WO2018030501A1 - 薄鋼板およびその製造方法 - Google Patents

薄鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018030501A1
WO2018030501A1 PCT/JP2017/029035 JP2017029035W WO2018030501A1 WO 2018030501 A1 WO2018030501 A1 WO 2018030501A1 JP 2017029035 W JP2017029035 W JP 2017029035W WO 2018030501 A1 WO2018030501 A1 WO 2018030501A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
seconds
thin steel
steel sheet
tempered martensite
Prior art date
Application number
PCT/JP2017/029035
Other languages
English (en)
French (fr)
Inventor
典晃 ▲高▼坂
達也 中垣内
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019001045A priority Critical patent/MX2019001045A/es
Priority to KR1020197002527A priority patent/KR102206448B1/ko
Priority to JP2017559889A priority patent/JP6296214B1/ja
Priority to CN201780046408.4A priority patent/CN109563582B/zh
Priority to US16/320,209 priority patent/US11066716B2/en
Priority to EP17839568.7A priority patent/EP3467135B1/en
Publication of WO2018030501A1 publication Critical patent/WO2018030501A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc

Definitions

  • the present invention relates to a thin steel plate and a method for producing the same.
  • Patent Document 1 in mass%, C: 0.05 to 0.15%, Si: 0.01 to 1.00%, Mn: 1.5 to 4.0%, P: 0.100%
  • S 0.02% or less
  • Al 0.01 to 0.50%
  • Cr 0.010 to 2.000%
  • Nb 0.005 to 0.100%
  • Ti 0.005 to 0 100%
  • B 0.0005 to 0.0050%
  • Si, Mn, Cr and B are contained within the specified range
  • ferrite in area ratio 10% or less
  • Martensite the entire structure of massive martensite adjacent to bainite only, with a metal structure (steel structure) containing less than 2% of retained austenite determined by X-ray diffraction method including 60-98%
  • the proportion of the surface is 10% or less and 100 ⁇ m from the surface.
  • Patent Document 2 by mass%, C: 0.05 to 0.13%, Si: 0.05 to 2.0%, Mn: 1.5 to 4.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.01 to 0.1%, Cr: 0.05 to 1.0%, Nb: 0.010 to 0.070%, Ti: 0.005 to 0.040 And N: 0.0005 to 0.0065%, a spot having a tensile strength of 980 MPa or more by precipitating 70% or more of Ti in the steel and leaving Nb in a solid solution state of 15% or more. It is said that a cold-rolled steel sheet having excellent weldability can be obtained.
  • Patent Document 3 by mass%, C: 0.07 to 0.15%, Si: 1.1 to 1.6%, Mn: 2.0 to 2.8%, P: more than 0%, 0.015 %: S: more than 0% and 0.005% or less, Al: 0.015 to 0.06%, Ti: 0.010 to 0.03%, and B: 0.0010 to 0.004%
  • the area ratio of the following metal structure at 1/4 position of the plate thickness of the steel sheet is tempered martensite: 10 area% or more and less than 30 area%, bainite: more than 70 area%, total of tempered martensite and bainite: 90 area%
  • ductility and stretch flange having a tensile strength of 980 MPa or more and a 0.2% proof stress of less than 700 MPa satisfying ferrite: 0 area% to 5 area% and residual austenite: 0 area% to 4 area%
  • Cold-rolled steel with excellent weldability and weldability Plate, galvanized steel sheet, and galvannealed steel sheet is to be
  • the Nb-based crystallized product is dissolved by heating at (Ts-50) ° C. or higher in the slab reheating step before hot rolling, but the annealing temperature is 900. Below 0 ° C., it is a temperature range where Nb-based carbides inevitably precipitate, and it is difficult to stably leave solid Nb at 15%.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a thin steel sheet having a tensile strength of 900 MPa or more and good weldability, and a method for producing the same.
  • the present inventors diligently studied the requirements for a thin steel plate having a tensile strength of 900 MPa and good weldability.
  • the sheet thickness of the thin steel plate that is the subject of this case is 0.4 mm or more and 3.2 mm or less.
  • spot welding an event that a crack occurred after welding occurred depending on conditions.
  • As a result of earnest investigation of the welding conditions and steel structure of the steel sheet where cracking occurred when welding galvanized steel sheets and cold-rolled steel sheets, or when welding galvanized steel sheets to each other, promote cracking by grain boundary erosion of zinc.
  • the grain boundary erosion of zinc is effective to control the element concentration on the grain boundary after suppressing the hardness difference from the molten metal part, and cracks are also caused by coarse precipitates existing on the grain boundary. It turned out to be encouraged.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the component composition further includes, by mass%, V: 0.001% to 1%, Ti: 0.001% to 0.3%, Nb: 0.001% to 0.3%
  • the component composition further includes, in mass%, Cr: 0.001% to 1.0%, Mo: 0.001% to 1.0%, Ni: 0.001% to 1.0% % Or less, B: 0.0001% or more and 0.0050% or less, Sb: 0.001% or more and 0.050% or less, or one or more of them, and the steel structure is tempered martensite grains.
  • the component composition further contains, in mass%, one or more of REM, Sn, Mg, and Ca in a total of 0.0001% to 0.1%. 3].
  • the composition of the plating layer is Fe: 20.0% or less, Al: 0.001% or more and 3.5% or less, and Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co in mass%.
  • [8] A method for producing a thin steel sheet according to any one of [1] to [4], wherein the steel material is heated to 1150 ° C. or higher and 1350 ° C. or lower, and hot rolling comprising rough rolling and finish rolling is performed.
  • the finish rolling finish temperature is set to 820 ° C. or higher, coiled at 350 ° C. or higher and 680 ° C. or lower, cold-rolled, heated after cold rolling, and retained at 840 ° C. or higher for 30 seconds or longer, and then cooling started.
  • the average cooling rate from the temperature to the Ms point is cooled to 200 ° C / s or more and 100 ° C or less, and then heated again, and after being kept at 840 ° C or more for 30 seconds or more, from the cooling start temperature (Ms point-100)
  • the average cooling rate to 20 ° C is 20 ° C / s or more (Ms point – 100 ° C) or less, and after cooling, it is heated or cooled as necessary, and it stays at 200 ° C or more and 400 ° C or less for 20 seconds or more and 1800 seconds or less.
  • finish rolling finish temperature shall be 820 degreeC or more, it winds up at 350 degreeC or more and 680 degrees C or less, performs cold rolling, heats after cold rolling, and retains at 840 degreeC or more for 30 seconds or more, then 840 degreeC
  • the average cooling rate from the above cooling start temperature to 200 ° C is cooled to 100 ° C or less at 200 ° C / s or higher, and then heated again, and retained at 840 ° C or higher for 10 seconds to 150 seconds, and then 840 ° C or higher.
  • the average cooling rate from the cooling start temperature to 260 ° C. is cooled to 20 ° C./s or higher and 260 ° C. or lower, retained at 200 ° C. or higher and 400 ° C. or lower for 20 seconds or longer and 150 seconds or shorter, and then immersed in a plating bath.
  • Method of manufacturing a thin steel sheet performing alloying treatment performed or the plating process performs Rimekki process.
  • the thin steel sheet of the present invention has a tensile strength (TS): high strength of 900 MPa or more and excellent weldability. If the thin steel plate of the present invention is applied to automobile parts, further weight reduction of the automobile parts can be realized.
  • TS tensile strength
  • the composition of the thin steel sheet of the present invention is, by mass, C: 0.07% to 0.20%, Si: 0.60% to 1.65%, Mn: 1.8% to 3.5 %: P: 0.05% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.0060% or less, and the balance consists of Fe and inevitable impurities.
  • the above component composition is further one type of mass%, V: 0.001% to 1%, Ti: 0.001% to 0.3%, Nb: 0.001% to 0.3%. Or you may contain 2 or more types.
  • the above component composition is further in mass%, Cr: 0.001% to 1.0%, Mo: 0.001% to 1.0%, Ni: 0.001% to 1.0%
  • B 0.0001% to 0.0050%
  • Sb 0.001% to 0.050%
  • % representing the content of a component means “mass%”.
  • C 0.07% or more and 0.20% or less C is an element related to the hardness of tempered martensite and effective in increasing the strength of the steel sheet.
  • Tensile strength In order to obtain 900 MPa or more, it is necessary to contain at least C content of 0.07% or more. On the other hand, if the C content exceeds 0.20%, the hardness of the molten metal part in spot welding is excessively increased, and the hardness difference from the heat affected zone (HAZ part) is generated, thereby reducing the spot weldability. . Further, the spot weldability is also deteriorated from the viewpoint of increasing the particle size of the iron carbide precipitated on the grain boundaries of the tempered martensite.
  • the C content range is set to 0.07% or more and 0.20% or less.
  • the preferable C content for the lower limit is 0.09% or more. More preferably, it is 0.10% or more, More preferably, it is 0.11% or more.
  • the preferable C content for the upper limit is 0.19% or less. More preferably, it is 0.18% or less, More preferably, it is 0.16% or less.
  • Si 0.60% or more and 1.65% or less Si exists in the grain boundary, thereby reducing the wettability of the grain boundary, and suppressing the occurrence of cracks by suppressing the grain boundary erosion of zinc in spot welding. It is an element. In order to obtain this effect, it is necessary to contain at least 0.60% Si. On the other hand, if the Si content exceeds 1.65%, adverse effects on chemical conversion properties and plating properties become obvious, making it difficult to apply as automotive parts. From the above, the Si content range was set to 0.60% or more and 1.65% or less.
  • a preferable Si content for the lower limit is 0.70% or more. More preferably, it is 0.80% or more, More preferably, it is 0.90% or more.
  • a preferable Si content for the upper limit is 1.60% or less. More preferably, it is 1.55% or less, More preferably, it is 1.50% or less.
  • Mn 1.8% or more and 3.5% or less
  • Mn is an element having an effect of suppressing grain boundary immersion in spot welding by being present on the grain boundary of tempered martensite. In order to obtain this effect, the Mn content needs to be 1.8% or more. On the other hand, when the Mn content exceeds 3.5%, chemical conversion property and plating property are deteriorated. Therefore, the Mn content is set to 1.8% or more and 3.5% or less.
  • a preferable Mn content for the lower limit is 1.9% or more. More preferably, it is 2.1% or more, More preferably, it is 2.3% or more.
  • a preferable Mn content for the upper limit is 3.2% or less. More preferably, it is 3.0% or less, More preferably, it is 2.9% or less.
  • P 0.05% or less
  • P is an element that generates low-temperature brittleness, and thus is an element that generates cracks during cooling during welding. Therefore, from the viewpoint of weldability, it is preferable to reduce the P content as much as possible.
  • the P content can be allowed to be 0.05%. Preferably it is 0.03% or less. Although it is desirable to reduce the P content as much as possible, no addition may be possible, but 0.002% may be inevitably mixed in production.
  • S 0.005% or less S forms a coarse sulfide in the steel, which extends during hot rolling and becomes wedge-shaped inclusions, which adversely affects weldability. Therefore, it is preferable to reduce the S content as much as possible. In the present invention, up to 0.005% is acceptable, so the upper limit of S content is set to 0.005%. Preferably, it is 0.003% or less. Although it is desirable to reduce the S content as much as possible, no addition may be possible, but 0.0002% may inevitably be mixed in production.
  • the Al content is preferably 0.02% or more. More preferably, it is 0.03% or more.
  • Al forms a coarse oxide that deteriorates weldability. Therefore, the upper limit of the Al content is set to 0.08%. Preferably it is 0.07% or less. More preferably, it is 0.06% or less, More preferably, it is 0.05% or less.
  • N is a harmful element that deteriorates normal temperature aging and causes unexpected cracks, or causes microvoid formation during spot welding and deteriorates weldability. Therefore, it is desirable to reduce the N content as much as possible, but in the present invention, up to 0.0060% is acceptable. Preferably it is 0.0050% or less. More preferably, it is 0.0050% or less, More preferably, it is 0.0040% or less. Although it is desirable to reduce the N content as much as possible, no addition may be possible, but 0.0005% may be inevitably mixed in production.
  • V 0.001% or more and 1% or less
  • Ti 0.001% or more and 0.3% or less
  • Nb One or more kinds of 0.001% or more and 0.3% or less
  • V, Ti and Nb are C It is an element that contributes to increasing the strength of steel sheets by forming fine carbides by combining with. On the other hand, since it will precipitate as a coarse carbide when it contains excessively, weldability will be deteriorated.
  • V 0.001% to 1%
  • Ti 0.001% to 0.3%
  • Nb 0.001% to 0.3%
  • a preferable V content for the lower limit is 0.005% or more. More preferably, it is 0.050% or more, More preferably, it is 0.100% or more.
  • a preferable V content for the upper limit is 0.6% or less. More preferably, it is 0.5% or less, More preferably, it is 0.4% or less.
  • the preferable Ti content for the lower limit is 0.005% or more. More preferably, it is 0.010% or more, More preferably, it is 0.020% or more.
  • a preferable Ti content for the upper limit is 0.2% or less. More preferably, it is 0.15% or less, More preferably, it is 0.12% or less.
  • a preferable Nb content for the lower limit is 0.005% or more. More preferably, it is 0.010% or more, More preferably, it is 0.020% or more.
  • a preferable Nb content for the upper limit is 0.15% or less. More preferably, it is 0.12% or less, More preferably, it is 0.08% or less.
  • Cr 0.001% to 1.0%
  • Mo 0.001% to 1.0%
  • Ni 0.001% to 1.0%
  • B 0.0001% It was made 0.0050% or less
  • Sb 0.001% or more and 0.050% or less.
  • a preferable Cr content for the lower limit is 0.010% or more. More preferably, it is 0.050% or more, More preferably, it is 0.100% or more.
  • a preferable Cr content for the upper limit is 0.8% or less. More preferably, it is 0.7% or less, More preferably, it is 0.6% or less.
  • a preferable Mo content for the lower limit is 0.010% or more.
  • a preferable Mo content for the upper limit is 0.6% or less. More preferably, it is 0.5% or less, More preferably, it is 0.4% or less.
  • a preferable Ni content for the lower limit is 0.010% or more. More preferably, it is 0.020% or more, More preferably, it is 0.030% or more.
  • a preferable Ni content for the upper limit is 0.5% or less. More preferably, it is 0.4% or less, More preferably, it is 0.3% or less.
  • a preferable B content for the lower limit is 0.0003% or more. More preferably, it is 0.0007% or more, More preferably, it is 0.0010% or more.
  • a preferable B content for the upper limit is 0.0030% or less. More preferably, it is 0.0025% or less, More preferably, it is 0.0020% or less.
  • the preferred Sb content for the lower limit is 0.005% or more. More preferably, it is 0.008% or more, More preferably, it is 0.010% or more.
  • a preferable Sb content for the upper limit is 0.040% or less. More preferably, it is 0.030% or less, More preferably, it is 0.020% or less.
  • any one or two or more of REM, Sn, Mg, and Ca is made 0.0001% or more and 0.1% or less in total.
  • any 1 type or 2 types or more of REM, Sn, Mg, Ca is 0.0005% or more in total. More preferably, it is 0.0010% or more, More preferably, it is 0.0020% or more.
  • about an upper limit, Preferably, any 1 type or 2 types or more of REM, Sn, Mg, Ca is 0.05% or less in total. More preferably, it is 0.03% or less, More preferably, it is 0.02% or less.
  • Components other than the above components are Fe and inevitable impurities.
  • the said arbitrary component when included below a lower limit, the arbitrary element shall be contained as an unavoidable impurity.
  • the steel structure of the thin steel sheet of the present invention has a ferrite area ratio of 30% or less (including 0%), an area ratio of tempered martensite of 70% or more (including 100%), and the remaining structure of ferrite and sintered
  • the total area ratio of the tissues other than the return martensite is 10% or less (including 0%).
  • the average particle diameter of tempered martensite is 5 ⁇ m or less
  • the average particle diameter of iron-based carbides deposited on the grain boundaries of tempered martensite is 100 nm or less
  • the sum of Si and Mn on the grain boundaries of tempered martensite Is 5 atomic% or more in atomic concentration. The unit of atomic concentration may be simply expressed as “%”.
  • Ferrite area ratio is 30% or less (including 0%)
  • the element concentration on the grain boundary is lowered by the generation temperature of ferrite, and when the generation amount of ferrite is large, it is difficult to stably improve spot weldability.
  • a hard phase such as tempered martensite is indispensable.
  • ferrite and tempered martensite are formed in the vicinity of the HAZ part in spot welding. Stress concentration occurs at the interface, and this causes cracking. Therefore, the ferrite area ratio is set to 30% or less. Preferably it is 25% or less.
  • the ferrite area ratio may be 0%. However, in many cases, ferrite is included, and the ferrite area ratio in that case is 1% or more or 3% or more.
  • Tempered martensite is a structure in which a carbide of 0.3 ⁇ m or less is precipitated inside a microstructure having a lath structure.
  • the tempered martensite is less tempered by heat than the martensite that has not been tempered, so that the HAZ portion is less softened. Therefore, in the present invention, tempered martensite was selected as the main steel structure.
  • the tempered martensite needs to be 70% or more. Preferably, it is 75% or more. More preferably, it is 77% or more, More preferably, it is 80% or more.
  • the area ratio of tempered martensite may be 100%, but in many cases, other than tempered martensite is included. In that case, the upper limit of the area ratio of tempered martensite is 98% or less or 96% or less.
  • Total area ratio of structures other than ferrite and tempered martensite is 10% or less (including 0%)
  • Examples of the structure other than ferrite and tempered martensite include bainite, as-quenched martensite, retained austenite, and pearlite. Since these structures reduce strength or deteriorate weldability, it is desirable to reduce them as much as possible.
  • the total area ratio of the structure other than ferrite and tempered martensite can be tolerated up to 10%. Preferably it is 7% or less, More preferably, it is 5% or less, More preferably, it is 4% or less.
  • Average grain size of tempered martensite is 5 ⁇ m or less
  • Mainly grain boundaries of tempered martensite are eroded by zinc during spot welding. Therefore, if the grain interface area of tempered martensite is small, that is, if the tempered martensite is coarse, the surface energy at the time of occurrence of cracking becomes small, so that cracking tends to occur.
  • the average particle size of tempered martensite needs to be 5 ⁇ m or less. .
  • it is 4 ⁇ m or less. More preferably, it is 3.5 micrometers or less, More preferably, it is 3.0 micrometers or less.
  • the lower limit of the average particle size is not particularly limited and is preferably as small as possible, but in the steel of the present invention, an average particle size of 1 ⁇ m or more is usually obtained.
  • the average particle size of iron-based carbides precipitated on the grain boundaries of tempered martensite is 100 nm or less. Since grain boundaries are also preferred sites for iron-based carbide precipitation, if coarse iron-based carbides exist, Stress concentration occurs at the interface, causing cracking during spot welding. If the carbide size (average particle diameter of carbide) is 100 nm or less, the weldability is not adversely affected. Preferably, it is 80 nm or less. More preferably, it is 70 nm or less, More preferably, it is 65 nm or less. In the present invention, the lower limit of the average particle diameter is not limited, but iron-based carbides having an average particle diameter of 10 nm or more often precipitate.
  • the iron-based carbide means carbides such as ⁇ carbide, ⁇ carbide, and ⁇ carbide.
  • the average particle diameter of the carbide containing V, Ti, or Nb is 20 nm or less.
  • V, Ti, or Nb is included as a selective element (arbitrary element) or one or more, V, Ti, or more than the iron-based carbide described above. Since carbides containing Nb have high hardness, when carbides containing V, Ti, or Nb are precipitated at the grain boundaries, they have an adverse effect on spot weldability like iron-based carbides. In the present invention, when these elements are contained, it is necessary to adjust not only the iron-based carbides but also the average particle diameter of the carbides containing V, Ti, or Nb.
  • the average particle diameter of the carbide containing V, Ti or Nb is acceptable if it is 20 nm or less. Preferably, it is 15 nm or less. More preferably, it is 13 nm or less. The lower limit is not particularly limited, but the average particle diameter is often 0.8 nm or more.
  • the total of Si and Mn on the grain boundaries of tempered martensite is 5% or more in atomic concentration. Cracking due to zinc grain boundary erosion during spot welding is improved if grain boundary erosion is prevented. For this purpose, it is effective to reduce the wettability of the grain boundaries. In order to obtain this effect, the total of Si and Mn on the grain boundary of tempered martensite needs to be 5% or more in terms of atomic concentration. Preferably it is 7% or more. More preferably, it is 8% or more. The upper limit is not particularly limited, but the upper limit is substantially 25%. The total atomic concentration is often 15% or less.
  • the total of Cr, Mo, Ni, B, and Sb on the grain boundary of tempered martensite is 5% or more in atomic concentration.
  • One or more of Cr, Mo, Ni, B, or Sb as an optional element (optional element) In order to further improve the spot weldability, the total of Cr, Mo, Ni, B and Sb on the grain boundary of tempered martensite needs to be 5% or more in terms of atomic concentration.
  • Cr and Ni are effective elements for reducing the wettability of grain boundaries and preventing the grain boundary erosion of zinc.
  • Mo, B, and Sb have the effect of increasing the surface energy at the time of crack occurrence and suppressing the crack occurrence.
  • the total of Cr, Mo, Ni, B and Sb is 7% or more in terms of atomic concentration. More preferably, it is 8% or more.
  • the upper limit is not particularly limited, but the upper limit is substantially 35%.
  • the total atomic concentration is often 20% or less.
  • the thin steel plate of the present invention is a thin steel plate having a plating layer
  • the type of the plating layer is not particularly limited, and examples thereof include a hot-dip plating layer and an electroplating layer.
  • the composition of the plating layer is not particularly limited as long as it is a general composition.
  • the plating layer contains, by mass%, Fe: 20.0% or less, Al: 0.001% or more and 3.5% or less, and further Pb, Sb, Si, Sn, Mg, Mn, Ni, One or two or more selected from Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM are contained in a total of 0 to 3.5%, with the balance being Zn and inevitable impurities.
  • the plating layer may be an alloyed plating layer. In the case of an alloyed plating layer, the Fe content in the plating layer is usually 5.0% or more and 20% or less.
  • the tensile strength is 900 MPa or more. Preferably it is 980 MPa or more. In the present invention, the tensile strength is usually 1300 MPa or less.
  • the elongation of the thin steel sheet of the present invention is usually 9% or more, preferably 11% or more.
  • the upper limit is about 25% or less or 20% or less.
  • the yield strength is 600 MPa or more, preferably 700 MPa or more. About an upper limit, it is 1100 Mpa or less normally.
  • the manufacturing method of the thin steel plate of this invention is demonstrated.
  • the manufacturing conditions are slightly different between a method for manufacturing a thin steel plate having no plating layer and a method for manufacturing a thin steel plate having a plating layer. This is because the range of acceptable manufacturing conditions varies slightly depending on whether or not plating is performed.
  • the manufacturing method of the thin steel plate which does not have a plating layer, and the manufacturing method of the thin steel plate which has a plating layer are demonstrated in order.
  • the manufacturing method of the thin steel plate (thin steel plate which does not have a plating layer) of this invention heats the steel raw material which has said component composition at 1150 degreeC or more and 1350 degrees C or less, and performs hot rolling consisting of rough rolling and finish rolling.
  • the finish rolling end temperature is set to 820 ° C. or higher, and winding is performed at 350 ° C. or higher and 680 ° C. or lower (hot rolling step).
  • cold rolling is performed (cold rolling process).
  • heating is performed and the sample is retained at 840 ° C. or more for 30 seconds or more, and then the average cooling rate from the cooling start temperature to the Ms point is 200 ° C./s or more to 100 ° C.
  • the Ms point means the martensitic transformation start temperature.
  • the steel material having the above component composition is heated at 1150 ° C. or higher and 1350 ° C. or lower, and in performing hot rolling consisting of rough rolling and finish rolling, the finish rolling finish temperature is set to 820 ° C. or higher, This is a step of winding at 350 ° C. or higher and 680 ° C. or lower.
  • the melting method for producing the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Then, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Also, the slab may be formed by a known casting method such as ingot-bundling rolling or continuous slab casting.
  • Heating temperature of steel material 1150 ° C. or higher and 1350 ° C. or lower
  • it is necessary to heat the steel material prior to rough rolling so that the steel structure of the steel material becomes a substantially homogeneous austenite phase.
  • the heating temperature exceeds 1350 ° C. the scale loss increases and damage to the furnace body of the heating furnace increases. Therefore, the heating temperature of the steel material is set to 1150 ° C. or higher and 1350 ° C. or lower.
  • a preferable heating temperature for the lower limit is 1180 ° C. or higher.
  • a preferable heating temperature for the upper limit is 1320 ° C. or lower.
  • the expression (1) is an experimentally obtained conditional expression for reducing the adverse effect of Mn segregation that causes a band-like uneven structure in slab heating. If the left side of the formula (1) is 0 or more, Mn diffuses during slab heating and the adverse effect on weldability due to the formation of a band-like non-uniform structure is reduced. In addition, although the upper limit of the left side of (1) Formula is not specifically limited, In consideration of manufacturability, it is usually 1.00 or less in many cases.
  • Finish rolling end temperature 820 ° C or higher If the finish rolling end temperature is lower than 820 ° C, transformation from austenite to ferrite starts during rolling, and the local strength of the steel sheet fluctuates. The sheet thickness accuracy of rolling deteriorates. Therefore, the finish rolling end temperature is set to 820 ° C. or higher. Preferably it is 840 degreeC or more. More preferably, it is 850 degreeC or more. In addition, although the upper limit of finish rolling completion temperature is not specifically limited, 1020 degreeC is an upper limit substantially by restrictions of production equipment. Preferably it is 1000 degrees C or less. More preferably, it is 950 degrees C or less.
  • Winding temperature 350 ° C. or higher and 680 ° C. or lower
  • the winding temperature is lower than 350 ° C.
  • the shape of the hot rolled sheet deteriorates, and the thickness accuracy after cold rolling deteriorates.
  • the coiling temperature exceeds 680 ° C.
  • an oxide film that cannot be removed by pickling is generated on the surface of the hot-rolled sheet, and the surface appearance after cold rolling is impaired.
  • the winding temperature range was set to 350 ° C. or more and 680 ° C. or less.
  • a preferred coiling temperature for the lower limit is 380 ° C. or higher. More preferably, it is 400 degreeC or more.
  • a preferable coiling temperature for the upper limit is 650 ° C. or lower. More preferably, it is 630 degrees C or less.
  • V, Ti and Nb are added, the coiling temperature is preferably 520 ° C. or less in order to make the carbide diameter 20 nm or less.
  • the subsequent cold rolling step is a step of cold rolling the hot-rolled sheet after the hot rolling step.
  • it is necessary to cold-roll the hot-rolled sheet after the hot rolling process.
  • cold rolling is performed after pickling, but the pickling conditions may be normal conditions.
  • the rolling rate in the cold rolling is not particularly limited, but is usually 20 to 80%.
  • the lower limit is preferably 30% or more.
  • the upper limit is preferably 75% or less.
  • the subsequent annealing step is that after the cold rolling step, after being retained at 840 ° C. or higher for 30 seconds or longer, the average cooling rate from the cooling start temperature to the Ms point is 200 ° C./s or higher and is cooled to 100 ° C. or lower. After that, after heating again and retaining at 840 ° C. or more for 30 seconds or more, the average cooling rate from the cooling start temperature to (Ms point ⁇ 100) ° C. is 20 ° C./s or more and (Ms point ⁇ 100) ° C. or less. Then, after cooling, it is heated or cooled as necessary, and is retained at 200 ° C. or higher and 400 ° C. or lower for 20 seconds or longer and 1800 seconds or shorter.
  • the residence time is preferably 300 seconds or less in order to make the carbide diameter 20 nm or less. More preferably, it is 840 degreeC or more and 50 seconds or more and 280 seconds or less. More preferably, it is 840 degreeC or more and 70 seconds or more and 250 seconds or less. In addition, heating temperature is 880 degrees C or less normally.
  • the average cooling rate from the cooling start temperature to the Ms point is from 200 ° C./s to 100 ° C.
  • it is necessary to suppress the grain boundary migration at the austenite / ferrite interface.
  • it is necessary to cool at an average cooling rate from the cooling start temperature to the Ms point at 200 ° C./s or more.
  • it is more preferable to set the cooling start temperature to 820 ° C. or higher and to cool to room temperature by water cooling.
  • room temperature means 0 ° C. or more and 50 ° C. or less.
  • the average cooling rate is usually 800 ° C./s or less.
  • a heating temperature and a cooling start temperature may correspond, and do not need to correspond.
  • the cooling rate from the Ms point to the cooling stop temperature is not particularly limited.
  • the upper limit of the residence time is not particularly limited. However, if the residence time at 840 ° C.
  • austenite grains become coarse and fine tempered martensite may not be obtained. Therefore, residence at 840 ° C. or higher and 280 seconds or shorter is preferable. Preferably, they are 840 degreeC or more and 50 seconds or more and 200 seconds or less. In addition, heating temperature is 900 degrees C or less normally.
  • the cooling stop temperature is high, tempered martensite is not generated in the next step, and a desired structure cannot be obtained. From this viewpoint, it is necessary to cool to at least (Ms point ⁇ 100 ° C.) or less.
  • the average cooling rate from the cooling start temperature to (Ms point ⁇ 100 ° C.) is 30 ° C./s or higher and 240 ° C. or lower, and the cooling start temperature is 820 ° C. or higher.
  • the heating temperature for heating before the start of the main cooling does not have to coincide with the cooling start temperature. For example, the temperature may slightly decrease after heating and before cooling starts.
  • the average cooling rate is usually 60 ° C./s or less.
  • Residence at 200 ° C. or more and 400 ° C. or less for 20 seconds or more and 1800 seconds or less In order to temper the produced martensite, it is necessary to retain it in a predetermined temperature range. When the residence temperature is lower than 200 ° C., tempering does not proceed and the moldability becomes impractical. If it exceeds 400 ° C., coarse iron-based carbides are generated on the tempered martensite grain boundaries, so that the weldability decreases. Therefore, the residence temperature range was set to 200 ° C. or more and 400 ° C. or less. When the residence time is less than 20 seconds, tempering does not proceed sufficiently. If it exceeds 1800 seconds, iron-based carbides become coarse. Therefore, the residence time is set to 20 seconds or more and 1800 seconds or less.
  • they are 200 degreeC or more and 400 degrees C or less, and are 50 seconds or more and 1500 seconds or less.
  • heating is needed when the cooling stop temperature in cooling before the said residence is less than 200 degreeC.
  • the said cooling stop temperature is the range of 200 to 400 degreeC, you may heat and cool suitably as needed.
  • the manufacturing method of the thin steel plate which has a plating layer is demonstrated. Since it is the same as that of the manufacturing method of the thin steel plate which does not have a plating layer about cold rolling, description is abbreviate
  • the average cooling rate from the cooling start temperature to 200 ° C is 200 ° C / s or higher and 100 ° C.
  • the average cooling rate from the cooling start temperature to 260 ° C is 200 ° C / s or higher and 100 ° C.
  • “Residence at 840 ° C. or higher for 30 seconds or longer” “Residence at 840 ° C. or higher for 30 seconds or longer” eliminates the influence of the recrystallized structure generated from the structure after cold rolling, and the former austenite corresponding to the tempered martensite grain boundary. It is important for increasing the concentration of Cr, Mo, Ni, B and Sb in addition to Si and Mn on the grain boundary. In order to increase the concentration on the grain boundaries such as Si and Mn after obtaining a complete recrystallized structure, it is necessary to retain at 840 ° C. or higher for 30 seconds or longer.
  • the residence time is preferably 300 seconds or less in order to make the carbide diameter 20 nm or less. More preferably, it is 840 degreeC or more and 50 seconds or more and 280 seconds or less. In addition, heating temperature is 880 degrees C or less normally.
  • the average cooling rate from the cooling start temperature to 200 ° C. is cooled to 200 ° C./s or more and 100 ° C. or less.
  • the element distribution on the grain boundary generated by the annealing is It is necessary to suppress the formation of coarse iron-based carbides after freezing the state.
  • room temperature means 0 ° C. or more and 50 ° C. or less.
  • the average cooling rate is usually 800 ° C./s or less.
  • a heating temperature and a cooling start temperature may correspond, and do not need to correspond.
  • the cooling rate from 200 ° C. to the cooling stop temperature is not particularly limited.
  • the residence time is 840 ° C. or more and 150 seconds or less.
  • it is 840 degreeC or more and 20 seconds or more and 130 seconds or less.
  • heating temperature is 900 degrees C or less normally.
  • the average cooling rate from the cooling start temperature to 260 ° C. is cooled to 20 ° C./s or higher and 260 ° C. or lower.
  • the average cooling rate is low, bainite and ferrite are generated in the cooling process, and the concentration of the grain boundary is reduced by the grain boundary movement. Therefore, it is necessary to suppress this as much as possible. Therefore, it is necessary to cool at an average cooling rate from the cooling start temperature to 260 ° C. at 20 ° C./s or more.
  • the cooling stop temperature is high, tempered martensite is not generated in the next step, and a desired structure cannot be obtained.
  • the average cooling rate from the cooling start temperature to 260 ° C. is 30 ° C./s or higher and 240 ° C. or lower, and the cooling start temperature is 820 ° C. or higher.
  • the heating temperature for heating before the start of the main cooling does not have to coincide with the cooling start temperature. For example, the temperature may slightly decrease after heating and before cooling starts.
  • the average cooling rate is usually 60 ° C./s or less.
  • Residence at 200 ° C. or more and 400 ° C. or less for 20 seconds or more and 150 seconds or less In order to temper the produced martensite, it is necessary to retain it in a predetermined temperature range. When the residence temperature is lower than 200 ° C., tempering does not proceed and the moldability becomes impractical. If it exceeds 400 ° C., coarse iron-based carbides are generated on the tempered martensite grain boundaries, so that the weldability decreases. Therefore, the residence temperature range was set to 200 ° C. or more and 400 ° C. or less. When the residence time is less than 20 seconds, tempering does not proceed sufficiently. If it exceeds 150 seconds, the iron-based carbide becomes coarse. Therefore, the residence time is set to 20 seconds or more and 150 seconds or less.
  • they are 200 degreeC or more and 400 degrees C or less, and are 50 seconds or more and 130 seconds or less.
  • heating is needed when the cooling stop temperature in cooling before the said residence is less than 200 degreeC.
  • the said cooling stop temperature is the range of 200 to 400 degreeC, you may heat and cool suitably as needed.
  • the thin steel plate which has a plating layer can be manufactured.
  • a specific method of the plating treatment is not particularly limited, and any of hot dipping and electroplating may be used.
  • residence time was 20 seconds or more and 150 seconds or less. Preferably, it is 30 seconds or more and 130 seconds or less.
  • a steel material having a thickness of 250 mm having the composition shown in Table 1 is subjected to a hot rolling process under the hot rolling conditions shown in Table 2 to form a hot rolled sheet, and a cold rolling rate of 29% or more and 68% or less is cold.
  • a rolling process was performed to obtain a cold-rolled sheet, and annealing under the conditions shown in Table 2 was performed in a continuous annealing line or a continuous hot dipping line. Then, the plating process and the alloying process were performed as needed.
  • the temperature of the plating bath immersed in the continuous hot dipping line is 460 ° C.
  • the amount of plating is GI (hot dip plated steel), GA (alloyed)
  • Both the hot-dip galvanized steel sheets) were 45 to 65 g / m 2 per side, and the amount of Fe contained in the GA material plating layer was in the range of 6 to 14% by mass.
  • the Ms point was determined by equation (2).
  • Ms point (° C.) 561-474 ⁇ [C] ⁇ 33 ⁇ [Mn] ⁇ 17 ⁇ [Ni] ⁇ 17 ⁇ [Cr] ⁇ 21 ⁇ [Mo] ...
  • Specimens were collected from the cold-rolled steel sheet (CR material), hot-dip steel sheet (GI material) or alloyed hot-dip steel sheet (GA material) obtained as described above and evaluated by the following methods.
  • the area ratio of each phase was evaluated by the following method. Cut out from the steel plate so that the cross section parallel to the rolling direction becomes the observation surface, the center of the plate thickness appears to be corroded with 1% nital, and is magnified 2000 times with a scanning electron microscope to obtain a thickness of 1/4 t (where t is all Thickness) was taken for 10 fields of view.
  • the ferrite phase is a structure with a form in which corrosion marks and iron-based carbides are not observed in the grains
  • the tempered martensite is a structure in which many fine iron-based carbides and corrosion marks having an orientation are observed in the grains. .
  • the area ratios of the ferrite phase, tempered martensite and other structures were determined, and the results are shown in Table 3.
  • the tempered martensite particle size was determined by image analysis using image analysis software (Image-Pro Plus ver. 7.0, manufactured by Nippon Roper Co., Ltd.). Table 3 shows the average particle size. As the image, 10 fields of view taken by measuring the area ratio were used. Further, the diameter of a circle having the same area as the area of the martensite grains was determined as the martensite particle diameter, and the average value was calculated.
  • the average particle diameter of carbides was measured using a transmission electron microscope for the number and proportion of carbide particles.
  • the central part in the plate thickness direction of the steel plate was the object of observation, and was magnified 300,000 times.
  • 300 carbides were randomly selected for the carbides on the tempered martensite grain boundaries, and the average particle size was determined.
  • an energy dispersive X-ray analyzer attached to TEM was used for the identification of carbide. Further, the grain boundary was specified at a magnification of 5000, and the grain boundary where the tempered martensite was adjacent was searched for, and the grain boundary part was photographed by the above method.
  • the element concentration (atomic concentration) on the tempered martensite grain boundary 0.5 mm ⁇ 0.5 mm ⁇ 25 mm parallel to the plate thickness direction at a position across the tempered martensite from the center of the plate thickness.
  • the prismatic test piece was collected and used as a test piece for measurement having a needle-like tip by electrolytic polishing.
  • the concentration of elements present at the grain boundaries was analyzed.
  • the grain boundary was set to ⁇ 0.25 nm from the position where the element concentration was maximum, and the atomic concentrations of Si, Mn, Cr, Mo, Ni, B and Sb were determined. Further, the grain boundary was specified by a method in which C was analyzed and a portion having the highest C concentration was used as the grain boundary.
  • Tensile test A JIS No. 5 tensile test piece was produced from the obtained steel sheet in the direction perpendicular to the rolling direction, and a tensile test in accordance with the provisions of JIS Z 2241 (2011) was conducted five times, and the average yield strength (YS), Tensile strength (TS) and total elongation (El) were determined.
  • the crosshead speed in the tensile test was 10 mm / min.
  • the tensile strength: 900 MPa or more was defined as the mechanical properties of the steel sheet required for the steel of the present invention.
  • welding condition 2 which is a more severe condition, was a result that the level in the preferred range of the slab heating condition was good after controlling the grain boundary atomic concentration of Cr, Mo, Ni, B and Sb.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

引張強さ:900MPa以上を有し、かつ良好な溶接性を有する薄鋼板およびその製造方法を提供する。 特定の成分組成と、フェライトを面積率で30%以下(0%を含む)、焼き戻しマルテンサイトを面積率で70%以上(100%含む)、残部組織としてフェライトおよび焼き戻しマルテンサイト以外を面積率の合計で10%以下(0%を含む)含み、焼き戻しマルテンサイトの平均粒径が5μm以下、焼き戻しマルテンサイトの粒界上に析出した鉄系炭化物の平均粒子径が100nm以下、焼き戻しマルテンサイトの粒界上のSiおよびMnの合計が原子濃度で5原子%以上である鋼組織と、を有し、引張強さが900MPa以上であることを特徴とする薄鋼板とする。

Description

薄鋼板およびその製造方法
 本発明は、薄鋼板およびその製造方法に関するものである。
 近年、地球環境保全の観点から、CO排出量の規制を目的として自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効であるため、近年、自動車部品用素材としての高強度鋼板(高強度化された薄鋼板)の使用量が増加しつつある。
 一方、鋼板の溶接性は高強度化にともない悪化する傾向にある。そのため、高強度に加え、溶接性に優れた鋼板が望まれている。溶接性が満足しない鋼板では、自動車部材同士を溶接で接合する際に割れ等の不具合により自動車部品等への適用できない。自動車部品等を軽量化するうえでは、高強度と溶接性とを兼備した鋼板開発が必須であり、これまでにも溶接性に着目した高強度の冷延鋼板および溶融めっき鋼板について、様々な技術が提案されている。
 例えば、特許文献1では、質量%で、C:0.05~0.15%、Si:0.01~1.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~0.50%、Cr:0.010~2.000%、Nb:0.005~0.100%、Ti:0.005~0.100%、B:0.0005~0.0050%を、Si、Mn、CrおよびBを規定の範囲内で含有させ、面積率でフェライト:10%以下、ベイニティックフェライト:2~30%、マルテンサイト:60~98%を含み、X線回折法により求めた残留オーステナイトの割合が2%未満からなる金属組織(鋼組織)としたうえで、ベイナイトのみに隣接する塊状マルテンサイトの全組織に占める割合が10%以下とし、表面から100μmと20μmとの硬度差を規定することで、スポット溶接性、耐衝撃性及び曲げ加工性に優れる高強度溶融亜鉛めっき鋼板が得られるとしている。
 特許文献2では、質量%で、C:0.05~0.13%、Si:0.05~2.0%、Mn:1.5~4.0%、P:0.05%以下、S:0.005%以下、Al:0.01~0.1%、Cr:0.05~1.0%、Nb:0.010~0.070%、Ti:0.005~0.040%およびN:0.0005~0.0065%を含有し、鋼中のTiのうち70%以上を析出させ、Nbを15%以上固溶状態として残存させることで引張強さが980MPa以上のスポット溶接性に優れた冷延鋼板が得られるとしている。
 特許文献3では、質量%で、C:0.07~0.15%、Si:1.1~1.6%、Mn:2.0~2.8%、P:0%超0.015%以下、S:0%超0.005%以下、Al:0.015~0.06%、Ti:0.010~0.03%、およびB:0.0010~0.004%を含有し、鋼板の板厚の1/4位置において下記金属組織の面積率が、焼戻しマルテンサイト:10面積%以上30面積%未満、ベイナイト:70面積%超、焼戻しマルテンサイトとベイナイトの合計:90面積%以上、フェライト:0面積%以上5面積%以下、および残留オーステナイト:0面積%以上4面積%以下を満足する引張強度が980MPa以上、且つ、0.2%耐力が700MPa未満の、延性、伸びフランジ性、および溶接性に優れた冷延鋼板板、溶融亜鉛めっき鋼板、および合金化溶融亜鉛めっき鋼板が得られるとしている。
特許第5858199号公報 特開2015-200013号公報 特開2016-37650号公報
 特許文献1で提案された技術では、スポット溶接性を良好なものとさせるための要件として、C、Si、PおよびS含有量を規定したのみで、スポット溶接性が十分とは言えないケースがある。
 特許文献2で提案された技術では、熱間圧延前のスラブ再加熱工程において、(Ts-50)℃以上で加熱することでNb系晶出物を溶解するとしているが、焼鈍温度である900℃以下ではNb系炭化物が不可避的に析出する温度域であり、固溶Nbを15%安定的に残存させることは困難である。
 特許文献3で提案された技術においても溶接性を改善するための指標は低C化のみで、特許文献1と同様、スポット溶接性が十分といえないケースがある。
 本発明はかかる事情に鑑みてなされたものであって、引張強さ:900MPa以上を有し、かつ良好な溶接性を有する薄鋼板およびその製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために、引張強さ900MPaかつ良好な溶接性を兼備する薄鋼板の要件について鋭意検討した。本件で対象とする薄鋼板の板厚は、0.4mm以上3.2mm以下である。スポット溶接にあたり、条件によって溶接後に割れが発生する事象が発生した。割れが発生した溶接条件や鋼板の鋼組織を鋭意調査した結果、亜鉛めっき鋼板と冷延鋼板とを溶接させる場合、もしくはめっき鋼板同士を溶接させる場合、亜鉛の粒界浸食により割れを助長させること、亜鉛の粒界浸食は溶融金属部との硬度差を抑えたうえで、粒界上の元素濃度を制御することが有効であること、割れは粒界上に存在する粗大な析出物によっても助長されることが判明した。本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
 [1]質量%で、C:0.07%以上0.20%以下、Si:0.60%以上1.65%以下、Mn:1.8%以上3.5%以下、P:0.05%以下、S:0.005%以下、Al:0.08%以下、N:0.0060%以下、残部がFeおよび不可避的不純物からなる成分組成と、フェライトを面積率で30%以下(0%を含む)、焼き戻しマルテンサイトを面積率で70%以上(100%含む)、残部組織としてフェライトおよび焼き戻しマルテンサイト以外を面積率の合計で10%以下(0%を含む)含み、焼き戻しマルテンサイトの平均粒径が5μm以下、焼き戻しマルテンサイトの粒界上に析出した鉄系炭化物の平均粒子径が100nm以下、焼き戻しマルテンサイトの粒界上のSiおよびMnの合計が原子濃度で5%以上である鋼組織と、を有し、引張強さが900MPa以上である薄鋼板。
 [2]前記成分組成は、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下の1種または2種以上を含有し、前記鋼組織は、V、Ti及びNbの少なくとも1種を含む炭化物の平均粒子径が20nm以下である[1]に記載の薄鋼板。
 [3]前記成分組成は、さらに、質量%で、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.001%以上1.0%以下、B:0.0001%以上0.0050%以下、Sb:0.001%以上0.050%以下の1種または2種以上を含有し、前記鋼組織は、焼き戻しマルテンサイトの粒界上のCr、Mo、Ni、BおよびSbの合計が原子濃度で5%以上である[1]または[2]に記載の薄鋼板。
 [4]前記成分組成は、さらに、質量%で、REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.0001%以上0.1%以下含有する[1]~[3]のいずれかに記載の薄鋼板。
 [5]表面にめっき層を備える[1]~[4]のいずれかに記載の薄鋼板。
 [6]前記めっき層の組成が質量%でFe:20.0%以下、Al:0.001%以上3.5%以下とPb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMから選択する1種または2種以上を合計0%~3.5%とを含有し、残部がZn及び不可避不純物からなる[5]に記載の薄鋼板。
 [7]前記めっき層は、合金化溶融めっき層である[5]または[6]に記載の薄鋼板。
 [8][1]~[4]のいずれかに記載の薄鋼板の製造方法であって、鋼素材を、1150℃以上1350℃以下に加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取り、冷間圧延を施し、冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度からMs点までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度から(Ms点-100)℃までの平均冷却速度が20℃/s以上で(Ms点-100℃)以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上1800秒以下滞留させる薄鋼板の製造方法。
 [9][5]~[7]のいずれかに記載の薄鋼板の製造方法であって、鋼素材を、1150℃以上1350℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取り、冷間圧延を施し、冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、840℃以上の冷却開始温度から200℃までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し、840℃以上で10秒以上150秒以下滞留させた後、840℃以上の冷却開始温度から260℃までの平均冷却速度が20℃/s以上で260℃以下まで冷却し、200℃以上400℃以下で20秒以上150秒以下滞留させ、その後、めっき浴に浸漬させることによりめっき処理を行うか又は該めっき処理を行いさらに合金化処理を行う薄鋼板の製造方法。
 本発明の薄鋼板は、引張強さ(TS):900MPa以上の高強度と、優れた溶接性を兼ね備える。本発明の薄鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 <成分組成>
 本発明の薄鋼板の成分組成は、質量%で、C:0.07%以上0.20%以下、Si:0.60%以上1.65%以下、Mn:1.8%以上3.5%以下、P:0.05%以下、S:0.005%以下、Al:0.08%以下、N:0.0060%以下、残部がFeおよび不可避的不純物からなる。
 上記成分組成は、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下の1種または2種以上を含有してもよい。
 また、上記成分組成は、さらに、質量%で、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.001%以上1.0%以下、B:0.0001%以上0.0050%以下、Sb:0.001%以上0.050%以下の1種または2種以上を含有してもよい。
 以下、各成分について具体的に説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。
 C:0.07%以上0.20%以下
 Cは、焼き戻しマルテンサイトの硬度に関係し、鋼板の強度を上昇させるために有効な元素である。引張強さ:900MPa以上を得るには、少なくともC含有量を0.07%以上含有させる必要がある。一方、C含有量が0.20%を上回ると、スポット溶接での溶融金属部の硬度が過度に上昇し、熱影響部(HAZ部)との硬度差が生じることによってスポット溶接性を低下させる。さらに、焼き戻しマルテンサイトの粒界上に析出する鉄系炭化物の粒子径が増大する観点からもスポット溶接性が悪化する。そのため、C含有量の範囲を0.07%以上0.20%以下とした。下限について好ましいC含有量は0.09%以上である。より好ましくは0.10%以上、さらに好ましくは0.11%以上である。上限について好ましいC含有量は0.19%以下である。より好ましくは0.18%以下、さらに好ましくは0.16%以下である。
 Si:0.60%以上1.65%以下
 Siは、粒界に存在することで粒界の濡れ性を低下させ、スポット溶接での亜鉛の粒界浸食を抑えることで割れ発生を抑える効果がある元素である。この効果を得るには、少なくともSiを0.60%含有する必要がある。一方、Si含有量が1.65%を上回ると、化成処理性やめっき性への悪影響が顕在化し、自動車用部材として適用が困難となる。以上から、Si含有量範囲を0.60%以上1.65%以下とした。下限について好ましいSi含有量は0.70%以上である。より好ましくは0.80%以上、さらに好ましくは0.90%以上である。上限について好ましいSi含有量は1.60%以下である。より好ましくは1.55%以下、さらに好ましくは1.50%以下である。
 Mn:1.8%以上3.5%以下
 MnもSiと同様、焼き戻しマルテンサイトの粒界上に存在させることで、スポット溶接での粒界浸漬を抑制する効果のある元素である。この効果を得るには、Mn含有量は1.8%以上とする必要がある。一方、Mn含有量が3.5%を上回ると、化成処理性やめっき性が悪化する。そのため、Mn含有量は1.8%以上3.5%以下とした。下限について好ましいMn含有量は1.9%以上である。より好ましくは2.1%以上、さらに好ましくは2.3%以上である。上限について好ましいMn含有量は3.2%以下である。より好ましくは3.0%以下、さらに好ましくは2.9%以下である。
 P:0.05%以下
 Pは、低温脆性を発生させる元素であるため、溶接時の冷却時に割れを発生させる元素である。したがって、溶接性の観点から、P含有量は極力低減することが好ましく、本発明では、P含有量は0.05%まで許容できる。好ましくは0.03%以下である。P含有量は極力低減する方が望ましく無添加でもよいが、製造上、0.002%は不可避的に混入する場合がある。
 S:0.005%以下
 Sは、鋼中で粗大な硫化物を形成し、これが熱間圧延時に伸展し楔状の介在物となることで、溶接性に悪影響をもたらす。そのため、S含有量は極力低減することが好ましい。本発明では、0.005%まで許容できるため、S含有上限量を0.005%とした。好ましくは、0.003%以下である。S含有量は極力低減する方が望ましく無添加でもよいが、製造上、0.0002%は不可避的に混入する場合がある。
 Al:0.08%以下
 Alを製鋼の段階で脱酸剤として添加する場合、Al含有量を0.02%以上含有することが好ましい。より好ましくは0.03%以上である。一方、Alは溶接性を悪化させる粗大な酸化物を形成する。そのため、Al含有量上限0.08%とした。好ましくは0.07%以下である。より好ましくは0.06%以下、さらに好ましくは0.05%以下である。
 N:0.0060%以下
 Nは、常温時効性を悪化させ予期せぬ割れを発生させたり、スポット溶接時の微小なボイド生成の原因となり溶接性を悪化させたりする有害な元素である。そのため、N含有量は出来る限り低減することが望ましいが、本発明では0.0060%まで許容できる。好ましくは0.0050%以下である。より好ましくは0.0050%以下、さらに好ましくは0.0040%以下である。N含有量は極力低減する方が望ましく無添加でもよいが、製造上、0.0005%は不可避的に混入する場合がある。
 以上が本発明の基本構成であるが、さらに、以下の成分(任意成分)を含有してもよい。
 V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下の1種または2種以上
 V、TiおよびNbはCと結合し微細な炭化物を形成することで鋼板の高強度化に寄与する元素である。一方、過度に含有させると粗大な炭化物として析出するため、溶接性を悪化させる。以上の観点から、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下とした。下限について好ましいV含有量は0.005%以上である。より好ましくは0.050%以上、さらに好ましくは0.100%以上である。上限について好ましいV含有量は0.6%以下である。より好ましくは0.5%以下、さらに好ましくは0.4%以下である。下限について好ましいTi含有量は0.005%以上である。より好ましくは0.010%以上、さらに好ましくは0.020%以上である。上限について好ましいTi含有量は0.2%以下である。より好ましくは0.15%以下、さらに好ましくは0.12%以下である。下限について好ましいNb含有量は0.005%以上である。より好ましくは0.010%以上、さらに好ましくは0.020%以上である。上限について好ましいNb含有量は0.15%以下である。より好ましくは0.12%以下、さらに好ましくは0.08%以下である。
 Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.001%以上1.0%以下、B:0.0001%以上0.0050%以下、Sb:0.001%以上0.050%以下の1種または2種以上
 Cr、MoおよびNiは鋼板の高強度化に寄与し、焼き戻しマルテンサイトの粒界上での原子濃度を上昇させることで、スポット溶接性を改善させる効果のある元素である。一方、これら元素を過度に添加すると、変態点が大きく変化することで所望の鋼組織が得られなくなり、化成処理性やめっき性が悪化する。BおよびSbは、粒界に存在することで割れ発生に要する表面エネルギーが上昇し、スポット溶接での割れ発生抑制に効果がある元素である。過度に添加しても効果は飽和するため、添加元素の浪費につながる。以上の観点から、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.001%以上1.0%以下、B:0.0001%以上0.0050%以下、Sb:0.001%以上0.050%以下とした。下限について好ましいCr含有量が0.010%以上である。より好ましくは0.050%以上、さらに好ましくは0.100%以上である。上限について好ましいCr含有量が0.8%以下である。より好ましくは0.7%以下、さらに好ましくは0.6%以下である。下限について好ましいMo含有量は0.010%以上である。より好ましくは0.050%以上、さらに好ましくは0.100%以上である。上限について好ましいMo含有量は0.6%以下である。より好ましくは0.5%以下、さらに好ましくは0.4%以下である。下限について好ましいNi含有量は0.010%以上である。より好ましくは0.020%以上、さらに好ましくは0.030%以上である。上限について好ましいNi含有量は0.5%以下である。より好ましくは0.4%以下、さらに好ましくは0.3%以下である。下限について好ましいB含有量は0.0003%以上である。より好ましくは0.0007%以上、さらに好ましくは0.0010%以上である。上限について好ましいB含有量は0.0030%以下である。より好ましくは0.0025%以下、さらに好ましくは0.0020%以下である。下限について好ましいSb含有量は0.005%以上である。より好ましくは0.008%以上、さらに好ましくは0.010%以上である。上限について好ましいSb含有量は0.040%以下である。より好ましくは0.030%以下、さらに好ましくは0.020%以下である。
 REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.0001%以上0.1%以下
 REM、Sn、Sb、MgおよびCaは、介在物を球状化させることでスポット溶接性を向上させる元素である。一方、過度に添加しても効果は飽和するため、添加元素の浪費につながる。以上の観点から、REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.0001%以上0.1%以下とした。下限について、好ましくは、REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.0005%以上である。より好ましくは0.0010%以上、さらに好ましくは0.0020%以上である。上限について、好ましくは、REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.05%以下である。より好ましくは0.03%以下、さらに好ましくは0.02%以下である。
 上記成分以外の成分は、Feおよび不可避的不純物である。なお、上記任意成分を下限値未満で含む場合には、その任意元素は不可避的不純物として含まれるものとする。
 <鋼組織>
 続いて、本発明の薄鋼板の鋼組織について説明する。本発明の薄鋼板の鋼組織は、フェライト面積率が30%以下(0%を含む)、焼き戻されたマルテンサイトの面積率が70%以上(100%を含む)、残部組織としてフェライトおよび焼き戻しマルテンサイト以外の組織の面積率合計が10%以下(0%を含む)である。また、焼き戻しマルテンサイトの平均粒径が5μm以下、焼き戻しマルテンサイトの粒界上に析出した鉄系炭化物の平均粒子径が100nm以下、焼き戻しマルテンサイトの粒界上のSiおよびMnの合計が原子濃度で5原子%以上である。なお、原子濃度の単位は単に「%」と表記する場合がある。
 フェライト面積率が30%以下(0%を含む)
 フェライトの生成温度により粒界上の元素濃度が低下するケースがあり、フェライトの生成量が多い場合には、安定的にスポット溶接性を改善するのは困難である。また、引張強さ:900MPaを得るには焼き戻しマルテンサイトといった硬質相は不可欠であるが、軟質相であるフェライトが多量に生成すると、スポット溶接でのHAZ部近傍でフェライトと焼き戻しマルテンサイトとの界面に応力集中が生じ、割れの発生の要因となる。そのため、フェライト面積率は30%以下とした。好ましくは25%以下である。より好ましくは22%以下、さらに好ましくは20%以下である。また、フェライト面積率は0%でもよい。ただし、フェライトを含む場合も多く、その場合のフェライト面積率は1%以上や3%以上である。
 焼き戻しマルテンサイトの面積率が70%以上(100%を含む)
 焼き戻しマルテンサイトはラス構造を有するミクロ組織内部に0.3μm以下の炭化物が析出した組織である。焼き戻しマルテンサイトは焼き戻されていない焼入ままマルテンサイトと比べて熱による変質が小さいため、HAZ部の軟化が小さくなる。そのため、本発明では、主たる鋼組織として焼き戻しマルテンサイトを選択した。優れた溶接性を兼備した引張強さ900MPa以上を得るには、焼き戻しマルテンサイトは70%以上とする必要がある。好ましくは、75%以上である。より好ましくは77%以上、さらに好ましくは80%以上である。焼き戻しマルテンサイトの面積率が100%でもよいが、焼き戻しマルテンサイト以外を含む場合も多く、その場合に焼き戻しマルテンサイトの面積率の上限は98%以下や96%以下である。
 フェライトおよび焼き戻しマルテンサイト以外の組織の面積率合計が10%以下(0%を含む)
 フェライトおよび焼き戻しマルテンサイト以外の組織としては、ベイナイト、焼入ままマルテンサイト、残留オーステナイト、パーライト等が挙げられる。これら組織は強度を低下させたり、溶接性を悪化させたりするため、極力低減することが望ましい。本発明では、フェライトおよび焼き戻しマルテンサイト以外の組織の合計面積率は10%まで許容できる。好ましくは7%以下、より好ましくは5%以下、さらに好ましくは4%以下である。
 焼き戻しマルテンサイトの平均粒径が5μm以下
 主に焼き戻しマルテンサイトの粒界が、スポット溶接時、亜鉛に浸食される。そのため、焼き戻しマルテンサイトの粒界面積が小さい、すなわち焼き戻しマルテンサイトが粗大であると、割れ発生時の表面エネルギーが小さくなるため、割れが発生しやすくなる。粒界の表面エネルギーを増大させるには、焼き戻しマルテンサイトの表面エネルギーを増大させることが有効であり、この効果を得るには、焼き戻しマルテンサイトの平均粒径が5μm以下である必要がある。好ましくは、4μm以下である。より好ましくは3.5μm以下、さらに好ましくは3.0μm以下である。平均粒径の下限は特に限定されず小さいほど好ましいが、本発明鋼では、通常、1μm以上の平均粒径が得られる。
 焼き戻しマルテンサイトの粒界上に析出した鉄系炭化物の平均粒子径が100nm以下
 粒界は鉄系炭化物析出の優先サイトでもあるため、粗大な鉄系炭化物が存在すると鉄系炭化物とマトリックスとの界面に応力集中が生じ、スポット溶接時に割れ発生の要因となる。炭化物サイズ(炭化物の平均粒子径)が100nm以下であれば、溶接性に悪影響をもたらさない。好ましくは、80nm以下である。より好ましくは70nm以下、さらに好ましくは65nm以下である。本発明では、上記平均粒子径の下限は限定されないが、平均粒子径が10nm以上の鉄系炭化物が析出する場合が多い。なお、鉄系炭化物とはη炭化物、χ炭化物、ε炭化物等の炭化物を意味する。
 V、TiもしくはNbを含む炭化物の平均粒子径が20nm以下
 選択元素(任意元素)としてV、TiもしくはNbを1種または2種以上を含有した場合、上記の鉄系炭化物よりもV、TiもしくはNbを含む炭化物は硬度が高いため、V、TiもしくはNbを含む炭化物が粒界に析出した場合、鉄系炭化物と同様にスポット溶接性に悪影響をもたらす。本発明では、これらの元素を含む場合には鉄系炭化物だけでなく、V、TiもしくはNbを含む炭化物の平均粒子径も調整する必要がある。V、TiもしくはNbを含む炭化物の平均粒子径は20nm以下であれば許容できる。好ましくは、15nm以下である。より好ましくは13nm以下である。なお、下限は特に限定されないが上記平均粒子径は、0.8nm以上であることが多い。
 焼き戻しマルテンサイトの粒界上のSiおよびMnの合計が原子濃度で5%以上
 スポット溶接時の亜鉛粒界浸食による割れは、粒界浸食を妨げれば改善される。このためには、粒界の濡れ性を低下させることが有効である。この効果を得るには、焼き戻しマルテンサイトの粒界上のSiおよびMnの合計を原子濃度で5%以上とする必要がある。好ましくは7%以上である。より好ましくは8%以上である。また、上限は特に限定されないが、実質25%が上限である。また、上記合計原子濃度は15%以下であることが多い。
 焼き戻しマルテンサイトの粒界上のCr、Mo、Ni、BおよびSbの合計が原子濃度で5%以上
 選択元素(任意元素)としてCr、Mo、Ni、BもしくはSbの1種もしくは2種以上を含有させた場合、スポット溶接性を更に改善させるためには、焼き戻しマルテンサイトの粒界上のCr、Mo、Ni、BおよびSbの合計を原子濃度で5%以上とする必要がある。Cr、Niは粒界の濡れ性を低下させ、亜鉛の粒界浸食を妨げるために有効な元素である。Mo、BおよびSbは割れ発生時の表面エネルギーを増大させ、割れ発生を抑制する効果がある。好ましくはCr、Mo、Ni、BおよびSbの合計を原子濃度で7%以上である。より好ましくは8%以上である。また、上限は特に限定されないが、実質35%が上限である。また、上記合計原子濃度は20%以下であることが多い。
 <めっき層>
 続いて、めっき層について説明する。本発明の薄鋼板がめっき層を有する薄鋼板の場合、めっき層の種類は特に限定されず、溶融めっき層、電気めっき層等を例示できる。また、めっき層の組成も特に限定されず、一般的な組成であればよい。例えば、めっき層は、質量%で、Fe:20.0%以下、Al:0.001%以上3.5%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなる。また、めっき層は、合金化されためっき層であってもよい。なお、合金化されためっき層の場合、めっき層におけるFe含有量は通常5.0%以上20%以下である。
 本発明の薄鋼板の性質について説明する。ここで説明する性質の測定方法は実施例に記載の通りである。本発明は引張強さが900MPa以上である。好ましくは980MPa以上である。なお、本発明の場合、引張強さは通常1300MPa以下である。また、本発明の薄鋼板の伸びは、通常、9%以上、好ましくは11%以上である。上限については25%以下や20%以下程度である。降伏強さは600MPa以上、好ましくは700MPa以上である。上限については通常1100MPa以下である。また、実施例に記載の方法でスポット溶接性を評価したときに、本発明では、亀裂長さが0μmで割れが生じないか、10μm未満の小さな割れしか生じない。なお、ElとYSは本発明の課題とは直接関係ない追加の特性である。
 <薄鋼板の製造方法>
 次に、本発明の薄鋼板の製造方法について説明する。めっき層を有さない薄鋼板の製造方法と、めっき層を有する薄鋼板の製造方法とは、製造条件が若干異なる。これはめっき処理を行うか否かにより、許容できる製造条件の範囲が若干異なるからである。以下、めっき層を有さない薄鋼板の製造方法、めっき層を有する薄鋼板の製造方法の順で説明する。
 本発明の薄鋼板(めっき層を有さない薄鋼板)の製造方法は、上記の成分組成を有する鋼素材を、1150℃以上1350℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取る(熱間圧延工程)。次いで、冷間圧延を施す(冷間圧延工程)。次いで、冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度からMs点までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し840℃以上で30秒以上滞留させた後、冷却開始温度から冷却停止温度までの平均冷却速度が20℃/s以上で(Ms点-100℃)以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上1800秒以下滞留させる(焼鈍工程)。なお、Ms点とはマルテンサイト変態開始温度を意味する。
 熱間圧延工程とは、上記成分組成を有する鋼素材を、1150℃以上1350℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取る工程である。
 上記鋼素材製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。
 鋼素材の加熱温度:1150℃以上1350℃以下
 本発明においては、粗圧延に先立ち鋼素材を加熱して、鋼素材の鋼組織を実質的に均質なオーステナイト相とする必要がある。また、粗大な介在物の生成を抑制するためには加熱温度の制御が重要となる。加熱温度が1150℃を下回ると所望の仕上げ圧延終了温度を得ることができない。一方、加熱温度が1350℃を上回ると、スケールロスが増大し、加熱炉の炉体への損傷が大きくなる。そのため、鋼素材の加熱温度は1150℃以上1350℃以下とした。下限について好ましい加熱温度は1180℃以上である。上限について好ましい加熱温度は1320℃以下である。なお、上記加熱後の粗圧延の粗圧延条件については特に限定されない。
 スラブ加熱時は、鋳造時に生成した偏析があり、これが圧延されると板厚方向に対してバンド状の不均一な組織となる。これが溶接性に悪影響をもたらすケースがあるため、偏析の影響を軽減するには、(1)式を満たすことが、より望ましい。
Figure JPOXMLDOC01-appb-M000001
                 
ここで、tは加熱時間(単位は秒)、Tは加熱温度(単位は℃)である。(1)式はスラブ加熱において、バンド状の不均一な組織の原因となるMn偏析の悪影響を軽減するための実験的に求めた条件式である。(1)式左辺が0以上であれば、スラブ加熱中にMnが拡散しバンド状の不均一な組織形成による溶接性への悪影響が軽減される。なお、(1)式左辺の上限は特に限定されないが、製造性を考慮して、通常、1.00以下であることが多い。
 仕上げ圧延終了温度:820℃以上
 仕上げ圧延終了温度が820℃を下回ると、圧延中にオーステナイトからフェライトへの変態が開始してしまい、鋼板の局所的な強度が変動するため、次工程の冷間圧延の板厚精度が悪化する。そのため、仕上げ圧延終了温度は820℃以上とした。好ましくは840℃以上である。より好ましくは850℃以上である。なお、仕上げ圧延終了温度の上限は特に限定されないが、生産設備の制約から実質1020℃が上限である。好ましく1000℃以下である。より好ましくは950℃以下である。
 巻取温度:350℃以上680℃以下
 巻取温度が350℃を下回ると熱延板の形状が悪化し、冷間圧延後の板厚精度が悪化する。巻取温度が680℃を上回ると、熱延板表面に酸洗で除去しきれない酸化皮膜が生成し、冷延後の表面外観を損ねる。以上から、巻取温度の範囲を350℃以上680℃以下とした。下限に付いて好ましい巻取温度は380℃以上である。より好ましくは400℃以上である。上限について好ましい巻取温度は650℃以下である。より好ましくは630℃以下である。V,TiおよびNbが添加されている場合、炭化物径を20nm以下とするため、巻取温度は520℃以下とすることが好ましい。
 続いて行う冷間圧延工程とは、上記熱間圧延工程後に熱延板を冷間圧延する工程である。所望の板厚を得るため、熱間圧延工程後の熱延板に冷間圧延を施す必要がある。通常、酸洗後に冷間圧延するが、酸洗条件は通常の条件であればよい。
 上記冷間圧延における、圧延率は特に限定されないが、通常、20~80%である。下限について好ましくは30%以上である。上限について好ましくは75%以下である。
 続いて行う焼鈍工程とは、冷間圧延工程後に、840℃以上で30秒以上滞留させた後、冷却開始温度からMs点までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し840℃以上で30秒以上滞留させた後、冷却開始温度から(Ms点-100)℃までの平均冷却速度が20℃/s以上で(Ms点-100)℃以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上1800秒以下滞留させる工程である。
 840℃以上で30秒以上滞留
 「840℃以上で30秒以上滞留」は、冷間圧延後の組織から生成される再結晶組織の影響を排除し、焼き戻しマルテンサイト粒界に相当する旧オーステナイト粒界上へSiやMnに加え、Cr、Mo、Ni、BおよびSbの濃度を上昇させるために重要である。完全再結晶組織を得たうえで、SiやMn等の粒界上の濃度を上昇させるには、840℃以上で30秒以上滞留させる必要がある。V,TiおよびNbが添加されている場合、炭化物径を20nm以下とするため、滞留時間は300秒以下とすることが好ましい。より好ましくは、840℃以上で50秒以上280秒以下である。さらに好ましくは840℃以上で70秒以上250秒以下である。なお、加熱温度は、通常、880℃以下である。
 冷却開始温度からMs点までの平均冷却速度が200℃/s以上で100℃以下まで冷却
 本工程での冷却では、オーステナイト/フェライト界面の粒界移動を抑制する必要がある。そのためには、冷却開始温度からMs点までの平均冷却速度が200℃/s以上で冷却させる必要がある。冷却過程でのフェライト生成を抑制するため、冷却開始温度は820℃以上とし、水冷により室温まで冷却することが、より好ましい。ここで、室温とは0℃以上50℃以下を意味する。また、上記平均冷却速度は、通常、800℃/s以下である。なお、冷却前の加熱において840℃以上に加熱するが、加熱温度と冷却開始温度は一致してもよいし一致しなくてもよい。例えば、一致しない場合として、加熱後冷却までに温度低下する場合がある。また、Ms点から冷却停止温度までの冷却速度は特に限定されない。
 再度加熱し840℃以上で30秒以上滞留
 一度、840℃以上に焼鈍した後マルテンサイトとし、再度840℃以上に加熱することで、旧オーステナイト粒界上におけるSiやMn等の元素の濃度を効果的に上昇させつつ、旧オーステナイト粒の粗大化を抑制し、焼き戻しマルテンサイト粒径を微細化する効果がある。焼鈍完了後には、オーステナイトが主体となる組織とする必要があるため、840℃以上で30秒以上滞留させる必要がある。一方、上記滞留時間の上限は特に限定されないが、840℃以上での滞留時間が300秒を上回るとオーステナイト粒が粗大化し、微細な焼き戻しマルテンサイトが得られない場合がある。そのため、840℃以上で280秒以下の滞留が好ましい。好ましくは、840℃以上で50秒以上200秒以下である。なお、加熱温度は、通常、900℃以下である。
 冷却開始温度から(Ms点-100℃)までの平均冷却速度が20℃/s以上で(Ms点-100℃)以下まで冷却
 本冷却工程で、オーステナイトからマルテンサイトへの変態を、概ね完了させる必要がある。平均冷却速度が小さい場合、冷却過程でベイナイトやフェライトが生成してしまい、粒界の濃度が粒界移動により小さくなるため、可能な限りこれを抑制する必要がある。そのため、冷却開始温度から(Ms点-100℃)までの平均冷却速度は20℃/s以上で冷却する必要がある。また、冷却停止温度が高い場合、次工程で焼き戻しマルテンサイトが生成されず、所望の組織が得られない。この観点から、少なくとも(Ms点-100℃)以下にまで冷却する必要がある。好ましくは、冷却開始温度から(Ms点-100℃)までの平均冷却速度が30℃/s以上で240℃以下まで冷却することであり、冷却開始温度は820℃以上である。本冷却開始前の加熱の加熱温度と冷却開始温度は一致しなくてもよい。例えば、加熱後冷却開始までに少し温度低下することがある。また、上記平均冷却速度は通常60℃/s以下である。
 200℃以上400℃以下で20秒以上1800秒以下滞留
 生成されたマルテンサイトを焼き戻すために、所定の温度域で滞留させる必要がある。滞留温度が200℃を下回ると焼き戻しが進行せず、成形性が実用不可能なものとなる。400℃を上回ると、焼き戻しマルテンサイト粒界上に粗大な鉄系炭化物が生成されるため、溶接性が低下する。そのため、滞留温度域は200℃以上400℃以下とした。滞留時間が20秒を下回ると、焼き戻しが十分に進行しない。1800秒を上回ると鉄系炭化物が粗大化する。そのため、滞留時間は20秒以上1800秒以下とした。好ましくは、200℃以上400℃以下で50秒以上1500秒以下である。なお、上記滞留の前の冷却における冷却停止温度が200℃を下回る場合には加熱が必要になる。また、上記冷却停止温度が200℃以上400℃以下の範囲であっても必要に応じて適宜加熱や冷却をしてもよい。
 続いて、めっき層を有する薄鋼板の製造方法について説明する。冷間圧延までについては、めっき層を有さない薄鋼板の製造方法と同様であるため説明を省略する。めっき層を有する薄鋼板の製造方法では、冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度から200℃までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し、840℃以上で10秒以上150秒以下滞留させた後、冷却開始温度から260℃までの平均冷却速度が20℃/s以上で260℃以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上150秒以下滞留させ、その後、めっき浴に浸漬させることによりめっき処理を行うか又は該めっき処理を行いさらに合金化処理を行う。
 840℃以上で30秒以上滞留
 「840℃以上で30秒以上滞留」は、冷間圧延後の組織から生成される再結晶組織の影響を排除し、焼き戻しマルテンサイト粒界に相当する旧オーステナイト粒界上へSiやMnに加え、Cr、Mo、Ni、BおよびSbの濃度を上昇させるために重要である。完全再結晶組織を得たうえで、SiやMn等の粒界上の濃度を上昇させるには、840℃以上で30秒以上滞留させる必要がある。V,TiおよびNbが添加されている場合、炭化物径を20nm以下とするため、滞留時間は300秒以下とすることが好ましい。より好ましくは、840℃以上で50秒以上280秒以下である。なお、加熱温度は、通常、880℃以下である。
 冷却開始温度から200℃までの平均冷却速度が200℃/s以上で100℃以下まで冷却
 オーステナイトからマルテンサイトを主体とする組織とすることにより、上記焼鈍で生成させた粒界上の元素分布の状態を凍結したうえで、粗大な鉄系炭化物生成を抑制する必要がある。そのためには、冷却開始温度から200℃までの平均冷却速度が200℃/s以上で冷却させる必要がある。フェライト生成を抑制するため、冷却開始温度は820℃以上とし、水冷により室温まで冷却することが、より好ましい。ここで、室温とは0℃以上50℃以下を意味する。また、上記平均冷却速度は、通常、800℃/s以下である。なお、冷却前の加熱において840℃以上に加熱するが、加熱温度と冷却開始温度は一致してもよいし一致しなくてもよい。例えば、一致しない場合として、加熱後冷却までに温度低下する場合がある。また、200℃から冷却停止温度までの冷却速度は特に限定されない。
 再度加熱し840℃以上で10秒以上150秒以下滞留
 一度、840℃以上に焼鈍した後マルテンサイトとし、再度840℃以上に加熱することで、旧オーステナイト粒界上におけるSiやMn等の元素の濃度を効果的に上昇させつつ、旧オーステナイト粒の粗大化を抑制し、焼き戻しマルテンサイト粒径を微細化する効果がある。焼鈍完了後には、オーステナイトが主体となる組織とする必要があるため、840℃以上で10秒以上滞留させる必要がある。一方、840℃以上での滞留時間が150秒を上回るとオーステナイト粒が粗大化し、微細な焼き戻しマルテンサイトが得られない。そのため、840℃以上で150秒以下の滞留とする。好ましくは、840℃以上で20秒以上130秒以下である。なお、加熱温度は、通常、900℃以下である。
 冷却開始温度から260℃までの平均冷却速度が20℃/s以上で260℃以下まで冷却
 本冷却工程で、オーステナイトからマルテンサイトへの変態を、概ね完了させる必要がある。平均冷却速度が小さい場合、冷却過程でベイナイトやフェライトが生成してしまい、粒界の濃度が粒界移動により小さくなるため、可能な限りこれを抑制する必要がある。そのため、冷却開始温度から260℃までの平均冷却速度は20℃/s以上で冷却する必要がある。また、冷却停止温度が高い場合、次工程で焼き戻しマルテンサイトが生成されず、所望の組織が得られない。この観点から、少なくとも260℃以下にまで冷却する必要がある。好ましくは、冷却開始温度から260℃までの平均冷却速度が30℃/s以上で240℃以下まで冷却することであり、冷却開始温度は820℃以上である。本冷却開始前の加熱の加熱温度と冷却開始温度は一致しなくてもよい。例えば、加熱後冷却開始までに少し温度低下することがある。また、上記平均冷却速度は通常60℃/s以下である。
 200℃以上400℃以下で20秒以上150秒以下滞留
 生成されたマルテンサイトを焼き戻すために、所定の温度域で滞留させる必要がある。滞留温度が200℃を下回ると焼き戻しが進行せず、成形性が実用不可能なものとなる。400℃を上回ると、焼き戻しマルテンサイト粒界上に粗大な鉄系炭化物が生成されるため、溶接性が低下する。そのため、滞留温度域は200℃以上400℃以下とした。滞留時間が20秒を下回ると、焼き戻しが十分に進行しない。150秒を上回ると鉄系炭化物が粗大化する。そのため、滞留時間は20秒以上150秒以下とした。好ましくは、200℃以上400℃以下で50秒以上130秒以下である。なお、上記滞留の前の冷却における冷却停止温度が200℃を下回る場合には加熱が必要になる。また、上記冷却停止温度が200℃以上400℃以下の範囲であっても必要に応じて適宜加熱や冷却をしてもよい。
 めっきを行う。これによりめっき層を有する薄鋼板を製造することができる。めっき処理の具体的な方法は特に限定されず、溶融めっき、電気めっきのいずれでもよい。
 溶融めっきの場合、めっき浴に浸漬し必要であれば合金化処理がなされるため、一時的に400℃より高い温度に鋼板が晒される。この影響を考慮し、めっき前の200℃以上400℃以下の滞留時間を調整する必要がある。そのため、めっき層を有する薄鋼板を製造する場合、滞留時間を20秒以上150秒以下とした。好ましくは、30秒以上130秒以下である。
 表1に示す成分組成を有する肉厚250mmの鋼素材に、表2に示す熱延条件で熱間圧延工程を施して熱延板とし、冷間圧延率が29%以上68%以下の冷間圧延工程を施して冷延板とし、表2に示す条件の焼鈍を連続焼鈍ラインもしくは連続溶融めっきラインで施した。その後、めっき処理、必要に応じて合金化処理を施した。ここで、連続溶融めっきラインで浸漬するめっき浴(めっき組成:Zn-0.13質量%Al)の温度は460℃であり、めっき付着量はGI材(溶融めっき鋼板)、GA材(合金化溶融めっき鋼板)ともに片面当たり45~65g/mとし、GA材のめっき層中に含有するFe量は6~14質量%の範囲とした。
Ms点は(2)式によって求めた。
Ms点(℃)=561-474×[C]-33×[Mn]-17×[Ni]-17×[Cr]-21×[Mo]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
ここで、[M](M=C、Mn、Ni、Cr、Mo)は合金元素の重量濃度である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記により得られた冷延鋼板(CR材)、溶融めっき鋼板(GI材)もしくは合金化溶融めっき鋼板(GA材)から試験片を採取し、以下の手法で評価した。
 組織観察
 各相の面積率は以下の手法により評価した。鋼板から、圧延方向に平行な断面が観察面となるよう切り出し、板厚中心部を1%ナイタールで腐食現出し、走査電子顕微鏡で2000倍に拡大して板厚1/4t部(tは全厚)を10視野分撮影した。フェライト相は粒内に腐食痕や鉄系炭化物が観察されない形態を有する組織であり、焼き戻しマルテンサイトは粒内に配向性を有する多数の微細な鉄系炭化物および腐食痕が認められる組織である。フェライト相、焼き戻しマルテンサイトとこれら以外の組織の面積率を求め、結果を表3に示した。
 焼き戻しマルテンサイト粒径は、画像解析ソフト(Image-Pro Plus ver.7.0, 株式会社日本ローパー製)を用いて画像解析により求めた。表3には粒径の平均値を示した。なお、画像としては上記面積率の測定で撮影した10視野分を用いた。また、マルテンサイト粒の面積と同じ面積の円の直径をマルテンサイト粒径として粒径を求め平均値を算出した。
 炭化物(V、TiおよびNbを含む炭化物や鉄系炭化物)の平均粒子径は、炭化物の粒子数や割合を、透過型電子顕微鏡を用いて測定した。鋼板の板厚方向中央部を観察対象とし、300000倍に拡大し、焼き戻しマルテンサイト粒界上の炭化物に対し、ランダムに300個選択して、平均粒子径を求めた。炭化物の同定には、TEMに付帯するエネルギー分散型X線分析装置を使用した。また、粒界の特定は5000倍で焼き戻しマルテンサイト同士が隣接する部分の粒界を探し、その粒界部分を上記方法によって撮影した。
 焼き戻しマルテンサイト粒界上の元素濃度(原子濃度)の調査には、板厚中央部から、焼き戻しマルテンサイトを跨ぐ位置で板厚方向に対して平行に0.5mm×0.5mm×25mmの角柱試験片を採取し、電解研磨により針状の先端を有する測定用試験片とした。3次元アトムプローブ電界イオン顕微鏡を用いて、粒界に存在する元素濃度を分析した。粒界は元素濃度が最大である位置から±0.25nmとして、Si、Mn、Cr、Mo、Ni、BおよびSbの原子濃度を求めた。また、粒界の特定はCを分析し、最もC濃度が高い部分を粒界とする方法で行った。
 引張試験
 得られた鋼板から圧延方向に対して垂直方向にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強度(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表3において、引張強さ:900MPa以上を本発明鋼で求める鋼板の機械的性質とした。
 スポット溶接評価
 溶接性の評価のために、日本鉄鋼連盟規格JFS A 3011:2014に準拠した板厚1.0mmのJAC270Cのめっき鋼板と、本発明鋼もしくは比較鋼とを重ね、スポット溶接を施した。溶接条件は、先端径7mmφのドームラジアス型のクロム銅電極を用い、溶接時間25サイクル(60Hz)、加圧力300kgf、ナゲット径6mmとした。鋼板の法線方向と電極との角度を10°および15°に変化させて溶接した後、溶接部の断面組織を観察し割れの有無を観察した。10μm以上の割れが生じていた場合は、不合格として「×」、そうでなければ合格として「○」とし、結果を表3に示した。
 本発明例はいずれも、引張強さTS:900MPa以上であり良好な溶接性が得られたことがわかる。一方、本発明の範囲を外れる比較例は引張強さ900MPaに達していないか、溶接性評価で良好なものが得られなかった。
Figure JPOXMLDOC01-appb-T000004
 本発明例はいずれも溶接性評価1を満たす。一方で、より厳しい条件である溶接条件2はCr、Mo、Ni、BおよびSbの粒界原子濃度を制御したうえで、スラブ加熱条件の好適範囲にある水準が良好となる結果であった。
 
 

Claims (9)

  1.  質量%で、
    C:0.07%以上0.20%以下、
    Si:0.60%以上1.65%以下、
    Mn:1.8%以上3.5%以下、
    P:0.05%以下、
    S:0.005%以下、
    Al:0.08%以下、
    N:0.0060%以下、残部がFeおよび不可避的不純物からなる成分組成と、
     フェライトを面積率で30%以下(0%を含む)、焼き戻しマルテンサイトを面積率で70%以上(100%含む)、残部組織としてフェライトおよび焼き戻しマルテンサイト以外を面積率の合計で10%以下(0%を含む)含み、
     焼き戻しマルテンサイトの平均粒径が5μm以下、
     焼き戻しマルテンサイトの粒界上に析出した鉄系炭化物の平均粒子径が100nm以下、
     焼き戻しマルテンサイトの粒界上のSiおよびMnの合計が原子濃度で5%以上である鋼組織と、を有し、
     引張強さが900MPa以上である薄鋼板。
  2.  前記成分組成は、さらに、質量%で、
    V:0.001%以上1%以下、
    Ti:0.001%以上0.3%以下、
    Nb:0.001%以上0.3%以下の1種または2種以上を含有し、
     前記鋼組織は、V、Ti及びNbの少なくとも1種を含む炭化物の平均粒子径が20nm以下である請求項1に記載の薄鋼板。
  3.  前記成分組成は、さらに、質量%で、
    Cr:0.001%以上1.0%以下、
    Mo:0.001%以上1.0%以下、
    Ni:0.001%以上1.0%以下、
    B:0.0001%以上0.0050%以下、
    Sb:0.001%以上0.050%以下の1種または2種以上を含有し、
     前記鋼組織は、焼き戻しマルテンサイトの粒界上のCr、Mo、Ni、BおよびSbの合計が原子濃度で5%以上である請求項1または2に記載の薄鋼板。
  4.  前記成分組成は、さらに、質量%で、REM、Sn、Mg、Caのいずれか1種または2種以上を合計で0.0001%以上0.1%以下含有する請求項1~3のいずれかに記載の薄鋼板。
  5.  表面にめっき層を備える請求項1~4のいずれかに記載の薄鋼板。
  6.  前記めっき層の組成が質量%でFe:20.0%以下、Al:0.001%以上3.5%以下とPb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMから選択する1種または2種以上を合計0%~3.5%とを含有し、残部がZn及び不可避不純物からなる請求項5に記載の薄鋼板。
  7.  前記めっき層は、合金化溶融めっき層である請求項5または6に記載の薄鋼板。
  8.  請求項1~4のいずれかに記載の薄鋼板の製造方法であって、
     鋼素材を、1150℃以上1350℃以下に加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取り、
     冷間圧延を施し、
     冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度からMs点までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度から(Ms点-100℃)までの平均冷却速度が20℃/s以上で(Ms点-100℃)以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上1800秒以下滞留させる薄鋼板の製造方法。
  9.  請求項5~7のいずれかに記載の薄鋼板の製造方法であって、
     鋼素材を、1150℃以上1350℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延終了温度を820℃以上とし、350℃以上680℃以下で巻き取り、
     冷間圧延を施し、
     冷間圧延後加熱し、840℃以上で30秒以上滞留させた後、冷却開始温度から200℃までの平均冷却速度が200℃/s以上で100℃以下まで冷却した後、再度加熱し、840℃以上で10秒以上150秒以下滞留させた後、冷却開始温度から260℃までの平均冷却速度が20℃/s以上で260℃以下まで冷却し、冷却後必要に応じて加熱又は冷却し、200℃以上400℃以下で20秒以上150秒以下滞留させ、その後、めっき浴に浸漬させることによりめっき処理を行うか又は該めっき処理を行いさらに合金化処理を行う薄鋼板の製造方法。
     
PCT/JP2017/029035 2016-08-10 2017-08-10 薄鋼板およびその製造方法 WO2018030501A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019001045A MX2019001045A (es) 2016-08-10 2017-08-10 Lamina de acero y metodo para la produccion de la misma.
KR1020197002527A KR102206448B1 (ko) 2016-08-10 2017-08-10 박강판 및 그의 제조 방법
JP2017559889A JP6296214B1 (ja) 2016-08-10 2017-08-10 薄鋼板およびその製造方法
CN201780046408.4A CN109563582B (zh) 2016-08-10 2017-08-10 薄钢板及其制造方法
US16/320,209 US11066716B2 (en) 2016-08-10 2017-08-10 Steel sheet and method for producing the same
EP17839568.7A EP3467135B1 (en) 2016-08-10 2017-08-10 Thin steel sheet, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-157761 2016-08-10
JP2016157761 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030501A1 true WO2018030501A1 (ja) 2018-02-15

Family

ID=61162311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029035 WO2018030501A1 (ja) 2016-08-10 2017-08-10 薄鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11066716B2 (ja)
EP (1) EP3467135B1 (ja)
JP (1) JP6296214B1 (ja)
KR (1) KR102206448B1 (ja)
CN (1) CN109563582B (ja)
MX (1) MX2019001045A (ja)
WO (1) WO2018030501A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026593A1 (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
EP3889287A4 (en) * 2018-11-29 2021-12-15 Baoshan Iron & Steel Co., Ltd. QUALITY 980 MPA COLD ROLLED STEEL SHEETS WITH A HIGH RATE OF HOLE EXPANSION AND A GREATER PERCENT ELONGATION AND ASSOCIATED MANUFACTURING PROCESS
WO2024162175A1 (ja) * 2023-01-30 2024-08-08 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024195680A1 (ja) * 2023-03-20 2024-09-26 日本製鉄株式会社 鋼板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971308B1 (en) * 2019-05-16 2024-08-07 JFE Steel Corporation High strength member, method for manufacturing high strength member, and method for manufacturing steel sheet for high strength member
MX2021015578A (es) * 2019-06-28 2022-01-24 Nippon Steel Corp Lamina de acero.
KR102653635B1 (ko) * 2019-06-28 2024-04-03 닛폰세이테츠 가부시키가이샤 강판
CN114207170B (zh) * 2019-08-06 2022-09-13 杰富意钢铁株式会社 高强度薄钢板及其制造方法
KR102487306B1 (ko) * 2020-12-21 2023-01-13 현대제철 주식회사 점용접성 및 성형성이 우수한 초고장력 냉연강판, 초고장력 도금강판 및 그 제조방법
CN115874112B (zh) * 2022-11-02 2024-04-30 包头钢铁(集团)有限责任公司 一种1300兆帕级冷轧马氏体钢的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858199B2 (ja) 1981-05-02 1983-12-23 株式会社 福山織機製作所 畳縫着機用畳床裁断装置
JP2004232022A (ja) * 2003-01-30 2004-08-19 Jfe Steel Kk 伸びおよび伸びフランジ性に優れた二相型高張力鋼板およびその製造方法
JP2012031462A (ja) * 2010-07-29 2012-02-16 Jfe Steel Corp 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012120020A1 (en) * 2011-03-07 2012-09-13 Tata Steel Nederland Technology Bv Process for producing high strength formable steel and high strength formable steel produced therewith
JP2015200013A (ja) 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP2016037650A (ja) 2014-08-08 2016-03-22 Jfeスチール株式会社 スポット溶接性に優れた冷延鋼板およびその製造方法
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460647B (zh) * 2006-07-14 2015-05-20 株式会社神户制钢所 高强度钢板及其制造方法
MX366540B (es) * 2007-02-23 2019-07-12 Tata Steel Ijmuiden Bv Tira de acero de alta resistencia laminada en frio y recocida en continuo, y metodo para producirla.
KR101126953B1 (ko) * 2007-11-22 2012-03-22 가부시키가이샤 고베 세이코쇼 고강도 냉연 강판
US8343288B2 (en) 2008-03-07 2013-01-01 Kobe Steel, Ltd. Cold rolled steel sheet
JP4712882B2 (ja) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
JP5800098B2 (ja) 2013-08-02 2015-10-28 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
EP3054025B1 (en) 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
CN106133173B (zh) 2014-03-31 2018-01-19 杰富意钢铁株式会社 材质均匀性优异的高强度冷轧钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858199B2 (ja) 1981-05-02 1983-12-23 株式会社 福山織機製作所 畳縫着機用畳床裁断装置
JP2004232022A (ja) * 2003-01-30 2004-08-19 Jfe Steel Kk 伸びおよび伸びフランジ性に優れた二相型高張力鋼板およびその製造方法
JP2012031462A (ja) * 2010-07-29 2012-02-16 Jfe Steel Corp 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012120020A1 (en) * 2011-03-07 2012-09-13 Tata Steel Nederland Technology Bv Process for producing high strength formable steel and high strength formable steel produced therewith
JP2015200013A (ja) 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP2016037650A (ja) 2014-08-08 2016-03-22 Jfeスチール株式会社 スポット溶接性に優れた冷延鋼板およびその製造方法
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAKO YAMASHITA ET AL.: "Analysis Technology of Microstructure Formation in Dual Phase Steel with High Performance", JFE GIHO, February 2016 (2016-02-01), pages 22 - 25, XP055566264 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026593A1 (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
US12065711B2 (en) 2018-07-31 2024-08-20 Jfe Steel Corporation High-strength hot rolled steel sheet and method for manufacturing same
EP3889287A4 (en) * 2018-11-29 2021-12-15 Baoshan Iron & Steel Co., Ltd. QUALITY 980 MPA COLD ROLLED STEEL SHEETS WITH A HIGH RATE OF HOLE EXPANSION AND A GREATER PERCENT ELONGATION AND ASSOCIATED MANUFACTURING PROCESS
WO2024162175A1 (ja) * 2023-01-30 2024-08-08 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024195680A1 (ja) * 2023-03-20 2024-09-26 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
MX2019001045A (es) 2019-04-25
EP3467135A4 (en) 2019-06-19
JPWO2018030501A1 (ja) 2018-08-09
EP3467135A1 (en) 2019-04-10
KR20190022769A (ko) 2019-03-06
US11066716B2 (en) 2021-07-20
CN109563582A (zh) 2019-04-02
CN109563582B (zh) 2021-08-24
JP6296214B1 (ja) 2018-03-20
KR102206448B1 (ko) 2021-01-21
EP3467135B1 (en) 2020-09-23
US20190271052A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6296214B1 (ja) 薄鋼板およびその製造方法
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6296215B1 (ja) 薄鋼板およびその製造方法
JP6354919B1 (ja) 薄鋼板およびその製造方法
CN109154045B (zh) 镀覆钢板及其制造方法
JP6501045B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6504323B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
US20110036465A1 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
KR20190023093A (ko) 고강도 박강판 및 그 제조 방법
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2017169939A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN109563593B (zh) 高强度钢板及其制造方法
US20130048155A1 (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP6249140B1 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
WO2018030502A1 (ja) 高強度鋼板およびその製造方法
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP7311808B2 (ja) 鋼板及びその製造方法
CN114585758A (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
JP2013127098A (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002527

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017839568

Country of ref document: EP

Effective date: 20190107

NENP Non-entry into the national phase

Ref country code: DE