WO2016143673A1 - 液体クロマトグラフィー用充填剤 - Google Patents

液体クロマトグラフィー用充填剤 Download PDF

Info

Publication number
WO2016143673A1
WO2016143673A1 PCT/JP2016/056654 JP2016056654W WO2016143673A1 WO 2016143673 A1 WO2016143673 A1 WO 2016143673A1 JP 2016056654 W JP2016056654 W JP 2016056654W WO 2016143673 A1 WO2016143673 A1 WO 2016143673A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
gel
liquid chromatography
group
packing material
Prior art date
Application number
PCT/JP2016/056654
Other languages
English (en)
French (fr)
Inventor
松井 徹
順也 加藤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2017505286A priority Critical patent/JP6731402B2/ja
Priority to CN201680012988.0A priority patent/CN107407667B/zh
Priority to US15/556,384 priority patent/US11167264B2/en
Priority to EP16761643.2A priority patent/EP3270155B1/en
Publication of WO2016143673A1 publication Critical patent/WO2016143673A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Definitions

  • the present invention relates to a packing material for liquid chromatography.
  • the light scattering detector is a device that irradiates a polymer solution with laser light and measures Rayleigh scattered light from colloidal particles.
  • This apparatus can output the weight average absolute molecular weight and rotation radius of the sample from the intensity of scattered light.
  • Measurement methods using the light scattering phenomenon have been widely used for polymer characterization, that is, determination of molecular weight and examination of shape.
  • the object of evaluation is a synthetic polymer, and among these, emphasis has been placed on those soluble in organic solvents. The reason is that in the case of a polymer solution in which the polymer is dissolved in an organic solvent, even if there are impurity particles or “garbage” that hinders light scattering measurement, they can be easily removed. is doing. If “garbage” is present, the baseline of the chromatogram becomes unstable, and spike noise may occur, which is not preferable.
  • Patent Document 1 describes a solvent purification method using a filter capable of filtering and removing dust that is fine particles.
  • GPC Gel permeation chromatography
  • GFC Gel filtration chromatography
  • the cause of the spike noise is considered to be that impurities contained in the packing material for liquid chromatography remain during GFC.
  • a gelled polymer substrate is used as the filler for liquid chromatography. However, if the gelation does not proceed completely, unreacted oligomers remain in the gel. It can be assumed that this unreacted oligomer is eluted little by little by the eluent, which causes noise during analysis with a light scattering detector.
  • a GFC using a conventional packing material for liquid chromatography when the eluted filtrate is collected and analyzed with an infrared spectrophotometer, it has a relatively low molecular weight having a methacryloyloxy group. Oligomer was sometimes detected.
  • the present invention provides a packing material for liquid chromatography in which spike noise is less likely to occur when using a light scattering detector in size exclusion liquid chromatography (SEC: Size Exclusion Chromatography), and using the same.
  • SEC Size Exclusion Chromatography
  • the present inventor was able to significantly reduce the occurrence of spike noise by using a gel with an increased degree of crosslinking as a packing material for liquid chromatography, and completed the present invention.
  • the present invention includes, for example, the following matters.
  • a filler for liquid chromatography comprising a gel obtained by polymerizing a monomer containing 40% by mass or more of a crosslinkable monomer having a (meth) acryloyloxy group.
  • the crosslinkable monomer having the (meth) acryloyloxy group is an esterified product of (poly) alkylene glycol and (meth) acrylic acid, an esterified product of glycerin and (meth) acrylic acid, and pentaerythritol.
  • the monomer further includes a non-crosslinkable monomer that is a compound having one ethylenic double bond in the molecule.
  • a non-crosslinkable monomer that is a compound having one ethylenic double bond in the molecule.
  • the packing material is crosslinkable.
  • a size exclusion liquid chromatography comprising a gel obtained by polymerizing a monomer containing 40% by mass or more of the monomer.
  • the packing material for liquid chromatography according to any one of [1] to [7], wherein the gel is a porous polymer gel and the volume average particle size of the packing material is 1 to 500 microns. .
  • the gel is a polymer gel containing 40% by mass or more of monomer units derived from the crosslinkable monomer having the (meth) acryloyloxy group.
  • the crosslinkable monomer is a compound having two or more ethylenic double bonds in the molecule, the gel is a hydrophilic gel, and the crosslinkable monomer is 50% by mass or more. , [1] to [7] and [9] to [10].
  • Crosslinkable monomers are pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene glycol dimethacrylate, glycerin dimethacrylate, polyethylene glycol # 200 diacrylate, and polyethylene glycol # 200 dimethacrylate
  • the packing material for liquid chromatography according to any one of [1] to [7] and [9] to [11] comprising at least one member of the group consisting of: [13]
  • a liquid chromatography apparatus comprising a detector for analyzing eluted components and a device for processing data detected by the detector.
  • the packing material for liquid chromatography of the present invention By using the packing material for liquid chromatography of the present invention, it is almost affected by spike noise even in analysis using water-soluble polymers such as pullulan and polyethylene glycol (hereinafter also referred to as PEG) as a sample.
  • PEG polyethylene glycol
  • measurement can be performed with a high S / N ratio (signal / noise).
  • the present invention relates to a packing material for liquid chromatography.
  • a liquid chromatography packing suitable for size exclusion liquid chromatography for light scattering detectors More preferably, the present invention relates to a water-based packing material for gel permeation chromatography capable of obtaining a light scattering chromatogram having a stable baseline and low spike noise in analysis using a light scattering detector.
  • the filler for liquid chromatography of the present invention is a liquid chromatography comprising a gel (polymer gel) obtained by polymerizing a monomer containing 40% by mass or more of a crosslinkable monomer having a (meth) acryloyloxy group. It is a filler. That is, in the gel as a polymer, 40% by mass or more is caused by a crosslinkable monomer having a (meth) acryloyloxy group.
  • the (meth) acryloyloxy group means at least one selected from an acryloyloxy group and a methacryloyloxy group.
  • the (meth) acryloyl group means at least one selected from an acryloyl group and a methacryloyl group.
  • (Meth) acrylic acid means at least one selected from acrylic acid and methacrylic acid.
  • (Meth) acrylate means at least one selected from acrylate and methacrylate.
  • (Poly) alkylene glycol means alkylene glycol or polyalkylene glycol.
  • the crosslinkable monomer is a compound having two or more ethylenic double bonds in the molecule, and the non-crosslinkable monomer is a compound having one ethylenic double bond in the molecule. Means.
  • crosslinkable monomer having a (meth) acryloyloxy group examples include an esterified product of (poly) alkylene glycol and (meth) acrylic acid, an esterified product of glycerin and (meth) acrylic acid, and pentaerythritol and (meta It is preferably at least one selected from the group consisting of esterified products with acrylic acid.
  • Preferred examples of the esterified product of (poly) alkylene glycol and (meth) acrylic acid include compounds represented by the following general formula (1). (Wherein R 1 and R 2 each independently represents a hydrogen atom or a methyl group, n represents an integer of 1 to 14 and X represents an oxyalkylene group having 2 to 4 carbon atoms).
  • esterified product of (poly) alkylene glycol and (meth) acrylic acid examples include ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polyethylene glycol # 200 di (meth) acrylate, polyethylene glycol # 400 di (meth) acrylate, polyethylene glycol # 600 di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecanedi Examples thereof include methylol di (meth) acrylate and trimethylolpropane tri (meth) acrylate, and these can be used alone or in combination.
  • ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate are preferable in that they are easily copolymerized with other ethylenic double bond-containing compounds
  • Preferred examples of the esterified product of glycerin and (meth) acrylic acid include compounds represented by the following general formula (2).
  • R 3 , R 4 and R 5 each independently represents a (meth) acryloyloxy group or a hydroxyl group, and at least two of R 3 , R 4 and R 5 are (meth) acryloyloxy groups. ).
  • Specific examples of the esterified product of glycerin and (meth) acrylic acid include glycerin di (meth) acrylate, glycerin tri (meth) acrylate, and glyceryl methacrylate acrylate. These may be used alone or in combination. You can also. Among these, glycerin di (meth) acrylate is preferable in that it can be easily copolymerized with other ethylenic double bond-containing compounds.
  • esterified product of pentaerythritol and (meth) acrylic acid a compound represented by the following general formula (3) can be preferably exemplified.
  • R 6 represents a (meth) acryloyloxy group or a hydroxyl group
  • R 7 represents a hydrogen atom or a methyl group.
  • Specific examples of the esterified product of pentaerythritol and (meth) acrylic acid include pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate, which can be used alone or in combination. .
  • pentaerythritol tri (meth) acrylate is preferable in that it easily copolymerizes with other ethylenic double bond-containing compounds and easily imparts hydrophilicity.
  • a gel by polymerizing a monomer containing 40% by mass or more of a crosslinkable monomer having a (meth) acryloyloxy group, for example, a crosslinkability having a (meth) acryloyloxy group among all monomers. It can be produced by preparing a monomer containing 40% by mass or more of the monomer and polymerizing or copolymerizing the monomer under the conditions described later to obtain a polymer or copolymer.
  • the obtained polymer or copolymer preferably has a network structure or a three-dimensional network structure.
  • the mass% of the crosslinkable monomer having a (meth) acryloyloxy group with respect to all monomers as raw materials for obtaining the gel is referred to as the degree of crosslinking.
  • the degree of cross-linking is 40% by mass or more, thereby realizing a high S / N ratio in the light scattering detector.
  • the degree of crosslinking is preferably 45% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. It is also preferable that the degree of crosslinking is 75% by mass or more, or 90% by mass or more.
  • the S / N ratio is thought to be affected by the presence of unreacted oligomers remaining during the production of the gel.
  • the degree of crosslinking reduces the amount of unreacted oligomers and increases the S / N ratio.
  • the ratio is thought to be high.
  • the upper limit of the degree of crosslinking can be arbitrarily selected, and can be selected as necessary, such as 100% by mass or less, 95% by mass or less, 90% by mass or less, or 80% by mass or less. As long as the effect of the present invention is obtained, any selection can be made.
  • the obtained polymer or copolymer (polymer gel) is caused by the crosslinkable monomer having a (meth) acryloyloxy group, for example, when the degree of crosslinking is 45% by mass or more, depending on the degree of crosslinking. It is a polymer that preferably contains 40% by mass or more of monomer units.
  • the non-crosslinkable monomer includes a compound having one vinyl group in the molecule, a compound having one (meth) acryloyl group in the molecule, and a compound having one (meth) acryloyloxy group in the molecule.
  • R 8 represents a hydrogen atom or a methyl group
  • Y represents a monovalent organic group or glycidyl group having an oxyalkylene group.
  • the compound represented by the above general formula (4) and other compounds such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, methoxypolyethylene glycol # 400 acrylate, 4- In addition to hydroxybutyl (meth) acrylate glycidyl ether, styrene, styrene sulfonic acid (soda), vinyl acetate, (meth) acrylic acid (soda), alkyl (meth) acrylate, benzyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-N-dimethyl (
  • glycidyl (meth) acrylate is preferred in that it can generate a hydroxyl group to improve the hydrophilicity of the gel.
  • the amount of the non-crosslinkable monomer can be selected, for example, from a range of 0 to less than 60% by mass, and can be any amount such as 0 to 50% by mass, 10 to 50% by mass, or 20 to 45% by mass. Can be used.
  • the amount of the monomer unit resulting from the non-crosslinkable monomer in the polymer gel of the present invention can also be preferably selected from the range of, for example, 0 or more and less than 60%, and 0 to 50%, A preferable range such as 10 to 50% or 20 to 45% can be selected.
  • the gel is preferably porous.
  • a diluent with the above monomer as a pore-forming agent during polymerization.
  • the raw material monomer can be dissolved and can be uniformly mixed with the raw material monomer under the reaction conditions, while the polymer formed from the monomer cannot be dissolved.
  • An inert organic solvent can be used for the polymerization reaction. Such an organic solvent varies depending on the type of monomers and can be arbitrarily selected.
  • aromatic hydrocarbons such as toluene, xylene, diethylbenzene, and dodecylbenzene; hexane, heptane, octane, decane, etc.
  • Saturated hydrocarbons alcohols such as isoamyl alcohol, hexyl alcohol and octyl alcohol; aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane and trichloroethane; such as ethyl acetate, butyl acetate, dimethyl phthalate and diethyl phthalate
  • Aliphatic or aromatic esters can be used.
  • the blending amount of the diluent varies depending on the types of monomers, the pore size of the target porous crosslinked polymer, and the density thereof, and cannot be determined unconditionally, but can be selected as necessary. For example, it is usually preferable to perform polymerization by mixing about 50 to 200 parts by mass with respect to 100 parts by mass of the raw material monomer.
  • the gel of the present invention can be obtained by a general method known per se, that is, for example, a solution polymerization method or a suspension polymerization method in the presence of a polymerization initiator.
  • a polymerization initiator may be any as long as it becomes a radical generating source.
  • radical photopolymerization initiators include 2,4-diethylthioxanthone, benzopheno , 4-dimethylamino isoamyl benzoate, 4-
  • an aqueous solution containing a crosslinkable monomer having a (meth) acryloyloxy group, a non-crosslinkable monomer and a polymerization initiator as necessary is taken in a reaction vessel, For example, it can be polymerized at a temperature of 40 to 100 ° C. with nitrogen substitution. After the reaction, a hydrous gel is obtained.
  • a crosslinkable monomer having a (meth) acryloyloxy group in a reaction vessel equipped with a stirrer if necessary, a non-crosslinkable monomer, a diluent and a polymerization initiator are blended.
  • the obtained solution can be dispersed in an aqueous solution in which a dispersion stabilizer is dissolved to obtain a predetermined particle size, and then purged with nitrogen and polymerized at 40 ° C. to 100 ° C.
  • a particulate water-containing gel is obtained.
  • a powdery gel will be obtained.
  • dispersion stabilizer gelatin, polyvinyl alcohol, saponified polyvinyl alcohol, water-soluble polymer compound such as hydroxyethyl cellulose, anionic, cationic, nonionic surfactants, calcium carbonate, calcium phosphate
  • water-soluble inorganic salts such as sodium chloride, calcium chloride and potassium sulfate can be used in combination as a salting-out agent in order to suppress dissolution of the monomer in water.
  • the obtained particulate gel is washed with water or hot water and, if necessary, with an organic solvent or the like.
  • the particle diameter can be made uniform by classifying the particulate gel.
  • the volume average particle diameter can be arbitrarily selected, and is usually 1 to 500 microns, preferably 2 to 200 microns.
  • a preferable range of the volume average particle diameter can be selected as necessary. For example, a preferable range such as 1 to 100 microns, 1 to 50 microns, or 1 to 20 microns may be arbitrarily selected.
  • the volume average particle size in the present invention can be measured as follows using a Coulter counter method. That is, using Multisizer 4 (manufactured by Beckman Coulter, Inc.) as a measuring device, 25 mL of isotone (diluted solution) was added to 0.2 g of the obtained polymer filler, dispersed by applying ultrasonic waves for 3 minutes, and then about 1000 The volume average particle diameter is measured by the number of pieces measured. In order to make the volume average particle diameter within a preferable range, the particle diameter can be controlled by air classification, classification by sieving, classification using precipitation, or the like.
  • the porous gel thus obtained is preferably hydrophilic and preferably has a hydroxyl group or the like. Therefore, when the crosslinkable monomer having a (meth) acryloyloxy group at the time of producing the gel does not have a hydrophilic group such as a hydroxyl group, it can be co-polymerized with a non-crosslinkable monomer having a glycidyl group. It is preferable to produce a gel by polymerization and impart an epoxy group to the gel.
  • the epoxy group possessed by the gel and a polyol such as ethylene glycol are preferably reacted in the presence of a catalyst such as boron trifluoride diethyl ether complex to open the epoxy group and generate a hydroxyl group. Sex can be imparted.
  • it is preferable to increase the number of hydroxyl groups by reacting this generated hydroxyl group with an epoxy compound, preferably glycidol.
  • an epoxy compound preferably glycidol.
  • the reaction between the hydroxyl group of the gel and the epoxy compound, particularly glycidol can be performed by dispersing and mixing the gel and glycidol, and this reaction can increase the hydroxyl group of the gel.
  • a dispersion mixing method the gel is dispersed and mixed in a glycidol single solution or a glycidol solution dissolved in an organic solvent compatible with glycidol, or the gel is dispersed and mixed in an organic solvent compatible with glycidol. It can be performed by a method of adding glycidol to the inside.
  • the method of adding glycidol is not particularly limited.
  • the method of adding in a lump the method of adding in several portions, the method of adding dropwise, and the solution dissolved in another organic solvent at once. Any method may be used, such as a method of adding in a step, or a method of adding this in several times.
  • the organic solvent compatible with glycidol is not particularly limited as long as the particles can be mixed and dispersed and are inactive to the reaction between the functional group of the particles and the epoxy group of glycidol.
  • the organic solvent include dimethylformamide, dioxane, diethylene glycol dimethyl ether, and the like.
  • Catalysts include strong inorganic acids such as hydrochloric acid and sulfuric acid, strong alkalis such as sodium hydroxide and potassium hydroxide, quaternary ammonium salts such as triethylbenzylammonium chloride and tetramethylammonium chloride, benzyldimethylamine and tributylamine.
  • the filler for liquid chromatography of the present invention obtained as described above can be preferably used for a liquid chromatography method or a liquid chromatography apparatus.
  • a liquid chromatography apparatus comprising a column, a pump for feeding liquid to the column, a detector for analyzing components eluted from the column, and a device for processing data detected by the detector, the packing material of the present invention is added to the column. By using this, measurement can be performed with a high S / N ratio.
  • Example 1 (Degree of crosslinking: 100%) Crosslinkable monomer (A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd., 55% by mass of pentaerythritol triacrylate (103.3 mmol), 45% by mass of pentaerythritol tetraacrylate (71.3 mmol)) 56.0 g, diluent 67.6 g of dichloroethane and 36.4 g of octanol were put in a container, and 3.3 g (13.3 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved in the container, Stir for 1 hour to prepare an oil phase.
  • A-TMM-3L manufactured by Shin-Nakamura Chemical Co., Ltd., 55% by mass of pentaerythritol triacrylate (103.3 mmol), 45% by mass of pentaerythritol tetra
  • ion-exchanged water 300 g of ion-exchanged water, 8 g of GH-20 (dispersion stabilizer, manufactured by Nippon Gosei Kagaku, polyvinyl alcohol having a saponification degree of 86.5% -89.0%), and 8 g of NaCl as a salting-out agent are dissolved.
  • a water phase was prepared.
  • the oil phase was added to the aqueous phase, and the mixture was dispersed with an Excel auto homogenizer (manufactured by Nippon Seiki Seisakusho) at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen.
  • Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Then, 59.0 g of gel was obtained by filtering, wash
  • Crosslinkable monomer (A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate 55% by mass (76.2 mmol), pentaerythritol tetraacrylate 45% by mass (52.6 mmol)) 41.3 g, non-crosslinked 2. 27.5 g (193.5 mmol) of glycidyl methacrylate, 67.6 g of dichloroethane, and 36.4 g of octanol as a functional monomer are placed in a container, and 2,2′-azobis (2,4-dimethylvaleronitrile) is added to the container.
  • A-TMM-3L manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate 55% by mass (76.2 mmol), pentaerythritol tetraacrylate 45% by mass (52.6 mmol)
  • an oil phase was prepared in which 300 g of ion-exchanged water, 8 g of GH-20 as a dispersion stabilizer and 8 g of NaCl were dissolved.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Then, 63.7 g of a gel was obtained by filtering, washing, and drying the dispersion after polymerization.
  • the obtained gel was dispersed in a mixed solution of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added as a catalyst and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 67.0 g of gel. The obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 20.8 g of the gel after air classification was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, and stirred for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. By filtration, washing and drying, 22.8 g of the gel of the present invention was obtained.
  • Cross-linkable monomer (A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate 55% by mass (54.8 mmol), pentaerythritol tetraacrylate 45% by mass (37.8 mmol)) 29.7 g, glycidyl methacrylate 33.1 g (232.9 mmol), 67.6 g of dichloroethane, and 36.4 g of octanol were placed in a container, and 3.3 g (13.3 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) was added to the container.
  • an oil phase in which 300 g of ion exchange water, 8 g of GH-20, and 8 g of NaCl were dissolved was prepared.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Thereafter, 57.3 g of a gel was obtained by filtering, washing, and drying the dispersion after polymerization.
  • the obtained gel was dispersed in 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 61.3 g of gel.
  • the obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 18.7 g of the gel after air classification was dispersed in a mixed solution of 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, and stirred for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. Filtration, washing, and drying gave 20.2 g of the gel of the present invention.
  • an aqueous phase in which 300 g of ion exchange water, 8 g of GH-20, and 8 g of NaCl were dissolved was prepared.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Then, 50.4 g of gel was obtained by filtering, wash
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 53.3 g of gel. The obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 15.7 g of the gel after air classification was dispersed in a mixed solution of 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, and stirred for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. Filtration, washing, and drying gave 16.4 g of the gel of the present invention.
  • ion-exchanged water 2.20 g of GH-20, KH-17 (dispersion stabilizer, manufactured by Nippon Gosei Kagaku, polyvinyl alcohol having a saponification degree of 78.5% -81.5%) 2.20 g
  • An aqueous phase in which 4.40 g of NaCl was dissolved was prepared.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 3500 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours.
  • the oil phase was added to the aqueous phase, and dispersed for 10 minutes at 3500 rpm with an Excel auto homogenizer. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Filtration, washing and drying gave 62.5 g of gel. 400 g of water and 6 g of sulfuric acid were added to the obtained gel and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 64.8 g of gel. The obtained gel was classified with an air classifier to collect particles of 8 to 12 ⁇ m.
  • Example 5 (Degree of crosslinking: 50%) 33.0 g (166.5 mmol) of ethylene glycol dimethacrylate, 33.0 g (232.1 mmol) of glycidyl methacrylate, 28 g of chlorobenzene, and 30 g of lauryl alcohol were put in a container, and 2,2′-azobis (2,4-dimethylvalero) was put in this container. (Nitrile) 4.0 g (16.1 mmol) was dissolved and stirred for 1 hour to prepare an oil phase. Separately, 440 g of ion-exchanged water, 2.20 g of GH-20, 2.20 g of KH-17 and 4.40 g of NaCl were prepared.
  • the oil phase was added to the aqueous phase, and dispersed for 10 minutes at 3500 rpm with an Excel auto homogenizer. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Filtration, washing and drying gave 66.6 g of gel. 400 g of water and 6 g of sulfuric acid were added to the obtained gel and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 71.3 g of gel. The obtained gel was classified with an air classifier to collect particles of 8 to 12 ⁇ m.
  • the oil phase was added to the aqueous phase, and dispersed for 5 minutes at 3000 rpm with an Excel auto homogenizer. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Then, 57.2 g of gel was obtained by filtering, wash
  • Example 7 (Crosslinking degree: 60%) Cross-linkable monomer (A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate 55% by mass (73.1 mmol), pentaerythritol tetraacrylate 45% by mass (50.4 mmol)) 39.6 g, pentaerythritol 39.6 g (173.7 mmol) of triacrylate, 26.4 g (185.7 mmol) of glycidyl methacrylate, 18 g of chlorobenzene, and 38 g of lauryl alcohol were put in a container, and 2,2′-azobis (2,4-dimethylvaleronitrile) was put in this container.
  • A-TMM-3L manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate 55% by mass (73.1 mmol), pentaerythritol tetraacrylate
  • Example 8 (Crosslinking degree: 60%)
  • a crosslinkable monomer 41.3 g (134.1 mmol) of polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 27.5 g (193.5 mmol) of glycidyl methacrylate, 67.6 g of dichloroethane, and 36.4 g of octanol were used as containers.
  • 3.3 g (13.3 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved and stirred for 1 hour to prepare an oil phase.
  • aqueous phase in which 300 g of ion-exchanged water, 8 g of GH-20, and 8 g of NaCl were dissolved.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Filtration, washing and drying gave 56.8 g of gel.
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour.
  • Example 9 (Crosslinking degree: 60%) 41.3 g (125.2 mmol) of polyethylene glycol # 200 dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 27.5 g (193.5 mmol) of glycidyl methacrylate, 67.6 g of dichloroethane, and 36.4 g of octanol were placed in a container. , 2′-Azobis (2,4-dimethylvaleronitrile) 3.3 g (13.3 mmol) was dissolved and stirred for 1 hour to prepare an oil phase.
  • an aqueous phase in which 300 g of ion exchange water, 8 g of GH-20, and 8 g of NaCl were dissolved was prepared.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Then, 58.4 g of gel was obtained by filtering, wash
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 67.4 g of gel.
  • the obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 23.5 g of the gel after air classification was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, and stirred for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. Filtration, washing, and drying gave 25.7 g of the gel of the present invention.
  • an aqueous phase in which 300 g of ion exchange water, 8 g of GH-20, and 8 g of NaCl were dissolved was prepared.
  • the oil phase was added to the aqueous phase and dispersed with an Excel auto homogenizer at 2000 rpm for 10 minutes. Thereafter, the dispersion was transferred to a separable flask, and the inside of the reaction vessel was replaced with nitrogen. Polymerization was performed at a reaction temperature of 60 ° C. for 6 hours. Filtration, washing and drying gave 63.7 g of gel.
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour.
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added and reacted at 80 ° C. for 3 hours. Filtration, washing and drying gave 71.5 g of gel. The obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 27.5 g of the gel after air classification was dispersed in 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, followed by stirring for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. Filtration, washing, and drying gave 29.3 g of the gel of the present invention.
  • Example 12 (Crosslinking degree: 60%) Crosslinkable monomer (A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd., 55% by mass of pentaerythritol triacrylate (76.2 mmol), 45% by mass of pentaerythritol tetraacrylate (52.6 mmol)) 41.3 g, 4- 27.5 g (193.7 mmol) of hydroxybutyl acrylate glycidyl ether (Nippon Kasei), 67.6 g of dichloroethane, and 36.4 g of octanol were put in a container, and 2,2′-azobis (2,4-dimethylvaleronitrile) was added to the container.
  • A-TMM-3L manufactured by Shin-Nakamura Chemical Co., Ltd., 55% by mass of pentaerythritol triacrylate (76.2 mmol), 45% by mass of pentaerythritol te
  • the obtained gel was dispersed in a mixed liquid of 220 g of diethylene glycol dimethyl ether and 220 g of ethylene glycol, and stirred for 1 hour. After stirring, 2.6 g of boron trifluoride diethyl ether complex was added and reacted at 80 ° C. for 3 hours. By filtration, washing and drying, 72.3 g of a gel was obtained. The obtained gel was classified with an air classifier to collect particles of 4 to 8 ⁇ m. 28.5 g of the gel after air classification was dispersed in 220 g of diethylene glycol dimethyl ether and 20 g of glycidol, followed by stirring for 1 hour. After stirring, 8 g of zinc borofluoride was added and reacted at 80 ° C. for 3 hours. Filtration, washing, and drying gave 30.6 g of the gel of the present invention.
  • Example of analysis The gels produced in Examples and Comparative Examples were filled in a 8.0 ⁇ ⁇ 300 mm SUS housing and evaluated with a multi-angle light scattering detector (DAWN HELEOS II, manufactured by Wyatt Technology). A 0.1 M sodium nitrate aqueous solution was used as an eluent under the conditions of a flow rate of 1.0 ml / min and a temperature of 30 ° C.
  • 10 ⁇ L of P-20 which is a 0.5% pullulan standard substance (weight average molecular weight is 20800 in terms of PS), is injected, and the comparison is made with the ratio of baseline noise to signal (S / N ratio). went.
  • S represents the height of the obtained sample peak
  • N represents the average value of noise around the sample peak ( ⁇ 2 minutes). That is, the average value of the difference between the peaks and valleys was adopted as the value to be compared.
  • the chromatogram obtained in Comparative Example 1 is shown in FIG. 2, and the chromatogram obtained in Example 2 is shown in FIG. In these figures, the vertical axis represents mV, and the horizontal axis represents minutes (min.).
  • the S / N ratios measured using the gels prepared in Examples 1 to 12 and Comparative Examples 1 and 2 under the above conditions are shown in the table.
  • S / N is preferably 30 or more, but in Examples 1 to 12, all of 30 or more are realized.
  • An object of the present invention is to provide a packing material for liquid chromatography in which spike noise is unlikely to occur when using a light scattering detector in size exclusion liquid chromatography, and to provide an analysis method using the same.
  • Liquid chromatography column 2
  • Mobile phase tank 3
  • Liquid feed pump 4
  • Sampler (injector) 5
  • Light scattering detector 6
  • Differential refractive index detector 7
  • Recorder data processing device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 (メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上含む単量体を重合して得られるゲルからなる液体クロマトグラフィー用充填剤。

Description

液体クロマトグラフィー用充填剤
 本発明は、液体クロマトグラフィー用充填剤に関する。
 本願は、2015年3月10日に、日本に出願された特願2015-046650号に基づき優先権を主張し、その内容をここに援用する。
 光散乱検出器は、ポリマー溶液にレーザー光を照射し、コロイド粒子によるレイリー散乱光を測定する装置である。この装置は、散乱光の強度から、試料の重量平均絶対分子量や回転半径を出力することができる。光散乱現象を利用した測定方法は、高分子のキャラクタリゼーション、すなわち分子量の決定や形状の検討に広く活用されてきた。評価対象は合成高分子であり、その中でも有機溶媒に可溶なものに重点が置かれてきた。その理由は、高分子が有機溶媒に溶けた高分子溶液の場合には、光散乱測定の障害となる不純物粒子や“ごみ”が存在しても、それらの除去が容易であったことに起因している。なお“ごみ”が存在すると、クロマトグラムのベースラインが不安定になり、スパイクノイズが発生することがあり好ましくない。
 前述のように光散乱クロマトグラムのベースラインが不安定になったり、スパイクノイズが発生したりする原因としては、有機溶媒内にダストやイオン性物質が存在すること、および、そのダストやイオン性物質がカラム内の充填剤に吸着され、わずかな圧力変動により脱離することが理由として考えられる。スパイクノイズを抑える方法として、例えば、特許文献1には、微粒子であるダストをろ過、及び除去できるフィルターを使用する溶媒精製法が記載されている。
 このように、有機溶媒を使用した分析においてはゲルパーミエーションクロマトグラフィー(以降、GPC(Gel permeation chromatography)とも称する。)が用いられており、前述のように、溶媒を精製することによってスパイクノイズを抑えることに成功している。
 一方で、水系溶媒に溶解したポリマーを分析する場合には、ゲルろ過クロマトグラフィー(以降、GFC(Gel filtration chromatography)とも称する。)が用いられる。なおGFCを用いて光散乱検出器で高分子のキャラクタリゼーションを行う場合、GPCの場合よりもスパイクノイズが発生しやすい傾向がある。
 前記スパイクノイズが発生する原因としては、GFCを行う際に、液体クロマトグラフィー用の充填剤に含まれている不純物が残存していることが理由として考えられる。液体クロマトグラフィー用充填剤としては、ゲル化したポリマー基材が用いられる。しかしながら、前記ゲル化が完全に進行しなかった場合、未反応オリゴマーがゲル内に留まる。この未反応オリゴマーが溶離液によって少しずつ溶出し、それが光散乱検出器で分析する際のノイズの要因となる、と想定できる。
 具体的には、従来の液体クロマトグラフィー用充填剤を使用したGFCにおいて、溶出したろ液を回収し、赤外分光光度計で分析を行った際に、メタクリロイルオキシ基を有する比較的低分子量のオリゴマーが検出されることがあった。
特開2002-181800号公報
 本発明は、サイズ排除液体クロマトグラフィー(SEC: Size Exclusion Chromatography)において、光散乱用検出器を使用する際、スパイクノイズが発生しにくい液体クロマトグラフィー用充填剤を提供すること、およびそれを用いた分析方法を提供することを目的とする。
 本発明者は、液体クロマトグラフィー用充填剤として架橋度を上げたゲルを使用することによって、スパイクノイズの発生を著しく減少させることができ、本発明を完成するに至った。本発明は、例えば、以下の事項を含む。
 [1](メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上含む単量体を重合して得られるゲルからなる液体クロマトグラフィー用充填剤。
 [2]前記(メタ)アクリロイルオキシ基を有する架橋性単量体が、(ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物、グリセリンと(メタ)アクリル酸とのエステル化物、およびペンタエリスリトールと(メタ)アクリル酸とのエステル化物からなる群から選ばれる少なくとも1種である、[1]に記載の液体クロマトグラフィー用充填剤。
 [3]前記(ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物が、下記一般式(1)で表される化合物である、[2]に記載の液体クロマトグラフィー用充填剤;
Figure JPOXMLDOC01-appb-C000005
 (式中、R, Rはそれぞれ独立に水素原子またはメチル基を表し、nは1~14の整数を表し、Xは炭素数2~4のオキシアルキレン基を表す。)。
 [4]前記グリセリンと(メタ)アクリル酸とのエステル化物が、下記一般式(2)で表される化合物である、[2]に記載の液体クロマトグラフィー用充填剤;
Figure JPOXMLDOC01-appb-C000006
 (式中R、R はそれぞれ独立に(メタ)アクリロイルオキシ基または水酸基を表し、R、R のうちの少なくとも2つは(メタ)アクリロイルオキシ基である。)。
 [5]前記ペンタエリスリトールと(メタ)アクリル酸とのエステル化物が、下記一般式(3)で表される化合物である、[2]に記載の液体クロマトグラフィー用充填剤;
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは(メタ)アクリロイルオキシ基または水酸基を表し、Rは水素原子またはメチル基を表す)。
 [6]前記単量体が、(メタ)アクリロイルオキシ基を有する架橋性単量体に加えて、さらに分子内に1つのエチレン性二重結合を有する化合物である非架橋性単量体を含む、[1]~[5]のいずれか1項に記載の液体クロマトグラフィー用充填剤。
 [7]前記非架橋性単量体が、下記一般式(4)で表される化合物である、[6]に記載の液体クロマトグラフィー用充填剤。
Figure JPOXMLDOC01-appb-C000008
 (式中、Rは水素原子またはメチル基を表し、Yはオキシアルキレン基を有する1価の有機基またはグリシジル基を表す。)
 [8]水系溶媒に溶解する試料を、液体クロマトグラフィー用充填剤を充填したカラムに導入し、光散乱検出器を用いて検出を行う、サイズ排除液体クロマトグラフィーにおいて、前記充填剤が、架橋性単量体を40質量%以上含む単量体を重合して得られたゲルからなることを特徴とするサイズ排除液体クロマトグラフィー。
 [9]前記ゲルが多孔性高分子ゲルであり、充填剤の体積平均粒径が1~500ミクロンである、[1]~[7]のいずれか1項に記載の液体クロマトグラフィー用充填剤。
 [10]前記ゲルが、前記(メタ)アクリロイルオキシ基を有する架橋性単量体に起因するモノマー単位を40質量%以上含む、高分子ゲルである、[1]~[7]及び[9]のいずれか1項に記載の、液体クロマトグラフィー用充填剤。
 [11]前記架橋性単量体が分子内に2つ以上のエチレン性二重結合を有する化合物であり、前記ゲルが親水性ゲルであり、前記架橋性単量体が50質量%以上である、[1]~[7]及び[9]~[10]のいずれか1項に記載の、液体クロマトグラフィー用充填剤。
 [12]架橋性単量体が、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジメタクリレート、グリセリンジメタクリレート、ポリエチレングリコール#200ジアクリレート、及び、ポリエチレングリコール#200ジメタクリレートからなる群の少なくとも一つを含む、[1]~[7]及び[9]~[11]のいずれか1項に記載の液体クロマトグラフィー用充填剤。
 [13] [1]~[7]及び[9]~[12]のいずれか1項に記載の液体クロマトグラフィー用充填剤、前記充填剤を含むカラム、前記カラムに送液するポンプ、カラムから溶出した成分を分析する検出器、及び検出器で検出されたデーターを処理する装置を含む、液体クロマトグラフィー装置。
 本発明の液体クロマトグラフィー用充填剤を使用することによって、プルランや、ポリエチレングリコール(以降、PEGとも称する。)などの水溶性高分子を試料とした分析においても、スパイクノイズの影響をほとんど受けることがなく、光散乱検出器を使用したサイズ排除液体クロマトグラフィーにおいて高いS/N比(信号/ノイズ)で測定を行うことができる。
本発明の液体クロマトグラフィー用充填剤を使用した分析を行う際の装置の構成の一例である。 比較例1のクロマトグラムである。 実施例2のクロマトグラムである。
 以下に本発明の好ましい例を説明するが、本発明はこれらの例のみに限定されることは無い。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、組み合わせ、及び、その他の変更が可能である。
 本発明は、液体クロマトグラフィー用充填剤に関する。好ましくは、光散乱検出器用のサイズ排除液体クロマトグラフィーに適した、液体クロマトグラフィー用充填剤に関する。より好ましくは、光散乱検出器を用いる分析において、ベースラインが安定し、スパイクノイズが少ない光散乱クロマトグラムを得ることができる水系のゲル浸透クロマトグラフィー用充填剤に関する。
 本発明の液体クロマトグラフィー用充填剤は、(メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上含む単量体を重合して得られるゲル(高分子ゲル)からなる液体クロマトグラフィー用充填剤である。すなわち、重合体である前記ゲルは、その40質量%以上が(メタ)アクリロイルオキシ基を有する架橋性単量体に起因する。
 本願において、(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基およびメタクリロイルオキシ基から選ばれる少なくとも1つを意味する。(メタ)アクリロイル基とは、アクリロイル基およびメタクリロイル基から選ばれる少なくとも1つを意味する。(メタ)アクリル酸とは、アクリル酸およびメタクリル酸から選ばれる少なくとも1つを意味する。(メタ)アクリレートとは、アクリレートおよびメタクリレートから選ばれる少なくとも1つを意味する。また(ポリ)アルキレングリコールとは、アルキレングリコールまたはポリアルキレングリコールを意味する。また、架橋性単量体とは、分子内に2つ以上のエチレン性二重結合を有する化合物であり、非架橋性単量体とは、分子内に1つのエチレン性二重結合を有する化合物を意味する。
 (メタ)アクリロイルオキシ基を有する架橋性単量体としては、(ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物、グリセリンと(メタ)アクリル酸とのエステル化物、およびペンタエリスリトールと(メタ)アクリル酸とのエステル化物からなる群から選ばれる少なくとも1種であることが好ましい。
 (ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物としては、下記一般式(1)で表される化合物を好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000009
 
 (式中、R、Rはそれぞれ独立に水素原子またはメチル基を表し、nは1~14の整数を表し、Xは炭素数2~4のオキシアルキレン基を表す。)。
 (ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物の具体例としては、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール#200ジ(メタ)アクリレート、ポリエチレングリコール#400ジ(メタ)アクリレート、ポリエチレングリコール#600ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどを挙げることができ、単独でも、あるいはこれらを組み合わせて使用することもできる。
 それらの中でも、エチレングリコールジ(メタ)アクリレート、及びポリエチレングリコールジ(メタ)アクリレートが、他のエチレン性二重結合含有化合物と共重合しやすい点で好ましい。
 グリセリンと(メタ)アクリル酸とのエステル化物としては、下記一般式(2)で表される化合物を好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000010
 (式中R、R はそれぞれ独立に(メタ)アクリロイルオキシ基または水酸基を表し、R、R のうちの少なくとも2つは(メタ)アクリロイルオキシ基である。)。
 グリセリンと(メタ)アクリル酸とのエステル化物の具体例としては、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンメタクリレートアクリレートを挙げることができ、単独でも、あるいはこれらを組み合わせて使用することもできる。
 それらの中でも、グリセリンジ(メタ)アクリレートが他のエチレン性二重結合含有化合物と共重合しやすい点で好ましい。
 ペンタエリスリトールと(メタ)アクリル酸とのエステル化物としては、下記一般式(3)で表される化合物を好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000011
 
