WO2011117917A1 - 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置 - Google Patents

通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置 Download PDF

Info

Publication number
WO2011117917A1
WO2011117917A1 PCT/JP2010/002054 JP2010002054W WO2011117917A1 WO 2011117917 A1 WO2011117917 A1 WO 2011117917A1 JP 2010002054 W JP2010002054 W JP 2010002054W WO 2011117917 A1 WO2011117917 A1 WO 2011117917A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
olt
optical
power saving
saving state
Prior art date
Application number
PCT/JP2010/002054
Other languages
English (en)
French (fr)
Inventor
平野幸男
向井宏明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/395,145 priority Critical patent/US8687960B2/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10848313.2A priority patent/EP2552057B1/en
Priority to CN201080015125.1A priority patent/CN102379106B/zh
Priority to PCT/JP2010/002054 priority patent/WO2011117917A1/ja
Priority to RU2012123381/08A priority patent/RU2491738C1/ru
Priority to BR112012013363-2A priority patent/BR112012013363B1/pt
Priority to JP2011516925A priority patent/JP5106683B2/ja
Priority to MYPI2012002479A priority patent/MY178255A/en
Priority to KR1020127009744A priority patent/KR101286011B1/ko
Priority to TW100109499A priority patent/TWI413364B/zh
Publication of WO2011117917A1 publication Critical patent/WO2011117917A1/ja
Priority to ZA2012/01886A priority patent/ZA201201886B/en
Priority to US14/085,609 priority patent/US9270406B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to a communication system and a communication method in which a plurality of terminals are connected by a common line.
  • a communication system for example, an OLT (Optical Line Terminal) and a plurality of ONUs (Optical Network Unit) Related to PON (Passive Optical Network) system.
  • OLT Optical Line Terminal
  • ONUs Optical Network Unit
  • PON Passive Optical Network
  • the OLT In the PON system, communication is performed while synchronizing between the OLT and the ONU so that uplink data transmitted from the ONU does not collide.
  • the OLT plans to give transmission permission to each ONU so that uplink data does not collide. At this time, the delay due to the distance to each ONU is considered. For this reason, the OLT measures the round trip time between each ONU.
  • there are fluctuations in the transmission path such as jitter and wander, and therefore it is necessary to perform measurement periodically.
  • Patent Document 1 when there is no uplink data from the ONU, a PON system that improves the throughput without assigning a useless transmission band to such an ONU has been studied (Patent Document 1).
  • the OLT when the OLT detects that there is no user data for a preset period, the OLT cancels the registration of the ONU and notifies the ONU that the optical link is temporarily stopped. Thereafter, no transmission band is allocated to the ONU, and transmission of a frame for maintaining the link is also suppressed, so the ONU can reduce the number of frame transmissions.
  • the communication method of the present invention is an optical communication system communication method for connecting a plurality of ONUs to an OLT using a common optical fiber, and includes the following steps (a) to (e). (a) Notifying the OLT that the ONU shifts to a power saving state in which the optical transmitter is suspended, (b) Based on this notification, the OLT detects the power saving state of the ONU, (c) The OLT allocates a transmission band to the ONU that has suspended the optical transmitter, and transmits a transmission band notification to the ONU. (d) The ONU that has received the transmission band notification temporarily activates the optical transmitter and transmits a response signal to the OLT, and again enters the power saving state. (e) The OLT observes the transmission band assigned to the ONU that has suspended the optical transmitter, and based on the response signal, whether the ONU is in the power saving state or whether a failure has occurred in communication with the ONU Is detected.
  • Another communication method is a communication method of an optical communication system in which a plurality of ONUs are connected to an OLT using a common optical fiber, and includes the following steps (a) to (e). (a) Notifying the OLT that the ONU shifts to a sleep mode in which the optical transmitter is suspended for a predetermined sleep period; (b) Based on this notification, the OLT detects the transition of the ONU to sleep mode, (c) The OLT allocates a transmission band to the ONU in the power saving state during the sleep period, and transmits a transmission band notification to the ONU. (d) When the ONU to which the transmission band notification is assigned returns from the sleep mode to the non-sleep mode, it activates the optical transmitter and transmits a response signal in the transmission band.
  • the transmission of the response signal can be omitted, (e)
  • the OLT observes the transmission band assigned to the ONU that has suspended the optical transmitter, and based on the response signal, whether the ONU is in the power saving state or whether a failure has occurred in communication with the ONU And detecting the failure based on the response signal during the sleep period.
  • An ONU is connected to an optical fiber, and is capable of operating in a power saving state in which transmission is stopped while continuing reception to reduce power consumption, and to the power saving state of the optical transceiver.
  • a control device that temporarily controls transmission of the optical transceiver and outputs a response signal when the control signal is received from the OLT during operation in the power saving state.
  • the OLT includes an optical transmitter / receiver connected to an optical fiber and an optical transmitter / receiver of a user side optical line terminator operating in a power saving state and stopping transmission even when the user side optical line terminator is stopped. Allocating a transmission band to the equipment, whether the communication with the user side optical line terminator has failed based on the response signal received by the transmitter / receiver of the station side optical line terminator, or operating in the power saving state And a control device for determining whether or not there is.
  • Another ONU of the present invention is an optical transceiver that is connected to an optical fiber and that can operate in a sleep mode in which power consumption is reduced by intermittently stopping the transmission unit while continuing reception by the reception unit, and sleep Control to intermittently stop the transmission unit during the mode, and transmission of a response signal to the OLT when the transmission band is allocated by the OLT during the stop period of the transmission unit during the sleep mode and the sleep mode is continued And a control device that transmits a response signal when a transmission band is allocated between periodic stop periods of the transmission unit.
  • Another OLT includes an optical transmitter / receiver connected to an optical fiber and an optical transmitter / receiver of a user side optical line termination device operating in a sleep mode and stopping transmission even if the user side optical line is stopped.
  • the user-side optical line By allocating a transmission band to the termination device and observing the transmission band allocated to the user-side optical line termination device in the sleep mode between intermittent transmission stop periods of the optical transceiver, the user-side optical line And a control device for determining whether a failure has occurred in communication with the terminating device or whether the user side optical network terminating device is operating in the sleep mode.
  • the communication method, the optical communication system, the station side optical line terminator, and the user side optical line terminator according to the present invention can detect a failure in a power saving operation by intermittent communication.
  • FIG. 1 is a configuration diagram showing a configuration of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing a communication method according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing OLT communication control in Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing ONU communication control in Embodiment 1 of the present invention.
  • FIG. 5 is a sequence diagram showing a communication method (when a failure occurs) in Embodiment 1 of the present invention.
  • FIG. 6 is a sequence diagram showing a communication method (when the power is turned off) in the first embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing a communication method (modification) according to Embodiment 1 of the present invention.
  • FIG. 8 is a sequence diagram showing a communication method according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart showing OLT communication control according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart showing ONU communication control according to Embodiment 2 of the present invention.
  • FIG. 11 is a sequence diagram showing a communication method (when a failure occurs) in Embodiment 2 of the present invention.
  • FIG. 12 is a sequence diagram showing a communication method (when the power is turned off) in the second embodiment of the present invention.
  • FIG. 13 is a sequence diagram illustrating a communication method (modification) according to Embodiment 2 of the present invention.
  • FIG. 14 is a flowchart showing OLT communication control (modification) according to Embodiment 2 of the present invention.
  • Embodiment 1 FIG. ⁇ Hardware configuration
  • FIG. 1 is a diagram showing a configuration example of Embodiment 1 of a PON system according to the present invention.
  • the PON system of the present embodiment includes an OLT 1 and ONUs 10-1 to 10-3.
  • the OLT 1 and the ONUs 10-1 to 10-3 are connected by a subscriber line 30 via a splitter 40.
  • the splitter 40 branches the subscriber line 30 connected to the OLT 1 into the number of ONUs 10-1 to 10-3.
  • the ONU 10-1 is connected to the terminals 20-1 and 20-2. Although an example in which three ONUs are used is shown here, the number of ONUs is not limited to this, and any number may be used.
  • the OLT 1 includes a PON control unit 2 that performs processing on the OLT side based on the PON protocol, a reception buffer 3 that is a buffer for storing uplink data received from the ONUs 10-1 to 10-3, and an ONU 10-1 to Transmission buffer 4 that is a buffer for storing downlink data to be transmitted to 10-3, optical transceiver 5 that performs transmission / reception processing of optical signals, and a WDM (Wavelength Division Multiplexing) coupler that wavelength-multiplexes uplink data and downlink data (WDM) 6 and a physical layer processing unit (PHY) 7 that realizes a physical interface function of NNI (Network Node Interface) between the network.
  • the optical transceiver 5 includes an optical receiver (Rx: Receiver) 51 that performs reception processing, and an optical transmitter (Tx: Transmitter) 52 that performs transmission processing.
  • the ONU 10-1 includes a PON control unit 2 that performs processing on the ONU side based on the PON protocol, a transmission buffer (upstream buffer) 12 that is a buffer for storing transmission data (upstream data) to the OLT 1, and an OLT 1 Receive buffer (downlink buffer) 13 which is a buffer for storing received data (downlink data), an optical transceiver 14, a WDM 15 for wavelength-multiplexing uplink data and downlink data, and terminals 20-1, 20- 2, physical layer processing units (PHYs) 16-1 and 16-2 that realize a physical interface function of UNI (User Network Interface).
  • PON control unit 2 that performs processing on the ONU side based on the PON protocol
  • upstream buffer 12 that is a buffer for storing transmission data (upstream data) to the OLT 1
  • OLT 1 Receive buffer (downlink buffer) 13 which is a buffer for storing received data (downlink data)
  • an optical transceiver 14 a WDM 15 for wavelength-multiplexing uplink data
  • the optical transceiver 14 includes an optical transmitter (Tx: Transmitter) 141 that performs transmission processing and an optical receiver (Rx: Receiver) 142 that performs reception processing.
  • the PHY 16-1 includes a reception unit (Rx: Receiver) 161-1 that performs reception processing and a transmission unit (Tx: Transmitter) 162-1 that performs transmission processing.
  • the PHY 16-2 performs reception processing. It has a receiving unit (Rx: Receiver) 161-2 and a transmitting unit (Tx: Transmitter) 162-2 that performs transmission processing.
  • the number of terminals is not limited to this, and any number of terminals may be provided, and a physical layer processing unit (PHY) corresponding to the number of terminals is provided.
  • PHY physical layer processing unit
  • FIG. 1 a configuration example of the ONU 10-1 is shown as a representative, but the ONUs 10-2 and 10-3 have the same configuration as the ONU 10-1.
  • the PON control unit 2 of the OLT 1 performs upstream data bandwidth allocation so as to give transmission permission to the ONUs 10-1 to 10-3 so that the transmission time zones do not overlap with each other. -1 to 10-3 transmission data collision is prevented. Any method may be used for this bandwidth allocation. For example, “Su-il Choi and Jae-doo”, “HuhDynamic Bandwidth Allocation Algorithm for Multimedia Services over Ethernet (registered trademark) PONs”, ETRI Journal, Volume Dynamic Bandwidth Allocation Algorithm described in 24, Number 6, December 2002, p.465 to p.466 can be used.
  • the PON control unit 2 stores downlink data (downlink communication data) received from the network via the PHY 7 in the transmission buffer 4.
  • the PON control unit 2 reads the downlink data stored in the transmission buffer 4 and outputs it to the optical transceiver 5, and the Tx 52 of the optical transceiver 5 uses the transmission data as an optical signal.
  • the optical signal is output to the WDM 6, and the WDM 6 performs wavelength multiplexing on the optical signal output from the optical transmitter / receiver 5, and outputs it to the ONUs 10-1 to 10-3 via the subscriber line 30.
  • the PON control unit 2 transmits a control message such as transmission band allocation for transmitting a transmission permission instruction
  • the control message generated by the PON control unit 2 is output to the optical transceiver 5, Transmit to ONUs 10-1 to 10-3 in the same way as data.
  • the WDMs 6 and 15 are used for wavelength multiplexing, but the WDMs 6 and 15 are not essential when communicating at a single wavelength.
  • ONUs 10-1 to 10-3 when a downstream signal is received from OLT 1, WDM 15 separates the downstream signal and outputs it to optical transceiver 14, and Rx142 of optical transceiver 14 converts the downstream signal into downstream data of an electrical signal. And output to the PON control unit 2.
  • the PON control unit 2 stores the downlink data output from the Rx 142 of the optical transceiver 14 in the reception buffer 13.
  • the PON control unit 2 reads the downlink data stored in the reception buffer 13 and outputs it to both or one of the PHYs 16-1 and 16-2 according to the destination of the data.
  • the PHYs 16-1 and 16-2 that have received the downlink data perform predetermined processing on the downlink data and transmit the downlink data to the terminals 20-1 and 20-2 to which they are connected.
  • the PON control unit 11 transmits the uplink data acquired from the terminals 20-1 and 20-2 via the PHYs 16-1 and 16-2.
  • Store in 12 The uplink data stored in the transmission buffer is read out based on the transmission band given from the OLT 1 and output to the optical transceiver 14.
  • the Tx 141 of the optical transceiver 14 converts the upstream data into an optical signal (upstream signal) and transmits it to the OLT 1 via the WDM 15 and the subscriber line 30.
  • the PON control unit 2 of the OLT 1 stores the uplink data received from the ONUs 10-1 to 10-3 via the subscriber line 30, the WDM 6, and the Rx 51 of the optical transceiver 5 in the reception buffer 3.
  • the PON control unit 2 reads the uplink data stored in the reception buffer 3 and outputs it to the network via the PHY 7.
  • the ONUs 10-1 to 10-3 receive control messages from the OLT 1 by the PON control unit 2 via the WDM 15 and the Rx 142 of the optical transceiver 14 and execute operations based on the control message instructions. Generate a response to.
  • FIG. 2 After the discovery process is completed and communication in the normal communication state (Normal mode) is started The sequence is shown. In FIG. 2, only one ONU 10 is shown, but in actuality, OLT 1 communicates with a plurality of ONUs 10 in the same manner. In the PON system, the uplink transmission (uplink) is allocated to a plurality of ONUs 10 by time division multiplex communication. In order to control this time division multiplexing, the OLT 1 transmits a permission signal (Grant) for permitting communication by designating the transmission band Bw to the ONU 10.
  • Grant permission signal
  • the OLT 1 allocates transmission time to the ONU 10 and transmits a permission signal. Grant includes information that can identify each ONU 10, a communication start time, and a communication end time (or communication duration time).
  • the ONU 10 transmits uplink data (Data) in the designated band designated by this Grant.
  • the OLT 1 receives the uplink data in the transmission band Bw, relays the data to the host device existing on the core network side, and detects a communication failure with the ONU 10.
  • the OLT 1 determines that there is an abnormality in the ONU 10 corresponding to this transmission band. This communication failure monitoring will be described later.
  • the ONU 10 notifies the OLT 1 that a transition to the power saving state is made. For this notification, any request signal may be used. For example, a Dying_Gasp signal is transmitted.
  • the OLT 1 detects that the ONU 10 has entered the power saving state, and pauses the bandwidth allocation to the ONU 10 for a predetermined period (sleep time).
  • a predetermined period such as one hour unit, for example, a short period such as milliseconds is designated. .
  • the ONU 10 When the ONU 10 transitions to the power saving state, it turns off the laser power of the Tx 141 of the optical transceiver 14 and controls it to the off state. At this time, the ONU 10 does not cut the power of the Rx 142 of the optical transceiver 14 and continues to receive the control signal and the downlink data from the OLT 1. On the other hand, the OLT 1 also does not transmit Grant to the ONU 10 that has shifted to the power saving state, but transmits other control signals and downlink data.
  • the power supply state of Tx141 of the ONU 10 is indicated by “ON” and “OFF” on the right side of the ONU sequence. In the power saving state, that is, in the sleep mode, the power supply is repeatedly turned on and off repeatedly during that period.
  • a period indicated by “OFF” is a stop period in which the laser power of Tx141 is stopped. Between the intermittent stop period, the ONU 10 starts Tx 141 and creates a temporary start-up time (Tentative wake-up time).
  • “Sleep time” is a predetermined time length, and in this example, the absolute time of the stop period is specified based on the start time of the band update cycle. In FIG. 2, the “Sleepleetime” and the “OFF” period do not coincide with each other, but this is because the ONU 10 that transmitted the uplink data cuts the supplied power without waiting for the next bandwidth update period. In another embodiment, the present invention is not limited to this example, and “Sleep time” and “OFF” periods may be matched.
  • the OLT 1 measures the sleep time for each ONU 10, and sends a grant to the ONU 10 when the sleep time has elapsed (d6). This Grant is transmitted to temporarily wake up the ONU 10 in the power saving state.
  • the ONU 10 receives a grant from the OLT 1 during this temporary start-up time, the ONU 10 temporarily supplies laser power to the Tx 141 of the optical transceiver 14 even when operating in the power saving state, and turns it on. Since the end time of sleep time is known, the ONU 10 can turn on the power without waiting for the bandwidth allocation notification from the OLT 1.
  • the ONU 10 continues the power saving state, it resends the sleep request as described in (u3) above, and again turns off the laser power of Tx141 of the optical transceiver 14 and shifts to the power saving state (u6). ).
  • OLT 1 observes the bandwidth allocated to the power saving ONU 10 and detects whether the request signal has been sent normally. At this time, if a signal is not normally transmitted from the power saving ONU 10, it is determined that a failure has occurred in the uplink communication path or the ONU 10 itself, and an alarm is issued. The operation when this failure occurs will be described later with reference to FIG.
  • the ONU 10 requests cancellation of the power saving state during the temporary activation time.
  • the cancellation of the power saving state may be performed by the ONU 10 transmitting a specific signal, but can also be realized by transmitting, for example, valid uplink data in a designated band. By canceling the power saving state by transmitting valid uplink data, transmission bits are saved and the band of transmission data can be used effectively.
  • the OLT 1 observes the band allocated to the power saving ONU 10 after the timing (d9) and performs fault detection in the same manner as the operation after the above (d6). At the same time, when the ONU 10 transmits a power saving request, the OLT 1 continues to operate in the power saving state for the ONU 10, but when the power saving state release request is received as described above, The operation in the state is canceled, and the operation in the normal operation is started for the ONU 10.
  • the OLT 1 can permit the power saving operation by the ONU 10 while maintaining the link to the ONU 10, and at the same time, when a failure occurs in the communication with the ONU 10 that does not normally transmit data. But it can detect the failure early. Furthermore, the ONU 10 can reduce the power consumption by stopping the laser power supply to the Tx 141 of the optical transmitter / receiver 14, and even in the communication necessary for fault monitoring, the bandwidth update cycle can be reduced by the thinned Grant. The power consumption can be reduced compared to the case where some signal transmission is forced every time.
  • the transmission band allocation cycle is a cycle in which the OLT 1 notifies the transmission band allocation and allocates the transmission band to the ONU 10.
  • the above-mentioned thinned Grant is a grant having a longer transmission bandwidth allocation interval than the power saving ONU 10 operating in the normal state.
  • the transmission band allocation period allocated to the power saving ONU 10 may be determined in any way.
  • the transmission band allocation period may be a value that matches the detection time T of the MPCP (Multi-Point Control Protocol) timeout alarm. You can have it. If the transmission bandwidth allocation period is set longer than the MPCP timeout time, the ONU 10 in the sleep mode is caught by this MPCP timeout, so the OLT 1 sets the transmission bandwidth allocation period below the MPCP timeout time.
  • the OLT 1 sets the transmission bandwidth allocation period to T / n milliseconds.
  • the power consumption can be reduced even when the user terminals are continuing communication.
  • FIG. 3 shows the processing of the PON control unit 2 (PON controller) of the OLT 1.
  • the PON control unit 2 identifies an ONU 10 to which an uplink transmission band is to be allocated based on a list (ActiveONUList) of ONUs 10 discovered and found by discovery, and allocates a transmission band to each ONU 10 (step S1). ).
  • the PON control unit 2 collects Grant and downlink data into frames, controls the transceiver 5 and transmits the frames to the ONU 10 (step S2). Grant and downlink data may be transmitted in the same frame, or may be transmitted in separate frames.
  • the PON control unit 2 performs reception processing for each transmission band received by the Rx 51 in the following steps (step S3).
  • the PON control unit 2 specifies the ONU 10 assigned to the next transmission band (step S4).
  • Rx51 of the transceiver 5 performs uplink reception simultaneously and the PON control unit 2 reads the data received by Rx51 into the internal memory or the like for processing (step S5).
  • the PON control unit 2 checks the type of the received uplink signal (step S6). If there is no valid signal, the process goes to step S17. If the request signal (Dying_gasp) for the power saving state is detected, step S12 is performed. If it is a data signal or the like, the process of step S7 is performed.
  • step S7 the PON control unit 2 checks the transmission-source ONU 10 of the received data, and adds this ONU 10 to the ActiveONUList if it is not included in the ActiveONUList.
  • the OLT 1 detects that the ONU 10 in the power saving state has canceled the power saving state when the ONU 10 has transmitted normal data.
  • the received data includes a bandwidth request from the ONU 10, and the PON control unit 2 reads the bandwidth request from the received frame and associates it with the identifier (ID) of the ONU 10 for the next bandwidth allocation in step S1.
  • This bandwidth request is recorded in the memory (step S8).
  • the bandwidth request is expressed by the amount of data accumulated (occupancy) in the transmission buffer 12 of the ONU 10.
  • SR-DBA status reporting DBA
  • the bandwidth request does not need to be explicitly made, and the allocated bandwidth can be adjusted by observing the data amount actually transmitted by the ONU 10 with respect to the bandwidth allocated by the OLT 1 to the ONU 10.
  • This is called TM-DBA (traffic-monitoring DBA).
  • this TM-DBA may observe traffic.
  • the PON control unit 2 transmits the reception data held in the reception buffer 3 to the network via the physical layer processing unit 7 (step S9).
  • the PON control unit 2 constantly monitors the uplink communication state with each ONU 10. If the ONU 10 cannot receive the expected frame at the transmission timing of the frame, an alarm signal LOSI (Loss of signal for ONUi) is output. This alarm signal is an alarm necessary for network management. When LOSi occurs, it is notified to the network operator, and the network operator takes trouble countermeasures based on this LOSi. Step S10 is a process of clearing the fault count for this LOSi.
  • LOSi is, for example, a true fault that is output when the signal cannot be received continuously from the i-th ONU 10 four times, and the fault count is a variable that counts the number of consecutive non-receptions. is there.
  • the PON control unit 2 counts up the LOSi count in step S17 described later.
  • This loop process is a process that repeats the process for the bw th band from the 1st to the Nth.
  • Dying_Gasp there are two types of Dying_Gasp.
  • One is Dying_Gasp (0) that is output when the ONU 10 cuts off the link and turns off the power, and the other is Dying_Gasp (1) that the ONU 10 outputs as a sleep request.
  • the Dying_Gasp signal has a format including a signal identifier indicating that it is a Dying_Gasp signal, an ID of the ONU 10, and a flag (option) indicating that it is a sleep request.
  • the PON control unit 2 checks whether the Dying_Gasp signal received in step S12 is a sleep request, and if it is a sleep request, that is, a Dying_Gasp (1) signal, proceeds to the process of step S13.
  • step S12 the PON control unit 2 detects that the ONU 10 has shifted to the power saving state, and records this. Specifically, the ID of the ONU 10 is excluded from the ActiveONUList that is the transmission band allocation target list. Perform the process.
  • the PON control unit 2 sets a sleep-time timer for the i-th ONU 10 in order to measure the power saving period (step S14).
  • This sleep time may be a time stored in advance by the OLT 1 or a time calculated based on the communication status, or a specific time may be acquired from the ONU 10 and this value may be set.
  • the sleep time can be measured by any method as long as it can determine the power-saving period.
  • the PON control unit 2 proceeds to the above-described uplink data reception process (step S9) and repeats the same process. If Dying_Gasp (1) and upstream data can be transmitted in the same band (or frame), the ONU 10 can immediately save power even when data transmission is completed with only a small data fragment remaining in the transmission buffer 12. There is an advantage that you can enter. On the other hand, in a situation where a power saving state is possible, the ONU 10 often does not have uplink data. Therefore, when a sleep request is received, the specification may be such that the uplink data of this frame is not processed.
  • step S12 determines that Dying_Gasp (0) has been received
  • the PON control unit 2 detects that the ONU 10 has been turned off (step S15), and the ONU 10 is While removing from the ActiveONUList, a process of deleting the link information and resources allocated to the ONU 10 is performed.
  • the OLT 1 transmits a Deactivate signal (Deactivate_ONU-ID) instructing the ONU 10 to discard all information such as link information and link information.
  • the ONU 10 receives this signal and turns off the power of the transceiver 14.
  • the PON control unit 2 returns to the process of step S3 in order to process the next band again.
  • Step S17 is a process when a valid signal is not received in the transmission band assigned to the ONU 10 in Step S6, and the PON control unit 2 detects a communication failure by this process.
  • the OLT 1 detects a failure. I can't.
  • the OLT 1 also temporarily allocates a transmission band to the ONU 10 that is in power saving operation, and the ONU 10 also temporarily turns on the power of the Tx 141 after the sleep time and transmits a frame.
  • step S6 an uplink communication failure can be detected based on whether or not the ONU 10 transmits a frame to the assigned transmission band.
  • the PON control unit 2 counts up the variable LOS [i] for counting the number of non-reception times for the i-th ONU 10.
  • the PON control unit 2 determines that a communication abnormality has occurred in the uplink of the ONU 10 and sets the above alarm LOSi. (Step S19). Further, the PON control unit 2 proceeds to the process of step S16 and disconnects the link. On the other hand, if the variable LOS [i] has not reached LOS_Max, the PON control unit 2 returns to the process for the next band (step S3) without issuing an alarm.
  • a predetermined number LOS_Max for example, 4
  • the PON control unit 2 After performing the above processing for all the transmission bands within one band update cycle, the PON control unit 2 checks each ONU 10 that is in power saving operation for an ONU 10 whose sleep time has expired. If an ONU 10 whose sleep time has expired is found, the ID is added to the ActiveONUList in order to temporarily activate the ONU 10 (step S20). This process enables the monitoring operation of the ONU 10 during the power saving operation described in steps S17 to S19. In addition, when the ONU 10 continues the power saving state, the sleep request is sent back using the transmission band assigned in step S1, so that the ONU 10 can continue the operation with reduced power consumption while maintaining the link. it can.
  • the PON control unit 2 determines whether or not to continue the operation of the next band update cycle, and if so, returns to the process of step S1 and restarts the above operation.
  • FIG. 4 is a flowchart showing communication control executed by the PON control unit 11 of the ONU 10. Communication control is roughly divided into downlink reception control (steps S30 to S33) and uplink transmission control (S35 to S51).
  • the Rx 142 of the optical receiver 14 receives the downlink frame transmitted from the OLT 1 and records the received data in the reception buffer 13.
  • the PON control unit 11 observes the frame received by the optical receiver 14 (step S30), and extracts uplink transmission band information from the header information included in the frame (step S31).
  • the transmission band information includes information that can identify the ONU 10 to be allocated, and information that can identify the transmission start time and the transmission end time.
  • the PON control unit 11 also extracts the payload part from the received frame and outputs it to the upper layer processing means (step S32).
  • This process is a process for transmitting data received by a higher-level protocol that matches the terminals 20-1 and 20-2 connected to the ONU 10.
  • the PON control unit 11 determines whether to end the reception control and turn off the power. When the reception is continued without turning off the power, the process returns to step S30 and the above-described reception control is continued.
  • the PON control unit 11 waits for transmission band allocation (Grant) from the OLT 1 in step S35.
  • the PON control unit 11 supplies power to the Tx 141 of the optical transceiver 14 to turn on the laser power (step S36). Since this process is particularly necessary when returning from the power saving state, when the Tx 141 is already in the ON state during operation in the normal operation state, it is not necessary to perform the process of starting the power supply again.
  • the PON control unit 11 instructs the power supply to the Tx 141 before the actual transmission band start time and before the time until the optical output is stabilized after the Tx 141 of the optical transceiver 14 is activated.
  • the bandwidth update period of this embodiment is a very short cycle, and the transition from the power saving state to the temporary wake-up state is performed in a very short time and frequently. Therefore, if the activation is performed immediately before the transmission time without considering the behavior of the optical output at the time of activation of Tx141, there are effects such as inability to receive and deterioration of error rate in OLT1. Therefore, as shown in FIG. 4, when the transmission band detects the allocation, the PON control unit 11 starts the power supply of Tx141. After this, other frame creation work is performed, and the PON control unit 11 actually transmits the frame in the subsequent step S46.
  • the PON control unit 11 detects the data storage state of the transmission buffer 12 and the operation state of the downstream connected devices such as the terminals 20-1 and 20-2 (step S37), and the power saving state (Sleep mode) It is determined whether or not to make a transition to (step S38). For example, when the OLT 1 determines that the data accumulation state of the transmission buffer is a state where there is no data, or that there is only a small amount of data accumulated below a predetermined threshold value for a predetermined period and there is a margin, the power saving state It is determined that the transition is made.
  • the ONU 10 can transmit data in a relatively small band with respect to the capacity of the transmission buffer and the transmission speed of the communication line.
  • Other examples of criteria for the ONU 10 to transition to the power saving state include: (1) the number of terminals in the power supply state and the ON state of each terminal, the number of terminals that have a communication response, and (2) connected terminals (here For example, whether or not all of the terminals 20-1 and 20-2) have entered the power saving state is detected by a method such as LPI reception defined in IEEE 802.3az.
  • the PON control unit 11 creates a transmission payload based on the transmission data stored in the transmission buffer (step S39).
  • This payload is data processed and created in an upper layer.
  • a status report is created based on the data occupancy rate of the transmission buffer 12 and the like in order to secure the transmission band of the next cycle (step S40).
  • This is represented by the ratio of the data actually stored in the buffer to the buffer size specified by the protocol such as OMCI (Optical Network Unit Management Management and Control Interface), for example.
  • a ratio is encoded by a predetermined encoding method to generate a report.
  • the status may be created based on any standard as long as uplink communication traffic is known. In addition, this report is not mandatory when using TM-DBA.
  • the PON control unit 11 when transitioning to the power saving state, the PON control unit 11 records information (flag) that transitions to the power saving state in the built-in memory in order to shift to the power saving state in step S48 described later. Further, the PON control unit 11 generates a Dying_Gasp (1) signal that is a sleep request (step S51).
  • step S41 the PON control unit 11 determines whether to turn off the ONU 10 or not.
  • the PON control unit 11 creates this signal in order to insert the Dying_Gasp (0) signal into the transmission frame and transmit it to the OLT 1 (step S42).
  • the power supply to the transmitter / receiver 14 including Rx14 is stopped, and the ONU 10 becomes incapable of both transmission and reception. Therefore, the PON control unit 11 actually turns off the power after step S49 when the necessary transmission processing is completed.
  • the PON control unit 11 collects the various signals created in the above steps and creates a frame that accommodates them (step S44). At this time, the PON control unit 11 creates a frame header (step S43) and inserts it into the frame.
  • the PON control unit 11 waits until the transmission start time specified by the transmission band information extracted in step S31 (step S45), and starts frame transmission (step S46).
  • the PON control unit 11 determines whether or not a transition to the power saving state (Sleep mode) is made (step S47).
  • the power supply of Tx141 is stopped (step S47). S48).
  • the PON control unit 11 can place the Tx 141 in a power saving state by transmitting an electrical signal such as power down or shutdown to the Tx 141 of the optical transceiver 14. By this process, the PON control unit 11 creates an intermittent transmission stop period (a stop period of the transmission unit) in the sleep mode.
  • the PON control unit 11 determines whether to turn off the power or to wait for the next transmission (step S49).
  • step S49 When turning off the power, turn off the power of the transmitter / receiver 14 and the like to finish the process. To do.
  • the Dying_Gasp (0) signal is not correctly transmitted to the OLT1 due to a single communication error, an unnecessary alarm will frequently occur in the OLT1, so the Dying_Gasp (0) signal is sent multiple times before the power is turned off. The power can be turned off.
  • the PON control unit 11 counts the number of transmissions of the Dying_Gasp (0) signal in step S49, and returns to the process of step S35 until the predetermined number is reached. On the other hand, if it is determined that the power is not turned off, the PON control unit 11 returns to step S35 and repeats the same processing as described above.
  • FIG. 5 is a sequence diagram showing a case where a communication failure occurs in the ONU 10 operating in the power saving state.
  • the ONU 10 shifts to the power saving state after the transmission timing (u3), and then receives a large amount of transmission data from the terminal 20-1 and attempts to return from the power saving state after the timing (u4).
  • a communication failure occurs on the upstream communication path 30, data cannot be transmitted.
  • OLT1 knows that ONU10 does not transmit data by turning off the power of Tx141 of optical transceiver 14, from the viewpoint of OLT1, there is no abnormality even if there is no uplink communication temporarily, and OLT1 is abnormal It is not possible to detect that has occurred.
  • the OLT 1 can detect whether there is a communication abnormality (Loss of Signal for ONUi) on the link with the ONU 10 in the power saving state by observing the bandwidth allocated in (d6).
  • the bandwidth Bw is assigned to the ONU 10 at the subsequent timing (d7), and the bandwidth is observed twice in total.
  • the LOSi alarm is output based on the observation results of the second band. Note that this bandwidth allocation need not be performed at successive bandwidth update cycles, and may be sent intermittently. In addition, an arbitrary number of observations can be set.
  • the OLT 1 that has output the alarm LOSi disconnects the link with the ONU 10 and outputs a Deactivate_ONU-ID three times to notify the ONU 10.
  • the ONU 10 that has received the Deactivate_ONU-ID must detect the disconnection of the link, discard the information held regarding the link, and stop data transmission. Thereafter, the ONU 10 shifts to a standby mode for waiting for communication from the OLT 1.
  • the ONU 10 responds to the discovery request transmitted from the OLT 1 and registers itself in the OLT 1.
  • the OLT 1 registers the ONU 10 by discovery and does not allocate a transmission band to the ONU 10 until a link is established.
  • FIG. 6 is a sequence diagram for explaining a case where the power is turned off after the ONU 10 is in the power saving state.
  • the ONU 10 operates in the power saving state.
  • the OLT 1 cannot detect this and emits LOSi. Therefore, the ONU 10 waits until bandwidth allocation after the sleep time (d9), transmits a Dying_Gasp (0) signal to the OLT 1 (u9), and then turns off the power.
  • the OLT 1 since the OLT 1 has also received the Dying_Gasp (0) signal, it can recognize that a communication failure has occurred with the ONU 10 or has not returned from the sleep state, so that unnecessary alarm output can be prevented.
  • FIG. 7 shows a sequence of a communication method for determining the sleep time in the power saving state by signaling.
  • the ONU 10 When the ONU 10 outputs a sleep request, the ONU 10 designates sleep time set according to its own communication state and outputs it to the OLT 1. For example, the ONU 10 sets the sleep time to be long when there is no upstream data, and sets the sleep time to be short when a very small bandwidth or intermittent communication continues (but transitions to a power saving state).
  • the sleep request can be output by changing the sleep time according to the communication state of the ONU 10 (u3).
  • the OLT 1 can also set the sleep time according to the network conditions such as the ONU 10 request and the maximum delay condition.
  • the OLT 1 receives a sleep request from the ONU 10, the OLT 1 determines whether or not the sleep state can be permitted, determines an allowable sleep time while considering the requested sleep time, and responds to the sleep request together with the sleep time.
  • An acknowledgment signal (Acknowledgement) is transmitted (d4). The OLT 1 does not need to notify the transmission band allocation to the ONU 10 together with the acknowledgment signal.
  • the ONU 10 does not shift to the power saving state until the acknowledgment signal is received, and shifts to the power saving state after receiving the acknowledgment signal. In this way, by waiting for the acknowledgment signal, it is possible to prevent a situation in which the state is not erroneously recognized with the OLT 1 and the OLT 1 erroneously issues an alarm. Further, since the ONU 10 can operate in a power saving state during the permitted sleep time, it is possible to appropriately adjust the power consumption reduction and the communication balance according to the communication status.
  • both the ONU 10 and the OLT 1 transmit the sleep time, but in order to make the sleep time adjustable, only one of the devices may transmit the sleep time.
  • the communication system can also use a sequence without an acknowledgment signal.
  • FIG. The second embodiment is an embodiment in which a transmission band is allocated to the ONU 10 in the power saving state (sleep mode) to reduce the upstream delay during sleep.
  • the hardware configuration of the communication system is the same as that of the communication system described above with reference to FIG.
  • FIG. 8 is a sequence showing the communication method of this embodiment.
  • the OLT 1 is connected to the ONU 10 in the sleep mode.
  • a transmission band is allocated. Therefore, the ONU 10 can cancel the sleep mode without waiting for the end of the sleep time, transition to the normal mode, and resume uplink data transmission.
  • the ONU 10 in the sleep mode may or may not transmit a frame at its own discretion, so it must be devised. Therefore, the OLT 1 observes the transmission band assigned to the ONU 10 in the sleep mode, but masks the LOSi count for alarm monitoring, and outputs an alarm even if a valid signal cannot be received in this transmission band. Do not control.
  • “ON” (monitoring enabled) and “MASK” (monitoring disabled) are described as the alarm monitoring status of Loss of Signal. From this figure, it can be seen that the monitoring of the alarm of Loss of ⁇ Signal is “MASK” during sleep time.
  • FIG. 9 shows the processing of the PON control unit 2 of the OLT 1.
  • the same reference numerals as those in FIG. 3 indicate the same or equivalent processes as those in FIG.
  • the PON control unit 2 performs control so that a transmission band is not allocated to the ONU 10 in the power saving state in step S1 and step S13.
  • the PON control unit 2 allocates a transmission band including the ONU 10 in the sleep mode in step S60. Since the ONU 10 operating in the sleep mode is considered to require a smaller transmission band, the PON control unit 2 allocates a smaller transmission band than the ONU 10 in the normal mode.
  • step S61 the type of the uplink signal is identified, but the PON control unit 2 detects a sleep request based on a PLOAM (Physical Layer OAM Operation, Administrations and Maintenance) message instead of the Dying_Gasp (1) signal.
  • the sleep request includes an identifier that can identify the ONU 10 (may be an identifier of a link with the ONU 10), and a message type identifier that indicates that the PLOAM message is a sleep request.
  • the sleep request may be a Dying_Gasp (1) signal as in the first embodiment. If the received upstream signal includes a sleep request, the PON control unit 2 detects that the ONU 10 has shifted to the sleep mode in step S13. At this time, the ONU 10 is assigned to a transmission band as described above. There is no need to exclude them.
  • the PON control unit 2 checks the timer ti in step S62 to determine whether the ONU 10 assigned to the band is in the sleep mode. Detect by. If it is determined that the mode is the sleep mode, the PON control unit 2 masks the alarm process (steps S17 to S19), proceeds to step S11, and performs the next transmission band process.
  • the OLT 1 includes means for allocating a transmission band to the ONU 10 in the sleep mode, allowing the ONU 10 in the sleep mode not to transmit a frame, and preventing a false alarm of failure monitoring.
  • FIG. 10 is a flowchart showing communication control executed by the PON control unit 11 of the ONU 10.
  • the same reference numerals as those in FIG. 4 indicate the same or equivalent processes as those in FIG.
  • the ONU 10 does not need to start Tx141 and can save power consumption.
  • the PON control unit 11 determines whether there is transmission data. If there is transmission data even in the sleep mode, the transmission processing from step S36 is executed. For this reason, the ONU 10 that employs the communication method shown in FIG. 10 can cancel the sleep mode before the sleep time expires and reduce the transmission delay during the sleep mode.
  • step S72 the PON control unit 11 creates a sleep request using a PLOAM message instead of the Dying_Gasp (1) signal in FIG.
  • step S73 a normal Dying_Gasp signal is created as the Dying_Gasp signal when the power is turned off.
  • FIG. 11 is a sequence diagram showing a case where a communication failure has occurred in the ONU 10 operating in the power saving state.
  • the fault monitoring is masked and LOSi is not erroneously detected.
  • the OLT1 detects a LOSi failure and outputs an alarm LOSi in the transmission bandwidth Bw allocated at the transmission timings (d6) and (d7) of the OLT1. To do.
  • FIG. 12 is a sequence diagram illustrating a case where the power is turned off after the ONU 10 is in the power saving state.
  • the ONU 10 operates in the power saving state.
  • the OLT 1 cannot detect this and emits LOSi. Therefore, the ONU 10 waits until bandwidth allocation after the sleep time (d9), transmits a Dying_Gasp signal to the OLT 1 (u9), and then turns off the power.
  • the OLT 1 since the OLT 1 has also received the Dying_Gasp signal, it can recognize that a communication failure has occurred with the ONU 10 or that it has not returned from the sleep state, so that unnecessary alarm output can be prevented.
  • FIG. 13 shows a sequence of a communication method for determining the sleep time in the power saving state by signaling as in FIG.
  • the ONU 10 When the ONU 10 outputs a sleep request, the ONU 10 designates sleep time set according to its own communication state and outputs it to the OLT 1. For example, the ONU 10 sets the sleep time to be long when there is no upstream data, and sets the sleep time to be short when a very small bandwidth or intermittent communication continues (but transitions to a power saving state).
  • the sleep request can be output by changing sleep time according to the ONU communication status (u3).
  • the OLT 1 can also set the sleep time according to the network conditions such as the ONU 10 request and the maximum delay condition.
  • the OLT 1 receives a sleep request from the ONU 10, the OLT 1 determines whether or not the sleep state can be permitted, determines an allowable sleep time while considering the requested sleep time, and responds to the sleep request together with the sleep time.
  • An acknowledgment signal (Acknowledgement) is transmitted (d4). The OLT 1 does not need to notify the transmission band allocation to the ONU 10 together with the acknowledgment signal.
  • the ONU 10 does not shift to the power saving state until the acknowledgment signal is received, and shifts to the power saving state after receiving the acknowledgment signal. In this way, by waiting for the acknowledgment signal, it is possible to prevent a situation in which the state is not erroneously recognized with the OLT 1 and the OLT 1 erroneously issues an alarm. Further, since the ONU 10 can operate in a power saving state during the permitted sleep time, it is possible to appropriately adjust the power consumption reduction and the communication balance according to the communication status.
  • both the ONU 10 and the OLT 1 transmit the sleep time, but in order to make the sleep time adjustable, only one of the devices may transmit the sleep time. It is also possible to use a sequence without an acknowledgment signal.
  • the ONU 10 when returning from the power saving state (sleep mode) to the normal state, the ONU 10 performs data transmission without a sleep request in the allocated band. By receiving this data transmission, the OLT 1 detects that the ONU 10 has shifted to the normal state. However, the ONU 10 and the OLT 1 explicitly request this sleep state using the PLOAM Message. You can also use The flowchart of FIG. 14 shows communication control of the OLT 1 that processes this explicit sleep release request. 14, the same reference numerals as those in FIG. 9 indicate the same or equivalent processes as those in FIG. 9.
  • the sleep request includes an identifier that can identify the ONU 10 (may be an identifier of a link with the ONU 10), a message type identifier indicating that the PLOAM message is a sleep request, and a flag indicating one of transition / cancellation including.
  • This flag is a flag indicating whether the sleep request requests a transition to the sleep mode or a cancel request.
  • a method of assigning message type identifiers in a distinguishable manner between transition / cancellation instead of flags may be considered.
  • both the ONU 10 and the OLT 1 can recognize the transition and release of the sleep mode more reliably, so that the processing becomes more reliable. Further, if a handshake method for returning an Acknowledgment signal for canceling the sleep mode is employed, the reliability of the communication system is further improved.
  • the embodiment of the present invention has been described above.
  • the present invention is not limited to these embodiments, and any modifications may be made as long as they are included in the gist of the present invention.
  • the communication system to which this communication method is applied need not be a PON system.
  • the present invention can also be applied to an optical communication system using an active element.
  • the present invention is not limited to optical communication, and can also be applied to a communication system that communicates between terminals using electrical signals.
  • the communication system or communication method of the present invention is an excellent communication system that can suppress power consumption first. Therefore, even if the fault monitoring function is removed from the above-described embodiment, the present invention can be used, and even in that case, the power consumption can be suppressed. Further, as a second additional effect, there is a feature that failure monitoring can be performed while maintaining a link in a communication system with reduced power consumption.
  • the present invention is suitable for communication methods and communication systems that require power saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

 ONU10は、受信を継続しながら送信を停止して消費電力を低減する省電力モードでの動作が可能な光送受信機14、及び、省電力モードで動作中にOLTから制御信号を受信した場合には、一時的に光送受信機の送信を有効に制御して応答信号を出力する制御装置11を備える。また、OLTは、ONUの光送受信機が省電力モードで動作し送信停止中であっても、当該ONUに送信帯域を割当て、OLTの送受信機が受信した応答信号に基づき通信障害か、省電力モードで動作中であるのかを判別する制御装置2を備える。

Description

通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置
 本発明は、複数の端末が共通の回線で接続された通信システム、通信方法に関し、例えばOLT(Optical Line Terminal:局側終端装置)と複数のONU(Optical Network Unit:利用者側終端装置)とで構成されるPON(Passive Optical Network)システム等に関する。
 PONシステムでは、ONUから送信される上り方向のデータが衝突しないようにOLTとONU間で同期をとりながら通信を行う。OLTは、上り方向のデータが衝突しないよう各ONUに対する送信許可を与えるように計画する。この際、各ONUとの間の距離による遅延を考慮する。そのため、OLTは、各ONUとの間のラウンドトリップタイムを計測するが、光ファイバによる伝送ではジッタやワンダなどの伝送路の変動があるため、周期的に計測を行う必要がある。
 一方、データ通信は常時行われているわけではなく、たとえば夜間などは全くデータ通信が行われない。しかし、ラウンドトリップタイムの計測は、上記のようにデータ通信の有無に関わらず周期的に行われている。データ通信が行われない場合にも、ラウンドトリップタイムの計測のためにONUを常時通信可能な状態としておくことは電力を浪費することになる。そのため、ONUから省電力状態への移行を要求することにより、ONUを間欠的に省電力状態に遷移させる技術が検討されている。
 また、ONUからの上りデータがない場合に、そのようなONUに無駄な送信帯域を割当てず、スループットを向上するPONシステムが検討されている(特許文献1)。このPONシステムでは、予め設定された一定期間、ユーザデータがない状態をOLTが検知した時に、OLTはONUの登録を抹消し、当該ONU対して光リンクを一時的に停止する旨を通知する。その後、ONUには送信帯域が割り当てられず、リンクを維持するためのフレームの送信も抑制されるため、ONUはフレームの送信回数を減らすことができる。
特開2007-274534
 特許文献1に記載されたPONシステムでは、一定データを送信しないONUに対してリンクを切断するため、ONUの負荷を低減できる。しかし、ONUが上りデータの送信を再開する場合には、未接続のONUを発見するディスカバリ処理を再度行い、リンクを新らたに確立してONUを再登録する。そのため、例えば低ビットレートでの通信が継続している場合には、この通信方法は使用できない。また、OLTはONUとのリンクを切断してしまうためONUや上り通信回線自体に通信異常が発生した場合には、異常を検知することができない。さらに、OLTはONUの登録を抹消してしまうため、通信異常状態のONUは、ディスカバリ処理によっても発見されず、通信異常の発見が困難になる
 この発明の通信方法は、複数のONUを共通の光ファイバを用いてOLTに接続する光通信システムの通信方法であって、下記ステップ(a)~(e)を備えたものである。
(a) ONUが光送信器を休止する省電力状態に移行することをOLTへ通知し、
(b) この通知に基づきOLTが当該ONUの省電力状態を検知し、
(c) OLTが光送信器を休止中のONUに送信帯域を割当て、送信帯域通知を当該ONUに送信し、
(d) 送信帯域通知を受信したONUが、一時的に光送信器を起動するとともにOLTへ応答信号を送信し、再び省電力状態に移行し、
(e) OLTは、光送信器を休止中のONUに割当てた送信帯域を観測し、応答信号に基づいて、当該ONUが省電力状態であるのか、当該ONUとの通信に障害が発生したのかを検出する。
 また、他の通信方法は、複数のONUを共通の光ファイバを用いてOLTに接続する光通信システムの通信方法であって、下記ステップ(a)~(e)を備えたものである。
(a) ONUが光送信器を所定のスリープ期間休止するスリープモードに移行することをOLTへ通知し、
(b) この通知に基づきOLTが当該ONUのスリープモード移行を検知し、
(c) OLTがスリープ期間に省電力状態のONUに送信帯域を割当て、送信帯域通知を当該ONUに送信し、
(d) 送信帯域通知を割当てられたONUが、スリープモードから非スリープモードに復帰する場合には光送信器を起動し送信帯域で応答信号を送信する、一方、スリープモードを継続する場合には応答信号の送信を省略可能であり、
(e) OLTは、光送信器を休止中のONUに割当てた送信帯域を観測し、応答信号に基づいて、当該ONUが省電力状態であるのか、当該ONUとの通信に障害が発生したのかを検出し、スリープ期間においては応答信号に基づく障害検出を抑制する。
 この発明のONUは、光ファイバに接続され、受信を継続しながら送信を停止して消費電力を低減する省電力状態での動作が可能な光送受信器と、光送受信器の省電力状態への移行を制御するとともに、省電力状態で動作中にOLTから制御信号を受信した場合には、一時的に光送受信器の送信を有効に制御して応答信号を出力する制御装置と、を備える。
 この発明のOLTは、光ファイバに接続された光送受信器と、利用者側光回線終端装置の光送受信器が省電力状態で動作し送信停止中であっても、当該利用者側光回線終端装置に送信帯域を割当て、局側光回線終端装置の送受信器が受信した応答信号に基づき当該利用者側光回線終端装置との通信に障害が発生しているのか、省電力状態で動作中であるのかを判別する制御装置と、を備える。
 この発明の他のONUは、光ファイバに接続され、受信部による受信を継続しながら送信部を断続的に停止して消費電力を低減するスリープモードでの動作が可能な光送受信器、及びスリープモード中に送信部を断続的に停止する制御を行うとともに、スリープモード中の送信部の停止期間にOLTにより送信帯域が割当てられ、かつスリープモードを継続する場合に、OLTへの応答信号の送信を省略可能に構成され、送信部の周期的な停止期間の合間に送信帯域が割当てられた場合には応答信号を送信する制御装置を備える。
 この発明の他のOLTは、光ファイバに接続された光送受信器と、利用者側光回線終端装置の光送受信器がスリープモードで動作し送信停止中であっても、当該利用者側光回線終端装置に送信帯域を割当て、光送受信器の断続的な送信停止期間の合間に、スリープモード中の利用者側光回線終端装置に割当てた送信帯域を観測することにより、当該利用者側光回線終端装置との通信に障害が発生しているのか、当該利用者側光回線終端装置がスリープモードで動作中であるのかを判別する制御装置と、を備える。
 本発明にかかる通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置は、断続的な通信によるパワーセーブ動作において障害検出を行うことができる。
図1は、本発明の実施の形態における通信システムの構成示す構成図である。 図2は、本発明の実施の形態1における通信方法を示すシーケンス図である。 図3は、本発明の実施の形態1におけるOLTの通信制御を示すフローチャートである。 図4は、本発明の実施の形態1におけるONUの通信制御を示すフローチャートである。 図5は、本発明の実施の形態1における通信方法(障害発生時)を示すシーケンス図である。 図6は、本発明の実施の形態1における通信方法(電源切断時)を示すシーケンス図である。 図7は、本発明の実施の形態1における通信方法(変形例)を示すシーケンス図である。 図8は、本発明の実施の形態2における通信方法を示すシーケンス図である。 図9は、本発明の実施の形態2におけるOLTの通信制御を示すフローチャートである。 図10は、本発明の実施の形態2におけるONUの通信制御を示すフローチャートである。 図11は、本発明の実施の形態2における通信方法(障害発生時)を示すシーケンス図である。 図12は、本発明の実施の形態2における通信方法(電源切断時)を示すシーケンス図である。 図13は、本発明の実施の形態2における通信方法(変形例)を示すシーケンス図である。 図14は、本発明の実施の形態2におけるOLTの通信制御(変形例)を示すフローチャートである。
実施の形態1.
・ハードウェア構成
 図1は、本発明にかかるPONシステムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態のPONシステムは、OLT1と、ONU10-1~10-3と、を備える。OLT1とONU10-1~10-3はスプリッタ40を介して加入者線30で接続されている。スプリッタ40は、OLT1に接続する加入者線30をONU10-1~10-3の数に分岐する。また、ONU10-1は、端末20-1および20-2に接続されている。なお、ここではONUを3台とした例を示しているが、ONUの台数はこれに限らず何台でもよい。
 OLT1は、PONプロトコルに基づいてOLT側の処理を実施するPON制御部2と、ONU10-1~10-3から受信する上りデータを格納するためのバッファである受信バッファ3と、ONU10-1~10-3へ送信する下りデータを格納するためのバッファである送信バッファ4と、光信号の送受信処理を行う光送受信器5と、上りデータと下りデータを波長多重するWDM(Wavelength Division Multiplexing)カプラ(WDM)6と、ネットワークとの間でNNI(Network Node Interface)の物理インタフェース機能を実現する物理層処理部(PHY)7と、を備える。光送受信器5は、受信処理を行う光受信器(Rx:Receiver)51と、送信処理を行う光送信器(Tx:Transmitter)52と、を備える。
 ONU10-1は、PONプロトコルに基づいてONU側の処理を実施するPON制御部2と、OLT1への送信データ(上りデータ)を格納するためのバッファである送信バッファ(上りバッファ)12と、OLT1からの受信データ(下りデータ)を格納するためのバッファである受信バッファ(下りバッファ)13と、光送受信器14と、上りデータと下りデータを波長多重するWDM15と、端末20-1,20-2との間で、それぞれUNI(User Network Interface)の物理インタフェース機能を実現する物理層処理部(PHY)16-1,16-2と、を備える。
 光送受信器14は、送信処理を行う光送信器(Tx:Transmitter)141と、受信処理を行う光受信器(Rx:Receiver)142と、を有する。PHY16-1は、受信処理を行う受信部(Rx:Receiver)161-1と、送信処理を行う送信部(Tx:Transmitter)162-1と、で構成され、PHY16-2は、受信処理を行う受信部(Rx:Receiver)161-2と、送信処理を行う送信部(Tx:Transmitter)162-2と、を有する。
 なお、ONU10-1に接続される端末を2台としているが、端末の数はこれに限らず、何台でもよく、端末の数に応じた物理層処理部(PHY)を備える。また、図1では代表としてONU10-1の構成例を示したが、ONU10-2,10-3もONU10-1と同様の構成である。
 OLT1のPON制御部2は、従来のPONシステムと同様に、ONU10-1~10-3に対して送信時間帯が重ならないようにそれぞれ送信許可を与えるように上りデータの帯域割り当てを行い、ONU10-1~10-3の送信データの衝突を防いでいる。この帯域割り当ては、どのような方法を用いてもよいが、たとえば、「Su-il Choi and Jae-doo著,“HuhDynamic Bandwidth Allocation Algorithm for Multimedia Services over Ethernet(登録商標) PONs”,ETRI Journal,Volume 24,Number 6,December 2002 p.465~p.466」に記載されているDynamic Bandwidth Allocation Algorithm等を用いることができる。
 つぎに、本実施の形態のOLT1とONU10-1~10-3の全体動作を説明する。PON制御部2は、PHY7経由でネットワークから受信した下りデータ(下り通信データ)を送信バッファ4に格納する。OLT1からデータを送信する際には、PON制御部2が、送信バッファ4に格納されている下りデータを読み出して光送受信器5に出力し、光送受信器5のTx52が送信データを光信号としてWDM6へ出力し、WDM6が光送受信器5から出力される光信号に対して波長多重を行い、加入者線30経由でONU10-1~10-3へ下り信号として出力する。また、PON制御部2が、送信許可の指示を送信する送信帯域割当等の制御メッセージを送信する場合には、PON制御部2が生成した制御メッセージを光送受信器5に出力し、以下、下りデータと同様にONU10-1~10-3へ送信する。なお、図1のPONシステムでは、波長多重を行うためWDM6,15を用いているが、単一波長で通信する場合には、WDM6、15は必須ではない。
 ONU10-1~10-3では、OLT1から下り信号を受信すると、WDM15が下り信号を分離して光送受信器14へ出力し、光送受信器14のRx142が下り信号を電気信号の下りデータに変換してPON制御部2へ出力する。PON制御部2は、光送受信器14のRx142から出力された下りデータを受信バッファ13に格納する。PON制御部2は、受信バッファ13に格納された下りデータを読み出してそのデータの宛先に応じてPHY16-1,16-2の両方または片方に出力する。下りデータを受け取ったPHY16-1,16-2は、下りデータに対して所定の処理を実施して、自身が接続する端末20-1,20-2へ送信する。
 一方、ONU10-1~10-3から上りデータを送信する場合には、PON制御部11は、端末20-1,20-2からPHY16-1,16-2経由で取得した上りデータを送信バッファ12に格納する。そして、OLT1から与えられた送信帯域に基づいて送信バッファに格納した上りデータを読み出して光送受信器14へ出力する。光送受信器14のTx141は、上りデータを光信号(上り信号)に変換し、WDM15,加入者線30経由でOLT1に送信する。
 OLT1のPON制御部2は、ONU10-1~10-3から加入者線30,WDM6,光送受信器5のRx51経由で受信した上りデータを受信バッファ3に格納する。また、PON制御部2は、受信バッファ3に格納した上りデータを読み出して、PHY7経由でネットワークへ出力する。
 また、ONU10-1~10-3は、OLT1から制御メッセージについては、PON制御部2が、WDM15および光送受信器14のRx142経由で受信し、制御メッセージの指示に基づいた動作の実施、制御メッセージに対する応答の生成などを行う。
・パワーセーブ動作
 次に、通信システムの省電力動作の一例として、PONシステムのパワーセーブ動作について図2を用いて説明する。
(d1)-(d2) & (u1)-(u2) 通常運用状態での通信
 図2では、ディスカバリ等の処理が終了し、通常の通信状態(Normal mode)での通信が開始された後のシーケンスが示されている。図2ではONU10は1つのみ記載されているが、実際にはOLT1は複数のONU10と同様の方法で通信する。PONシステムでは、上り通信(uplink)は時分割多重通信により、送信帯域が複数のONU10に割当てられる。OLT1は、この時分割多重を制御するため、ONU10に送信帯域Bwを指定して通信を許可する許可信号(Grant)を送信する。送信帯域は送信時間ということもできため、言い換えれば、OLT1はONU10に送信時間を割当て許可信号を送信する。Grantは、各ONU10を識別できる情報、通信開始時間、及び通信終了時間(若しくは通信継続時間)を含む。
 ONU10は、このGrantで指定された指定帯域で上りデータ(Data)を送信する。OLT1は送信帯域Bwで上りデータを受信し、コアネットワーク側に存在する上位装置へのデータ中継を行うとともに、ONU10との通信障害についても検知する。ここで、OLT1は指定した送信帯域Bwに上りデータが送信されてこなかった場合、この送信帯域に対応するONU10に異常があったこと判定する。この通信障害監視については、後述する。
(d3)-(d8) & (u3)-(u8) 省電力状態での通信
 ONU10が省電力状態での通信が可能となったとき、もしくは省電力状態での通信が必要になったとき、ONU10はOLT1に省電力状態に遷移することを通知する。この通知はどのような要求信号を使用してもよいが、例えば、Dying_Gasp信号を送信する。
 この通知を受信すると、OLT1は当該ONU10が省電力状態に入ったことを検知し、当該ONU10への帯域割当てを所定の期間(sleep time)休止する。この通信方法は、sleep timeとして任意の値を設定可能であるが、1時間単位のような長期間ではリンクを正常に維持することが難しいため、例えば、ミリ秒のような短い期間を指定する。
 ONU10は、省電力状態に遷移すると、光送受信器14のTx141のレーザーパワーを切り、オフ状態に制御する。なお、このときONU10は、光送受信器14のRx142のパワーカットは行わず、OLT1からの制御信号や下りデータの受信は続ける。一方、OLT1も、省電力状態に移行したONU10にGrantを送信しないが、他の制御信号や下りデータは送信する。図2において、ONUシーケンスの右側にONU10のTx141の電源供給状態を"ON","OFF"で示した。省電力状態、すなわちスリープモードでは、その期間に断続的に電源のオンオフが繰り返される。"OFF"で示された期間は、Tx141のレーザーパワーを停止している停止期間である。断続的な停止期間と停止期間との間に、ONU10はTx141を起動し一時的な起動時間(Tentative wake-up time)を作り出す。"Sleep time"は予め定められた時間長であり、この例では帯域更新周期の開始時が基準となって停止期間の絶対的な時間を特定している。図2では"Sleep time"と"OFF"期間と一致していないが、これは上りデータを送信したONU10が次の帯域更新周期を待たずに供給電力をカットするためである。他の実施例ではこの例に限らず"Sleep time"と"OFF"期間とを一致させるようにしてもよい。
 OLT1は、各ONU10毎にsleep timeを計測し、sleep timeが経過したらONU10にGrantを送信する(d6)。このGrantは、省電力状態にあるONU10を一時的に起こすために送信される。ONU10は、この一時起動時間にOLT1からGrantを受信すると、省電力状態で動作中であっても一時的に光送受信器14のTx141にレーザーパワーを供給し、オン状態にする。なお、sleep timeの終了時間は分かっているため、ONU10はOLT1からの帯域割当の通知を待たずに電源をオン状態にすることも可能である。そして、ONU10は省電力状態を継続する場合には、上述(u3)で説明したようにスリープ要求を再送し、再び光送受信器14のTx141のレーザーパワーを切って省電力状態に移行する(u6)。
 OLT1は、省電力状態のONU10に割当てた帯域を観測し、正常に要求信号が送られてきたかを検知する。このとき、省電力状態のONU10から正常に信号が送られてこない場合には、アップリンクの通信路、若しくはONU10自体に障害が発生したと判断して、警報を発令する。この障害発生時の動作については、図5を用いて後述する。
(d9)-(d10) & (u9)-(u10) 省電力解除時の通信
 ONU10で、多量のデータ送信が必要な場合など、省電力状態の解除が必要な場合には、sleep time後の一時起動時間でONU10は、省電力状態の解除を要求する。この省電力状態の解除は、ONU10が特定の信号を送信することによって行ってもよいが、例えば、指定された帯域で有効な上りデータを送信することでも実現可能である。有効な上りデータを送信することで省電力状態の解除することにより、送信ビットが節約され送信データの帯域を有効に使用することができる。
 OLT1は、上述(d6)後の動作と同様、タイミング(d9)の後に省電力状態のONU10に割当てた帯域を観測し障害検知を行う。同時に、ONU10が省電力要求を送信してきた場合には、OLT1は当該ONU10に対する省電力状態での運用を継続するが、上述のように省電力状態の解除要求を受信した場合には、省電力状態での運用を解除し、当該ONU10に対して通常運用での動作を開始する。
 上述の動作によれば、OLT1はONU10に対するリンクは維持したままで、ONU10による省電力動作を許容することができ、同時に、通常はデータを送信してこないONU10との通信に障害が発生した場合でも早期に障害の発生を検知できる。さらにONU10は、光送受信器14のTx141に対するレーザーパワー供給を停止して消費電力を抑えるとこが可能であるとともに、障害監視のために必要な通信においても、間引かれたGrantにより帯域更新周期の度に何らかの信号送信を強要される場合と比べて、消費電力を抑えることが可能となる。
 送信帯域割当周期とは、OLT1が送信帯域の割当てを通知し、当該ONU10に送信帯域を割当てる周期である。上述の間引かれたGrantは、省電力状態のONU10には通常状態で動作していたときに比べ、長い送信帯域の割当て間隔を持ったGrantである。
 省電力状態のONU10に割当てる送信帯域割当周期は、どのように決めてもよいが、一例としては、送信帯域割当周期がMPCP(Multi-Point Control Protocol)タイムアウト警報の検出時間Tと一致した値を持つようにすることができる。送信帯域割当周期をMPCPタイムアウトの時間よりも長く設定すると、スリープモード中のONU10がこのMPCPタイムアウトに引っかかってしまうため、OLT1は送信帯域割当周期をMPCPタイムアウトの時間以下に設定する。また、ONU10に複数回(n回)の送信期間を与え、一回も受信できなかった場合に、MPCPタイムアウトと判定すると無用な警報等が抑止される。そのため、例えば、MPCPタイムアウトTミリ秒と設定されている場合に、OLT1は送信帯域割当周期をT/nミリ秒に設定する。
 また、OLT1とONU10の間のリンクは維持されるため、ユーザ端末同士が通信を継続中であっても、消費電力を低減できる。
・OLTの通信制御詳細
 次に、図3を用いてOLT1の通信処理の詳細について説明する。
 図3はOLT1のPON制御部2(PON controller)の処理を示している。まず、PON制御部2は、ディスカバリによって発見されリンクが張られているONU10のリスト(ActiveONUList)に基づき、アップリンクの送信帯域を割当てるべきONU10を特定し、各ONU10に送信帯域を割当てる(ステップS1)。このとき例えば、1周期の送信帯域をN分割したとき、対応するONU10の識別子IDは、idbw = ONU[bw], bw = 1,2, ... , N で与えられる。
 ActiveONUListでは省電力中のONU10は除外されているため、PON制御部2はこのリストを参照することにより省電力動作中のONU10には送信帯域を割当てないように動的帯域割当てを行うことができる。
 次に、PON制御部2は、Grant及び下りデータをフレームにまとめ、送受信器5を制御して、このフレームをONU10に送信する(ステップS2)。Grant及び下りデータは、同一のフレームで送っても良いし、別々のフレームで送信することも可能である。
 続いて、PON制御部2は、Rx51が受信した各送信帯域の受信処理を以下のステップで行う(ステップS3)。
 まず、PON制御部2は、次の送信帯域に割当てたONU10を特定する(ステップS4)。このとき、送受信器5のRx51はアップリンクの受信を同時並行で行っており、PON制御部2は、Rx51が受信したデータを処理のため内蔵メモリ等に読み込む(ステップS5)。PON制御部2は、受信した上り信号の種類を調べ(ステップS6)、有効な信号がない場合にはステップS17に、省電力状態の要求信号(Dying_gasp)を検出した場合にはステップS12、その他のデータ信号等である場合には、ステップS7の処理を行う。
 ステップS7においてPON制御部2は、受信データの送信元ONU10を調べ、このONU10がActiveONUListに含まれていない場合には、ActiveONUListに追加する。ここでOLT1は省電力状態のONU10が通常のデータを送信してきたことにより、当該ONU10が省電力状態を解除したことを検知する。
 受信データには、ONU10からの帯域要求が含まれており、PON制御部2は受信フレームから帯域要求を読み取り、ステップS1における次回の帯域割当てのために当該ONU10の識別子(ID)と対応させてこの帯域要求をメモリに記録する(ステップS8)。帯域要求は、ONU10の送信バッファ12におけるデータの蓄積量(占有度)などによって表現されている。ONU10が送信バッファ12の占有度に関するレポートを送信し、このレポートに基づきOLT1が動的帯域割当てを行う方法をSR-DBA(status reporting DBA)という。なお、帯域要求は明示的に行う必要はなく、OLT1がONU10に割当てた帯域に対して、実際にONU10が送信したデータ量を観測することにより、割当てる帯域を調整することも可能である。これをTM-DBA(traffic-monitoring DBA)という。ステップS8においてこのTM-DBAにおけるトラフィック観測を行ってもよい。
 次に、PON制御部2は受信バッファ3に保持された受信データを、物理層処理部7を介してネットワークへ送信する(ステップS9)。
 PON制御部2は、各ONU10とのアップリンクの通信状態を常に監視している。もし、ONU10がフレームを送信するタイミングで期待されるフレームを受信できなかった場合、LOSi(Loss of signal for ONUi)という警報信号を出力する。この警報信号はネットワーク管理に必要な警報であり、LOSiが発生した場合にはネットワークオペレータに通知され、ネットワークオペレータはこのLOSiに基づき障害対策を行う。ステップS10はこのLOSiのための障害カウントをクリアする処理である。LOSiはi番のONU10から例えば信号を4回連続で受信できなかった場合に真の障害と判断され、出力されるものであり、障害カウントはこの不受信の連続数をカウントしている変数である。PON制御部2は、LOSiのカウントのカウントアップを後述するステップS17で行う。
 ステップS10の処理が終了すると、PON制御部2は次の帯域を処理するためステップS3のループ処理の最初に戻る。このループ処理は、bw番目の帯域に対する処理を1~N番目まで繰り返す処理である。
 次に、ステップS6で、OLT1がスリープ要求(Dying_Gasp)信号を受信した場合の処理について説明する。
 この実施の形態では、Dying_Gaspは2種類ある。1つはONU10がリンクを切って電源をオフにする場合に出力するDying_Gasp(0)と、もう1つはONU10がスリープ要求として出力するDying_Gasp(1)である。Dying_Gasp信号は、Dying_Gasp信号であることを示す信号識別子、ONU10のID、スリープ要求であることを示すフラグ(オプション)を含むフォーマットを有している。PON制御部2は、ステップS12で受信したDying_Gasp信号がスリープ要求であるかを調べ、スリープ要求すなわち、Dying_Gasp(1)信号である場合にはステップS13の処理に進む。
 ステップS12にて、PON制御部2は当該ONU10が省電力状態に移行したことを検知し、これを記録する、具体的には、送信帯域の割当て対象リストであるActiveONUListから当該ONU10のIDを除外する処理を行う。また、PON制御部2は省電力期間の計測をするために、i番目のONU10に対してsleep timeのタイマをセットする(ステップS14)。このsleep timeは、OLT1が予め記憶している時間、あるいは通信状況に基づいて計算した時間でもよいし、ONU10から具体的な時間を取得してこの値をセットしてもよい。また、sleep timeの測定は、省電力期間を判別できるものであればどのような方法を用いてもよく、所定の経過時間に従ってカウントアップ、カウントダウンするような相対的な時間経過の測定や、クロックの絶対時間を指定した絶対的な時間観測によって行うことも可能である。次にPON制御部2は、上述の上りデータ受信処理(ステップS9)に移行し、同様の処理を繰り返す。なお、Dying_Gasp(1)とともに上りデータも同一帯域(或いはフレーム)で送信できる仕様とすると、ONU10が送信バッファ12に微少なデータ断片のみを残してデータ送信が完了する状況でも、即座に省電力状態に入ることができるという利点がある。一方、省電力状態が可能な状況では、ONU10は上りデータを持っていない場合も多いので、スリープ要求を受け取った場合には、このフレームの上りデータの処理をしない仕様としても構わない。
 一方、ステップS12にて、Dying_Gasp(0)を受信したと判定した場合には、PON制御部2は、ONU10の電源が切られた状態となったことを検知し(ステップS15)、当該ONU10をActiveONUListから外すとともに、当該ONU10に割当てていたリンクの情報とリソースを削除する処理を行う。このとき、OLT1は、ONU10にはリンクが切断されたこと、リンク情報など全ての情報を廃棄するように指示するDeactivate信号(Deactivate_ONU-ID)を送信する。ONU10はこの信号を受け、送受信器14の電源をオフにする。この処理が終了すると、PON制御部2は再び次の帯域を処理するためステップS3の処理に戻る。
 ステップS17は、ステップS6にてONU10に割当てられた送信帯域で、有効な信号が受信されなかった場合の処理であり、PON制御部2はこの処理により通信障害を検知する。ここで、単に送受信器のTx141の電源をオフにして省電力状態にしているだけの省電力モードを備えるシステムでは、省電力状態のONU10は当然上りデータ等を送信してこないためOLT1は障害検知をすることができない。この実施の形態では、省電力動作中のONU10に対しても、OLT1が一時的に送信帯域を割当て、ONU10もsleep time後に一時的にTx141の電源をオンにしてフレームを送信する。そのため、ステップS6で、割当られた送信帯域にONU10がフレームを送信してくるか否かで上りリンクの通信障害を検知できる。ここで、当該帯域でフレームが受信できなかった場合、PON制御部2は当該i番のONU10に対する不受信回数をカウントする変数LOS[i]をカウントアップする。
 PON制御部2は、変数LOS[i]が予め定められた規定数LOS_Max(例えば4)に達した場合には、当該ONU10の上りリンクに通信異常が発生したと判断し、上述の警報LOSiを発する(ステップS19)。また、PON制御部2はステップS16の処理に移行し、リンクを切断する。一方、変数LOS[i]がLOS_Maxに達していない場合、PON制御部2は警報は出さずに、次の帯域に対する処理(ステップS3)に戻る。
 以上の処理を1つの帯域更新周期内の全ての送信帯域に行った後、PON制御部2は省電力動作中の各ONU10について、sleep timeが満了しているONU10がないかを調べる。もし、sleep timeが満了しているONU10が見つかった場合には、一時的に当該ONU10を起動するため、そのIDをActiveONUListに追加する(ステップS20)。この処理により、ステップS17~19で説明した省電力動作中のONU10の監視動作が可能になる。また、ONU10が省電力状態を継続する場合には、ステップS1で割当てられた送信帯域を使ってスリープ要求を送り返すため、ONU10はリンクを維持しながら再び消費電力を抑えた動作を継続することができる。
 次にPON制御部2は、次の帯域更新周期の動作を継続するかを判断し、続ける場合には、ステップS1の処理に戻り、上述の動作を再開する。
・ONUの通信制御詳細
 次に、図4を用いてONU10の通信処理の詳細について説明する。
 図4はONU10のPON制御部11が実行する通信制御を示すフローチャートである。通信制御は大きくダウンリンク受信制御(ステップS30-S33)とアップリンク送信制御(S35-S51)に分かれる。
ダウンリンク受信制御
 まず、ダウンリンクの受信制御について説明する。光受信器14のRx142は、OLT1から送信されるダウンリンクフレームを受信し、受信バッファ13にこの受信データを記録する。PON制御部11は、光受信器14が受信したフレームを観測し(ステップS30)、フレームに含まれるヘッダ情報からアップリンクの送信帯域情報を抽出する(ステップS31)。送信帯域情報は、割当て対象のONU10が特定できる情報と、送信開始時間、送信終了時間が特定できる情報を持っている。
 PON制御部11は、また、受信フレームからペイロード部分を抽出し、上位層処理手段へ出力する(ステップS32)。この処理は、ONU10に接続されている端末20-1,2に合わせた上位プロトコルで受信したデータを送信するための処理である。次に、PON制御部11は、受信制御を終了し電源を切るかを判断し、電源を切らず受信を継続する場合はステップS30に戻り、上述の受信制御を継続する。
アップリンク送信制御
 次に、アップリンクの送信制御について説明する。
 PON制御部11は、ステップS35で、OLT1から送信帯域の割当て(Grant)を待つ。送信帯域が割当てられたら、PON制御部11は光送受信器14のTx141に電力を供給し、レーザーパワーオンの状態にする(ステップS36)。この処理は、特に省電力状態から復帰するときに必要であるため、通常の運用状態で動作中で既にTx141がオン状態であるときは改めて、電力供給を開始する処理を行う必要はない。
 ここで、PON制御部11は、実際の送信帯域の開始時間前であって、光送受信器14のTx141が起動し光出力が安定するまでの時間以上前に、Tx141に対して電源供給を指示する。この実施の形態の帯域更新周期は非常に短いサイクルであり、省電力状態から一時的起動状態(Tentative wake-up)への移行は非常に短い時間で、かつ、頻繁に行われる。従って、Tx141の起動時の光出力の挙動を考慮せずに、送信時間の直前で起動した場合には、OLT1において受信不能、エラー率の悪化などの影響がでるためである。従って、図4に示されるように送信帯域が割当てを検知したら、PON制御部11はTx141の電源供給を開始する。この後、他のフレーム作成作業などを行い、PON制御部11が実際にフレームの送信をするのはこの後のステップS46である。
 次に、PON制御部11は、送信バッファ12のデータ蓄積状態や端末20-1、20-2等の下流側の接続機器の動作状態を検知し(ステップS37)、省電力状態(Sleep mode)に遷移するかどうかを判断する(ステップS38)。例えば、OLT1は送信バッファのデータ蓄積状態が、データがない状態であるか、所定の期間、所定のしきい値以下の少ないデータ量の蓄積しかなく余裕があると判断したときに、省電力状態に遷移すると判断する。省電力状態であるときにはアップリンクは維持されるため、ONU10は、送信バッファの容量や通信回線の伝送速度に対して、比較的小さい帯域のデータは送信できる点に注目すべきである。また、ONU10が省電力状態に遷移する判断基準の他の例としては、(1)各端末の電源状態とオン状態の台数や通信応答がある端子の数、(2)接続する端末(ここでは端末20-1,20-2)の全てが省電力状態に入ったことを、例えばIEEE802.3azに規定されるLPI受信などの方法で検出したか否か等がある。
 省電力状態に遷移しないと判断した場合、PON制御部11は送信バッファに蓄積されている送信データに基づき、送信ペイロードを作成する(ステップS39)。このペイロードは上位層で処理及び作成されたデータである。続いて、次の周期の送信帯域を確保するため、送信バッファ12のデータ占有率等を基にステータスレポートが作成される(ステップS40)。これはPON制御部11が、例えば、OMCI(Optical Network Unit Management and Control Interface)等のプロトコルによって指示されたバッファサイズに対して、実際にバッファに蓄積されているデータの割合で表わされ、この割合を所定の符号化方法で符号化し、レポートを作成する。ステータスは、アップリンクの通信トラヒックが分かるようなものであれば、どのような基準で作成されてもよい。また、TM-DBAを使用する場合には、このレポートは必須ではない。
 一方、省電力状態に遷移する場合、PON制御部11は後述のステップS48で省電力状態に移行するため、省電力状態に遷移するという情報(フラグ)を内蔵メモリに記録する。また、PON制御部11はスリープ要求であるDying_Gasp(1)信号を生成する(ステップS51)。
 ステップS41にて、PON制御部11はONU10の電源を切るかどうかを判断する。電源を切る場合、PON制御部11は送信フレームの中にDying_Gasp(0)信号を挿入しOLT1に送信するため、この信号を作成する(ステップS42)。電源を落とすと、Rx14も含めて送受信器14の電源供給が止められ、ONU10は送受信ともに不可能な状態になる。従って、PON制御部11が実際に電源を落とすのは必要な送信処理を終了したステップS49以降になる。
 PON制御部11は、上述のステップで作成した各種信号をまとめて、これらを収容するフレームを作成する(ステップS44)。このとき、PON制御部11はフレームヘッダーを作成して(ステップS43)、そのフレーム内に挿入する。
 フレームの作成が終了すると、PON制御部11はステップS31で抽出した送信帯域情報で指定された送信開始時間まで待って(ステップS45)、フレームの送信を開始する(ステップS46)。フレームの送信が終了すると、PON制御部11は省電力状態(Sleep mode)に遷移するか否かを判断し(ステップS47)、省電力状態に遷移する場合にはTx141の電源供給を止める(ステップS48)。具体的には、PON制御部11は光送受信器14のTx141に対してパワーダウンまたはシャットダウンなどの電気信号を送信することによりTx141を省電力状態とすることができる。この処理により、PON制御部11はスリープモードにおける断続的な送信停止期間(送信部の停止期間)を作りだす。
 最後に、PON制御部11は電源をオフするか、次の送信のために待機するかを判断し(ステップS49)、電源をオフする場合には送受信器14等の電源を切って処理を終了する。ここで、単発的な通信エラーによりDying_Gasp(0)信号が正しくOLT1に伝達されない場合、無用の警報がOLT1で頻発してしまうため、電源オフ前に複数回Dying_Gasp(0)信号を送信してから電源をオフするようにすることができる。この場合、PON制御部11はステップS49でDying_Gasp(0)信号の送信回数をカウントし、所定回数に達するまではステップS35の処理に戻るようにする。
 一方、電源オフしないと判断した場合には、PON制御部11はステップS35に戻り、上述と同様の処理を繰り返す。
・障害発生時の動作
 次に、通信障害が発生した場合の通信システムの動作について説明する。
 図5は、省電力状態で動作中のONU10に、通信障害が発生した場合を示すシーケンス図である。ONU10は送信タイミング(u3)後に省電力状態に移行し、この後、端末20-1から送信データを大量に受信しタイミング(u4)後に省電力状態から復帰しようとする。ここで、上り通信路30で通信障害が発生してしまうと、データの送信が行えなくなる。OLT1は、ONU10が光送受信器14のTx141の電源をオフしデータを送信してこないことを知っているため、OLT1からみればアップリンク通信が一時的に無くても異常はなく、OLT1は異常が発生していることは検知できない。しかし、この実施の形態の通信システムでは、sleep time中は当該ONU10の上り通信は抑止しながら、一方でsleep time後(d6)に一時的に送信帯域を省電力状態のONU10に割当てる。そのため、OLT1は、(d6)で割当てた帯域を観測することにより、省電力状態のONU10とのリンクに通信異常(Loss of Signal for ONUi)がないかを検知することができる。
 図5の例では、タイミング(d6)で割当てた帯域Bwで当該ONU10からの応答信号がない場合、続くタイミング(d7)でも同ONU10に帯域Bwを割当て、合計2回の帯域観測を行い、2回目の帯域の観測結果でLOSi警報を出力している。なお、この帯域割当ては連続する帯域更新周期で割当てる必要はなく、間欠的に送ってもよい。また、観測する回数も任意の数を設定することができる。
 警報LOSiを出力したOLT1は、当該ONU10とのリンクを切断し、この旨をDeactivate_ONU-IDを3回出力して、ONU10に知らせる。Deactivate_ONU-IDを受け取ったONU10は、リンクの切断を検知し、リンクに関して保持していた情報を破棄して、データ送信を中止しなければならない。この後、ONU10はOLT1からの通信待ちの状態(standby mode)に移行する。
 リンクが切断された後、ONU10がOLT1との間で再接続するためには、ONU10はOLT1から送信されるディスカバリ要求に応答し、自己をOLT1に登録する。OLT1は、ディスカバリによってONU10を登録し、リンクを確立するまで送信帯域を当該ONU10に割当てない。
・電源オフ時の動作
 続いて、ONU10が電源オフするときの動作について説明する。
 図6は、ONU10が省電力状態後に電源オフする場合を説明するシーケンス図である。タイミング(u8)まで、ONU10は省電力状態での動作をしているが、例えば、ユーザがONU10の電源を切る操作をした場合などで、ONU10に電源オフの動作開始をする必要が生じる。このとき、ONU10が省電力状態からすぐに電源を切ってしまうと、OLT1はこれを検知できずにLOSiを発してしまうことになる。そこで、ONU10は、sleep time後の帯域割当てまで待って(d9)、OLT1にDying_Gasp(0)信号を送信し(u9)、その後に電源を切る。
 一方、OLT1もDying_Gasp(0)信号を受信したことで、ONU10との間に通信障害が発生したり、スリープ状態から復帰していないことを認識できるため、無用の警報出力を防ぐことができる。
・Sleep timeの可変設定とAcknowledgement
 図7は、省電力状態のsleep timeをシグナリングにより決定する通信方法のシーケンスを示している。ONU10は、スリープ要求を出力するときに、自己の通信状態に応じて設定したsleep timeを指定してOLT1に出力する。例えば、ONU10は、上りのデータが全くない時はsleep timeを長く、非常に小さい帯域若しくは断続的な通信が続く場合にはsleep timeを短く設定する(しかし、省電力状態には遷移する)など、ONU10の通信状態に応じてsleep timeを変更してスリープ要求を出力することができる(u3)。
 一方、OLT1も、ONU10の要求と最大遅延条件などネットワーク条件に応じてsleep timeを設定することができる。このOLT1は、ONU10からスリープ要求を受信すると、スリープ状態を許可可能かを判断し、また、要求されたsleep timeを考慮しつつ、許可可能なsleep timeを決定し、このsleep timeとともにスリープ要求に対する肯定応答信号(Acknowledgement)を送信する(d4)。なお、OLT1は肯定応答信号と一緒に当該ONU10に対する送信帯域割当てを通知しなくともよい。
 ONU10は、肯定応答信号を受信するまで省電力状態に移行せず、肯定応答信号を受信してから省電力状態に移行する。このように、肯定応答信号を待つことにより、OLT1との間で状態の誤認が生じなくなり、OLT1が誤って警報を発するというような事態を抑制することができる。また、ONU10は許可されたsleep timeの間、省電力状態で動作することができるため、通信状況に応じて消費電力の低減と通信のバランスを適切に調整することができる。
 なお、上述の説明では、ONU10とOLT1の両方がsleep timeを送信したが、sleep timeを調整可能にするためには、どちらかの装置のみがsleep timeを送信するようにしてもよい。また、通信システムは肯定応答信号がないシーケンスを使用することも可能である。
実施の形態2.
 実施の形態2は、省電力状態(スリープモード)のONU10にも送信帯域を割当て、スリープ中のアップストリームの遅延を低減する実施の形態である。通信システムのハードウェア構成は、図1で説明した上述の通信システムと同様である。
 図8は、この実施の形態の通信方法を示したシーケンスである。図8において、OLT1の送信タイミング(d4),(d5),(d7),(d8)を見ると分かるように、この実施の形態では、図2のシーケンスと異なり、OLT1はスリープモードのONU10に対しても送信帯域を割当てる。従って、ONU10はsleep timeの終了を待たずに、スリープモードを解除し、通常モードに遷移して上りデータの送信を再開することができる。
 一方、警報監視の点では、スリープモードのONU10は自己の判断でフレームを送信したり、しなかったりするため、工夫が必要である。そのため、OLT1は、スリープモード中のONU10に割当てた送信帯域は観測するが、警報監視のためのLOSiのカウントをマスクし、この送信帯域で有効な信号を受信できなかったとしても、警報を出力しないように制御を行う。図8の左側にLoss of Signalの警報監視状態を"ON"(監視有効)と"MASK"(監視無効)が記載されている。この図より、sleep time中でLoss of Signalの警報監視が"MASK"されていることが分かる。
・OLTの通信制御詳細
 次に、図9を用いてOLT1の通信処理の詳細について説明する。
 図9はOLT1のPON制御部2の処理を示している。図9において、図3と同一の符号は図3と同一又は相当の処理を示している。図3ではPON制御部2はステップS1やステップS13で省電力状態のONU10には、送信帯域を割当てないように制御した。一方の図9の制御では、PON制御部2はステップS60でスリープモードのONU10も含めて送信帯域を割当てる。なお、スリープモードで動作中のONU10は必要な送信帯域が小さいと思われるため、PON制御部2は通常モードのONU10に比べて少ない送信帯域を割当てる。
 ステップS61では上り信号の種類を識別するが、PON制御部2はDying_Gasp(1)信号の代わりに、PLOAM(Physical Layer OAM Operations, Administrations and Maintenance)メッセージによるスリープ要求を検知する。スリープ要求には、ONU10を特定可能な識別子(当該ONU10とのリンクの識別子でも可)、PLOAMメッセージがスリープ要求であることを示すメッセージ種別の識別子が含まれている。なお、スリープ要求は実施の形態1と同様にDying_Gasp(1)信号であってもよい。受信した上り信号にスリープ要求が含まれていた場合、PON制御部2はステップS13で当該ONU10がスリープモードに移行したことを検知するが、このとき上述のように当該ONU10を送信帯域の割当て対象から除外する必要はない。
 また、ステップS61で帯域bwにおいて、有効な受信信号がないと判定した場合には、PON制御部2はステップS62で、その帯域に割当てられたONU10がスリープモードであるかどうかをタイマtiを調べることによって検知する。そして、スリープモードであると判定した場合には、PON制御部2は警報処理(ステップS17~19)をマスクし、ステップS11に移行して次の送信帯域の処理を行う。
 OLT1は以上のように、スリープモードのONU10に送信帯域を割当てながら、スリープモード中のONU10には、フレームの送信をしないことを許容し、障害監視の誤報を防ぐ手段を備えている。
・ONUの通信制御詳細
 次に、図10を用いてONU10の通信処理詳細について説明する。
 図10はONU10のPON制御部11が実行する通信制御を示すフローチャートである。図10において、図4と同一の符号は図4と同一又は相当の処理を示している。図10の通信制御において、ONU10はスリープモードで送信帯域が割り当てられても、スリープモードではその送信帯域を使ってデータを送信しない(ステップS70、S71)。そのため、ONU10はTx141を起動する必要がなく消費電力を節約できる。また、ステップS70でPON制御部11は送信データがあるか否かを判断し、スリープモードであっても送信データがある場合には、ステップS36以降の送信処理を実行する。このため、図10に記載の通信方法を採用するONU10では、sleep timeの満了前にスリープモードを解除し、スリープモード中の送信遅延を低減することができる。
 ステップS72では、PON制御部11は、図4のDying_Gasp(1)信号の代わりに、PLOAM Messageを使ったスリープ要求を作成する。一方、ステップS73では、電源オフ時のDying_Gasp信号として通常のDying_Gasp信号が作成される。
・障害発生時の動作
 次に、通信障害が発生した場合の通信システムの動作について説明する。
 図11は、省電力状態で動作中のONU10に、通信障害が発生した場合を示すシーケンス図である。スリープモード中のタイミング(d1),(d2),(d5),(d6)では、障害監視がマスクされ、LOSiは誤検知されない。一方、ONU10の送信タイミング(u4)後にアップリンクで障害が発生したとき、OLT1の送信タイミング(d6),(d7)で割当てた送信帯域BwでOLT1はLOSiの障害を検知し、警報LOSiを出力する。
・電源オフ時の動作
 続いて、ONU10が電源オフするときの動作について説明する。
 図12は、ONU10が省電力状態後に電源オフする場合を説明するシーケンス図である。タイミング(u8)まで、ONU10は省電力状態での動作をしているが、例えば、ユーザがONU10の電源を切る操作をした場合などで、ONU10に電源オフの動作開始をする必要が生じる。このとき、ONU10が省電力状態からすぐに電源を切ってしまうと、OLT1はこれを検知できずにLOSiを発してしまうことになる。そこで、ONU10は、sleep time後の帯域割当てまで待って(d9)、OLT1にDying_Gasp信号を送信し(u9)、その後に電源を切る。
 一方、OLT1もDying_Gasp信号を受信したことで、ONU10との間に通信障害が発生したり、スリープ状態から復帰していないことを認識できるため、無用の警報出力を防ぐことができる。
・Sleep timeの可変設定とAcknowledgement
 図13は、図7と同様に省電力状態のsleep timeをシグナリングにより決定する通信方法のシーケンスを示している。ONU10は、スリープ要求を出力するときに、自己の通信状態に応じて設定したsleep timeを指定してOLT1に出力する。例えば、ONU10は、上りのデータが全くない時はsleep timeを長く、非常に小さい帯域若しくは断続的な通信が続く場合にはsleep timeを短く設定する(しかし、省電力状態には遷移する)など、ONUの通信状態に応じてsleep timeを変更してスリープ要求を出力することができる(u3)。
 一方、OLT1も、ONU10の要求と最大遅延条件などネットワーク条件に応じてsleep timeを設定することができる。このOLT1は、ONU10からスリープ要求を受信すると、スリープ状態を許可可能かを判断し、また、要求されたsleep timeを考慮しつつ、許可可能なsleep timeを決定し、このsleep timeとともにスリープ要求に対する肯定応答信号(Acknowledgement)を送信する(d4)。なお、OLT1は肯定応答信号と一緒に当該ONU10に対する送信帯域割当てを通知しなくともよい。
 ONU10は、肯定応答信号を受信するまで省電力状態に移行せず、肯定応答信号を受信してから省電力状態に移行する。このように、肯定応答信号を待つことにより、OLT1との間で状態の誤認が生じなくなり、OLT1が誤って警報を発するというような事態を抑制することができる。また、ONU10は許可されたsleep timeの間、省電力状態で動作することができるため、通信状況に応じて消費電力の低減と通信のバランスを適切に調整することができる。
 なお、上述の説明では、ONU10とOLT1の両方がsleep timeを送信したが、sleep timeを調整可能にするためには、どちらかの装置のみがsleep timeを送信するようにしてもよい。また、肯定応答信号がないシーケンスも使用することも可能である。
・PLOAM Messageによるスリープモードの明示的な解除
 上述の実施の形態1及び2では、省電力状態(スリープモード)から通常状態に復帰する場合、ONU10は割当てられた帯域でスリープ要求を伴わないデータ送信を実行する。OLT1はこのデータ送信を受信することによって、当該ONU10が通常状態に移行したことを検知するが、ONU10及びOLT1は、この省電力状態(スリープモード)をPLOAM Messageを用いた明示的なスリープ解除要求を用いて実行することもできる。図14のフローチャートは、この明示的なSleep解除要求を処理するOLT1の通信制御を示している。 図14において、図9と同一の符号は、図9と同一又は相当の処理を示している。
 図14のステップS62は、OLT1が受信したスリープ要求が遷移要求であるのか、解除要求であるのかを判別する処理である。PLOAM Messageのフォーマットは、どのようなものでも構わない。例えば、スリープ要求は、ONU10を特定可能な識別子(当該ONU10とのリンクの識別子でも可)、PLOAMメッセージがスリープ要求であることを示すメッセージ種別の識別子、及び、遷移/解除のいずれかを示すフラグを含む。このフラグは、スリープ要求がスリープモードへの遷移を要求しているのか、解除を要求しているのかを示すフラグである。また、他の例としては、フラグの代わりに、メッセージ種別の識別子を遷移/解除とで区別可能に割当てる方法も考えられる。このように明示的にスリープモードの解除を行うことにより、より確実にスリープモードの遷移と解除をONU10とOLT1の両者が認識できるため、処理がより確実になる。また、スリープモードの解除に対するAcknowledgement信号を返信するハンドシェイク方法を採用すれば、通信システムの確実性がさらに向上する。
 以上、この発明の実施の形態について説明した。この発明はこれらの実施の形態に限定されるものではなく、この発明の主旨に包含されるかぎりどのような変形が行われてもよい。例えば、この通信方法が適用される通信システムは、PONシステムである必要はなく。アクティブ素子を用いた光通信システムにも適用することができる。また、光通信に限らず、端末間を電気信号を用いて通信する通信システムに適用することも可能である。
 この発明の通信システム、或いは通信方法は、第1に消費電力を抑えることができる優れた通信システムである。従って、上述の実施の形態から障害監視機能を除いたとしても使用可能であり、その場合でも消費電力を抑えることができるという発明の効果を奏する。また、第2の付加的効果として、消費電力を抑えた通信システムでリンクを維持しながら障害監視を行うこともできるという特長がある。
 この発明は、省電力化が必要な通信方法、通信システムに適している。
 1 OLT
 2 PON制御部
 3,13 受信バッファ
 4,12 送信バッファ
 5,14 光送受信器
 6 WDM
 7 PHY
 10-1~10-3 ONU
 11 PON制御部
 20-1,20-2 端末
 30 加入者線
 40 スプリッタ
 51,142,161-1,161-2 Rx
 52,141,162-1,162-2 Tx

Claims (26)

  1.  複数の利用者側光回線終端装置(以下、ONUという)を共通の光ファイバを用いて局側光回線終端装置(以下、OLTという)に接続する光通信システムの通信方法であって、下記ステップ(a)~(e)を備えたことを特徴とする通信方法、
    (a) 前記ONUが光送信器を休止する省電力状態に移行することを前記OLTへ通知し、
    (b) この通知に基づき前記OLTが当該ONUの省電力状態を検知し、
    (c) 前記OLTが前記光送信器を休止中の前記ONUに送信帯域を割当て、送信帯域通知を当該ONUに送信し、
    (d) 前記送信帯域通知を受信した前記ONUが、一時的に前記光送信器を起動するとともに前記OLTへ応答信号を送信し、再び省電力状態に移行し、
    (e) 前記OLTは、前記光送信器を休止中の前記ONUに割当てた送信帯域を観測し、前記応答信号に基づいて、当該ONUが省電力状態であるのか、当該ONUとの通信に障害が発生したのかを検出する。
  2.  前記OLTは、前記ステップ(e)において当該ONUが省電力状態であることを検出した場合に、当該ONUとの論理リンクを維持し、当該ONUとの通信に障害が発生したことを検出した場合に、前記論理リンクを解放することを特徴とする請求項1記載の通信方法。
  3.  前記OLTは、省電力状態に移行した前記ONUに対する送信帯域割当周期を、省電力状態に移行する前と比べて間引くことを特徴とする請求項1に記載の通信方法。
  4.  前記ステップ(e)において、前記OLTは前記応答信号に基づいて、
     当該ONUが省電力状態から復帰した状態、
     省電力状態、
     当該ONUとの通信に障害が発生した状態
    の少なくとも3状態を、前記光送信器を休止中の前記ONUに割当てた送信帯域を観測することにより検出することを特徴とする請求項1~3のいずれかに記載の通信方法。
  5.  前記ステップ(a)において、前記ONUはDying Gasp信号に前記ONUが電源供給停止状態か、前記省電力状態かを識別する付加情報を付加し、省電力状態への移行を前記OLTへ通知することにより、前記OLTが当該ONUが電源供給停止による停止状態であるのか、通信障害状態であるのかを判別することを特徴とする請求項1~4のいずれかに記載の通信方法。
  6.  前記ステップ(c)において、前記OLTは、前記ONUが送信帯域通知を受信してから前記光送信器が休止状態から送信可能になるまでの時間以上の間隔を空けて、前記送信帯域を指定することを特徴とする請求項1~5のいずれかに記載の通信方法。
  7.  複数の利用者側光回線終端装置(以下、ONUという)を共通の光ファイバを用いて局側光回線終端装置(以下、OLTという)に接続する光通信システムの通信方法であって、下記ステップ(a)~(e)を備えたことを特徴とする通信方法、
    (a) 前記ONUが光送信器を所定のスリープ期間休止するスリープモードに移行することを前記OLTへ通知し、
    (b) この通知に基づき前記OLTが当該ONUのスリープモード移行を検知し、
    (c) 前記OLTが前記スリープ期間に前記省電力状態の前記ONUに送信帯域を割当て、送信帯域通知を当該ONUに送信し、
    (d) 前記送信帯域通知を割当てられた前記ONUが、前記スリープモードから非スリープモードに復帰する場合には前記光送信器を起動し前記送信帯域で応答信号を送信する、一方、前記スリープモードを継続する場合には前記応答信号の送信を省略可能であり、
    (e) 前記OLTは、前記光送信器を休止中の前記ONUに割当てた送信帯域を観測し、前記応答信号に基づいて、当該ONUが前記スリープモードであるのか、当該ONUとの通信に障害が発生したのかを検出し、前記スリープ期間においては前記応答信号に基づく障害検出を抑制する。
  8.  前記ステップ(e)において、前記OLTは、前記ONUに割当てた送信帯域のうち前記スリープ期間以外の期間に割当てた送信帯域で前記応答信号がなかった回数を計測し、前記回数が既定の障害監視回数n(nは2以上の自然数)以上の場合に障害を検出する、一方、前記スリープ期間中の前記送信帯域で応答信号がない場合には、前記回数の計測を無効にすることを特徴とする請求項7記載の通信方法。
  9.  前記ステップ(a)において、前記ONUは、前記スリープ期間の時間長を指定して前記スリープモードへの移行を通知し、
     前記ステップ(e)において、前記OLTは前記時間長に基づき前記スリープ期間を特定し、障害を検出することを特徴とする請求項7または8記載の通信システム。
  10.  前記ステップ(b)において、前記OLTは、前記スリープ期間を指定して当該ONUに対するスリープモードへの移行を許可する肯定応答信号を送信することを特徴とする請求項7または8に記載の通信システム。
  11.  前記ONUは前記スリープ期間終了後にスリープモードを継続する場合には、前記ステップ(b)~(e)の動作を再開始するために、前記ステップ(a)における通知を前記OLTへ送信することを特徴とする請求項7または8に記載の通信方法。
  12.  複数の利用者側光回線終端装置(以下、ONUという)を共通の光ファイバを用いて局側光回線終端装置(以下、OLTという)に接続する光通信システムであって、
     前記ONUは、
     前記光ファイバに接続され、受信を継続しながら送信を停止して消費電力を低減する省電力状態での動作が可能な光送受信器、及び
     前記光送受信器の省電力状態への移行を制御するとともに、省電力状態で動作中に前記OLTから制御信号を受信した場合には、一時的に前記光送受信器の送信を有効に制御して応答信号を出力する制御装置、を備え
     前記OLTは、
     前記光ファイバに接続された光送受信器、及び
     前記ONUの光送受信器が省電力状態で動作し送信停止中であっても、当該ONUに送信帯域を割当て、前記OLTの送受信器が受信した前記応答信号に基づき当該ONUとの通信に障害が発生しているのか、省電力状態で動作中であるのかを判別する制御装置を備えた
    ことを特徴とする光通信システム。
  13.  前記OLTの制御装置は、省電力状態における送信帯域割当周期を、非省電力状態における送信帯域割当周期よりも長く制御することを特徴とする請求項12記載の光通信システム。
  14.  前記OLTの制御装置は、障害を検出すべき検出時間がT秒以内と予め定められ、障害監視回数として予め定められたn数(nは2以上の自然数)の送信帯域で前記応答信号がなかったときに障害警報を出力することが定められている場合に、前記省電力状態における送信帯域割当周期を、T/nに基づいて定めることを特徴とする請求項13記載の光通信システム。
  15.  前記OLTの制御装置は、MPCP(Multi-Point Control Protocol)タイムアウト警報の検出時間を送信帯域割当周期と一致させることを特徴とする請求項12記載の光通信システム。
  16.  前記ONUの制御装置は、省電力状態に移行する際に、前記OLTへ省電力状態への移行を通知することを特徴とする請求項12記載の光通信システム。
  17.  前記ONUの制御装置は、省電力状態に移行する際にDying Gasp信号を送信し、前記Dying Gasp信号には、前記ONUが停止状態に移行するのか、前記省電力状態へ移行するのかを区別する付加情報が付加されていることを特徴とする請求項16記載の光通信システム。
  18.  前記OLTの制御装置は、前記Dying Gasp信号の付加情報に基づき当該ONUが停止状態に移行すると判断した場合には、当該ONUとのリンクを切断し次のディスカバリまで当該ONUに送信帯域の割当てを行わず、当該ONUが省電力状態に移行したと判断した場合には、当該ONUとのリンクを維持し、当該ONUに送信帯域を割当てることにより、当該ONUの停止状態、低省電力状態、及び障害を検知することを特徴とする請求項17記載の光通信システム。
  19.  複数の利用者側光回線終端装置(以下、ONUという)を共通の光ファイバを用いて局側光回線終端装置(以下、OLTという)に接続する光通信システムであって、
     前記ONUは、
     前記光ファイバに接続され、受信部による受信を継続しながら送信部を断続的に停止して消費電力を低減するスリープモードでの動作が可能な光送受信器、及び
     前記スリープモード中に前記送信部を断続的に停止する制御を行うとともに、前記スリープモード中の前記送信部の停止期間に前記OLTにより送信帯域が割当てられ、かつ前記スリープモードを継続する場合に、前記OLTへの応答信号の送信を省略可能に構成され、前記送信部の断続的な停止期間の合間に送信帯域が割当てられた場合には前記応答信号を送信する制御装置を備え
     前記OLTは、
     前記光ファイバに接続された光送受信器、及び
     前記ONUの光送受信器が前記スリープモードで動作し前記送信部が停止中であっても、当該ONUに前記送信帯域を割当て、前記断続的な停止期間の合間に、前記スリープモード中の前記ONUに割当てた送信帯域を観測することにより、当該ONUとの通信に障害が発生しているのか、前記ONUがスリープモードで動作中であるのかを判別する制御装置を備えたことを特徴とする光通信システム。
  20.  前記光送受信器は、送信器及び受信器を有し、
     前記ONUの制御装置は、前記停止期間に前記スリープモードから通常モードに復帰する場合には前記送信部を起動し前記送信帯域で前記応答信号を送信し、
     前記OLTの制御装置は、前記停止期間中に前記応答信号を受信した場合には、当該ONUが通常モードに復帰したことを検知し、通常モードでの障害監視を行う
    ことを特徴とする請求項19記載の通信システム。
  21.  前記ONUの制御装置は、前記スリープモードへの移行を前記OLTへ要求する応答信号を送信し、
     前記OLTの制御装置は、前記ONUへ肯定応答信号を返信する
    ことを特徴とする請求項19または20に記載の通信システム。
  22.  前記ONUの制御装置または前記OLTの制御装置は、前記停止期間を特定した信号を通信相手に通知することを特徴とする請求項19~21のいずれかに記載の通信システム。
  23.  複数の利用者側光回線終端装置を共通の光ファイバを用いて局側光回線終端装置に接続する光通信システムの利用者側光回線終端装置であって、
     前記光ファイバに接続され、受信を継続しながら送信を停止して消費電力を低減する省電力状態での動作が可能な光送受信器と、
     前記光送受信器の省電力状態への移行を制御するとともに、省電力状態で動作中に前記OLTから制御信号を受信した場合には、一時的に前記光送受信器の送信を有効に制御して応答信号を出力する制御装置と、
    を備えた利用者側光回線線終端装置。
  24.  複数の利用者側光回線終端装置を共通の光ファイバを用いて局側光回線終端装置に接続する光通信システムの局側光回線終端装置であって、
      前記光ファイバに接続された光送受信器と、
     前記利用者側光回線終端装置の光送受信器が省電力状態で動作し送信停止中であっても、当該利用者側光回線終端装置に送信帯域を割当て、前記局側光回線終端装置の送受信器が受信した前記応答信号に基づき当該利用者側光回線終端装置との通信に障害が発生しているのか、省電力状態で動作中であるのかを判別する制御装置と、
    を備えた局側光回線終端装置。
  25.  複数の利用者側光回線終端装置を共通の光ファイバを用いて局側光回線終端装置に接続する光通信システムの利用者側光回線終端装置であって、
     前記光ファイバに接続され、受信部による受信を継続しながら送信部を断続的に停止して消費電力を低減するスリープモードでの動作が可能な光送受信器、及び
     前記スリープモード中に前記送信部を断続的に停止する制御を行うとともに、前記スリープモード中の前記送信部の停止期間に前記OLTにより送信帯域が割当てられ、かつ前記スリープモードを継続する場合に、前記OLTへの応答信号の送信を省略可能に構成され、前記送信部の周期的な停止期間の合間に送信帯域が割当てられた場合には前記応答信号を送信する制御装置を備えた利用者側光回線終端装置。
  26.  複数の利用者側光回線終端装置を共通の光ファイバを用いて局側光回線終端装置に接続する光通信システムの局側光回線終端装置であって、
     前記光ファイバに接続された光送受信器と、
     前記利用者側光回線終端装置の光送受信器が前記スリープモードで動作し送信停止中であっても、当該利用者側光回線終端装置に送信帯域を割当て、前記光送受信器の断続的な送信停止期間の合間に、前記スリープモード中の前記利用者側光回線終端装置に割当てた送信帯域を観測することにより、当該利用者側光回線終端装置との通信に障害が発生しているのか、当該利用者側光回線終端装置が前記スリープモードで動作中であるのかを判別する制御装置と、
    を備えた局側光回線終端装置。
PCT/JP2010/002054 2010-03-24 2010-03-24 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置 WO2011117917A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR112012013363-2A BR112012013363B1 (pt) 2010-03-24 2010-03-24 método de comunicação de um sistema de comunicação óptico, sistema de comunicação óptico, aparelho de terminal de linha óptico, e, dispositivo de controle
EP10848313.2A EP2552057B1 (en) 2010-03-24 2010-03-24 Communication method, optical communication system, optical line terminal, and optical network unit
CN201080015125.1A CN102379106B (zh) 2010-03-24 2010-03-24 通信方法、光学通信系统、站侧光线路终端装置及用户侧光线路终端装置
PCT/JP2010/002054 WO2011117917A1 (ja) 2010-03-24 2010-03-24 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置
RU2012123381/08A RU2491738C1 (ru) 2010-03-24 2010-03-24 Способ связи, оптическая система связи, терминальная аппаратная система оптической линии на стороне станции и терминальная аппаратная система оптической линии на стороне пользователя
US13/395,145 US8687960B2 (en) 2010-03-24 2010-03-24 Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus
JP2011516925A JP5106683B2 (ja) 2010-03-24 2010-03-24 通信方法、光通信システム、利用者側光回線終端装置、局側光回線終端装置および制御装置
MYPI2012002479A MY178255A (en) 2010-03-24 2010-03-24 Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus
KR1020127009744A KR101286011B1 (ko) 2010-03-24 2010-03-24 통신 방법, 광통신 시스템, 이용자측 광회선 종단 장치, 국측 광회선 종단 장치 및 제어 장치
TW100109499A TWI413364B (zh) 2010-03-24 2011-03-21 通信方法、光通信系統、局方光回線終端裝置、使用者方光回線終端裝置,以及控制裝置
ZA2012/01886A ZA201201886B (en) 2010-03-24 2012-03-14 Communication method,optical communication system,station-side optical-line terminal apparatus,user-side optical line terminal apparatus,and control device
US14/085,609 US9270406B2 (en) 2010-03-24 2013-11-20 Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002054 WO2011117917A1 (ja) 2010-03-24 2010-03-24 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,145 A-371-Of-International US8687960B2 (en) 2010-03-24 2010-03-24 Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus
US14/085,609 Continuation US9270406B2 (en) 2010-03-24 2013-11-20 Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus

Publications (1)

Publication Number Publication Date
WO2011117917A1 true WO2011117917A1 (ja) 2011-09-29

Family

ID=44672519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002054 WO2011117917A1 (ja) 2010-03-24 2010-03-24 通信方法、光通信システム、局側光回線終端装置、並びに利用者側光回線終端装置

Country Status (11)

Country Link
US (2) US8687960B2 (ja)
EP (1) EP2552057B1 (ja)
JP (1) JP5106683B2 (ja)
KR (1) KR101286011B1 (ja)
CN (1) CN102379106B (ja)
BR (1) BR112012013363B1 (ja)
MY (1) MY178255A (ja)
RU (1) RU2491738C1 (ja)
TW (1) TWI413364B (ja)
WO (1) WO2011117917A1 (ja)
ZA (1) ZA201201886B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106066A (ja) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd 光通信システム、光通信システムの制御方法および宅側装置
JP2013126040A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> 加入者側通信装置及びポイント・トゥ・マルチポイント型通信システム
JP2013538023A (ja) * 2010-09-20 2013-10-07 中▲興▼通▲訊▼股▲フン▼有限公司 Ponシステムの省エネモードでの警報処理方法及び装置
DE102012210581A1 (de) * 2012-06-22 2013-12-24 Deutsche Telekom Ag Verfahren zur adaptiven Konfiguration des Sendespektrums in WDM-PONs
US9819499B2 (en) 2014-01-30 2017-11-14 Viavi Solutions Inc. Power fault detection in transceivers
WO2019244283A1 (ja) * 2018-06-20 2019-12-26 三菱電機株式会社 親局装置および波長割り当て方法
JP2020110016A (ja) * 2016-04-18 2020-07-16 日本電信電話株式会社 加入者側通信装置及びスリープ制御方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854208B (zh) * 2009-03-31 2014-12-03 华为技术有限公司 一种光功率测量的方法、光线路终端和光网络单元
US8787751B2 (en) * 2009-04-22 2014-07-22 Futurewei Technologies, Inc. Method for identifying the optical network unit power off reason
US8351892B2 (en) * 2009-05-26 2013-01-08 Qualcomm Incorporated Network detection device power conservation
EP2442496B1 (en) 2009-06-08 2014-07-30 Mitsubishi Electric Corporation Passive optical network (pon)
US9106984B2 (en) 2009-08-21 2015-08-11 Mitsubishi Electric Corporation PON system, subscriber-side terminal apparatus, station-side terminal apparatus, and power saving method
JP4812884B2 (ja) 2010-04-13 2011-11-09 三菱電機株式会社 通信システム、局側光回線終端装置、利用者側光回線終端装置、制御装置、並びに通信方法
JP5143866B2 (ja) * 2010-06-07 2013-02-13 株式会社日立製作所 光アクセスシステム、光ネットワーク装置、及び、光回線装置
JP5434808B2 (ja) * 2010-06-09 2014-03-05 住友電気工業株式会社 データ中継装置及びその機能制御方法
US20120045202A1 (en) * 2010-08-17 2012-02-23 Xu Jiang High Speed Bi-Directional Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
KR101327554B1 (ko) * 2010-12-23 2013-11-20 한국전자통신연구원 광망종단 장치 및 그것의 전력 절감 방법
EP2566112B1 (en) 2011-02-25 2019-06-26 Mitsubishi Electric Corporation Communication system, station side communication device, user side communication device, communication method, and control device
US9271233B2 (en) * 2011-06-24 2016-02-23 Nippon Telegraph And Telephone Corporation Communication system, communication method, and child station of communication system
JP5720515B2 (ja) * 2011-09-27 2015-05-20 株式会社オー・エフ・ネットワークス 局内光回線終端装置及び局内光回線終端装置の帯域付与方法
JP2013207901A (ja) * 2012-03-28 2013-10-07 Sanyo Electric Co Ltd 電池制御装置
US9653039B2 (en) * 2012-03-29 2017-05-16 Thinklogical, Llc Method, apparatus and system for changing to which remote device a local device is in communication via a communication medium through use of interruption of the communication medium
US8818188B2 (en) * 2012-10-05 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Traffic generation and analysis for ONU emulation
KR102037222B1 (ko) * 2012-11-14 2019-10-30 한국전자통신연구원 슬립 모드를 지원하는 광 회선 단말, 광 망 유닛 및 그것들의 슬립 모드 지원 방법
KR101991747B1 (ko) * 2012-12-20 2019-06-21 삼성전자주식회사 연결 제어 방법 및 그 전자 장치
KR20140088436A (ko) * 2013-01-02 2014-07-10 한국전자통신연구원 전력 절감 기능을 갖는 광망 종단장치 및 그 전력 절감 방법
US9426743B2 (en) * 2013-01-08 2016-08-23 Qualcomm Incorporated Systems and methods to optimize power consumption for LTE eMBMS
US9762401B2 (en) 2013-01-25 2017-09-12 Alcatel Lucent Method and apparatus for managing data transmission in a communication network
US9509429B2 (en) * 2013-03-06 2016-11-29 Telefonaktiebolaget L M Ericsson (Publ) Energy conservation by means of traffic shaping
KR102105186B1 (ko) * 2013-03-18 2020-04-28 한국전자통신연구원 수동형 광 가입자 망의 광 선로 종단 장치 및 이를 이용한 상향 대역 제어 방법
JP6205847B2 (ja) * 2013-05-28 2017-10-04 沖電気工業株式会社 通信制御装置及びプログラム
CN105052054A (zh) 2013-06-03 2015-11-11 华为技术有限公司 抑制PCIe走光纤通信输出噪声的方法、装置及通信节点
US9954787B2 (en) * 2014-06-23 2018-04-24 Huawei Technologies Co., Ltd. Intelligent terminal power-saving management method and apparatus
WO2016000205A1 (zh) 2014-07-01 2016-01-07 华为技术有限公司 数据传输控制方法、无源光网络设备及装置、无源光网络
TWI549441B (zh) * 2014-08-06 2016-09-11 Chunghwa Telecom Co Ltd Using Optical Fiber Home to Service Network Management Information Quickly Diagnose Methods of Optical Distribution Network Barriers
KR102638353B1 (ko) 2014-09-15 2024-02-20 주식회사 윌러스표준기술연구소 무선 통신 방법 및 무선 통신 단말
CN104618010B (zh) * 2014-12-31 2017-03-15 山东信通电子股份有限公司 光网络资源信息核查方法
EP3267630B1 (en) * 2015-03-06 2020-11-25 Nippon Telegraph and Telephone Corporation Station-side device and optical transmission system
CN105656549B (zh) * 2016-01-29 2018-01-12 武汉长光科技有限公司 一种PON系统OLT识别ONU假性dying gasp的方法
US20170317779A1 (en) 2016-04-28 2017-11-02 Futurewei Technologies, Inc. Channel Bonding in Multiple-Wavelength Passive Optical Networks (PONs)
CN106209441B (zh) * 2016-06-30 2019-04-05 电子科技大学 一种宽带接入网的故障诊断装置
US10009673B1 (en) * 2017-09-15 2018-06-26 Futurewei Technologies, Inc. Efficient CPRI transmission
CN109981670B (zh) * 2019-04-02 2023-05-09 南京先维信息技术有限公司 一种区块链系统中的智能加密模组
CN113301456B (zh) * 2020-02-24 2024-04-12 瑞昱半导体股份有限公司 具有异常发光检测的光网络装置
US11032010B1 (en) * 2020-03-11 2021-06-08 Charter Communications Operating, Llc Methods and apparatus for reducing power consumption in optical devices
EP4226580A1 (en) 2020-10-07 2023-08-16 Marvell Semiconductor, Inc. Sleep and wakeup signaling for ethernet
US20230040541A1 (en) * 2021-08-05 2023-02-09 Charter Communications Operating, Llc Power Saving For Multi-Wavelength Passive Optical Network (PON)
US20240031029A1 (en) * 2022-07-25 2024-01-25 Cisco Technology, Inc. Traffic-based power saving mode for optical transceivers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151150A (ja) * 2003-11-14 2005-06-09 Marantz Japan Inc 画像伝送システム
JP2007274534A (ja) 2006-03-31 2007-10-18 Nec Access Technica Ltd 光通信システム
JP2009260970A (ja) * 2008-04-17 2009-11-05 Pmc-Sierra Israel Ltd サービス連続性を維持しつつパッシブ光ネットワークにおける電力消費量を低減するための方法および装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546383A (en) * 1993-09-30 1996-08-13 Cooley; David M. Modularly clustered radiotelephone system
DE69535052T2 (de) * 1994-07-07 2007-01-11 Marconi Uk Intellectual Property Ltd. Multiplexing in einem passiven optischen Netzwerk
DE60306895T2 (de) * 2003-05-07 2007-02-01 Stmicroelectronics S.R.L., Agrate Brianza Verfahren zum übermitteln von Datenströmen über optischen Verbindungen, System und Computerprogramprodukte
WO2006023015A1 (en) * 2004-08-05 2006-03-02 Optical Solutions, Inc. Optical network terminal with low power hibernation
CN100488207C (zh) * 2005-09-23 2009-05-13 华为技术有限公司 无源光网络用户终端的运行方法
JP5066968B2 (ja) 2007-03-26 2012-11-07 日本電気株式会社 局側終端装置、加入者側終端装置、通信システム、これら装置の制御方法、およびプログラム
TW200845612A (en) * 2007-05-07 2008-11-16 Inventec Multimedia & Telecom Apparatus and method for ONU error detection based on a PON system
US7780641B2 (en) * 2007-06-14 2010-08-24 Cedars-Sinai Medical Center Transcecal ileostomy set
KR100932908B1 (ko) * 2007-10-23 2009-12-21 한국전자통신연구원 광 액세스 망에서 광망 종단 장치 및 광 회선 단말의 전력절감 방법
JP5072614B2 (ja) 2008-01-18 2012-11-14 日本電信電話株式会社 加入者宅内装置、局内装置及び光加入者系アクセスシステム
US20090208210A1 (en) * 2008-02-18 2009-08-20 Elmar Trojer Passive optical network remote protocol termination
US8275261B2 (en) * 2008-04-17 2012-09-25 Pmc Sierra Ltd Power saving in IEEE 802-style networks
US8498534B2 (en) * 2008-11-05 2013-07-30 Broadcom Corporation Epon with power-saving features
EP2442496B1 (en) 2009-06-08 2014-07-30 Mitsubishi Electric Corporation Passive optical network (pon)
US9106984B2 (en) 2009-08-21 2015-08-11 Mitsubishi Electric Corporation PON system, subscriber-side terminal apparatus, station-side terminal apparatus, and power saving method
JP4812884B2 (ja) 2010-04-13 2011-11-09 三菱電機株式会社 通信システム、局側光回線終端装置、利用者側光回線終端装置、制御装置、並びに通信方法
US8774621B2 (en) 2010-11-25 2014-07-08 Mitsubishi Electric Corporation Communication line switching method, communication apparatus, station-side communication apparatus, communication system, and control unit
WO2012077161A1 (ja) 2010-12-08 2012-06-14 三菱電機株式会社 光通信システムの通信方法、光通信システム、子局装置、制御装置並びにプログラム
EP2566112B1 (en) 2011-02-25 2019-06-26 Mitsubishi Electric Corporation Communication system, station side communication device, user side communication device, communication method, and control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151150A (ja) * 2003-11-14 2005-06-09 Marantz Japan Inc 画像伝送システム
JP2007274534A (ja) 2006-03-31 2007-10-18 Nec Access Technica Ltd 光通信システム
JP2009260970A (ja) * 2008-04-17 2009-11-05 Pmc-Sierra Israel Ltd サービス連続性を維持しつつパッシブ光ネットワークにおける電力消費量を低減するための方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"HuhDynamic Bandwidth Allocation Algorithm for Multimedia Services over Ethernet (registered trademark) PONs", ETRI JOURNAL, vol. 24, no. 6, December 2002 (2002-12-01), pages 465 - 466
See also references of EP2552057A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538023A (ja) * 2010-09-20 2013-10-07 中▲興▼通▲訊▼股▲フン▼有限公司 Ponシステムの省エネモードでの警報処理方法及び装置
JP2013106066A (ja) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd 光通信システム、光通信システムの制御方法および宅側装置
JP2013126040A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> 加入者側通信装置及びポイント・トゥ・マルチポイント型通信システム
DE102012210581A1 (de) * 2012-06-22 2013-12-24 Deutsche Telekom Ag Verfahren zur adaptiven Konfiguration des Sendespektrums in WDM-PONs
US9819499B2 (en) 2014-01-30 2017-11-14 Viavi Solutions Inc. Power fault detection in transceivers
JP2020110016A (ja) * 2016-04-18 2020-07-16 日本電信電話株式会社 加入者側通信装置及びスリープ制御方法
WO2019244283A1 (ja) * 2018-06-20 2019-12-26 三菱電機株式会社 親局装置および波長割り当て方法

Also Published As

Publication number Publication date
ZA201201886B (en) 2013-08-28
TWI413364B (zh) 2013-10-21
US8687960B2 (en) 2014-04-01
RU2491738C1 (ru) 2013-08-27
MY178255A (en) 2020-10-07
US9270406B2 (en) 2016-02-23
BR112012013363B1 (pt) 2021-04-20
US20120177361A1 (en) 2012-07-12
JPWO2011117917A1 (ja) 2013-07-04
JP5106683B2 (ja) 2012-12-26
US20140079396A1 (en) 2014-03-20
EP2552057A1 (en) 2013-01-30
CN102379106B (zh) 2014-07-16
TW201210215A (en) 2012-03-01
BR112012013363A2 (pt) 2016-03-01
KR20120080607A (ko) 2012-07-17
EP2552057A4 (en) 2013-12-04
KR101286011B1 (ko) 2013-08-23
CN102379106A (zh) 2012-03-14
EP2552057B1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP5106683B2 (ja) 通信方法、光通信システム、利用者側光回線終端装置、局側光回線終端装置および制御装置
US8934770B2 (en) Communication system, station-side optical line terminating apparatus, user-side optical line terminating apparatus, control apparatus, and communication method
JP5259021B2 (ja) 通信システム、局側通信装置、利用者側通信装置、通信方法、および制御装置
JP5226901B2 (ja) 光通信システムの通信方法、光通信システム、子局装置、制御装置並びにプログラム
US8705965B2 (en) Method of recovery from sleep state of an ONU in a PON system capable of power saving
US9106984B2 (en) PON system, subscriber-side terminal apparatus, station-side terminal apparatus, and power saving method
US8798460B2 (en) Optical access system, optical network unit, and optical line terminal
JP5546662B2 (ja) 子局装置、光通信システムの通信方法、光通信システムおよび制御装置
JP5579133B2 (ja) 通信システム、局側光回線終端装置、利用者側光回線終端装置、制御装置、並びに通信方法
JP5456131B2 (ja) 通信方法、光通信システム、利用者側光回線終端装置、局側光回線終端装置および制御装置
CN104125018A (zh) 通信方法、光通信系统、站侧光线路终端装置及用户侧光线路终端装置
JP2013207555A (ja) Ponシステム、局側装置とその運用方法及びアクセス制御装置
JP2012151660A (ja) 局内装置及び通信システム
WO2013186900A1 (ja) 光伝送システム、局側光終端装置および通信回線切替方法
JP5730443B2 (ja) 光伝送システム、局側光終端装置および通信回線切替方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015125.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516925

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395145

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127009744

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010848313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010848313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12012501120

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 4946/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002126

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012123381

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013363

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013363

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120601