WO2016143298A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016143298A1
WO2016143298A1 PCT/JP2016/001107 JP2016001107W WO2016143298A1 WO 2016143298 A1 WO2016143298 A1 WO 2016143298A1 JP 2016001107 W JP2016001107 W JP 2016001107W WO 2016143298 A1 WO2016143298 A1 WO 2016143298A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
mass
finish rolling
strength steel
Prior art date
Application number
PCT/JP2016/001107
Other languages
English (en)
French (fr)
Inventor
太郎 木津
俊介 豊田
章雅 木戸
哲志 田谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016546116A priority Critical patent/JP6172399B2/ja
Priority to MX2017011382A priority patent/MX2017011382A/es
Priority to KR1020177026517A priority patent/KR101986033B1/ko
Priority to CN201680013160.7A priority patent/CN107406937B/zh
Priority to EP16761275.3A priority patent/EP3266897B1/en
Priority to US15/554,821 priority patent/US10815547B2/en
Publication of WO2016143298A1 publication Critical patent/WO2016143298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention is a high-strength steel plate, in particular, suspension members such as automobile lower arms, skeleton members such as pillars and members and their reinforcing members, door impact beams, seat members, vending machines, desks, home appliances / OA devices,
  • the present invention relates to a high-strength steel sheet having both strength, punchability and stretch flangeability suitable for structural members used for building materials and the like.
  • this invention relates to the manufacturing method of the said high strength steel plate.
  • Patent Document 1 includes C: 0.010 to 0.200%, Si: 0.01 to 1.5%, Mn: 0.25 to 3%, P: 0.05% or less, and Ti, Disclosed is a steel sheet that contains one or more selected from the group consisting of Nb, V, and Mo and has a C segregation amount of 4 to 10 atms / nm 2 at a large-angle grain boundary of ferrite and has improved punchability. ing.
  • Patent Document 2 discloses that C: 0.08 to 0.20%, Si: 0.2 to 1.0%, Mn: 0.5 to 2.5%, P: 0.04% or less, S : 0.005% or less, Al: 0.05% or less, Ti: 0.07-0.20, and V: 0.20-0.80, and 80-98% ferrite phase,
  • the total amount of Ti and V contained in precipitates of less than 20 nm is 0.150% or more, and the difference in Vickers hardness between the ferrite phase and the second phase is ⁇ 300 to 300
  • Patent Document 3 C: 0.03 to 0.07%, Si: 0.005 to 1.8%, Mn: 0.1 to 1.9%, P: 0.05% or less, S: 0 0.005% or less, Al: 0.001 to 0.1%, N: 0.005% or less, and Nb: 0.002 to 0.008%, and a component composition with controlled Ti and S amounts. 90% or more of pro-eutectoid ferrite, an average crystal grain size of 5 to 12 ⁇ m, an elongation of 1.2 to 3, an average grain size of TiC of 1.5 to 3 nm, and a density of 1 ⁇ A steel sheet having 10 16 to 5 ⁇ 10 17 pieces / cm 3 is disclosed.
  • Patent Document 4 discloses a steel sheet in which the structure is a ferrite phase and a bainite phase, and 40% or more of the ferrite phase has a phase interface precipitation with a surface interval of 20 to 60 nm.
  • Patent Document 5 C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.00. It has a component composition containing 05% or less, Al: 0.05% or less, and Ti: 0.05 to 0.16%, 50 to 90% of the ferrite phase, and 95% of the total of the ferrite phase and the bainite phase.
  • a steel sheet containing 650 to 1100 ppm of precipitates containing less than 20 nm containing Ti in the ferrite phase and having a Vickers hardness variation of the bainite phase of 150 or less is disclosed.
  • Patent Document 1 it is necessary to cool the steel sheet to a narrow temperature range of 600 to 650 ° C. at a high cooling rate of 50 ° C./s or more after finishing the finish rolling in the hot rolling. For this reason, it is difficult to stably manufacture the steel sheet described in Patent Document 1, and there is a problem that enormous capital investment is required to manufacture the steel sheet.
  • the present invention solves the above-mentioned problems of the prior art, has a high strength such as tensile strength (TS): 780 MPa or more, and has a high strength hot-rolled steel sheet having excellent punchability and stretch flangeability. It aims at providing the manufacturing method.
  • TS tensile strength
  • the present inventors have studied the coexistence of high strength, excellent punchability and stretch flangeability, and as a result, obtained the following knowledge.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.05 to 0.30%, Si: 0.6-2.0%, Mn: 1.3 to 3.0%, P: 0.10% or less, S: 0.030% or less, Al: 2.0% or less, N: 0.010% or less, and one or more of Ti, Nb, and V: each containing 0.01 to 1.0%,
  • the balance has a component composition consisting of Fe and inevitable impurities, It has a ferrite structure of 50% or more in area ratio, Fe precipitation amount is 0.04 mass% or more, Containing precipitates having a particle size of less than 20 nm, A high-strength steel sheet in which C * defined by the following formula (1) and C * p defined by the following formula (2) satisfy the conditions of the following formulas (3) to (5).
  • the component composition is further in mass%, 2.
  • the component composition is further in mass%, 3.
  • the high-strength steel sheet according to 1 or 2 above which contains 0.01 to 1.0% of one or more of Cr, Ni, and Cu.
  • the component composition is further in mass%, The high-strength steel sheet according to any one of 1 to 3 above, containing Sb: 0.005 to 0.050%.
  • the component composition is further in mass%, 5.
  • the method for producing a high-strength steel sheet according to any one of 1 to 5, A hot rolling step of subjecting the steel material having the component composition according to any one of 1 to 5 to rough rolling and finish rolling to obtain a steel plate;
  • a first quenching step of cooling the steel plate after the finish rolling is completed at an average cooling rate of 30 ° C./s or more from the end of the finish rolling to the start of the subsequent intermediate annealing step;
  • An intermediate slow cooling step in which the steel sheet after the first rapid cooling step is gradually cooled at an average cooling rate of less than 10 ° C./s for 1 to 10 seconds from a starting temperature of more than 650 ° C.
  • TS tensile strength
  • C 0.05 to 0.30%
  • C is an element having an effect of increasing the strength of steel by forming fine carbides with Ti, Nb, and V.
  • C forms Fe and cementite, which contributes to the improvement of punchability.
  • it is necessary to make C content 0.05% or more.
  • the C content needs to be 0.30% or less.
  • the C content is preferably 0.25% or less, and more preferably 0.20% or less.
  • Si 0.6-2.0%
  • Si promotes ferrite transformation in the intermediate slow cooling process after hot rolling, and Ti, Nb, and V that precipitate simultaneously with the transformation make it easy to form fine carbides.
  • Si also has a function as a solid solution strengthening element that increases the strength of steel without greatly reducing the formability.
  • it is necessary to make Si content into 0.6% or more, Preferably it is 1.0% or more, More preferably, it is 1.2% or more.
  • Si content is 1.0% or more, More preferably, it is 1.2% or more.
  • ferrite transformation in the rapid cooling process (first cooling process) before intermediate annealing is promoted, and coarse carbides of Ti, Nb, and V are precipitated.
  • the Si content needs to be 2.0% or less, preferably 1.5% or less.
  • Mn 1.3 to 3.0%
  • Mn has an action of suppressing the start of ferrite transformation before intermediate annealing in cooling after hot rolling. Furthermore, Mn contributes to the strengthening of steel by solid solution strengthening. Mn also has the effect of detoxifying S in harmful steel as MnS. In order to acquire such an effect, it is necessary to make Mn content 1.3% or more, preferably 1.5% or more.
  • Mn content needs to be 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
  • P 0.10% or less P segregates at the grain boundaries and lowers the ductility and toughness of the steel. Further, when P is added in a large amount, ferrite transformation in the rapid cooling process (first rapid cooling process) after rolling and before intermediate annealing is promoted, and Ti, Nb, and V carbides are coarsely precipitated. Therefore, the P content needs to be 0.10% or less, preferably 0.05% or less, more preferably 0.03% or less, and still more preferably 0.01% or less.
  • the lower limit is not limited and may be 0%, but industrially it is over 0%. Moreover, excessively low P leads to an increase in refining time and an increase in cost, so 0.0005% or more is preferable.
  • S 0.030% or less S induces hot cracking by remarkably reducing hot ductility and remarkably deteriorates surface properties. Furthermore, S hardly contributes to the improvement of strength, but also reduces the ductility and stretch flangeability of steel by forming coarse sulfides. Therefore, it is desirable to reduce the S content as much as possible. In particular, these problems become significant when the S content exceeds 0.030%. Therefore, in the present invention, the S content is set to 0.030% or less. Further, the S content is preferably 0.010% or less, more preferably 0.003% or less, and further preferably 0.001% or less. The lower limit is not limited and may be 0%, but industrially it is over 0%. Further, excessively low S causes an increase in refining time and cost, and therefore the S content is preferably 0.0005% or more.
  • Al 2.0% or less
  • the Al content needs to be 2.0% or less, preferably 1.5% or less, and more preferably 1.0% or less.
  • Al killed steel containing 0.01% or more of Al as a deoxidizer may be used.
  • Al has an effect of promoting ferrite transformation and promoting formation of fine carbides of Ti, Nb, and V in an intermediate annealing process after rolling. In order to acquire the said effect, it is preferable to make Al content into 0.2% or more, and it is more preferable to set it as 0.5% or more.
  • N 0.010% or less N forms coarse nitrides at high temperatures with Ti, Nb, and V, and does not contribute much to strength improvement. Therefore, N reduces the effect of increasing strength by adding Ti, Nb, and V. Furthermore, in steel containing a large amount of N, slab cracks may occur during hot rolling, and surface defects may occur. Therefore, the N content needs to be 0.010% or less, preferably 0.005% or less, more preferably 0.003% or less, and still more preferably 0.002% or less. The lower limit is not limited and may be 0%, but industrially it is over 0%. Further, excessively low N causes an increase in refining time and cost, and therefore the N content is preferably 0.0005% or more.
  • Ti, Nb, and V 0.01 to 1.0% each Ti, Nb, and V form fine carbides with C, contribute to high strength, and have the effect of improving punchability and stretch flangeability.
  • the contents of Ti, Nb, and V need to be 1.0% or less, respectively.
  • the following components can be arbitrarily added to the steel.
  • Mo, Ta, W 0.005 to 0.50% each Mo, Ta, and W contribute to the improvement of strength, punchability, and stretch flangeability by forming fine precipitates.
  • Mo, Ta, and W it is preferable to add 1 or 2 or more of Mo, Ta, and W, respectively 0.005% or more.
  • the addition of a large amount of Mo, Ta, and W not only saturates the effect but also increases the cost.
  • the respective contents Is preferably 0.50% or less.
  • One or more of Cr, Ni, Cu: 0.01 to 1.0% each Cr, Ni, and Cu contribute to high strength and toughness improvement by refining the steel structure.
  • the addition of a large amount of Cr, Ni, Cu not only saturates the effect but also increases the cost, so when adding at least one of Cr, Ni, and Cu, their content Is preferably 1.0% or less.
  • Sb 0.005 to 0.050% Sb segregates on the surface of the steel during hot rolling and has an action of preventing the steel from being nitrided. Therefore, the formation of coarse nitrides can be suppressed by adding Sb. In order to acquire such an effect, when adding Sb, it is preferable to make Sb content into 0.005% or more. On the other hand, when Sb is added in a large amount, the cost increases. Therefore, when Sb is added, the content is preferably 0.050% or less.
  • Ca and REM 0.0005 to 0.01% each Ca and REM (rare earth metals) can improve ductility and stretch flangeability by controlling the form of sulfide.
  • the addition of a large amount not only saturates the effect but also increases the cost. Therefore, when adding Ca and REM, the Ca and REM contents are each preferably 0.01% or less.
  • the balance of the high-strength steel sheet of the present invention is composed of Fe and inevitable impurities.
  • impurities and other trace elements are allowed to contain impurities and other trace elements.
  • impurities such as Sn, Mg, Co, As, Pb, Zn, and O in a total amount of 0.5% or less is acceptable because there is no problem with the characteristics of the steel sheet.
  • the high-strength steel sheet has a ferrite structure of 50% or more in area ratio and the precipitation amount of Fe is 0.04% or more.
  • Ferrite structure area ratio 50% or more Ferrite is excellent in workability.
  • the ratio of the ferrite structure to the metal structure of the steel sheet is set to 50% or more by area ratio.
  • the ferrite area ratio is preferably 60% or more, and more preferably 70% or more.
  • the upper limit of the ferrite area ratio is not particularly limited, but is preferably 100%.
  • the remaining structure other than ferrite is not particularly limited, and can be any structure such as bainite, martensite, and pearlite. From the viewpoint of toughness, it is preferable to include an upper bainite structure.
  • the area ratio is preferably 5% or more, and more preferably 10% or more.
  • the upper limit of the area ratio of the upper bainite structure is not particularly limited, but may be less than 50%, preferably less than 40%, and more preferably less than 30%.
  • Fe precipitation amount 0.04 mass% or more
  • the precipitation amount of Fe is preferably 0.5% by mass or less. More preferably, it is 0.3 mass% or less, More preferably, it is 0.2 mass% or less.
  • the precipitation amount of Fe is the mass ratio of precipitated Fe to the whole steel sheet.
  • the high-strength steel sheet contains precipitates having a particle size of less than 20 nm, and C * defined by the above formula (1) and C * p defined by the above formula (2) are: It is important to satisfy the conditions of the above expressions (3) to (5). Hereinafter, the reason for the limitation will be described.
  • C * defined by the formula (1) is the total amount of Ti, Nb, V, Mo, Ta and W contained in the steel. Is a value converted to the carbon content on the assumption that all of these elements form carbides.
  • Ti, Nb, V, Mo, Ta, and W (hereinafter sometimes referred to as Ti or the like) have a function of improving the strength of steel by forming carbides. Therefore, in the present invention, in order to improve the strength of the steel, these elements are added so that C * is 0.035 or more as defined by the above formula (3).
  • the upper limit of C * is not particularly limited, but is preferably 0.2% or less, and preferably 0.15% or less, from the viewpoint of suppressing deterioration in workability due to an increase in the amount of precipitated carbide. Is more preferable.
  • ([C] ⁇ C * ) is preferably 0 or more, that is, [C] is preferably C * or more.
  • the surplus C which does not form a carbide
  • ([C] -C * ) is preferably 0.02 or less.
  • the steel sheet needs to contain precipitates having a particle diameter of less than 20 nm. Further, at that time, if the proportion of Ti, etc. deposited as precipitates having a particle diameter of less than 20 nm is small with respect to the amount of Ti, Nb, V, Mo, Ta, and W added in the steel, the strength becomes high. The production efficiency is low and the manufacturing cost increases, and sufficient punchability and stretch flangeability cannot be obtained.
  • the ratio (C * p / C * ) of the value of C * p defined by the above equation (2) to the value of C * defined by the above equation (1) is expressed by the above equation (5).
  • the value of C * p is the total amount of Ti, Nb, V, Mo, Ta, and W contained in the steel contained in precipitates having a particle diameter of less than 20 nm. It is a value converted to the carbon amount on the assumption that all of these elements form carbides. Therefore, when Ti, Nb, V, Mo, Ta, and W contained in the steel are all precipitated as precipitates having a particle diameter of less than 20 nm, C * p / C * is 1. .
  • C * p / C * is preferably 0.5 or more, more preferably 0.7 or more, and further preferably 0.9 or more.
  • the upper limit of C * p / C * is not particularly limited, but is 1 at the maximum as described above.
  • the high-strength steel sheet of the present invention can be manufactured by hot rolling a steel material having the above-described component composition under specific conditions. Specifically, the following steps (1) to (5) are sequentially performed.
  • a processing step for processing the steel plate after the winding step can be arbitrarily provided.
  • the steel raw material which has the said component is manufactured.
  • the steel material can be manufactured by melting and casting steel by a conventional method. The casting is preferably performed using a continuous casting method from the viewpoint of productivity.
  • the steel material (slab) is hot-rolled.
  • the steel material may be hot-rolled as it is after casting, or may be hot-rolled after being reheated after becoming a hot piece or a cold piece.
  • the hot rolling process can be performed in two stages, rough rolling and finish rolling.
  • the conditions for rough rolling are not particularly limited. In particular, when a thin slab casting method is employed, rough rolling may be omitted.
  • the conditions for the finish rolling are as follows.
  • Finish rolling side temperature 900-1100 ° C
  • the steel plate temperature on the entrance side of the finish rolling mill needs to be 900 ° C. or higher, preferably 950 ° C. or higher.
  • the steel plate temperature on the finish rolling side needs to be 1100 ° C. or lower, and preferably 1050 ° C. or lower.
  • Finish rolling total rolling reduction 88% or more
  • the total rolling reduction is preferably 90% or more, more preferably 92% or more, and further preferably 94% or more.
  • the upper limit of the finish rolling total rolling reduction is not particularly limited, but is preferably 96% or less. This is because if the rolling reduction is too large, the rolling load is also increased, so that the rolling itself becomes difficult.
  • the finish rolling total reduction ratio is defined as (t1 ⁇ t2) / t1 as a ratio of the sheet thickness t2 after finishing rolling to the sheet thickness t1 immediately before starting finishing rolling.
  • Finishing rolling delivery temperature 800-950 ° C If the temperature of the steel sheet at the delivery side of finish rolling is low, ferrite transformation in the cooling process (first quenching process) from the end of finish rolling to intermediate annealing is promoted, and Ti, Nb, and V carbides are coarse. It will be deposited. Furthermore, when the finish rolling finish temperature is in the ferrite region, the carbides of Ti, Nb, and V become coarser due to strain-induced precipitation. Therefore, the steel plate temperature on the finish final rolling delivery side needs to be 800 ° C. or higher, preferably 850 ° C. or higher.
  • the temperature on the finish rolling delivery side needs to be 950 ° C. or lower, preferably 900 ° C. or lower.
  • Feeding speed on the finish rolling exit side 300 m / min or more If the passing speed on the finish rolling exit side is low, the accumulation of strain in the austenite region becomes small, and it becomes easy to generate coarse ferrite in part after transformation. . Therefore, the sheet passing speed on the finish rolling delivery side needs to be 300 m / min or more, and preferably 400 m / min or more. On the other hand, the upper limit of the sheet passing speed is not particularly limited, but is preferably 1000 m / min or less for sheet passing stability.
  • the average cooling rate from the end of finish rolling to the start of intermediate annealing is set to 30 ° C./s or more.
  • the average cooling rate needs to be 30 ° C./s or more, preferably 50 ° C./s or more, and more preferably 80 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably 200 ° C./s or less from the viewpoint of temperature control.
