2016143692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/555,960 US10193630B2 (en) 2015-03-06 2016-03-04 Station-side device and optical transmission system
EP16761662.2A EP3267630B1 (en) 2015-03-06 2016-03-04 Station-side device and optical transmission system
JP2017505299A JP6306798B2 (ja) 2015-03-06 2016-03-04 局側装置および光伝送システム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-044721 2015-03-06
JP2015044713 2015-03-06
JP2015-044713 2015-03-06
JP2015044721 2015-03-06
JP2015045207 2015-03-06
JP2015-045207 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143692A1 true WO2016143692A1 (ja) 2016-09-15

Family

ID=56880558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056776 WO2016143692A1 (ja) 2015-03-06 2016-03-04 局側装置および光伝送システム

Country Status (5)

Country Link
US (1) US10193630B2 (ja)
EP (1) EP3267630B1 (ja)
JP (1) JP6306798B2 (ja)
TW (1) TWI584603B (ja)
WO (1) WO2016143692A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213679B (zh) * 2016-12-02 2021-09-10 中兴通讯股份有限公司 一种无源光网络系统及其实现方法
TWI709310B (zh) * 2018-03-29 2020-11-01 神雲科技股份有限公司 網路交換裝置及其運作方法
CN112039583A (zh) * 2019-06-04 2020-12-04 上海欣诺通信技术股份有限公司 聚合拉远局端、远端设备及光纤网络系统
EP4014509B1 (en) 2019-10-07 2024-08-21 British Telecommunications public limited company Optical communications network and method for continuous service provision thereon
US11018760B1 (en) * 2020-09-09 2021-05-25 HFR Networks Method and apparatus for automatic provisioning of optical module
CA3169532C (en) * 2022-03-23 2023-08-15 Aleksandar Milojkovic Systems and methods for combination telecommunications and power networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283461A (ja) * 2007-05-10 2008-11-20 Sumitomo Electric Ind Ltd Ponシステムにおける局側端局装置
WO2010123143A1 (ja) * 2009-04-23 2010-10-28 日本電気株式会社 送信装置、送信方法及び送信装置の制御プログラム
JP2013192064A (ja) * 2012-03-14 2013-09-26 Fujitsu Telecom Networks Ltd 局側装置及びponシステム
JP2015056671A (ja) * 2013-09-10 2015-03-23 日本電信電話株式会社 光伝送システムにおける局側装置及び光伝送システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932908B1 (ko) * 2007-10-23 2009-12-21 한국전자통신연구원 광 액세스 망에서 광망 종단 장치 및 광 회선 단말의 전력절감 방법
WO2010120485A2 (en) * 2009-04-01 2010-10-21 Teknovus, Inc. Method and apparatus for link sharing among multiple epons
WO2011117917A1 (ja) * 2010-03-24 2011-09-29 三菱電機株式会社 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置
JP4812884B2 (ja) * 2010-04-13 2011-11-09 三菱電機株式会社 通信システム、局側光回線終端装置、利用者側光回線終端装置、制御装置、並びに通信方法
JP5066591B2 (ja) 2010-07-07 2012-11-07 日本電信電話株式会社 双方向光増幅器及びponシステム及びponシステムの通信方法
US20120166819A1 (en) * 2010-12-22 2012-06-28 Telefonaktiebolaget L M Ericsson (Publ) Power Management of Optical Access Networks
EP2675102B1 (en) * 2011-02-08 2023-11-08 Mitsubishi Electric Corporation Communication system time synchronization method, slave station apparatus, master station apparatus, control apparatus, and program
US8699885B2 (en) * 2011-05-12 2014-04-15 Cortina Systems, Inc. Power control in an optical network unit
JP5541249B2 (ja) * 2011-08-29 2014-07-09 住友電気工業株式会社 Ponシステム、局側装置とその運用方法及びアクセス制御装置
KR101516135B1 (ko) * 2011-10-19 2015-04-29 니폰 덴신 덴와 가부시끼가이샤 광 네트워크 시스템
WO2013183628A1 (ja) * 2012-06-04 2013-12-12 日本電信電話株式会社 Optical Line Terminalおよびフレーム転送方法
WO2013186900A1 (ja) * 2012-06-14 2013-12-19 三菱電機株式会社 光伝送システム、局側光終端装置および通信回線切替方法
JP6079095B2 (ja) * 2012-09-26 2017-02-15 住友電気工業株式会社 局側装置の制御方法、局側装置および光通信システム
US8953936B2 (en) * 2012-10-01 2015-02-10 Telefonaktiebolaget L M Ericsson (Publ) Method for protection of multi-wavelength passive optical network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283461A (ja) * 2007-05-10 2008-11-20 Sumitomo Electric Ind Ltd Ponシステムにおける局側端局装置
WO2010123143A1 (ja) * 2009-04-23 2010-10-28 日本電気株式会社 送信装置、送信方法及び送信装置の制御プログラム
JP2013192064A (ja) * 2012-03-14 2013-09-26 Fujitsu Telecom Networks Ltd 局側装置及びponシステム
JP2015056671A (ja) * 2013-09-10 2015-03-23 日本電信電話株式会社 光伝送システムにおける局側装置及び光伝送システム

Also Published As

Publication number Publication date
EP3267630A4 (en) 2018-11-07
US10193630B2 (en) 2019-01-29
TWI584603B (zh) 2017-05-21
JPWO2016143692A1 (ja) 2017-09-21
EP3267630A1 (en) 2018-01-10
TW201637383A (zh) 2016-10-16
US20180062746A1 (en) 2018-03-01
JP6306798B2 (ja) 2018-04-04
EP3267630B1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6306798B2 (ja) 局側装置および光伝送システム
JP5490517B2 (ja) 光通信システム、光通信方法およびolt
US10652635B2 (en) Passive optical network communications method and apparatus, and system
TW201334438A (zh) 被動光學網路中提供保護的裝置及方法
JP2009027538A (ja) 光ネットワーク終端装置、光アクセスシステムおよび通信サービスシステム
US9210097B2 (en) Central-office termination apparatus of adaptively changing connection to subscriber-terminal terminator and path switching method
JP5067610B2 (ja) Ponシステムにおける局側端局装置
JP6428102B2 (ja) 局側終端装置及び経路切替方法
JP5541249B2 (ja) Ponシステム、局側装置とその運用方法及びアクセス制御装置
JP6582731B2 (ja) 局側終端装置、加入者側終端装置、光通信システム、経路切替方法、経路切替プログラム、及び波長切替方法
JP2018170572A (ja) 光通信装置及び波長切替方法
JP6013299B2 (ja) 光伝送システムにおける局側装置及び光伝送システム
JP2012156954A (ja) 局側装置、宅側装置および通信システム
JP6693521B2 (ja) 宅側装置、ponシステムおよび宅側装置の制御方法
JP2016165053A (ja) 局側装置および光伝送システム
JP4768474B2 (ja) 冗長化端局装置
JP5942751B2 (ja) Wdm/tdm−pon方式用の局側装置及び光通信ネットワークシステム
JP6988272B2 (ja) 局側終端装置、及び経路切替方法
JP2016105548A (ja) 光送信器、光通信装置および光通信システム
JP6267145B2 (ja) 局側装置および光伝送システム
WO2015022807A1 (ja) 親局装置、制御装置、通信システムおよび通信方法
JP5907208B2 (ja) Ponシステム及び局側装置
KR20220050558A (ko) 광 선로 종단 장치
CN115901179A (zh) 一种非正常发光onu的检测方法、装置和系统
JP2014168290A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505299

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15555960

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE