CN109576579A - 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法 - Google Patents

一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法 Download PDF

Info

Publication number
CN109576579A
CN109576579A CN201811444049.0A CN201811444049A CN109576579A CN 109576579 A CN109576579 A CN 109576579A CN 201811444049 A CN201811444049 A CN 201811444049A CN 109576579 A CN109576579 A CN 109576579A
Authority
CN
China
Prior art keywords
elongation
hole expansibility
rolled steel
steel sheet
980mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811444049.0A
Other languages
English (en)
Inventor
薛鹏
朱晓东
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201811444049.0A priority Critical patent/CN109576579A/zh
Publication of CN109576579A publication Critical patent/CN109576579A/zh
Priority to CN201911094910.XA priority patent/CN111235470A/zh
Priority to PCT/CN2019/121868 priority patent/WO2020108597A1/zh
Priority to KR1020217016924A priority patent/KR20210095156A/ko
Priority to JP2021531024A priority patent/JP7238129B2/ja
Priority to EP19889858.7A priority patent/EP3889287B1/en
Priority to US17/296,303 priority patent/US20220010401A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法,其化学成分质量百分比为:C:0.08%~0.12%,Si:0.1%~1.0%,Mn:1.9%~2.6%,Al:0.01%~0.05%,Cr:0.1~0.55%,Mo:0.1~0.5%,Ti:0.01~0.1%,余量为Fe和不可避免杂质。本发明所述钢板达到980MPa级抗拉强度,最终组织包括30%以上贝氏体以获得较高扩孔率,马氏体体积分数含量大于20%以保证强度,其余组织为10%以上的铁素体以保证较高延伸率;组织中获得均匀弥散分布的纳米级析出物以获得较高的析出强化作用并减下相间强度差,从而获得优良的扩孔率。所述钢板的屈服强度大于600MPa,抗拉强度大于980MPa,延伸率大于11%,扩孔率≥45%。

Description

一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制 造方法
技术领域
本发明涉及冷轧钢板及其制造方法,尤其涉及一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法,该钢板具有600MPa以上的屈服强度,980MPa以上的抗拉强度,优良的扩孔率和延伸率。
背景技术
随着全球能源危机和环境问题的加剧,节能和安全成为了汽车制造业的主要发展方向。高强钢具有良好的机械性能和使用性能,适于结构件的制造。本发明介绍了一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法,符合超高强钢钢的发展趋势,有很好的发展前景。
传统的冷轧钢板为了获得高扩孔率,工艺路线是尽量保证组织均一,一般路线为使基体获得高比例的贝氏体组织(一般为贝氏体含量70%以上的复相钢),从而减小组织的强度差别,提高扩孔率。这样的技术路线有固有缺点:均一的贝氏体组织可以保证较高扩孔率,但含高比例贝氏体组织基体的延伸率不高,材料的加工性能下降。
另外一些其他获得高扩孔率冷轧高强钢如:
美国专利公开号US20180023155A1公开了一种伸长率、扩孔率优异的980MPa以上级超高强度冷轧钢板及其制造方法。其C:0.1-0.5%,Si:0.8-4.0%,Mn:1.0-4.0%,P:0.015%以下,S:0.005%以下,Al:0-2%,N:0.01%以下,Ti:0.02-0.15%,另外可添加其他元素。要求最终组织含有铁素体相、贝氏体相和马氏体相,且要求含有10-25%残余奥氏体相。其独特性在于依靠Si的添加获得残余奥氏体,从而获得较好延伸率和扩孔率,且扩孔率980MPa只能达到30%以上。
韩国专利公开号KR1858852B1提供一种高延伸率、高韧性且扩孔率性能优异的980MPa以上级超高强度冷轧及其制造方法。其C:0.06-0.2%,Si:0.3-2.5%,Mn:1.5-3.0%,Al:0.01-0.2%,Mo:0-0.2%,Ti:0.01-0.05%,Ni:0.01-3.0%,Sb:0.02-0.05%,B:0.0005-0.003%,N:0.01%以下,余量为Fe和其他不可避免杂质。其独特性在于通过工艺控制回火马氏体和马氏体的比例并且通过Si元素的提高添加使最终组织包含20%以上残余奥氏体,最终获得较好的综合成型性能。
以上两个专利均介绍了依靠Si的添加获得残余奥氏体从而获得较好扩孔率的方法,两个专利均依靠高的Si含量添加,与本发明有明显区别。
发明内容
本发明的目的在于提供一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法,钢板达到980MPa级强度,最终组织包括30%以上贝氏体以获得较高扩孔率,马氏体体积分数含量大于20%以保证强度,其余组织为10%以上的铁素体以保证较高延伸率;组织中获得均匀弥散分布的纳米级析出物以获得较高的析出强化作用并减下相间强度差,从而获得优良的扩孔率;钢板的屈服强度大于600MPa;其抗拉强度大于980MPa;其延伸率大于11%,其扩孔率≥45%。
为达到上述目的,本发明的技术方案是:
本发明钢成分设计以C+Mn+Cr+Mo+Ti为主的成分体系,其中C、Mo、Ti是纳米级析出物的主要化合元素,保证产生均匀弥散分布的纳米析出物,且Mo、Ti的合金元素比例需要合理设计;纳米析出物产生的阶段在热轧,热轧卷取后发生扩散型的相变-铁素体相变才能保证产生大量相间析出纳米析出物,所以C、Mn、Cr、Mo的含量需合理设计,结合卷取温度的合理设计保证热轧卷取后发生扩散型的相变-铁素体相变;钢板冷轧连退后最终组织为铁素体+贝氏体+马氏体,C、Mn、Cr、Mo的含量需合理设计,保证贝氏体C曲线左移,保证最终贝氏体体积分数含量大于30%;保证一定的淬透性,保证最终马氏体体积分数含量大于20%,进而保证980MPa以上的抗拉强度。
具体的,本发明的一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其化学成分质量百分比为:C:0.08%~0.12%,Si:0.1%~1.0%,Mn:1.9%~2.6%,Al:0.01%~0.05%,Cr:0.1~0.55%,Mo:0.1~0.5%,Ti:0.01~0.1%,余量为Fe和其他不可避免杂质;且,满足:1.8≥5×[C]+0.4×[Si]+0.1×([Mn]+[Cr]+[Mo])2≥1.3,[Mo]≥3×[Ti]。
本发明所述冷轧钢板的组织为铁素体+贝氏体+马氏体,外加均匀弥散分布纳米级析出物,其中贝氏体体积分数含量大于30%,马氏体体积分数含量大于20%,析出物平均尺寸小于20nm。
本发明所述钢板的的屈服强度大于600MPa,抗拉强度大于980MPa,延伸率大于11%,扩孔率≥45%。
在本发明所述钢板的成分设计中:
C:在本发明所述的钢板中,C元素的添加起到提高钢的强度,保证马氏体相变发生和纳米析出物产生。选择C的质量百分比在0.08%~0.12%之间,这是因为:当C的质量百分比低于0.08%,无法保证退火过程中产生足够的贝氏体和马氏体;无法保证析出足够的纳米析出物,则钢板的强度受到影响。当C的质量百分比高于0.12%,则造成马氏体硬度过高,晶粒尺寸粗大,不利于钢板的成型性能,且热轧卷取后不易进入铁素体相变,纳米析出无无法产生。优选为0.08%~0.1%。
Si:添加Si可以提高淬透性。并且钢中固溶的Si可以影响位错的交互作用,增加加工硬化率,可以适当提高延伸率,有益于获得较好的成型性。Si含量控制在Si:0.1%~1.0%,优选为0.4%~0.8%。
Mn:添加Mn元素有利于钢的淬透性提高,有效提高钢板的强度。而选取Mn的质量百分比在1.9%~2.6%是因为:当Mn的质量百分比低于1.9%时,淬透性不足,退火过程中无法产生足量的马氏体,则钢板的强度不足;当Mn的质量百分比高于2.6%时,热轧卷取过程会进入贝氏体相变,无法产生相间析出的纳米析出物。因此,本发明中控制Mn的质量百分比在Mn:1.9-2.6%,优选为2.1%~2.4%。
Cr:Mn和Cr都是碳化物形成元素(固溶拖拽碳),在考虑淬透性时,可以相互替换以保证强度。但添加Cr可以更好的推迟珠光体转变,使贝氏体相变区域左移,且对Ms点的降低作用小于Mn,所以Cr的合理添加对控制贝氏体含量大于30%,马氏体含量大于20%有更直接的作用。因此,本发明中控制Cr的质量百分比在Cr:0.1-0.55%,优选为0.2%~0.4%。
Al:添加Al起到了脱氧作用和细化晶粒的作用,因此,Al的质量百分比控制在Al:0.01%~0.05%,优选为0.015~0.045%。
Mo:添加0.1~0.5%的Mo,是因为:首先Mo是影响纳米析出物产生的最重要化合元素。Mo能提高Ti(C,N)在奥氏体中的固溶度,使大量的Ti保持在固溶体中,以便在低温转变中弥散析出,从而产生较高的强化效果。Mo的碳化物在较低温度和Ti碳氮化物一起复合析出,形成细小的纳米尺度析出相。优选0.2%~0.3%。
Ti:添加0.01~0.1%的Ti,是因为:Ti是纳米析出物的主要化合元素,同时Ti在高温下也显示出一种强烈的抑制奥氏体晶粒长大从而细化晶粒的效果。但在低碳钢中Nb、Ti等碳氮化物生成元素太多会影响后续的相变,所以合金元素含量需要控制上限,优选控制在Ti:0.02%~0.05%。
在本发明所述的技术方案中,杂质元素包括P、N、S,杂质含量控制得越低,实施效果越好,P的质量百分比控制在P≤0.015%,S形成的MnS严重影响成形性能,因而S的质量百分比控制在S≤0.003%,由于N容易导致板坯表面产生裂纹或气泡,因而,N≤0.005%。
在上述成分设计中,纳米析出物产生的主要阶段在热轧,热轧卷取后发生扩散型的相变-铁素体相变才能保证产生足量的相间析出纳米析出物,所以C、Mn、Cr、Mo的含量需合理设计,结合卷取温度的合理设计保证热轧卷取后发生扩散型的相变-铁素体相变。C、Mn、Cr、Mo的含量按公式5×[C]+0.4×[Si]+0.1×([Mn]+[Cr]+[Mo])2计算大于1.8,热轧发生铁素体相变几率减小,不利于纳米析出物生成。
同时,钢板冷轧连退后最终组织为铁素体+贝氏体+马氏体,C、Mn、Cr、Mo的含量需合理设计,保证贝氏体C曲线左移,保证最终贝氏体体积分数含量大于30%;保证一定的淬透性,保证最终马氏体体积分数含量大于20%,进而保证980MPa以上的抗拉强度。C、Mn、Cr、Mo的含量按公式5×[C]+0.4×[Si]+0.1×([Mn]+[Cr]+[Mo])2计算小于1.3,最终组织贝氏体、马氏体比例不足,不利于最终获得980Mpa级抗拉强度。
所以本发明中C、Mn、Si含量还需符合公式:1.8≥5×[C]+0.4×[Si]+0.1×([Mn]+[Cr]+[Mo])2≥1.3,以保证最终组织为贝氏体体积分数含量大于30%,马氏体体积分数含量大于20%且均匀弥散分布大量纳米析出物。
另外,本发明钢板生产过程中Mo含量越多对Ti在奥氏体中固溶量的影响程度越大,会有更多的Ti(C,N)固溶奥氏体中等待相变时析出,相间析出的纳米级析出物也更多。为达到本发明最终组织需要的足量均匀弥散分布的纳米级析出物,本发明中Mo、Ti含量还需符合公式:[Mo]≥3×[Ti]。
本发明所述的低成本高成型性980MPa级冷轧钢板的制造方法,其包括如下步骤:
1)冶炼、铸造,按上述成分冶炼、铸造成坯;
2)热轧,先加热至1150-1250℃,保温0.5小时以上,然后采用Ar3以上温度热轧,轧后以30-100℃/s的速度快速冷却;卷取温度:600-750℃;
3)冷轧,控制冷轧压下率为50-70%;
4)退火,退火均热温度为820-870℃,优选840-860℃,均热保温时间50-100s;然后以3-10℃/s的速度冷却到快冷开始温度,快冷开始温度为660-730℃,然后再以30-200℃/s的速度冷却到320-460℃;
5)过时效,过时效温度为320-460℃,过时效时间为100-400s;
6)平整,采用0-0.3%的平整率。
在本发明所述钢板的制造方法中,采用特定的卷取温度:热轧工序铁素体相变区卷取(600-750℃)。热轧卷取后发生扩散型的相变-铁素体相变才能保证相间析出足量的均匀弥散分布的纳米析出物。该成分体系的铁素体相变区温度在600-750℃之间。低于600℃,进入贝氏体相变区,无法保证足量纳米析出物产生。
在所述退火步骤中,退火均热温度限定为820-870℃,均热保温时间50-100s。这是因为,在该退火温度下,即能保证获得980MPa的抗拉强度,又能保持足量均匀弥散纳米析出物保留。退火均热低于820℃或者均热保温时间小于50s,材料奥氏体化比例不够,最终组织无法产生足量马氏体,无法保证980MPa的抗拉强度;退火均热高于870℃或者均热保温时间大于100s,都会导致热轧卷取后产生的纳米析出物会长大和重新固溶进奥氏体,无法保证最终组织留存足量纳米析出物,无法保证析出强化和提高扩孔率的作用。
在所述退火步骤中,快冷开始温度(暨缓冷结束温度)为660-710℃。缓冷过程关系到连退过程中铁素体的生成量。低于660℃,铁素体生成量太高,无法保证贝氏体和马氏体的最低含量。高于730℃,无法保证足量铁素体产生,无法保证最终获得较高延伸率。缓冷过程发生扩散型的相变-铁素体相变,会有纳米析出物二次析出,保证最终铁素体组织中包含两次析出的纳米析出物以缩小和贝氏体、马氏体相的强度差。
在所述退火步骤中,过时效温度为320-460℃。在这个温度范围内,才能保证最终组织中包含30%以上贝氏体。
相较于现有技术,本发明采用的技术路线是获得铁素体+贝氏体+马氏体的最终组织,且最终组织中包含细小弥散的纳米析出物,从而获得高扩孔率和较高延伸率。引入贝氏体可以改善原型双相钢铁素体+马氏体双相组织的相间强度差,提高扩孔率。牺牲的抗拉强度依靠纳米析出物的析出强化效果补强。最终铁素体组织中分别包含热轧卷取和连退缓冷过程两次析出的纳米析出物强化效果更优,从而使最终基体中的铁素体组织强化,缩小与基体中贝氏体、马氏体组织的屈服强度差,从而获得高扩孔率。另外,组织中的马氏体和细小弥散析出物可以保证材料较高的强度,铁素体组织和细化的晶粒可以保证较高延伸率,材料综合性能优良。
本发明钢板组织为10%以上铁素体+30%以上贝氏体+20%以上马氏体+均匀弥散分布的平均直径小于20nm的纳米析出物,从而在保证高强度的前提下扩孔率优良。其屈服强度大于600MPa,抗拉强度大于980MPa,延伸率大于11%,扩孔率≥45%,扩孔率高,延伸率较好。
具体实施方式
下面将结合具体的实施例对本发明做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
本发明钢实施例的成分参见表1,其成分余量为Fe。表2列出了实施例钢板的工艺参数。表3列出了实施例钢板的相关性能参数。
本发明钢实施例的制造方法如下:
(1)冶炼和铸造:获得要求的合金成分,尽量降低S、P的含量;
(2)热轧,先加热至1150-1250℃,保温0.5小时以上,然后采用Ar3以上温度热轧,轧后以30-100℃/s的速度快速冷却;热轧工序卷取温度600-750℃;
(3)冷轧,控制冷轧压下率为50-70%;
(4)退火,退火均热温度为820-870℃,优选840-860℃,均热保温时间50-100s;然后以v1=3-10℃/s的速度冷却到快冷开始温度,快冷开始温度为660-730℃,然后再以30-200℃/s的速度冷却到320-460℃;
(5)过时效,过时效温度为320-460℃,过时效时间为100-400s;
(6)平整,采用0-0.3%的平整率。
从表3可以看出,实施例1-12为本发明所述成分和工艺下获得冷轧钢板的机械性能:其屈服强度大于600MPa,抗拉强度大于980MPa,延伸率大于11%,扩孔率≥45%。
由此说明,本发明所述的980MPa级冷轧钢板在前提下,获得了大于980MPa的抗拉强度,且扩孔率优良。

Claims (11)

1.一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其化学成分质量百分比为:C:0.08%~0.12%,Si:0.1%~1.0%,Mn:1.9%~2.6%,Al:0.01%~0.05%,Cr:0.1~0.55%,Mo:0.1~0.5%,Ti:0.01~0.1%,余量为Fe和其他不可避免杂质;且,满足:1.8≥5×[C]+0.4×[Si]+0.1×([Mn]+[Cr]+[Mo])2≥1.3,[Mo]≥3×[Ti]。
2.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述C含量为0.08%~0.12%。
3.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Si含量为0.1%~1.0%。
4.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Mn含量为1.9%~2.6%。
5.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Al含量为0.01~0.05%。
6.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Cr含量为0.1%~0.55%。
7.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Mo含量为0.1%~0.5%。
8.如权利要求1所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述Ti含量为0.01%~0.1%。
9.如权利要求1~8任何一项所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述冷轧钢板的组织为含铁素体+贝氏体+马氏体,其中铁素体体积分数含量大于10%,贝氏体体积分数含量大于30%,马氏体体积分数含量大于20%;组织中包含均匀弥散分布纳米级析出物,析出物平均尺寸小于20nm。
10.如权利要求1~8任何一项所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板,其特征在于:所述冷轧钢板的屈服强度大于600MPa,抗拉强度大于980MPa,延伸率大于11%,扩孔率≥45%。
11.如权利要求1~10任何一项所述的具有高扩孔率和较高延伸率的980MPa级冷轧钢板的制造方法,其特征是,包括如下步骤:
1)冶炼、铸造,按权利要求1~10任何一项所述的成分冶炼、铸造成坯;
2)热轧,先加热至1150-1250℃,保温0.5小时以上,然后采用Ar3以上温度热轧,轧后以30-100℃/s的速度快速冷却;卷取温度:600-750℃;
3)冷轧,控制冷轧压下率为50-70%;
4)退火,退火均热温度为820-870℃,优选840-860℃,均热保温时间50-100s;然后以3-10℃/s的速度冷却到快冷开始温度,快冷开始温度为660-730℃,然后再以30-200℃/s的速度冷却到320-460℃;
5)过时效,过时效温度为320-460℃,过时效时间为100-400s;
6)平整,采用0-0.3%的平整率。
CN201811444049.0A 2018-11-29 2018-11-29 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法 Pending CN109576579A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201811444049.0A CN109576579A (zh) 2018-11-29 2018-11-29 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN201911094910.XA CN111235470A (zh) 2018-11-29 2019-11-11 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
PCT/CN2019/121868 WO2020108597A1 (zh) 2018-11-29 2019-11-29 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
KR1020217016924A KR20210095156A (ko) 2018-11-29 2019-11-29 높은 구멍확장비와 비교적 높은 연신율을 갖는 980MPa급 냉간압연 강판 및 그의 제조방법
JP2021531024A JP7238129B2 (ja) 2018-11-29 2019-11-29 高穴拡げ率と高伸び率を有する980MPa級冷間圧延鋼板及びその製造方法
EP19889858.7A EP3889287B1 (en) 2018-11-29 2019-11-29 980mpa grade cold-roll steel sheets with high hole expansion rate and higher percentage elongation and manufacturing method therefor
US17/296,303 US20220010401A1 (en) 2018-11-29 2019-11-29 980mpa grade cold-roll steel sheets with high hole expansion rate and higher percentage elongation and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811444049.0A CN109576579A (zh) 2018-11-29 2018-11-29 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法

Publications (1)

Publication Number Publication Date
CN109576579A true CN109576579A (zh) 2019-04-05

Family

ID=65925667

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201811444049.0A Pending CN109576579A (zh) 2018-11-29 2018-11-29 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN201911094910.XA Pending CN111235470A (zh) 2018-11-29 2019-11-11 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911094910.XA Pending CN111235470A (zh) 2018-11-29 2019-11-11 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法

Country Status (6)

Country Link
US (1) US20220010401A1 (zh)
EP (1) EP3889287B1 (zh)
JP (1) JP7238129B2 (zh)
KR (1) KR20210095156A (zh)
CN (2) CN109576579A (zh)
WO (1) WO2020108597A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108597A1 (zh) * 2018-11-29 2020-06-04 宝山钢铁股份有限公司 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN111270166A (zh) * 2020-03-30 2020-06-12 武汉钢铁有限公司 一种屈服强度大于830MPa级非调质薄规格超高钢及其生产方法
CN114107795A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 一种1180MPa级低温回火马氏体高扩孔钢及其制造方法
CN114763594A (zh) * 2021-01-15 2022-07-19 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
CN115505847A (zh) * 2022-09-26 2022-12-23 首钢集团有限公司 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
CN116043121A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
WO2023246798A1 (zh) * 2022-06-22 2023-12-28 宝山钢铁股份有限公司 一种高延伸、高扩孔性能的1300MPa以上级冷轧钢板及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230313332A1 (en) * 2020-08-31 2023-10-05 Baoshan Iron & Steel Co., Ltd. High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor
CN114107792B (zh) * 2020-08-31 2024-01-09 宝山钢铁股份有限公司 一种780MPa级高表面超高扩孔钢及其制造方法
CN114763595B (zh) * 2021-01-15 2023-07-07 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
KR20230045648A (ko) 2021-09-27 2023-04-05 주식회사 포스코 구멍확장성 및 연성이 우수한 고강도 후물 강판 및 이의 제조방법
CN117305688A (zh) * 2022-06-22 2023-12-29 宝山钢铁股份有限公司 一种高扩孔超高塑性钢及其制造方法
CN117089761B (zh) * 2023-05-30 2024-06-04 宝山钢铁股份有限公司 一种归一化成分的变强度双相钢板及其柔性制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306202B2 (ja) 2002-08-02 2009-07-29 住友金属工業株式会社 高張力冷延鋼板及びその製造方法
JP2005213640A (ja) * 2004-02-02 2005-08-11 Kobe Steel Ltd 伸び及び伸びフランジ性に優れた高強度冷延鋼板とその製法
JP4990500B2 (ja) 2005-02-14 2012-08-01 新日本製鐵株式会社 部材内硬さの均一性に優れた高強度自動車用部材およびその製造方法
EP1990431A1 (fr) 2007-05-11 2008-11-12 ArcelorMittal France Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5720208B2 (ja) 2009-11-30 2015-05-20 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板
US9458520B2 (en) * 2011-04-21 2016-10-04 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of a high-strength cold-rolled steel sheet having excellent uniform elongation and hole expandability
US9115416B2 (en) * 2011-12-19 2015-08-25 Kobe Steel, Ltd. High-yield-ratio and high-strength steel sheet excellent in workability
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
JP5857909B2 (ja) * 2012-08-09 2016-02-10 新日鐵住金株式会社 鋼板およびその製造方法
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
CN106232839B (zh) 2014-04-22 2018-10-09 杰富意钢铁株式会社 高强度熔融镀锌钢板及高强度合金化熔融镀锌钢板的制造方法
KR101676137B1 (ko) * 2014-12-24 2016-11-15 주식회사 포스코 굽힘가공성과 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판과 그 제조방법
CN107429369B (zh) 2015-02-24 2019-04-05 新日铁住金株式会社 冷轧钢板及其制造方法
JP6172399B2 (ja) * 2015-03-06 2017-08-02 Jfeスチール株式会社 高強度鋼板およびその製造方法
MX2017012194A (es) 2015-03-25 2017-12-15 Jfe Steel Corp Lamina de acero laminada en frio y metodo de fabricacion para la misma.
WO2018030501A1 (ja) * 2016-08-10 2018-02-15 Jfeスチール株式会社 薄鋼板およびその製造方法
KR101858852B1 (ko) 2016-12-16 2018-06-28 주식회사 포스코 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR102336669B1 (ko) 2017-04-21 2021-12-07 닛폰세이테츠 가부시키가이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
CN108193139B (zh) * 2018-02-23 2019-09-10 唐山钢铁集团有限责任公司 1180MPa级汽车用冷轧高强双相钢及其生产方法
CN109576579A (zh) * 2018-11-29 2019-04-05 宝山钢铁股份有限公司 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108597A1 (zh) * 2018-11-29 2020-06-04 宝山钢铁股份有限公司 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN111235470A (zh) * 2018-11-29 2020-06-05 宝山钢铁股份有限公司 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN111270166A (zh) * 2020-03-30 2020-06-12 武汉钢铁有限公司 一种屈服强度大于830MPa级非调质薄规格超高钢及其生产方法
CN111270166B (zh) * 2020-03-30 2021-05-28 武汉钢铁有限公司 一种屈服强度大于830MPa级非调质薄规格超高钢及其生产方法
CN114107795A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 一种1180MPa级低温回火马氏体高扩孔钢及其制造方法
CN114763594A (zh) * 2021-01-15 2022-07-19 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
CN114763594B (zh) * 2021-01-15 2024-01-09 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
WO2023246798A1 (zh) * 2022-06-22 2023-12-28 宝山钢铁股份有限公司 一种高延伸、高扩孔性能的1300MPa以上级冷轧钢板及其制造方法
CN115505847A (zh) * 2022-09-26 2022-12-23 首钢集团有限公司 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
CN115505847B (zh) * 2022-09-26 2024-04-16 首钢集团有限公司 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
CN116043121A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
CN116043121B (zh) * 2023-01-19 2023-10-24 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法

Also Published As

Publication number Publication date
US20220010401A1 (en) 2022-01-13
EP3889287B1 (en) 2023-12-13
JP2022508292A (ja) 2022-01-19
JP7238129B2 (ja) 2023-03-13
EP3889287A4 (en) 2021-12-15
CN111235470A (zh) 2020-06-05
KR20210095156A (ko) 2021-07-30
WO2020108597A1 (zh) 2020-06-04
EP3889287A1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
CN109576579A (zh) 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN106011643B (zh) 一种抗拉强度590MPa级冷轧双相钢及其制备方法
CN108486494B (zh) 钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法
CN114107785B (zh) 一种具有超高屈强比的吉帕级贝氏体钢及其制造方法
US11339451B2 (en) Low-cost and high-formability 1180 MPa grade cold-rolled annealed dual-phase steel plate and manufacturing method thereof
CN106811698B (zh) 一种基于组织精细控制的高强钢板及其制造方法
CN106811678B (zh) 一种淬火合金化镀锌钢板及其制造方法
CN103320701B (zh) 一种铁素体贝氏体先进高强度钢板及其制造方法
CN107190203B (zh) 用薄板坯直接轧制的屈服强度≥800MPa热轧薄板及生产方法
WO2009082091A1 (en) Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
CN109280854A (zh) 980MPa级低碳冷轧双相钢及其制备方法
CN103667948B (zh) 一种复相钢及其制备方法
CN103088269B (zh) 一种﹣120℃下具有高韧性的压力容器用钢及生产方法
CN115181916B (zh) 1280MPa级别低碳低合金超高强度热镀锌双相钢及快速热处理热镀锌制造方法
CN109913763A (zh) 1000MPa级冷加工性能良好的低成本冷轧双相钢及其制造方法
CN109898017A (zh) 1000MPa级冷弯性能优良的冷轧双相钢及生产方法
CN109207847B (zh) 一种低碳当量高扩孔率1180MPa级冷轧钢板及其制造方法
CN109385570A (zh) 一种高强钢板及其制造方法
CN105274431A (zh) 一种适合水淬的热轧带钢耙片及其制造方法
CN102260823B (zh) 一种屈服强度690MPa级高强钢板及其制造方法
CN115181897B (zh) 1280MPa级别低碳低合金超高强度双相钢及快速热处理制造方法
CN110747405A (zh) 适用于辊压的一千兆帕级冷轧贝氏体钢板及其制备方法
CN104451446B (zh) 一种厚规格高强韧性贝氏体工程用钢及其生产方法
CN105296866A (zh) 一种耙片用钢、生产方法及耙片处理方法
US20240167138A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190405

WD01 Invention patent application deemed withdrawn after publication