  • Intermediate slow cooling start temperature more than 650 ° C. and not more than 750 ° C.
  • the rapid cooling is finished and the intermediate slow cooling is started. If the temperature at which the intermediate annealing is started is too high, ferrite transformation occurs at a high temperature, so that Ti, Nb, and V carbides are coarsely precipitated. Therefore, the intermediate annealing start temperature needs to be 750 ° C. or lower. On the other hand, if the intermediate annealing start temperature is too low, Ti, Nb, and V carbides cannot be sufficiently precipitated. Therefore, the intermediate annealing start temperature needs to be higher than 650 ° C.
  • Average cooling rate during intermediate slow cooling less than 10 ° C./s If the cooling rate during intermediate slow cooling is large, ferrite transformation does not occur sufficiently and the amount of precipitation of fine carbides of Ti, Nb, and V also decreases. Therefore, the average cooling rate during intermediate slow cooling needs to be less than 10 ° C./s, preferably less than 6 ° C./s. Although a minimum is not specifically limited, It is preferable to set it as 4 degrees C / s or more.
  • Intermediate annealing time 1 to 10 s If the intermediate slow cooling time is too short, ferrite transformation does not occur sufficiently and the amount of precipitation of fine carbides of Ti, Nb, and V is also reduced. For this reason, the intermediate slow cooling time needs to be 1 s or longer, preferably 2 s or longer, more preferably 3 s or longer. On the other hand, if the intermediate annealing time is too long, Ti, Nb, and V carbides become coarse. Therefore, the intermediate annealing time needs to be 10 s or less, preferably 6 s or less.
  • Second quenching step Average cooling rate from the end of intermediate slow cooling to the start of winding: 10 ° C./s or more
  • a second quenching step is further performed.
  • the average cooling rate from the end of the intermediate slow cooling to the start of the subsequent winding is set to 10 ° C./s or more. If the cooling rate from the end of the intermediate slow cooling to the start of winding is too low, Ti, Nb, and V carbides become coarse. Therefore, the average cooling rate from the end of intermediate slow cooling to the start of winding needs to be 10 ° C./s or more, preferably 30 ° C./s or more, more preferably 50 ° C./s or more. Although an upper limit is not specifically limited, It is preferable to set it as 100 degrees C / s or less from a viewpoint of temperature control.
  • Winding process Winding temperature: 350 to 500 ° C
  • the steel plate after the second quenching step is wound into a coil shape.
  • the winding temperature is set to 350 to 500 ° C. If the coiling temperature is too high, Ti, Nb, and V carbides become coarse. Therefore, the winding temperature needs to be 500 ° C. or less.
  • the formation of cementite which is a carbide of Fe whose coiling temperature is too low, is suppressed. Therefore, the coiling temperature needs to be 350 ° C. or higher.
  • the processing method may be a reduction by a rolling roll, a tension process in which a steel sheet is pulled to apply a tension, or a combination of rolling and tension.
  • the high-strength steel sheet of the present invention includes those subjected to surface treatment or coating.
  • the hot-rolled steel sheet produced by the above-described procedure may be pickled and the scale formed on the surface may be removed, and then the steel sheet surface may be plated.
  • Various types of plating can be used as the plating, such as zinc plating, zinc plating with zinc and aluminum, zinc plating with zinc and nickel, plating with aluminum, aluminum plating with aluminum and aluminum, etc. .
  • the plating method can be used regardless of hot dipping or electroplating.
  • alloying by heating after plating can also be performed.
  • coating can be applied by chemical conversion treatment or painting.
  • the tensile strength (TS) of the high strength steel plate of the present invention is 780 MPa or more.
  • a hole expansion rate is 55% or more.
  • the upper limit of the hole expansion rate is preferably about 150%.
  • the product of tensile strength and hole expansion rate (TS ⁇ ⁇ ) is preferably 60000 MPa ⁇ % or more, and preferably 150,000 MPa ⁇ % or less.
  • the punchability is preferably such that no cracks are observed on the end face in the punching test described below.
  • the thickness of the high-strength steel plate is preferably set to 2.0 to 4.0 mm.
  • Table 3 shows the evaluation results for each item.
  • the ferrite area ratio was evaluated by the following procedure. First, a plate thickness section parallel to the rolling direction of the steel plate was corroded with nital to reveal a microstructure to obtain a sample. Next, using a scanning electron microscope (SEM), the structure of the 300 ⁇ 300 ⁇ m 2 region on the surface of the sample was observed at a magnification of 500 times, and the area ratio of the ferrite structure was determined.
  • SEM scanning electron microscope
  • Fe precipitation amount The amount of Fe deposited was determined by electrolytic extraction. Specifically, it is as follows. First, constant current electrolysis was performed using the test piece as an anode, and a predetermined amount of the test piece was dissolved. The electrolysis was performed in a 10% AA electrolyte solution, that is, a 10% by volume acetylacetone-1% by mass tetramethylammonium chloride-methanol solution. Next, the residue extracted by the electrolysis was filtered using a filter having a pore size of 0.2 ⁇ m, and the precipitate was collected. After the obtained precipitate was dissolved with a mixed acid, Fe was quantified by ICP emission spectroscopic analysis, and the precipitation amount of Fe was calculated from the measured value.
  • C * p The value of C * p defined by the equation (2) was obtained by the following method. First, constant current electrolysis was performed in a 10% AA-based electrolytic solution using the test piece as an anode to dissolve a predetermined amount of the test piece, and then the electrolytic solution was filtered using a filter having a pore diameter of 20 nm. The obtained filtrate was analyzed by ICP emission spectrometry, and the amounts of Ti, Nb, V, Mo, Ta, and W were measured, and the value of C * p was calculated from the measured values.
  • the steel plates that satisfy the conditions of the present invention all have high tensile strength (TS) of 780 MPa or more, and excellent stretch flangeability (hole expansion rate) and punchability. Had both.
  • the steel sheet that does not satisfy the conditions of the present invention (Comparative Example) was inferior in one or more of tensile strength, stretch flangeability, and punchability.
  • FIG. 1 shows the correlation between the C * p / C * value and the product of tensile strength and hole expansion rate (TS ⁇ ⁇ ) in the steel sheets 1-7, 10-18, 20, and 21.
  • FIG. 2 shows the correlation between the C * p / C * value and the punchability in the steel sheet. 1 and 2, it can be seen that by setting the C * p / C * value to 0.3 or more, TS ⁇ ⁇ can be 60000 MPa ⁇ % or more and the punchability can be made ⁇ .
  • FIG. 3 shows the phase difference between the amount of Fe precipitation and punchability in the steel sheets 1-8, 10, 11, 14-16, 18, 19, and 22.
  • FIG. 3 shows that the punchability can be made good by setting the amount of Fe precipitation to 0.04% or more.
  • the structure and composition of the steel other than the values taken on the horizontal axis satisfy the conditions of the present invention in order to exclude the influence of parameters other than the values taken on the horizontal axis in each figure. No steel sheet data was excluded from the plot.

Abstract

 引張強さ:780MPa以上といった高い強度を有し、かつ優れた打ち抜き性と伸びフランジ性を兼ね備えた高強度鋼板とその製造方法を提供する。 質量%で、C:0.05~0.30%、Si:0.6~2.0%、Mn:1.3~3.0%、P:0.10%以下、S:0.030%以下、Al:2.0%以下、N:0.010%以下、ならびにTi、Nb、およびVの1または2以上:それぞれ0.01~1.0%を含有し、残部は鉄および不可避不純物からなり、面積率で50%以上のフェライト組織を有し、Feの析出量が0.04質量%以上であり、粒子径が20nm未満の析出物を含有し、下記(1)式で定義されるC*と下記(2)式で定義されるC* pとが、下記(3)~(5)式の条件を満たす高強度鋼板。 記 C* = ([Ti]/48+[Nb]/93+[V]/51+[Mo]/96+[Ta]/181+[W]/184)×12 ……(1) C* p = ([Ti]p/48+[Nb]p/93+[V]p/51+[Mo] p/96+[Ta] p/181+[W] p/184)×12 ……(2) C* ≧ 0.035 ……(3) -0.015 ≦ [C]- C* ≦ 0.03 ……(4) C* p/C* ≧0.3 ……(5)

Description

高強度鋼板およびその製造方法
 本発明は、高強度鋼板、特に、自動車のロアアームなどの足回り部材、ピラーやメンバーなどの骨格部材とそれらの補強部材、ドアインパクトビーム、シート部材、自動販売機、デスク、家電・OA機器、建材などに使用される構造用部材等に適した、強度と打ち抜き性および伸びフランジ性とを兼ね備えた高強度鋼板に関するものである。また本発明は、前記高強度鋼板の製造方法に関するものである。
 近年、地球環境に対する関心の高まりを受けて、製造時のCO2排出量が多い鋼板の使用量を削減したいという要望が増加している。さらに、自動車分野においては、自動車車体の強度を維持しつつ、車体を軽くすることで燃費を向上させるというニーズも益々大きくなっている。自動車車体の強度を維持しつつ軽量化を図るうえでは、自動車部品用素材となる鋼板の高強度化により、鋼板を薄肉化することが有効である。
 一方、鋼板を素材とする自動車部品の多くは、プレス加工やフランジ成型等によって成形されるため、自動車部品用鋼板には優れた打抜き性および伸びフランジ性を有することが要求される。そのため、自動車部品用鋼板においては、強度とともに加工性が重要であり、伸びフランジ性等の加工性に優れた高強度鋼板が求められている。
 そこで、強度と加工性を兼ね具えた高強度鋼板を得るために、研究開発が盛んに行われているが、一般的に鉄鋼材料は高強度化に伴い加工性が低下するため、強度を損なうことなく高強度鋼板に打抜き性や伸びフランジ性等の加工性を付与することは容易ではない。
 例えば、特許文献1には、C:0.010~0.200%、Si:0.01~1.5%、Mn:0.25~3%、P:0.05%以下、ならびにTi、Nb、V、Moからなる群より選択される1または2以上を含有し、フェライトの大角結晶粒界におけるC偏析量を4~10atms/nm2とする、打抜き加工性が向上した鋼板が開示されている。
 また、特許文献2には、C:0.08~0.20%、Si:0.2~1.0%、Mn:0.5~2.5%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.07~0.20、およびV:0.20~0.80を含有し、80~98%のフェライト相と、第二相とを有し、20nm未満の析出物に含まれるTi、V量の合計を0.150%以上とするとともに、フェライト相と第二相のビッカース硬さの差を-300~300とすることによりフランジ加工性を向上させた鋼板が開示されている。
 特許文献3には、C:0.03~0.07%、Si:0.005~1.8%、Mn:0.1~1.9%、P:0.05%以下、S:0.005%以下、Al:0.001~0.1%、N:0.005%以下、およびNb:0.002~0.008%を含有するとともに、Ti、S量を制御した成分組成で、90%以上の初析フェライトを有し、平均結晶粒径を5~12μm、展伸度を1.2~3とするとともに、TiCの平均粒径を1.5~3nm、密度を1×1016~5×1017個/cm3とした鋼板が開示されている。
 特許文献4には、組織をフェライト相とベイナイト相とし、フェライト相の40%以上を面間隔が20~60nmの相界面析出とした鋼板が開示されている。
 そして、特許文献5には、C:0.06~0.15%、Si:1.2%以下、Mn:0.5~1.6%、P:0.04%以下、S:0.05%以下、Al:0.05%以下、およびTi:0.05~0.16%を含有する成分組成を有し、フェライト相を50~90%、フェライト相とベイナイト相の合計を95%以上とし、フェライト相中にTiを含む20nm未満の析出物を650~1100ppm含有するとともに、ベイナイト相のビッカース硬度のばらつきを150以下とした鋼板が開示されている。
特開2008-261029号公報 特開2011-17060号公報 特開2011-12308号公報 特開2011-225938号公報 特開2011-68945号公報
 しかし、特許文献1に記載された技術では、熱間圧延における仕上げ圧延を終了した後、50℃/s以上という高い冷却速度で600~650℃の狭い温度範囲まで鋼板を冷却する必要がある。そのため、特許文献1記載の鋼板を安定的に製造することは困難であることに加えて、該鋼板を製造するためには莫大な設備投資が必要であるという問題がある。
 また、特許文献2~5に記載された鋼板においては、伸びフランジ性やバーリング加工性について一定の改善が見られるものの、打ち抜き性が不十分であるという問題がある。
 したがって、本発明は、上記した従来技術の課題を解決し、引張強さ(TS):780MPa以上といった高い強度を有し、かつ優れた打ち抜き性と伸びフランジ性を兼ね備えた高強度熱延鋼板とその製造方法を提供することを目的とする。
 本発明者らは、高強度と、優れた打ち抜き性および伸びフランジ性との両立についてについて検討を行った結果、以下の知見を得た。
 延性の高いフェライト組織を主相とし、粒子径20nm以下の微細な析出物を鋼中に析出させることで、成形性を大きく劣化させることなく高強度化を図ることができる。また、セメンタイトとしてFeを析出させることで、打ち抜き時の亀裂の起点をセメンタイトとするとともに、粒子径20nm以下の微細析出物が亀裂の伝播を促進することで打ち抜き時の端面割れを抑制し、打ち抜き性を大幅に向上させることができる。さらに、伸びフランジ成型時には、セメンタイトへの応力集中を微細析出物が抑制し、応力が分散することで伸びフランジ性も飛躍的に向上させることができる。
 以上の知見に基づき検討を行い、本発明を完成するに至った。すなわち、本発明の要旨構成は、次のとおりである。
1.質量%で、
  C :0.05~0.30%、
  Si:0.6~2.0%、
  Mn:1.3~3.0%、
  P :0.10%以下、
  S :0.030%以下、
  Al:2.0%以下、
  N:0.010%以下、ならびに
  Ti、Nb、およびVの1または2以上:それぞれ0.01~1.0%を含有し、
 残部がFeおよび不可避不純物からなる成分組成を有し、
 面積率で50%以上のフェライト組織を有し、
 Feの析出量が0.04質量%以上であり、
 粒子径が20nm未満の析出物を含有し、
 下記(1)式で定義されるC*と下記(2)式で定義されるC* pとが、下記(3)~(5)式の条件を満たす高強度鋼板。
                   記
C= ([Ti]/48+[Nb]/93+[V]/51+[Mo]/96+[Ta]/181+[W]/184)×12 ……(1)
C* = ([Ti]p/48+[Nb]p/93+[V]p/51+[Mo] p/96+[Ta] p/181+[W] p/184)×12 …                 …(2)
            C* ≧ 0.035  ……(3)
         -0.015 ≦ [C]- C* ≦ 0.03  ……(4)
            C* p/C* ≧0.3  ……(5)
(ここで、[M]は前記高強度鋼板中における元素Mの含有量を質量%で表した値であり、 [M]pは前記粒子径20nm未満の析出物中に含有される元素Mの鋼板全体に対する含有量を質量%で表した値であり、前記高強度鋼板中に元素Mが含有されない場合には[M]および[M]pは0とする)
2.前記成分組成が、さらに、質量%で、
  Mo、Ta、およびWの1または2以上をそれぞれ0.005~0.50%含有する、前記1に記載の高強度鋼板。
3.前記成分組成が、さらに、質量%で、
  Cr、Ni、およびCuの1または2以上をそれぞれ0.01~1.0%含有する、前記1または2に記載の高強度鋼板。
4.前記成分組成が、さらに、質量%で、
  Sb:0.005~0.050%を含有する、前記1~3のいずれか一項に記載の高強度鋼板。
5.前記成分組成が、さらに、質量%で、
  CaおよびREMの一方または両方をそれぞれ0.0005~0.01%含有する、前記1~4のいずれか一項に記載の高強度鋼板。
6.前記1~5のいずれか一項に記載の高強度鋼板の製造方法であって、
 前記1~5のいずれか一項に記載の成分組成を有する鋼素材に対して粗圧延と仕上げ圧延とを施して鋼板を得る熱間圧延工程と、
 前記仕上げ圧延終了後の鋼板を、仕上げ圧延終了時から後続の中間徐冷工程開始までの間の平均冷却速度:30℃/s以上で冷却する第1急冷工程と、
 前記第1急冷工程終了後の鋼板を、650℃超750℃以下の開始温度から、1~10sの間、平均冷却速度:10℃/s未満で徐冷する中間徐冷工程と、
 前記中間徐冷終了後の鋼板を、中間徐冷終了時から後続の巻取り開始までの間の平均冷却速度:10℃/s以上で冷却する第2急冷工程と、
 前記第2急冷工程終了後の鋼板を、巻取り温度を350~500℃で巻取る巻取り工程とを有し、
 前記仕上げ圧延を、
  仕上げ圧延入り側の鋼板の温度:900~1100℃、
  仕上げ圧延トータル圧下率:88%以上、
  仕上げ圧延出側の鋼板の温度:800~950℃、および
  仕上げ圧延出側の通板速度:300m/min以上の条件で行う高強度鋼板の製造方法。
7.前記巻取工程の後に、0.1~3.0%の板厚減少率で加工を行う加工工程をさらに有する前記6に記載の高強度鋼板の製造方法。
 本発明によれば、引張強さ(TS):780MPa以上といった高い強度を有し、かつ優れた打ち抜き性と伸びフランジ性を兼ね備えた高強度熱延鋼板を得ることができる。
* p/C*がTS×λに及ぼす影響を示す図である。 * p/C*が打抜き性に及ぼす影響を示す図である。 Fe析出量が打抜き性に及ぼす影響を示す図である。
 次に、本発明を実施する方法について具体的に説明する。
 本発明においては、高強度鋼板が上記成分組成を有することが重要である。そこで、まず本発明において鋼材の成分組成を上記のように限定する理由を説明する。なお、成分組成に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.05~0.30%
 Cは、Ti、Nb、Vと微細炭化物を形成することによって、鋼の強度を高める作用を有する元素である。また、CはFeとセメンタイトを形成し、打ち抜き性の向上にも寄与する。前記効果を得るためにC含有量を0.05%以上とする必要がある。一方、多量のCが存在すると、フェライト変態が抑制され、その結果、Ti、Nb、Vの微細な炭化物の形成量が低下してしまう。また、過剰なCは多量のセメンタイト生成を招き、伸びフランジ性を大きく低下させてしまう。したがって、C含有量を0.30%以下とする必要がある。なお、C含有量を0.25%以下とすることが好ましく、0.20%以下とすることがより好ましい。
Si:0.6~2.0%
 Siは、熱間圧延後の中間徐冷過程においてフェライト変態を促進するとともに、変態と同時に析出するTi、Nb、Vが微細な炭化物を形成しやすくする。さらに、Siは、成形性を大きく低下させることなく鋼を高強度化する固溶強化元素としての機能も有している。前記効果を得るため、Si含有量を0.6%以上とする必要があり、好ましくは1.0%以上、さらに好ましくは1.2%以上である。一方、Siを多量に添加すると、中間徐冷前の急冷過程(第1冷却工程)におけるフェライト変態が促進され、Ti、Nb、Vの粗大な炭化物が析出してしまう。さらに、表面にSiの酸化物が生成しやすくなるため、熱延鋼板では化成処理不良が、めっき鋼板では不めっきなどの不良が生じやすくなる。したがって、Si含有量を2.0%以下とする必要があり、好ましくは1.5%以下である。
Mn:1.3~3.0%、
 Mnは、熱間圧延後の冷却において、中間徐冷前にフェライト変態が開始されることを抑制する作用を有している。さらに、Mnは、固溶強化による鋼の高強度化にも寄与する。また、Mnは、有害な鋼中のSをMnSとして無害化する作用も有する。このような効果を得るため、Mn含有量を1.3%以上とする必要があり、好ましくは1.5%以上である。一方、多量のMnはフェライト変態を抑制し、Ti、Nb、Vの微細な炭化物形成を抑制してしまう。したがって、Mn含有量を3.0%以下とする必要があり、好ましくは2.5%以下、さらに好ましくは2.0%以下である。
P:0.10%以下
 Pは粒界に偏析して、鋼の延性や靭性を低下させる。さらに、Pを多量に添加すると、圧延後、中間徐冷前の急冷過程(第1急冷工程)におけるフェライト変態が促進されてしまい、Ti、Nb、Vの炭化物が粗大に析出してしまう。そのため、P含有量を0.10%以下とする必要があり、好ましくは0.05%以下、より好ましくは0.03%以下、さらに好ましくは0.01%以下である。なお、下限については限定されず、0%であってもよいが、工業的には0%超である。また、過度の低P化は精錬時間の増加やコストの上昇を招くため、0.0005%以上とすることが好ましい。
S:0.030%以下
 Sは、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度向上にほとんど寄与しないばかりか、粗大な硫化物を形成することにより、鋼の延性、伸びフランジ性を低下させる。そのため、S含有量を極力低くすることが望ましい。特にこれらの問題は、S含有量が0.030%を超えると顕著となるため、本発明においてはS含有量を0.030%以下とする。また、S含有量を0.010%以下とすることが好ましく、0.003%以下とすることがより好ましく、0.001%以下とすることがさらに好ましい。なお、下限については限定されず、0%であってもよいが、工業的には0%超である。また、過度の低S化は精錬時間の増加やコストの上昇を招くため、S含有量を0.0005%以上とすることが好ましい。
Al:2.0%以下
 Alを多量に添加すると、圧延後、中間徐冷前の急冷過程(第1急冷工程)におけるフェライト変態が促進されてしまい、Ti、Nb、Vの粗大な炭化物が析出してしまう。さらに、鋼板の表面にAlの酸化物が生成しやすくなるため、熱延鋼板では表面の疵などの不良が、めっき鋼板では不めっきなどの不良や化成処理不良が生じやすくなる。したがって、Al含有量を2.0%以下とする必要があり、好ましくは1.5%以下、さらに好ましくは1.0%以下である。下限は特に規定しないが、脱酸剤としてAlを0.01%以上含有するAlキルド鋼としてもよい。また、Alは圧延後の中間徐冷過程において、フェライト変態を促進するとともに、Ti、Nb、Vの微細炭化物形成を促す作用を有している。前記効果を得るためにはAl含有量を0.2%以上とすることが好ましく、0.5%以上とすることがより好ましい。
N:0.010%以下
 Nは、Ti、Nb、Vと高温で粗大な窒化物を形成し、強度向上にあまり寄与しない。そのため、NはTi、Nb、V添加による高強度化の効果を小さくしてしまう。さらに、Nを多量に含有する鋼においては、熱間圧延中にスラブ割れがおこり、表面疵が発生するおそれがある。したがって、N含有量を0.010%以下とする必要があり、好ましくは0.005%以下、より好ましくは0.003%以下、さらに好ましくは0.002%以下である。なお、下限については限定されず、0%であってもよいが、工業的には0%超である。また、過度の低N化は精錬時間の増加やコストの上昇を招くため、N含有量を0.0005%以上とすることが好ましい。
Ti、Nb、Vの1または2以上:それぞれ0.01~1.0%
 Ti、Nb、VはCと微細な炭化物を形成し、高強度化に寄与するとともに、打ち抜き性、伸びフランジ性を改善する効果も有する。このような効果を得るためには、Ti、Nb、Vの1または2以上を、それぞれ0.01%以上含有する必要がある。一方、Ti、Nb、Vの1または2以上を、それぞれ1.0%を超えて添加しても、高強度化の効果はあまり大きくならないうえに、製造コストが上昇する。そのため、Ti、Nb、およびVの含有量は、それぞれ1.0%以下とする必要がある。
 さらに、強度、打ち抜き性、伸びフランジ性などの特性を向上させることを目的として、任意に以下の成分を鋼に添加することができる。
Mo、Ta、Wの1あるいは2以上:それぞれ0.005~0.50%
 Mo、Ta、Wは、微細析出物を形成することで強度、打ち抜き性、伸びフランジ性の改善に寄与する。前記効果を得るため、Mo、Ta、Wを添加する場合には、Mo、Ta、Wの1または2以上を、それぞれ0.005%以上添加することが好ましい。一方、多量にMo、Ta、Wを添加しても効果が飽和するだけでなくコストの上昇を招くことから、Mo、Ta、およびWの少なくとも一つを添加する場合には、それぞれの含有量を0.50%以下とすることが好ましい。
Cr、Ni、Cuの1または2以上:それぞれ0.01~1.0%
 Cr、Ni、Cuは、鋼の組織を細粒化することで高強度化と靭性向上に寄与する。このような効果を得るため、Cr、Ni、Cuを添加する場合には、Cr、Ni、Cuの1または2以上をそれぞれ0.01%以上添加することが好ましい。一方、多量にCr、Ni、Cuを添加しても効果が飽和するだけでなくコストの上昇を招くことから、Cr、Ni、およびCuの少なくとも一つを添加する場合には、それらの含有量をそれぞれ1.0%以下とすることが好ましい。
Sb:0.005~0.050%
 Sbは、熱間圧延時に鋼の表面に偏析し、鋼が窒化されるのを防止する作用を有している。そのため、Sbを添加することによって、粗大な窒化物の形成を抑制することができる。このような効果を得るため、Sbを添加する場合には、Sb含有量を0.005%以上とすることが好ましい。一方、多量にSbを添加するとコストが上昇することから、Sbを添加する場合は含有量を0.050%以下とすることが好ましい。
Ca、REMの一方または両方:それぞれ0.0005~0.01%
 Ca、REM(希土類金属)は硫化物の形態を制御することで延性、伸びフランジ性を向上させることができる。このような効果を得るため、Ca、REMを添加する場合には、Ca、REMの一方または両方をそれぞれ0.0005%以上添加することが好ましい。一方、多量の添加は効果が飽和するだけでなくコストが上昇することから、Ca、REMを添加する場合には、Ca、REMの含有量をそれぞれ0.01%以下とすることが好ましい
 本発明の高強度鋼板の残部は、Fe及び不可避不純物からなる。なお、本発明の作用・効果を損なわない限りにおいて、不純物をはじめ、他の微量元素を含有することも許容される。例えば、Sn、Mg、Co、As、Pb、Zn、およびOなどの不純物が合計で0.5%以下含まれることは、鋼板の特性には問題ないため、許容される。
 さらに本発明においては、高強度鋼板が、面積率で50%以上のフェライト組織を有し、Feの析出量が0.04%以上であることが重要である。以下、前記組織の限定理由について説明する。
フェライト組織:面積率50%以上
 フェライトは加工性に優れている。本発明では、鋼板の加工性を向上させるために、鋼板の金属組織に占めるフェライト組織の割合を、面積率で50%以上とする。フェライト面積率は、60%以上とすることが好ましく、70%以上とすることがより好ましい。一方、フェライト面積率の上限は特に限定されないが、100%とすることが好ましい。
 なお、フェライト以外の残部の組織については特に限定されず、ベイナイト、マルテンサイト、パーライトなど、任意の組織とすることができる。靭性の観点からは、上部ベイナイト組織を含むことが好ましい。上部ベイナイト組織を含む場合、その面積率は5%以上であることが好ましく、10%以上であることが好ましい。上部ベイナイト組織の面積率の上限は特に限定されないが、50%未満であればよく、40%未満とすることが好ましく、30%未満とすることがより好ましい。
Feの析出量:0.04質量%以上
 Feは炭化物を形成すると、セメンタイトとして鋼中に析出する。Feの析出量が少ないと、打ち抜き性が大きく低下してしまう。そのため、本発明においてはFeの析出量を0.04質量%以上とする。一方、Feが過剰に析出すると、伸びフランジ性が悪化してしまう。したがって、Feの析出量は0.5%質量以下であることが好ましい。より好ましくは0.3質量%以下、さらに好ましくは、0.2質量%以下である。なお、ここでFeの析出量とは、鋼板全体に対する、析出したFeの質量割合とする。
 さらに本発明においては、高強度鋼板が、粒子径が20nm未満の析出物を含有し、上記(1)式で定義されるC*と上記(2)式で定義されるC* pとが、上記(3)~(5)式の条件を満たすことが重要である。以下、上記限定の理由について説明する。
(1)、(3)、(4)式について
 上記(1)式で定義されるC*の値は、鋼中に含有されているTi、Nb、V、Mo、Ta、およびWの合計量を、これらの元素がすべて炭化物を形成すると仮定して、炭素量に換算した値である。Ti、Nb、V、Mo、Ta、およびW(以下、Ti等と記すこともある)は、炭化物を形成して鋼の強度を向上させる作用を有している。そこで本発明では、鋼の強度を向上させるために、これらの元素を、上記(3)式で規定されるように、C* が0.035以上となるように添加する。なお、C*の上限は特に限定されないが、析出する炭化物量の増加による加工性の低下を抑制するという観点からは、0.2%以下とすることが好ましく、0.15%以下とすることがより好ましい。
 また、Ti等の元素が上記(3)式の条件を満たす量添加されていたとしても、Ti等の添加量に対してC含有量が少なければ、炭化物として析出する量は減少する。その結果、Ti等のうち、析出しなかったものは鋼中に固溶するが、固溶しているTi等の元素は鋼の高強度化に寄与しない。また、Ti等の元素と炭化物を形成するためにCが消費されるため、添加C量が少ないとセメンタイトを形成するためのC量も減ってしまう。その結果、セメンタイトの析出量が減少する。そのため、上記(4)式で規定されるように、([C]-C*)の値を-0.015以上とする必要がある。なお、([C]-C*)は0以上、すなわち、[C]がC*以上であることが好ましい。一方、Ti等の添加量に対してC含有量が多すぎると、Ti等の元素と炭化物を形成しない余剰Cが増加する。余剰Cが多量に存在すると、セメンタイトの析出量が増加し、伸びフランジ性が大きく低下する。そのため、上記(4)式で規定されるように、鋼のC含有量([C]-C*)の値は0.03以下とする必要がある。なお、([C]-C*)は0.02以下であることが好ましい。
(2)、(5)式について
 上述したようにTi等の元素は炭化物として析出するが、粒子径が20nm以上の析出物は、鋼板の高強度化には寄与しない。よって、本発明においては、鋼板が粒子径20nm未満の析出物を含有している必要がある。さらにその際、鋼中に添加されたTi、Nb、V、Mo、Ta、およびWの量に対して、粒子径20nm未満の析出物として析出しているTi等の割合が少ないと、高強度化の効率が悪く製造コストが上昇し、また、十分な打ち抜き性、伸びフランジ性を得ることができない。そのため、本発明では上記(1)式で定義されるC*の値に対する上記(2)式で定義されるC* pの値の比(C* p/C*)を、上記(5)式で規定されるように0.3以上とする。ここで、前記C* pの値は、鋼中に含有されているTi、Nb、V、Mo、Ta、およびWのうち、粒子径20nm未満の析出物中に含有されているものの合計量を、これらの元素がすべて炭化物を形成していると仮定して、炭素量に換算した値である。したがって、鋼中に含有されているTi、Nb、V、Mo、Ta、およびWが、すべて粒子径20nm未満の析出物として析出している場合には、C* p/C*は1となる。なお、C* p/C*は0.5以上であることが好ましく、0.7以上であることがより好ましく、0.9以上であることがさらに好ましい。一方、C* p/C*の上限については特に限定されないが、上述したように最大で1となる。
[製造方法]
 次に、本発明の高強度鋼板を製造する方法について説明する。なお、温度に関する記載は、特に断らない限り鋼板の表面温度を示すものとする。
 本発明の高強度鋼板は、上述した成分組成を有する鋼素材を特定の条件で熱間圧延することによって製造することができる。具体的には、次の(1)~(5)の工程を順次行う。
(1)鋼素材に対して粗圧延と仕上げ圧延とを施して鋼板を得る熱間圧延工程、
(2)前記仕上げ圧延終了後の鋼板を冷却する第1急冷工程、
(3)前記第1急冷工程終了後の鋼板を徐冷する中間徐冷工程、
(4)前記中間徐冷終了後の鋼板を冷却する第2急冷工程、および
(5)前記第2急冷工程終了後の鋼板を巻取る巻取り工程。
 さらに、
(6)前記巻取工程後の鋼板に、加工を施す加工工程
を任意に設けることもできる。
 以下、上記(1)~(6)の各工程について具体的に説明する。なお、以下に説明する以外の製造工程は特に限定されず、通常の鋼板製造方法に従うことができる。
(1)熱間圧延工程
 最初に上記成分を有する鋼素材を製造する。前記鋼素材は、常法により鋼を溶製し、鋳造して製造することができる。前記鋳造は、生産性の観点から、連続鋳造法を用いることが好ましい。次いで、前記鋼素材(スラブ)を熱間圧延する。前記鋼素材は、鋳造後、そのまま熱間圧延してもよく、また、温片や冷片となった後に再加熱してから熱間圧延を施してよい。熱間圧延工程は、粗圧延と仕上げ圧延の2段階で行うことができる。本発明において粗圧延の条件は特に限定されない。特に薄スラブ鋳造法を採用した場合には、粗圧延を省略してもよい。また、前記仕上げ圧延の条件は以下のとおりとする。
仕上げ圧延入り側温度:900~1100℃
 仕上げ圧延機入り側での鋼板の温度が低いと、粗圧延機で生成する粗大なオーステナイト粒のまま、仕上げ圧延機で歪が累積されてしまうため、変態後のフェライト粒の方位差が小さく、またフェライト粒径も大きくなるので、靭性、打ち抜き性が低下する。そのため、仕上げ圧延機入り側での鋼板温度は900℃以上とする必要があり、950℃以上とすることが好ましい。一方、仕上げ圧延入り側での鋼板温度が高すぎると、オーステナイトの再結晶が進行し、歪の累積が小さくなるため、変態後のフェライト粒径が大きくなり、靭性、打ち抜き性が低下する。そのため、仕上げ圧延入り側での鋼板温度は1100℃以下とする必要があり、1050℃以下とすることが好ましい。
仕上げ圧延トータル圧下率:88%以上
 仕上げ圧延におけるトータル圧下率が小さいと、オーステナイト域での歪の累積が小さくなる。そしてその結果、変態後のフェライト粒径が大きくなり、靭性、打ち抜き性が低下する。そのため、仕上げ圧延におけるトータル圧下率は88%以上とする必要がある。なお、トータル圧下率は90%以上とすることが好ましく、92%以上とすることがより好ましく、94%以上とすることがさらに好ましい。一方、仕上げ圧延トータル圧下率の上限は特に限定されないが、96%以下とすることが好ましい。圧下率が大きくなりすぎると、圧延荷重も大きくなるので、圧延自体が困難となるためである。ここで、仕上げ圧延トータル圧下率は、仕上げ圧延開始直前の板厚t1に対する仕上げ圧延終了後の板厚t2の比で、(t1-t2)/t1として定義される。
仕上げ圧延出側温度:800~950℃
 仕上げ圧延の出側での鋼板の温度が低いと、仕上げ圧延終了から中間徐冷までの冷却過程(第1急冷工程)でのフェライト変態が促進されてしまい、Ti、Nb、Vの炭化物が粗大に析出してしまう。さらに、仕上げ圧延の終了温度がフェライト域になると、歪誘起析出によりTi、Nb、Vの炭化物がさらに粗大になってしまう。そのため、仕上げ最終圧延出側での鋼板温度は800℃以上とする必要があり、850℃以上とすることが好ましい。一方、仕上げ圧延出側での鋼板の温度が高すぎると、オーステナイト域での歪の累積が小さくなるため、変態後のフェライト粒が大きくなり、靭性、打ち抜き性が低下する。そのため、仕上げ圧延出側の温度は950℃以下とする必要があり、好ましくは900℃以下である。
仕上げ圧延出側の通板速度:300m/min以上
 仕上げ圧延出側における通板速度が小さいと、オーステナイト域での歪の累積が小さくなり、変態後、一部に粗大なフェライトが生成しやすくなる。そのため仕上げ圧延出側の通板速度は300m/min以上とする必要があり、好ましくは400m/min以上である。一方、通板速度の上限は特に限定されないが、通板安定性のため、1000m/min以下とすることが好ましい。
(2)第1急冷工程
仕上げ圧延終了から中間徐冷開始までの平均冷却速度:30℃/s以上
 次に、仕上げ圧延終了後の鋼板を冷却する第1急冷工程を行う。第1急冷工程においては、仕上げ圧延終了から中間徐冷開始までの間における平均冷却速度を30℃/s以上とする。仕上げ圧延終了から中間徐冷開始までの冷却速度が小さいと、フェライト変態が促進され、Ti、Nb、Vの炭化物が粗大に析出してしまう。したがって、前記平均冷却速度は30℃/s以上とする必要があり、好ましくは50℃/s以上、さらに好ましくは80℃/s以上である。前記平均冷却速度の上限はとくに限定されないが、温度制御の観点からは、200℃/s以下とすることが好ましい。
(3)中間徐冷工程
中間徐冷開始温度:650℃超750℃以下
 鋼板の温度が所定の温度に達した時点で上記急冷を終了し、中間徐冷を開始する。中間徐冷を開始する温度が高すぎると、高温下でフェライト変態が起きるため、Ti、Nb、Vの炭化物が粗大に析出してしまう。そのため中間徐冷開始温度は750℃以下とする必要がある。一方、中間徐冷開始温度が低すぎると、Ti、Nb、Vの炭化物を十分に析出させることができない。そのため、中間徐冷開始温度は650℃より高くする必要がある。
中間徐冷時の平均冷却速度:10℃/s未満
 中間徐冷時の冷却速度が大きいとフェライト変態が十分に起こらず、Ti、Nb、Vの微細炭化物の析出量も少なくなってしまう。そのため中間徐冷時の平均冷却速度は10℃/s未満とする必要があり、好ましくは6℃/s未満である。下限はとくに限定されないが、4℃/s以上とすることが好ましい。
中間徐冷時間:1~10s
 中間徐冷時間が短すぎるとフェライト変態が十分に起こらず、Ti、Nb、Vの微細炭化物の析出量も少なくなってしまう。そのため、中間徐冷時間は1s以上とする必要があり、好ましくは2s以上、より好ましくは3s以上である。一方、中間徐冷時間が長すぎるとTi、Nb、Vの炭化物が粗大化してしまう。そのため、中間徐冷時間は10s以下とする必要があり、好ましくは6s以下である。
(4)第2急冷工程
中間徐冷終了から巻取り開始までの平均冷却速度:10℃/s以上
 中間徐冷終了後、さらに第2急冷工程を実施する。第2急冷工程においては、中間徐冷終了時から後続の巻取り開始までの間の平均冷却速度:10℃/s以上とする。中間徐冷終了時点から巻取りを開始するまでの冷却速度が小さすぎるとTi、Nb、Vの炭化物が粗大化してしまう。そのため、中間徐冷終了から巻取り開始までの平均冷却速度は10℃/s以上とする必要があり、好ましくは30℃/s以上、より好ましくは50℃/s以上である。上限は特に限定されないが、温度制御の観点から100℃/s以下とすることが好ましい。
(5)巻取り工程
巻取り温度:350~500℃
 次に、第2急冷工程終了後の鋼板をコイル状に巻取る。その際、巻取り温度を350~500℃とする。巻取温度が高すぎるとTi、Nb、Vの炭化物が粗大化してしまう。そのため、巻取り温度は500℃以下とする必要がある。一方、巻取り温度が低すぎるFeの炭化物であるセメンタイトの生成が抑制される。そのため、巻取り温度は350℃以上とする必要がある。
(6)加工工程
 上記巻取り工程後の鋼板に軽加工を加えることで可動転位を増やし、鋼板の打ち抜き性を高めることもできる。そのためには、0.1%以上の板厚減少率で加工を施すことが好ましい。なお、前記板厚減少率は0.3%以上とすることがより好ましい。一方、板厚減少率が大きすぎると、転位の相互作用で転位が移動しにくくなり、かえって打ち抜き性が低下する。そのため、加工を施す場合には、板厚減少率を3.0%以下とすることが好ましく、より好ましくは2.0%以下、さらに好ましくは1.0%以下である。ここで前記加工の方法は、圧延ロールによる圧下であってもよいし、鋼板を引っ張ってテンションを加える引張り加工であってもよいし、圧延と引張りの複合でもよい。
 なお、本発明の高強度鋼板には、表面処理や被覆を施したものも包含される。例えば、上述の手順で製造された熱延鋼板を酸洗して表面に形成されているスケールを除去した後、鋼板表面にめっきを施してもよい。前記めっきとしては、亜鉛めっきや、亜鉛とAlの複合めっき、亜鉛とNiの複合めっきなどの亜鉛系めっき、Alめっき、AlとSiの複合めっきなどのAl系めっきなど、各種のめっきを使用できる。また、前記めっきの方式は、溶融めっき、電気めっきを問わず利用できる。また、めっき後の加熱による合金化を行うこともできる。なかでも、溶融亜鉛系めっき鋼板や合金化溶融亜鉛系めっき鋼板とすることが好ましい。さらにめっき後に、化成処理や塗装により被覆を施すこともできる。
 なお、本発明の高強度鋼板の引張強さ(TS)は、780MPa以上であることが好ましい。また、穴広げ率は、55%以上であることが好ましい。穴広げ率の上限は150%程度とすることが好ましい。引張強さと穴広げ率の積(TS×λ)は、60000 MPa・%以上とすることが好ましく、150000 MPa・%以下とすることが好ましい。打ち抜き性は、後述する打ち抜き試験において、端面に割れが認められないことが好ましい。また、高強度鋼板の板厚を2.0~4.0mmとすることが好ましい。
 次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。
 表1に示す成分組成のスラブを加熱後、表2に示す条件にて熱間圧延を行って熱延鋼板を製造した。また、一部の鋼板については、さらに表2に記載した板厚減少率で加工を行った。得られた熱延鋼板のそれぞれから試験片を採取し、以下に述べる方法により組織および機械的特性を評価した。各項目の評価結果を表3に示す。
[フェライト面積率]
 フェライト面積率を以下の手順で評価した。まず、鋼板の圧延方向に平行な板厚断面をナイタールで腐食させてミクロ組織を現出させて試料を得た。次いで、走査型電子顕微鏡(SEM)を使用し、倍率500倍で前記試料の表面の300×300μm2領域の組織を観察し、フェライト組織の面積率を求めた。
[Feの析出量]
 Feの析出量は、電解抽出法によって求めた。具体的には次の通りである。まず、試験片を陽極として定電流電解を行い、該試験片の所定量を溶解した。前記電解は、10%AA系電解液、すなわち、10体積%アセチルアセトン-1質量%テトラメチルアンモニウムクロライド-メタノール溶液中で行った。次に、前記電解によって抽出された残渣を孔径0.2μmのフィルターを用いて濾過し、析出物を回収した。得られた析出物を混酸で溶解した後、ICP発光分光分析法によってFeを定量し、その測定値からFeの析出量を算出した。
[C* p
 (2)式で規定されるC* pの値は、以下の方法で求めた。まず、試験片を陽極として10%AA系電解液中で定電流電解を行って該試験片の所定量を溶解した後、孔径20nmのフィルターを用いて電解液を濾過した。得られた濾液をICP発光分光分析法によって分析し、Ti、Nb、V、Mo、Ta、およびWの量をそれぞれ測定し、その測定値からC* pの値を算出した。
[引張試験(YS、TS、El)]
 得られた熱延鋼板のそれぞれから、圧延方向に直交する方向が試験片の長手方向になるようにJIS-5号引張り試験片を切り出し、各試験片の機械的特性を、JIS-Z2241に規定されている金属材料引張試験方法により評価した。測定した項目は、降伏強度(YS)、引張強さ(TS)、全伸び(El)である。
[穴広げ率(λ)]
 鋼板の伸びフランジ性を穴広げ率(λ)に基づいて評価した。穴広げ率(λ)は、各熱延鋼板から試験片を切り出し、JIS-Z2256に準拠して穴広げ試験を行って測定した。
[打抜き性]
 鋼板の打ち抜き性は、以下の方法で評価した。直径10mmの穴をクリアランス5~30%で5%刻みに3回ずつ打ち抜き、もっとも端面状態が悪いサンプルを拡大鏡にて目視観察(倍率:10倍)し、端面割れあり(×)、微小亀裂あり(△)、割れなし(○)の3段階で評価した。
 表3に示した通り、本発明の条件を満たす鋼板(発明例)は、いずれも780MPa以上の高い引張強さ(TS)を有するとともに、優れた伸びフランジ性(穴広げ率)と打抜き性とを兼ね備えていた。一方、本発明の条件を満たさない鋼板(比較例)は、引張強さ、伸びフランジ性、および打抜き性の1つまたは2つ以上が劣っていた。
 No.1~7、10~18、20、および21の鋼板における、C* p/C*値と、引張強さと穴広げ率の積(TS×λ)との相間を図1に示す。同様に、前記鋼板における、C* p/C*値と、打抜き性との相間を図2に示す。図1、2より、C* p/C*値を0.3以上とすることにより、TS×λを60000MPa・%以上、打ち抜き性を○とできることがわかる。
 また、No.1~8、10、11、14~16、18、19、および22の鋼板における、Fe析出量と打抜き性との相間を図3に示す。図3より、Fe析出量を0.04%以上とすることにより、打ち抜き性を○とできることがわかる。なお、図1~3においては、各図の横軸にとった値以外のパラメータの影響を除くため、横軸にとった値以外の鋼の組織と成分組成とが本願発明の条件を満たしていない鋼板のデータはプロットから除外した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  質量%で、
      C :0.05~0.30%、
      Si:0.6~2.0%、
      Mn:1.3~3.0%、
      P :0.10%以下、
      S :0.030%以下、
      Al:2.0%以下、
      N :0.010%以下、ならびに
      Ti、Nb、およびVの1または2以上:それぞれ0.01~1.0%を含有し、
     残部がFeおよび不可避不純物からなる成分組成を有し、
     面積率で50%以上のフェライト組織を有し、
     Feの析出量が0.04質量%以上であり、
     粒子径が20nm未満の析出物を含有し、
     下記(1)式で定義されるC*と下記(2)式で定義されるC* pとが、下記(3)~(5)式の条件を満たす高強度鋼板。
                       記
     C= ([Ti]/48+[Nb]/93+[V]/51+[Mo]/96+[Ta]/181+[W]/184)×12 ……(1)
    C* = ([Ti]p/48+[Nb]p/93+[V]p/51+[Mo] p/96+[Ta] p/181+[W] p/184)×12 ……(2)
                C* ≧ 0.035  ……(3)
             -0.015 ≦ [C]- C* ≦ 0.03  ……(4)
                C* p/C* ≧0.3  ……(5)
    (ここで、[M]は前記高強度鋼板中における元素Mの含有量を質量%で表した値であり、 [M]pは前記粒子径20nm未満の析出物中に含有される元素Mの鋼板全体に対する含有量を質量%で表した値であり、前記高強度鋼板中に元素Mが含有されない場合には[M]および[M]pは0とする)
  2.  前記成分組成が、さらに、質量%で、
      Mo、Ta、およびWの1または2以上をそれぞれ0.005~0.50%含有する、請求項1に記載の高強度鋼板。
  3.  前記成分組成が、さらに、質量%で、
      Cr、Ni、およびCuの1または2以上をそれぞれ0.01~1.0%含有する、請求項1または2に記載の高強度鋼板。
  4.  前記成分組成が、さらに、質量%で、
      Sb:0.005~0.050%を含有する、請求項1~3のいずれか一項に記載の高強度鋼板。
  5.  前記成分組成が、さらに、質量%で、
      CaおよびREMの一方または両方をそれぞれ0.0005~0.01%含有する、請求項1~4のいずれか一項に記載の高強度鋼板。
  6.  請求項1~5のいずれか一項に記載の高強度鋼板の製造方法であって、
     請求項1~5のいずれか一項に記載の成分組成を有する鋼素材に対して粗圧延と仕上げ圧延とを施して鋼板を得る熱間圧延工程と、
     前記仕上げ圧延終了後の鋼板を、仕上げ圧延終了時から後続の中間徐冷工程開始までの間の平均冷却速度:30℃/s以上で冷却する第1急冷工程と、
     前記第1急冷工程終了後の鋼板を、650℃超750℃以下の開始温度から、1~10sの間、平均冷却速度:10℃/s未満で徐冷する中間徐冷工程と、
     前記中間徐冷終了後の鋼板を、中間徐冷終了時から後続の巻取り開始までの間の平均冷却速度:10℃/s以上で冷却する第2急冷工程と、
     前記第2急冷工程終了後の鋼板を、巻取り温度を350~500℃で巻取る巻取り工程とを有し、
     前記仕上げ圧延を、
      仕上げ圧延入り側の鋼板の温度:900~1100℃、
      仕上げ圧延トータル圧下率:88%以上、
      仕上げ圧延出側の鋼板の温度:800~950℃、および
      仕上げ圧延出側の通板速度:300m/min以上の条件で行う高強度鋼板の製造方法。
  7.  前記巻取工程後の鋼板に、0.1~3.0%の板厚減少率で加工を施す加工工程をさらに有する請求項6に記載の高強度鋼板の製造方法。
PCT/JP2016/001107 2015-03-06 2016-03-01 高強度鋼板およびその製造方法 WO2016143298A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016546116A JP6172399B2 (ja) 2015-03-06 2016-03-01 高強度鋼板およびその製造方法
MX2017011382A MX2017011382A (es) 2015-03-06 2016-03-01 Laminas de acero de alta resistencia y metodo de fabricacion correspondiente.
KR1020177026517A KR101986033B1 (ko) 2015-03-06 2016-03-01 고강도 강판 및 그 제조 방법
CN201680013160.7A CN107406937B (zh) 2015-03-06 2016-03-01 高强度钢板及其制造方法
EP16761275.3A EP3266897B1 (en) 2015-03-06 2016-03-01 High strength steel sheet and manufacturing method therefor
US15/554,821 US10815547B2 (en) 2015-03-06 2016-03-01 High strength steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044608 2015-03-06
JP2015-044608 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143298A1 true WO2016143298A1 (ja) 2016-09-15

Family

ID=56879476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001107 WO2016143298A1 (ja) 2015-03-06 2016-03-01 高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10815547B2 (ja)
EP (1) EP3266897B1 (ja)
JP (1) JP6172399B2 (ja)
KR (1) KR101986033B1 (ja)
CN (1) CN107406937B (ja)
MX (1) MX2017011382A (ja)
WO (1) WO2016143298A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017016553A (es) 2015-07-06 2018-05-11 Jfe Steel Corp Lamina de acero delgada de alta resistencia y metodo para la fabricacion de la misma.
CA3082978A1 (en) * 2017-11-27 2019-05-31 Nippon Steel Corporation Structural member
CN109202028B (zh) * 2018-09-10 2020-03-10 武汉科技大学 一种高延伸凸缘钢板及其制备方法
CN109576579A (zh) * 2018-11-29 2019-04-05 宝山钢铁股份有限公司 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
KR102588284B1 (ko) * 2019-01-31 2023-10-11 제이에프이 스틸 가부시키가이샤 돌기가 있는 h형강 및 그의 제조 방법
CN111187985A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 一种具有高扩孔性能和疲劳寿命的热轧延伸凸缘钢及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167475A (ja) * 2008-01-17 2009-07-30 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009191360A (ja) * 2008-01-17 2009-08-27 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009280899A (ja) * 2008-04-21 2009-12-03 Jfe Steel Corp 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法
JP2011017060A (ja) * 2009-07-10 2011-01-27 Jfe Steel Corp 高強度鋼板およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755301B2 (ja) * 1997-10-24 2006-03-15 Jfeスチール株式会社 耐衝撃特性、強度−伸びバランス、耐疲労特性および穴拡げ性に優れた高強度高加工性熱延鋼板およびその製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
JP4528275B2 (ja) * 2006-03-20 2010-08-18 新日本製鐵株式会社 伸びフランジ性に優れた高強度熱延鋼板
JP2007016319A (ja) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
JP4879808B2 (ja) 2007-04-13 2012-02-22 新日本製鐵株式会社 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2009197360A (ja) * 2008-02-21 2009-09-03 Nicca Chemical Co Ltd ポリエステル繊維の難燃・染色加工方法
JP5338525B2 (ja) * 2009-07-02 2013-11-13 新日鐵住金株式会社 バーリング性に優れた高降伏比型熱延鋼板及びその製造方法
JP5532791B2 (ja) 2009-09-25 2014-06-25 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5510024B2 (ja) 2010-04-20 2014-06-04 新日鐵住金株式会社 穴拡げ性と局部延性に優れた高強度薄鋼板およびその製造方法
JP5402848B2 (ja) 2010-06-17 2014-01-29 新日鐵住金株式会社 バーリング性に優れる高強度熱延鋼板及びその製造方法
JP5765092B2 (ja) 2010-07-15 2015-08-19 Jfeスチール株式会社 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
EP2746417B1 (en) * 2011-08-17 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel plate
MX2017016553A (es) * 2015-07-06 2018-05-11 Jfe Steel Corp Lamina de acero delgada de alta resistencia y metodo para la fabricacion de la misma.
JP6179584B2 (ja) * 2015-12-22 2017-08-16 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167475A (ja) * 2008-01-17 2009-07-30 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009191360A (ja) * 2008-01-17 2009-08-27 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009280899A (ja) * 2008-04-21 2009-12-03 Jfe Steel Corp 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法
JP2011017060A (ja) * 2009-07-10 2011-01-27 Jfe Steel Corp 高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
CN107406937B (zh) 2019-10-25
EP3266897A4 (en) 2018-03-28
KR101986033B1 (ko) 2019-06-04
EP3266897A1 (en) 2018-01-10
JP6172399B2 (ja) 2017-08-02
JPWO2016143298A1 (ja) 2017-04-27
EP3266897B1 (en) 2019-11-13
KR20170118868A (ko) 2017-10-25
CN107406937A (zh) 2017-11-28
MX2017011382A (es) 2017-12-20
US20180016657A1 (en) 2018-01-18
US10815547B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
EP3296415B1 (en) High-strength hot-rolled steel sheet and method for manufacturing the same
EP3009527B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
CN108431264B (zh) 高强度钢板及其制造方法
KR101660607B1 (ko) 냉연 강판 및 냉연 강판의 제조 방법
JP6172399B2 (ja) 高強度鋼板およびその製造方法
US20150004433A1 (en) Steel sheet, plated steel sheet, and method for producing the same
EP3647449B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP5892147B2 (ja) 高強度熱延鋼板およびその製造方法
CN111511945A (zh) 高强度冷轧钢板及其制造方法
JP2017150051A (ja) 曲げ性に優れた高強度鋼板およびその製造方法
JP6443555B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6048423B2 (ja) 靭性に優れた高強度薄鋼板およびその製造方法
JP6103160B1 (ja) 高強度薄鋼板およびその製造方法
JP6131872B2 (ja) 高強度薄鋼板およびその製造方法
JP2008174813A (ja) 高張力鋼板およびその製造方法
JP2017066453A (ja) 冷延鋼板、めっき鋼板およびこれらの製造方法
JP6390573B2 (ja) 冷延鋼板およびその製造方法
KR102540431B1 (ko) 고강도 강판 및 그 제조 방법
KR20220024957A (ko) 고강도 강판, 고강도 부재 및 그것들의 제조 방법
CN114729427A (zh) 钢板及镀覆钢板
KR20220024956A (ko) 고강도 강판, 고강도 부재 및 그것들의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554821

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/011382

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026517

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761275

Country of ref document: EP