 
 (式中、Rは(メタ)アクリロイルオキシ基または水酸基を表し、Rは水素原子またはメチル基を表す)。
 ペンタエリスリトールと(メタ)アクリル酸とのエステル化物の具体例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどがあり、単独でも、あるいはこれらを組み合わせて使用することもできる。
 それらの中でも、ペンタエリスリトールトリ(メタ)アクリレートが他のエチレン性二重結合含有化合物と共重合しやすい点と親水性を付与しやすい点で好ましい。
 (メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上含む単量体を重合してゲルを得るには、例えば、全単量体のうち(メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上配合した単量体を用意し、これを後述の条件で重合または共重合させて、重合体や共重合体を得ることによって、製造することができる。得られた重合体や共重合体は網目構造や三次元網目構造を有する事が好ましい。本発明においては、ゲルを得る際の原料となる全単量体に対する、(メタ)アクリロイルオキシ基を有する架橋性単量体の質量%を、架橋度と称する。
 本発明において架橋度は40質量%以上であり、これによって光散乱検出器での高いS/N比を実現することができる。架橋度は45質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。架橋度が、75質量%以上や、90質量%以上であることも好ましい。S/N比には、ゲルの製造の際に残存する未反応のオリゴマーの存在が影響していると考えられ、架橋度を上げることによって、未反応のオリゴマーの存在量が低減しS/N比が高くなると考えられる。架橋度の上限は任意に選択ができ、100質量%以下や、95質量%以下や、90質量%以下や、80質量%以下など、必要に応じて選択できる。本発明の効果が得られる限り、任意に選択することが可能である。
 なお得られた重合体や共重合体(高分子ゲル)は、架橋度に応じて、例えば架橋度が45質量%以上の時は、(メタ)アクリロイルオキシ基を有する架橋性単量体に起因するモノマー単位を40質量%以上好ましく含む重合体となる。
 前記のゲルの製造に際して、S/N比が低下しない範囲で、(メタ)アクリロイルオキシ基を有する架橋性単量体の他に、(メタ)アクリロイルオキシ基を有する架橋性単量体と共重合可能な非架橋性単量体を使用して、共重合することができる。
 前記非架橋性単量体としては、分子内に1つのビニル基を有する化合物、分子内に1つの(メタ)アクリロイル基を有する化合物、及び分子内に1つの(メタ)アクリロイルオキシ基を有する化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
 (式中、Rは水素原子またはメチル基を表し、Yはオキシアルキレン基を有する1価の有機基またはグリシジル基を表す。)
 具体的には、上記の一般式(4)で表されるような化合物や、その他の化合物、例えばグリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール#400アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルの他に、スチレン、スチレンスルホン酸(ソーダ)、酢酸ビニル、(メタ)アクリル酸(ソーダ)、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ベンジル、N,N-ジメチルアミノエチル(メタ)アクリレート、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、アクリルアミドプロパンスルホン酸(ソーダ)、アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルカルバゾール、アクリロニトリル、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、2-アクリルアミド-2-メチルプロパンスルホン酸、無水マレイン酸、マレイミド、N-アルキルマレイミド、N-フェニルマレイミドなどがあり、1種または2種以上用いることができる。これらのうち、水酸基を生成してゲルの親水性を向上できる点で、グリシジル(メタ)アクリレートが好ましい。非架橋性単量体の量は、例えば0以上60質量%未満の範囲から選ぶことができ、0~50質量%や、10~50質量%や、20~45質量%など、任意の量で使用することができる。本発明の高分子ゲル中の非架橋性単量体に起因するモノマー単位の量も、例えば0以上60%未満の範囲から好ましく選択することができ、必要に応じて、0~50%や、10~50%や、20~45%など、好ましい範囲を選択できる。
 前記のゲルは多孔性であることが好ましい。多孔性を得る為に、重合の際に上記の単量体に希釈剤を多孔形成剤として配合することが好ましい。
 希釈剤としては、原料単量体を溶解でき、反応条件下で原料単量体と均一に混合可能であって、一方で、前記単量体から形成された重合体を溶解できないものであり、重合反応には不活性な有機溶媒が使用できる。このような有機溶媒としては、モノマー類の種類により異なり、任意に選択できるが、例えばトルエン、キシレン、ジエチルベンゼン、ドデシルベンゼンのような芳香族系炭化水素類;ヘキサン、ヘプタン、オクタン、デカンのような飽和炭化水素類;イソアミルアルコール、ヘキシルアルコール、オクチルアルコールのようなアルコール類;ジクロロメタン、ジクロロエタン、トリクロロエタンのような脂肪族ハロゲン化炭化水素類;酢酸エチル、酢酸ブチル、フタル酸ジメチル、フタル酸ジエチルのような脂肪族あるいは芳香族エステルなどを用いることができる。希釈剤の配合量は、モノマー類の種類、目的とする多孔性架橋重合体の細孔サイズ、及びその密度などにより変わり一概に決定することはできないが、必要に応じて選択できる。例えば、通常は原料単量体100質量部に対し、50~200質量部程度混合して重合することが好ましい。
 本発明のゲルは、それ自体公知の一般的な方法、すなわち、例えば、重合開始剤の存在下で、溶液重合法や懸濁重合法で得ることができる。なお、前記重合体や共重合体が水などの溶媒を含む状態のゲルを得る事もできるが、溶媒を除いて乾燥されたゲルとしても良い。重合開始剤はラジカル発生源になるものであればいずれでもよい。例えば、過酸化ベンゾイル、過酸化アセチル、過酸化ラウロイル、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、イソブチリルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート、過硫酸アンモニウム、過硫酸カリウム、アゾビスイソブチロニトリル、アゾビス-2-4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビス-2-アミジノプロパンジハイドロクロリド、アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕ジハイドロクロリド、アゾビス〔2-メチル-N-(2-ヒドロキシエチル)プロピオナミド〕、光ラジカル重合開始剤としては、2,4-ジエチルチオキサントン、ベンゾフェノン、4-ジメチルアミノイソアミルベンゾエート、4-ジメチルアミノエチルベンゾエート、などがある。これらの添加量は任意の量で使用でき、例えば、全単量体100質量部に対して通常0.01~30質量部、好ましくは0.05~20質量部で使用される。
 溶液重合においては、例えば、(メタ)アクリロイルオキシ基を有する架橋性単量体、必要に応じて非架橋性単量体、及び重合開始剤を配合した水溶液を、反応容器に取り、容器内を窒素置換し、例えば40~100℃の温度で重合させることができる。反応後、含水状ゲルが得られる。
 また、懸濁重合では、例えば、撹拌機のついた反応容器で(メタ)アクリロイルオキシ基を有する架橋性単量体、必要に応じて非架橋性単量体、希釈剤及び重合開始剤を配合した溶液を、分散安定剤を溶解した水溶液に分散させて、所定の粒径になった後、窒素置換し、40℃~100℃で重合させることができる。ここでは、粒子状の含水ゲルが得られる。また、共沸脱水などで脱水すれば粉末状のゲルが得られる。この場合に、分散安定剤として、ゼラチン、ポリビニルアルコール、ポリビニルアルコールのケン化物、ヒドロキシエチルセルロースのような水溶性高分子化合物、アニオン、カチオン、非イオン性の各種界面活性剤、炭酸カルシウム、りん酸カルシウムのような難水溶性無機塩を用いることができる。これら分散安定剤と共に、単量体の水への溶解を抑制するために、塩析剤として塩化ナトリウム、塩化カルシウム、硫酸カリウムのような水溶性無機塩を併用することができる。得られた粒子状のゲルは、水または熱水で、更に必要に応じて有機溶媒などで洗浄し、ゲルに付着している分散安定剤、さらにはゲル内に存在している希釈剤及び未反応モノマー類などを除去する。更に必要に応じて、粒子状のゲルを分級することにより、粒子径を揃えることができる。体積平均粒径は任意で選択することができ、通常は1~500ミクロン、好ましくは2~200ミクロンである。必要に応じて体積平均粒径の好ましい範囲は選択することができ、例えば、1~100ミクロンや、1~50ミクロンや、あるいは1~20ミクロンなど、任意に好ましい範囲を選択してよい。 
 本発明における上記の体積平均粒径は、コールターカウンター法を用いて、次のように測定できる。すなわち、測定装置としてMultisizer 4(ベックマン・コールター社製)を用い、得られたポリマー充填剤0.2gにアイソトン(希釈液)25mLを加え、超音波を3分間当てて分散させた後、約1000個の測定個数にて体積平均粒径を測定する。体積平均粒径を好ましい範囲とするには、風力分級、ふるい分けによる分級、沈殿を利用した分級等で、前記粒径を制御できる。
 このようにして得られた多孔性のゲルは、親水性であることが好ましく、水酸基等を有することが好ましい。したがって、ゲルを製造する際の(メタ)アクリロイルオキシ基を有する架橋性単量体が、水酸基等の親水基を有していない場合には、グリシジル基を有する非架橋性単量体との共重合によってゲルを製造し、ゲルにエポキシ基を付与することが好ましい。その場合、ゲルが有するエポキシ基とエチレングリコールなどのポリオールとを、好ましくは三フッ化ホウ素ジエチルエーテル錯体などの触媒の存在下で反応させることで、エポキシ基が開環して水酸基が生成し親水性を付与できる。さらにこの生成した水酸基に、エポキシ化合物、好ましくはグリシドールを反応させて、水酸基を増やすことが好ましい。それによって、該粒子状ゲルの外表面がアルコール性水酸基で覆われ、一方で、粒子状ゲルの細孔内は疎水性である、2種類の性質を併せ持つ構造の多孔性ゲルとなる。これにより外表面の親水性が高まり、タンパク質などが該ゲルに吸着したり保持したりすることを防止できる。
 ゲルが有する水酸基と、エポキシ化合物特にグリシドールとの反応は、該ゲルとグリシドールを分散混合することによって行うことができ、この反応によってゲルの水酸基を増やすことができる。分散混合の方法としては、グリシドールの単独溶液、あるいはグリシドールと相溶性のある有機溶媒に溶解したグリシドール溶液に該ゲルを分散混合する方法により、またはグリシドールに相溶性ある有機溶媒に該ゲルを分散混合した中にグリシドールを添加する方法などにより行うことができる。グリシドールを添加する方法は特に限定されず、例えば、一括して添加する方法、数回に分割して添加する方法、滴下して添加する方法、更には他の有機溶媒に溶解したものを一括して添加する方法、またはこれを数回に分けて添加する方法など、いずれの方法であってもよい。グリシドールと相溶性ある有機溶媒としては、該粒子を混合分散することができ、該粒子の持つ官能基とグリシドールのエポキシ基との反応に不活性であれば、特に限定するものでない。例えばジメチルホルムアミド、ジオキサン、ジエチレングリコールジメチルエーテルなどを、前記有機溶媒として挙げることができる。
 上記のグリシドールとゲルが有する水酸基との反応に関して、必要であれば適宜触媒を用いることができる。触媒としては、塩酸、硫酸のような無機強酸、水酸化ナトリウム、水酸化カリウムのような強アルカリ、トリエチルベンジルアンモニウムクロライドやテトラメチルアンモニウムクロライドのような四級アンモニウム塩、ベンジルジメチルアミンやトリブチルアミンのような三級アミン、2-メチル-4-エチルイミダールや2-メチルイミダゾールのようなイミダゾール化合物、更には三フッ化ホウ素、ホウフッ化亜鉛、塩化スズのようなルイス酸などを挙げることができる。
 以上のようにして得られた本発明の液体クロマトグラフィー用充填剤は、液体クロマトグラフィー法や液体クロマトグラフィー装置に好ましく使用できる。例えば、カラム、前記カラムに送液するポンプ、カラムから溶出した成分を分析する検出器、及び検出器で検出されたデーターを処理する装置を含む液体クロマトグラフィー装置において、本発明の充填剤をカラムに使用することにより、高いS/N比で測定を行うことができる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
 [実施例1](架橋度:100%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート55質量%(103.3mmol)、ペンタエリスリトールテトラアクリレート45質量%(71.3mmol))56.0g、希釈剤としてジクロロエタン67.6g、及びオクタノール36.4gを容器に入れ、これに、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20(分散安定剤、日本合成化学製、ケン化度が86.5%-89.0%のポリビニルアルコール)を8g、塩析剤としてNaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザー(日本精機製作所製)により、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合した。その後、重合を行った分散液を、ろ過、洗浄、及び乾燥することにより、ゲル59.0gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集め、本発明のゲル22.2gを得た。
 [実施例2](架橋度:60%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート 55質量%(76.2mmol)、ペンタエリスリトールテトラアクリレート45質量%(52.6mmol))41.3g、非架橋性単量体としてグリシジルメタクリレート27.5g(193.5mmol)、ジクロロエタン67.6g、及びオクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水を300g、分散安定剤としてGH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後重合を行った分散液を、ろ過、洗浄、及び乾燥することにより、ゲル63.7gを得た。得られたゲルを、ジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、触媒として三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃ 3時間反応させた。ろ過、洗浄、乾燥することによりゲル67.0gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル20.8gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル22.8gを得た。
 [実施例3](架橋度:47%)
架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート 55質量%(54.8mmol)、ペンタエリスリトールテトラアクリレート45質量%(37.8mmol))29.7g、グリシジルメタクリレート33.1g(232.9mmol)、ジクロロエタン67.6g、及び、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル57.3gを得た。得られたゲルを、ジエチレングリコールジメチルエーテル220g,エチレングリコール220gに分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃、3時間反応させた。ろ過、洗浄、乾燥することによりゲル61.3gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル18.7gをジエチレングリコールジメチルエーテル220g、グリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル20.2gを得た。
 [比較例1](架橋度:30%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート 55質量%(31.0mmol)、ペンタエリスリトールテトラアクリレート45質量%(21.4mmol))16.8g、グリシジルメタクリレート39.2g(275.8mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビスイソブチロニトリル2.2g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合した。その後、重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル50.4gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、エチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃、3時間反応させた。ろ過、洗浄、乾燥することによりゲル53.3gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル15.7gをジエチレングリコールジメチルエーテル220g、グリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル16.4gを得た。
 [比較例2](架橋度:30%)
架橋性単量体としてエチレングリコールジメタクリレート19.8g(99.9mmol)、非架橋性単量体としてグリシジルメタクリレート46.2g(323.6mmol)、希釈剤としてクロロベンゼン28g、ラウリルアルコール30gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)4.0g(16.1mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水440g、GH-20を2.20g、KH-17(分散安定剤、日本合成化学製、ケン化度が78.5%-81.5%のポリビニルアルコール)2.20g、NaClを4.40g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、3500rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル60.0gを得た。得られたゲルに水400g,硫酸6gを加え80℃3時間反応を行った。ろ過、洗浄、乾燥することによりゲル64.5gを得た。得られたゲルを風力分級機で分級して8~12μmの粒子を集めた。風力分級後のゲル24.6gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル26.6gを得た。
 [実施例4](架橋度:40%)
エチレングリコールジメタクリレート26.4g(133.2mmol)、グリシジルメタクリレート39.6g(278.6mmol)、クロロベンゼン28g、ラウリルアルコール30gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)4.0g(16.1mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水440g、GH-20を2.20g、KH-17を2.20g、NaClを4.40g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、3500rpmで10間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル62.5gを得た。得られたゲルに水400g,硫酸6gを加え、80℃で3時間反応を行った。ろ過、洗浄、乾燥することによりゲル64.8gを得た。得られたゲルを風力分級機で分級して8~12μmの粒子を集めた。風力分級後のゲル25.6gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル27.3gを得た。
 [実施例5](架橋度:50%)
エチレングリコールジメタクリレート33.0g(166.5mmol)、グリシジルメタクリレート33.0g(232.1mmol)、クロロベンゼン28g、ラウリルアルコール30gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)4.0g(16.1mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水440g、GH-20を2.20g、KH-17を2.20g、NaClを4.40g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、3500rpmで10間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル66.6gを得た。得られたゲルに水400g,硫酸6gを加え80℃で3時間反応を行った。ろ過、洗浄、乾燥することによりゲル71.3gを得た。得られたゲルを風力分級機で分級して8~12μmの粒子を集めた。風力分級後のゲル28.6gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃d3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル30.4gを得た。
 [実施例6](架橋度:60%)
 架橋性単量体としてグリセリンジメタクリレート39.6g(173.7mmol)、グリシジルメタクリレート26.4g(185.7mmol)、クロロベンゼン18g、ラウリルアルコール38gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)2.2g(8.9mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水440g、GH-20を2.20g、KH-17を2.20g、NaClを4.40g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、3000rpmで5間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後、重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル57.2gを得た。得られたゲルに水400g、硫酸6gを加え、80℃で3時間反応を行った。ろ過、洗浄、乾燥することによりゲル63.5gを得た。得られたゲルを風力分級機で分級して10~12μmの粒子を集めた。風力分級後のゲル25.6gをジエチレングリコールジメチルエーテル220g、グリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル26.8gを得た。
 [実施例7](架橋度:60%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート 55質量%(73.1mmol)、ペンタエリスリトールテトラアクリレート45質量%(50.4mmol))39.6g、ペンタエリスリトールトリアクリレート39.6g(173.7mmol)、グリシジルメタクリレート26.4g(185.7mmol)、クロロベンゼン18g、ラウリルアルコール38gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水440g、GH-20を2.20g、KH-17を2.20g、NaClを4.40g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、3000rpmで10間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後、重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル58.2gを得た。得られたゲルに水400g、硫酸6gを加え80℃で3時間反応を行った。ろ過、洗浄、乾燥することによりゲル63.5gを得た。得られたゲルを風力分級機で分級して8~12μmの粒子を集めた。風力分級後のゲル25.8gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル27.3gを得た。
 [実施例8](架橋度:60%)
 架橋性単量体としてポリエチレングリコール#200ジアクリレート(新中村化学工業製)41.3g(134.1mmol)、グリシジルメタクリレート27.5g(193.5mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル56.8gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することによりゲル62.5gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル20.1gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより、本発明のゲル22.3gを得た。
 [実施例9](架橋度:60%)
 ポリエチレングリコール#200ジメタクリレート(新中村化学工業製)41.3g(125.2mmol)、グリシジルメタクリレート27.5g(193.5mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後、重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル58.4gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することによりゲル67.4gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル23.5gをジエチレングリコールジメチルエーテル220g、及びグリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル25.7gを得た。
 [実施例10](架橋度:60%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート55質量%(76.2mmol)、ペンタエリスリトールテトラアクリレート45質量%(52.6mmol))41.3g、非架橋性単量体としてメトキシポリエチレングリコール#400アクリレート(新中村化学工業製)27.5g(60.6mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル63.7gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することによりゲル71.1gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル26.5gをジエチレングリコールジメチルエーテル220g、グリシドール20gの混合液に分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル29.3gを得た。
 [実施例11](架橋度:60%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート55質量%(76.2mmol)、ペンタエリスリトールテトラアクリレート45質量%(52.6mmol))41.3g、4-ヒドロキシブチルアクリレート(日本化成製)27.5g(190.7mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。ろ過、洗浄、乾燥することにより、ゲル62.5gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することによりゲル71.5gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル27.5gをジエチレングリコールジメチルエーテル220g、グリシドール20gに分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル29.3gを得た。
 [実施例12](架橋度:60%)
 架橋性単量体(A-TMM-3L、新中村化学工業製、ペンタエリスリトールトリアクリレート55質量%(76.2mmol)、ペンタエリスリトールテトラアクリレート45質量%(52.6mmol))41.3g、4-ヒドロキシブチルアクリレートグリシジルエーテル(日本化成製)27.5g(193.7mmol)、ジクロロエタン67.6g、オクタノール36.4gを容器に入れ、これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.3g(13.3mmol)を溶解させ、一時間撹拌し、油相を準備した。また別に、イオン交換水300g、GH-20を8g、NaClを8g溶解させた水相を準備した。水相の中に油相を加え、エクセルオートホモジナイザーにより、2000rpmで10分間分散させた。その後、セパラブルフラスコに分散液を移し、反応容器内を窒素で置換した。反応温度60℃で6時間重合させた。その後、重合を行った分散液を、ろ過、洗浄、乾燥することにより、ゲル64.5gを得た。得られたゲルをジエチレングリコールジメチルエーテル220g、及びエチレングリコール220gの混合液に分散し、一時間撹拌を行った。撹拌後、三フッ化ホウ素ジエチルエーテル錯体2.6gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することによりゲル72.3gを得た。得られたゲルを風力分級機で分級して4~8μmの粒子を集めた。風力分級後のゲル28.5gをジエチレングリコールジメチルエーテル220g、グリシドール20gに分散させ、一時間撹拌を行った。撹拌後、ホウフッ化亜鉛8gを加え、80℃で3時間反応させた。ろ過、洗浄、乾燥することにより本発明のゲル30.6gを得た。
[分析例]
 実施例および比較例で作製したゲルを8.0φ×300mmのSUS製のハウジングに充填し、多角度光散乱検出器(DAWN HELEOS II、Wyatt Technology社製)で評価した。流速1.0ml/min、温度30℃の条件で、溶離液として0.1Mの硝酸ナトリウム水溶液を用いた。測定サンプルとして0.5%のプルラン標準物質(重量平均分子量がPS換算で、20800)であるP-20を10μL注入して、シグナルに対するベースラインのノイズの比率(S/N比)で比較を行った。Sは得られたサンプルピークの高さを表し、Nはサンプルピーク周辺(±2分)のノイズの平均値を表す。すなわち、山と谷との差の平均値を、比較する値として採用した。
 比較例1で得られたクロマトグラムを図2に、実地例2で得られたクロマトグラムを図3に示す。これら図において、縦軸はmV、横軸は分(min.)を表す。
 また、実施例1~12および比較例1~2で作製したゲルを使用して上記の条件で測定したときのS/N比を、表に示す。
 定量分析の際にはS/Nが30以上であると好ましいが、実施例1~12においては全て30以上を実現している。
Figure JPOXMLDOC01-appb-T000013
 本発明は、サイズ排除液体クロマトグラフィーにおいて光散乱用検出器を使用する際、スパイクノイズが発生しにくい液体クロマトグラフィー用充填剤を提供すること、およびそれを用いた分析方法を提供することを目的とする。
1 液体クロマトグラフィー用カラム
2 移動相タンク
3 送液ポンプ
4 サンプラー(インジェクター)
5 光散乱検出器
6 示差屈折率検出器
7 記録計(データー処理装置)

Claims (13)

  1.  (メタ)アクリロイルオキシ基を有する架橋性単量体を40質量%以上含む単量体を重合して得られるゲルからなる、液体クロマトグラフィー用充填剤。
  2.  前記(メタ)アクリロイルオキシ基を有する架橋性単量体が、(ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物、グリセリンと(メタ)アクリル酸とのエステル化物、およびペンタエリスリトールと(メタ)アクリル酸とのエステル化物からなる群から選ばれる少なくとも1種である、請求項1に記載の液体クロマトグラフィー用充填剤。
  3.  前記(ポリ)アルキレングリコールと(メタ)アクリル酸とのエステル化物が、下記一般式(1)で表される化合物である、請求項2に記載の液体クロマトグラフィー用充填剤;
    Figure JPOXMLDOC01-appb-C000001
     (式中、R, Rはそれぞれ独立に水素原子またはメチル基を表し、nは1~14の整数を表し、Xは炭素数2~4のオキシアルキレン基を表す。)。
  4.  前記グリセリンと(メタ)アクリル酸とのエステル化物が、下記一般式(2)で表される化合物である、請求項2に記載の液体クロマトグラフィー用充填剤;
    Figure JPOXMLDOC01-appb-C000002
     (式中R、R4、はそれぞれ独立に(メタ)アクリロイルオキシ基または水酸基を表し、R、R のうちの少なくとも2つは(メタ)アクリロイルオキシ基である。)。
  5.   前記ペンタエリスリトールと(メタ)アクリル酸とのエステル化物が、下記一般式(3)で表される化合物である、請求項2に記載の液体クロマトグラフィー用充填剤;
    Figure JPOXMLDOC01-appb-C000003
     (式中、Rは(メタ)アクリロイルオキシ基または水酸基を表し、Rは水素原子またはメチル基を表す)。
  6.  前記単量体が、(メタ)アクリロイルオキシ基を有する架橋性単量体に加えて、分子内に1つのエチレン性二重結合を有する化合物である非架橋性単量体をさらに含む、請求項1~5のいずれか1項に記載の液体クロマトグラフィー用充填剤。
  7.  前記非架橋性単量体が、下記一般式(4)で表される化合物である、請求項6に記載の液体クロマトグラフィー用充填剤。
    Figure JPOXMLDOC01-appb-C000004
     (式中、Rは水素原子またはメチル基を表し、Yはオキシアルキレン基を有する1価の有機基またはグリシジル基を表す。
  8.  水系溶媒に溶解する試料を、液体クロマトグラフィー用充填剤を充填したカラムに導入し、光散乱検出器を用いて検出を行う、サイズ排除液体クロマトグラフィーにおいて、前記充填剤が、請求項1のゲルからなることを特徴とする、サイズ排除液体クロマトグラフィー。
  9. 前記ゲルが多孔性高分子ゲルであり、充填剤の体積平均粒径が1~500ミクロンである、請求項1~7のいずれか1項に記載の液体クロマトグラフィー用充填剤。
  10.  前記ゲルが、前記(メタ)アクリロイルオキシ基を有する架橋性単量体に起因するモノマー単位を40質量%以上含む、高分子ゲルである、請求項1~7及び9のいずれか1項に記載の液体クロマトグラフィー用充填剤。
  11.  前記架橋性単量体が分子内に2つ以上のエチレン性二重結合を有する化合物であり、前記ゲルが親水性ゲルであり、前記架橋性単量体が50質量%以上である、請求項1~7及び9~10のいずれか1項に記載の液体クロマトグラフィー用充填剤。
  12.  架橋性単量体が、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジメタクリレート、グリセリンジメタクリレート、ポリエチレングリコール#200ジアクリレート、及び、ポリエチレングリコール#200ジメタクリレートからなる群の少なくとも一つを含む、請求項1~7及び9~11のいずれか1項に記載の液体クロマトグラフィー用充填剤。
  13.  請求項1~7及び9~12のいずれか1項に記載の液体クロマトグラフィー用充填剤、前記充填剤を含むカラム、前記カラムに送液するポンプ、カラムから溶出した成分を分析する検出器、及び検出器で検出されたデーターを処理する装置を含む、液体クロマトグラフィー装置。
PCT/JP2016/056654 2015-03-10 2016-03-03 液体クロマトグラフィー用充填剤 WO2016143673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017505286A JP6731402B2 (ja) 2015-03-10 2016-03-03 液体クロマトグラフィー用充填剤、液体クロマトグラフィー用充填剤の製造方法、サイズ排除液体クロマトグラフィー
CN201680012988.0A CN107407667B (zh) 2015-03-10 2016-03-03 液相色谱用填充剂
US15/556,384 US11167264B2 (en) 2015-03-10 2016-03-03 Packing material for liquid chromatography
EP16761643.2A EP3270155B1 (en) 2015-03-10 2016-03-03 Packing material for liquid chromatography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046650 2015-03-10
JP2015046650 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143673A1 true WO2016143673A1 (ja) 2016-09-15

Family

ID=56879606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056654 WO2016143673A1 (ja) 2015-03-10 2016-03-03 液体クロマトグラフィー用充填剤

Country Status (5)

Country Link
US (1) US11167264B2 (ja)
EP (1) EP3270155B1 (ja)
JP (1) JP6731402B2 (ja)
CN (1) CN107407667B (ja)
WO (1) WO2016143673A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642893B (zh) 2016-08-26 2021-02-19 昭和电工株式会社 Hilic柱用填充剂、填充了该hilic柱用填充剂的hilic柱及使用了该hilic柱的寡糖的分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160300A (en) * 1978-06-08 1979-12-18 Toyo Soda Mfg Co Ltd Hydrophilic separating carrier and making method thereof
JPS60104256A (ja) * 1984-09-28 1985-06-08 Showa Denko Kk クロマトグラフイー用充填剤及びその製造方法
JPS6366458A (ja) * 1986-09-09 1988-03-25 Hitachi Chem Co Ltd クロマトグラフイ−用充填剤
JPS6425056A (en) * 1987-07-21 1989-01-27 Nippon Oils & Fats Co Ltd Manufacture of macromolecular filler for liquid chromatography
JPH0481410A (ja) * 1990-07-25 1992-03-16 Mitsubishi Kasei Corp 親水性架橋共重合体粒子
JP2005525576A (ja) * 2002-05-15 2005-08-25 ダウ グローバル テクノロジーズ インコーポレーテッド 高分子の分子位相的分別
JP2013514538A (ja) * 2009-12-15 2013-04-25 ウオーターズ・テクノロジーズ・コーポレイシヨン サイズ排除クロマトグラフィーを行うための装置および方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1907666A1 (de) * 1969-02-15 1970-10-15 Merck Patent Gmbh Quellfaehige Polymerisate
JPS6070353A (ja) * 1983-09-28 1985-04-22 Toyo Soda Mfg Co Ltd 疎水性クロマトグラフィ−用担体
JPS6392645A (ja) * 1986-10-07 1988-04-23 Hitachi Chem Co Ltd 架橋重合体粒子の製造法
US5254634A (en) 1990-07-20 1993-10-19 Mitsubishi Kasei Corporation Crosslinked copolymer particles and process for producing the same
JP2000055897A (ja) * 1998-08-06 2000-02-25 Showa Denko Kk 充填剤及びその製造方法
JP2002181800A (ja) 2000-12-11 2002-06-26 Sumitomo Chem Co Ltd 溶媒の精製法
JP2002239380A (ja) * 2001-02-15 2002-08-27 Showa Denko Kk 親水性分離担体粒子及びその製造方法
KR20040039422A (ko) * 2001-09-28 2004-05-10 쇼와 덴코 가부시키가이샤 입상 소수성 중합체, 그 제조방법 및 역상 고성능 액체크로마토그래피용 칼럼
US20050061745A1 (en) * 2002-06-26 2005-03-24 Teledyne Isco, Inc. Separation system, components of a separation system and methods of making and using them
TW200738331A (en) * 2005-07-26 2007-10-16 Showa Denko Kk Method for analyzing low-molecular-weight compound in sample containing water-soluble polymer and low-molecular-weight compound
JP5396933B2 (ja) * 2009-03-11 2014-01-22 東ソー株式会社 液体クロマトグラフィー用充填剤、及び生体高分子の分離精製方法
WO2012031745A1 (en) * 2010-09-08 2012-03-15 Qiagen Gmbh Method and device for concentrating target compounds
CN102059157B (zh) * 2010-12-08 2014-01-08 南京大学 阴离子交换整体材料和以其为分离介质的常规液相色谱柱或石英毛细管柱及其制法
CN102552201A (zh) * 2012-03-12 2012-07-11 广州康和药业有限公司 一种地乌皂苷w3口服缓释片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160300A (en) * 1978-06-08 1979-12-18 Toyo Soda Mfg Co Ltd Hydrophilic separating carrier and making method thereof
JPS60104256A (ja) * 1984-09-28 1985-06-08 Showa Denko Kk クロマトグラフイー用充填剤及びその製造方法
JPS6366458A (ja) * 1986-09-09 1988-03-25 Hitachi Chem Co Ltd クロマトグラフイ−用充填剤
JPS6425056A (en) * 1987-07-21 1989-01-27 Nippon Oils & Fats Co Ltd Manufacture of macromolecular filler for liquid chromatography
JPH0481410A (ja) * 1990-07-25 1992-03-16 Mitsubishi Kasei Corp 親水性架橋共重合体粒子
JP2005525576A (ja) * 2002-05-15 2005-08-25 ダウ グローバル テクノロジーズ インコーポレーテッド 高分子の分子位相的分別
JP2013514538A (ja) * 2009-12-15 2013-04-25 ウオーターズ・テクノロジーズ・コーポレイシヨン サイズ排除クロマトグラフィーを行うための装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270155A4 *

Also Published As

Publication number Publication date
JPWO2016143673A1 (ja) 2017-12-21
CN107407667B (zh) 2021-06-15
JP6731402B2 (ja) 2020-07-29
US11167264B2 (en) 2021-11-09
CN107407667A (zh) 2017-11-28
US20180104669A1 (en) 2018-04-19
EP3270155B1 (en) 2022-06-29
EP3270155A4 (en) 2018-10-24
EP3270155A1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
US9725545B2 (en) Porous polymeric resins
KR101297282B1 (ko) 친수성이 우수한 신규 충전제 및 그 제조 방법
JP2005510609A5 (ja)
US20220176273A1 (en) Packing material for size exclusion chromatography and method for producing the same
JP2017211352A (ja) 分離材及びカラム
Nakano et al. Preparation of cross-linked monodisperse poly (acrylic acid) particles by precipitation polymerization
EP2027163B1 (en) A method for producing cross-linked spherical particles
WO2007043485A1 (ja) 有機系多孔質体の製造方法および有機系多孔質カラムならびに有機系多孔質体
JPH107704A (ja) 樹脂粒子、その製造方法、樹脂粒子を用いた塗料及び 化粧品
JP6731402B2 (ja) 液体クロマトグラフィー用充填剤、液体クロマトグラフィー用充填剤の製造方法、サイズ排除液体クロマトグラフィー
Dai et al. Narrowly dispersed imprinted microspheres with hydrophilic polymer brushes for the selective removal of sulfamethazine
Norhayati et al. Synthesis and characterization of poly (HEMA-co-EGDMA-co-VBC) by modified suspension polymerization: Effects of polymerization parameters reaction on chemical and thermal properties of polymer
US4184020A (en) Preparation of hydrophilic material for gel chromatography
US6362245B1 (en) Porous co-polymer particles, process for preparing the same and use of the same
Zhang et al. Preparation of molecularly imprinted polymer for vanillin via seed swelling and suspension polymerization
de Santa Maria et al. Microscopic analysis of porosity of 2-vinylpyridine copolymer networks: 1. Influence of diluent
EP0990667B1 (en) Porous copolymer particles, process for preparing the same and use of the same
Bukowska et al. Three‐component terpolymers of glycidyl methacrylate with good swelling characteristics
Savina et al. Analysis of polymer grafted inside the porous hydrogel using confocal laser scanning microscopy
JPH0727754A (ja) カチオンクロマトグラフィー用充填剤及びその製造方法
Pączkowski et al. Studies on Preparation, Characterization and Application of Porous Functionalized Glycidyl Methacrylate-Based Microspheres. Materials 2021, 14, 1438
JP4734685B2 (ja) 多孔性共重合体粒子の製造方法
WO2023276550A1 (ja) 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
Arrua et al. Preparation of polymeric macroporous rod systems: Study of the influence of the reaction parameters on the porous properties
CN117467059A (zh) 聚合物多孔微球及其制备方法与用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505286

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE