WO2016143223A1 - 外部環境変化に対する耐性が向上した固定化プロテアーゼ - Google Patents

外部環境変化に対する耐性が向上した固定化プロテアーゼ Download PDF

Info

Publication number
WO2016143223A1
WO2016143223A1 PCT/JP2015/085444 JP2015085444W WO2016143223A1 WO 2016143223 A1 WO2016143223 A1 WO 2016143223A1 JP 2015085444 W JP2015085444 W JP 2015085444W WO 2016143223 A1 WO2016143223 A1 WO 2016143223A1
Authority
WO
WIPO (PCT)
Prior art keywords
protease
immobilized
trypsin
nanoparticles
tpck
Prior art date
Application number
PCT/JP2015/085444
Other languages
English (en)
French (fr)
Inventor
崇史 嶋田
典子 岩本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to BR112017017494A priority Critical patent/BR112017017494A2/pt
Priority to KR1020177027414A priority patent/KR20170120691A/ko
Priority to JP2017504577A priority patent/JPWO2016143223A1/ja
Priority to US15/556,909 priority patent/US20180051272A1/en
Priority to EP15884707.9A priority patent/EP3269807A4/en
Priority to CN201580077541.7A priority patent/CN107406841A/zh
Publication of WO2016143223A1 publication Critical patent/WO2016143223A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6427Chymotrypsins (3.4.21.1; 3.4.21.2); Trypsin (3.4.21.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21004Trypsin (3.4.21.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/2105Lysyl endopeptidase (3.4.21.50)

Definitions

  • the present invention relates to an immobilized protease having improved resistance to external environmental changes, which can be used for preparing a sample for protein mass spectrometry.
  • protease is bound to a solid phase carrier.
  • enzyme activity and reaction rate are improved by binding protease such as trypsin to a solid phase carrier such as glass surface, membrane, hollow fiber, polymer, gel, sol, and porous silica.
  • a solid phase carrier such as glass surface, membrane, hollow fiber, polymer, gel, sol, and porous silica.
  • trypsin-immobilized nanoparticles are used in a method of selectively hydrolyzing a protein by restricting access to a protease substrate (Non-patent Document 6).
  • the performance of these immobilized proteases is evaluated by indicators such as whether they can be used repeatedly, whether they can be used for digestion in a short time, and whether the peptide sequence recovery rate (sequence coverage) of the substrate protein is sufficient. Yes.
  • all the conventional reports are only qualitative evaluations, and are not evaluations based on quantitative physicochemical properties. Further, no consideration has been given to the stability against changes in the external environment such as temperature, pH, preparation of immobilized protease, and various reagents used for reaction with substrate proteins.
  • An object of the present invention is to provide a highly active protease having excellent stability against changes in the external environment, which can be used for preparing a sample for mass spectrometry of proteins.
  • the present inventors have fixed proteases such as trypsin to nanoparticles, so that even proteases with low functions such as reductive dimethylation, which are not functionally enhanced, have low purity.
  • the inventors have found that high activity can be maintained over a wide range of temperature and pH, and that there is no influence from organic solvents or surfactants, and the present invention has been completed.
  • the present invention includes the following inventions.
  • An immobilized protease characterized in that a roughly purified protease or a protease not subjected to autolysis resistance treatment is immobilized on the nanoparticle surface.
  • the immobilized protease according to (1) or (2), wherein the nanoparticles are magnetic nanoparticles.
  • a method for preparing an immobilized protease comprising a step of immobilizing a roughly purified protease or a protease not subjected to autolysis resistance treatment on the nanoparticle surface.
  • the immobilized protease obtained by immobilizing protease on the surface of the nanoparticles of the present invention can maintain high activity without being affected by changes in the external environment such as temperature, pH and additives, and is excellent in stability. Therefore, the immobilized protease of the present invention can improve the reliability and reproducibility of data obtained by mass spectrometry by using it for sample preparation of peptide fragments used for quantification or identification of proteins by mass spectrometry.
  • the immobilized protease of the present invention can exhibit excellent mass spectrometry grade performance regardless of the type and purity of the protease immobilized on the nanoparticles. Therefore, if the immobilized protease of the present invention is used as a reagent included in a protein quantification or identification kit by mass spectrometry, it is economical and the profitability of the reagent can be increased.
  • FIG. 1 shows the concentration of trypsin in the presence of a temperature of 25 ° C., each pH (pH 6.5, pH 7.0, pH 7.5, pH 8.0, pH 8.5, pH 9.0) and additives (urea, OTG, MeCN). Shows enzyme activity (upper panel: immobilized trypsin (FG-Gold, FG-TPCK), lower panel: unimmobilized trypsin (Gold, TPCK)).
  • FIG. 2 shows the concentration of trypsin at a temperature of 37 ° C., in the presence of each pH (pH 6.5, pH 7.0, pH 7.5, pH 8.0, pH 8.5, pH 9.0) and additives (urea, OTG, MeCN).
  • FIG. 3 shows the concentration of trypsin in the presence of 45 ° C., each pH (pH 6.5, pH 7.0, pH 7.5, pH 8.0, pH 8.5, pH 9.0) and additives (urea, OTG, MeCN). Shows enzyme activity (upper panel: immobilized trypsin (FG-Gold, FG-TPCK), lower panel: unimmobilized trypsin (Gold, TPCK)).
  • FIG. 4 shows the concentration of trypsin at a temperature of 50 ° C.
  • FIG. 5 shows the concentration of trypsin in the presence of a temperature of 60 ° C., each pH (pH 6.5, pH 7.0, pH 7.5, pH 8.0, pH 8.5, pH 9.0) and additives (urea, OTG, MeCN).
  • FIG. 6 shows the concentration of trypsin in the presence of a temperature of 70 ° C., each pH (pH 6.5, pH 7.0, pH 7.5, pH 8.0, pH 8.5, pH 9.0) and additives (urea, OTG, MeCN). Shows enzyme activity (upper panel: immobilized trypsin (FG-Gold, FG-TPCK), lower panel: unimmobilized trypsin (Gold, TPCK)).
  • FIG. 7 shows the enzymatic activity of trypsin in the presence of a temperature of 37 ° C., pH 8.0, and additives (DTT, TCEP, CHAPS, SDS, Tween-20, Triton X-100, NP-40) (upper panel: fixed). Trypsin (FG-Gold, FG-TPCK), lower panel: unfixed trypsin (Gold, TPCK)).
  • FIG. 7 shows the enzymatic activity of trypsin in the presence of a temperature of 37 ° C., pH 8.0, and additives (DTT, TCEP, CHAPS, SDS, Tween-20, Triton X-100, NP-40) (upper panel: fixed). Trypsin (FG-Gold, FG-TPCK), lower panel: unfixed trypsin (Gold, TPCK)).
  • FIG. 8 shows the enzymatic activity of trypsin at a temperature of 37 ° C., pH 8.0, and the presence of additives (NaCl, AS, IAA, Trehalose, Glycerol, EDTA) (upper panel: immobilized trypsin (FG-Gold, FG -TPCK), lower panel: unfixed trypsin (Gold, TPCK)).
  • FIG. 9 shows the enzymatic activity of trypsin at a temperature of 37 ° C.
  • FIG. 10 shows the enzymatic activity of trypsin in the presence of additives (urea, NaCl, AS, IAA, EDTA) at a temperature of 37 ° C., pH 8.0 (FG-Gold, FG-TPCK: nanoparticle-immobilized trypsin, CR -TPCK, AR-TPCK: microparticle-immobilized trypsin).
  • additives urea, NaCl, AS, IAA, EDTA
  • 11 shows the enzymatic activity of trypsin in the presence of additives (Trehalose, Glycerol) at a temperature of 37 ° C., pH 8.0 (FG-Gold, FG-TPCK: trypsin immobilized with nanoparticles, CR-TPCK, AR-TPCK). : Microparticle-immobilized trypsin).
  • the immobilized protease of the present invention is characterized in that nanoparticles are used as a solid phase carrier and the protease is immobilized on the surface thereof.
  • the immobilized protease of the present invention has a high activity without being affected by changes in the external environment, even if it is a crudely purified protease or a protease that has not undergone autolysis resistance treatment, because the protease is immobilized on the nanoparticles. Can be maintained.
  • Nanoparticles used in the present invention are not limited in size as long as proteases can be multipoint-bonded to the surface, but since the molecular diameter of proteases such as trypsin and lysyl endopeptidase is about 5 nm, the particle diameter is 100 to 500 nm is preferable, 150 to 400 nm is more preferable, and 200 to 300 nm is more preferable.
  • the particle size becomes large (for example, on the micro order level), it is necessary to consider particle shrinkage due to the influence of additives, etc., but when nanoparticle is immobilized on the particle surface, it is not necessary to consider this shrinkage. Therefore, it becomes possible to produce a more stable enzyme.
  • the “particle diameter” means a particle diameter having the highest frequency of appearance in the particle distribution, that is, a central particle diameter.
  • the amount of protease immobilized on the nanoparticle varies depending on the particle diameter of the nanoparticle, the type and purity of the protease, and is usually 1 to 10% by weight, preferably 2 to 5% with respect to 1% by weight of the nanoparticle. % By weight.
  • the type of nanoparticles is preferably magnetic nanoparticles that can be dispersed or suspended in an aqueous medium and can be easily recovered from the dispersion or suspension by magnetic separation or magnetic precipitation separation.
  • magnetic nanoparticles whose surfaces are coated with an organic polymer are more preferable in that aggregation is unlikely to occur.
  • the base material of the magnetic nanoparticles include ferromagnetic alloys such as iron oxide (magnetite (Fe 3 O 4 ), maghemite ( ⁇ -Fe 2 O 3 )), and ferrite (Fe / M) 3 O 4 .
  • M means a metal ion that can be used together with iron ions to form a magnetic metal oxide, typically Co 2+ , Ni 2+ , Mn 2+. Mg 2+ , Cu 2+ , Ni 2+ and the like are used.
  • the organic polymer that coats the magnetic nanoparticles include polyglycidyl methacrylate (polyGMA), a copolymer of GMA and styrene, polymethyl methacrylate (PMMA), and polymethyl acrylate (PMA).
  • polyGMA polyglycidyl methacrylate
  • PMMA polymethyl methacrylate
  • PMA polymethyl acrylate
  • Specific examples of magnetic nanoparticles coated with an organic polymer include FG beads, SG beads, Adembeads, and nanomag.
  • FG beads manufactured by Tamagawa Seiki Co., Ltd. (polymer magnetic nanoparticles having a particle diameter of about 200 nm in which ferrite particles are coated with polyglycidyl methacrylate (polyGMA)) are preferably used.
  • the nanoparticles are preferably modified with a spacer molecule capable of binding to a protease in order to suppress nonspecific protein adsorption and to selectively immobilize the protease.
  • a spacer molecule capable of binding to a protease in order to suppress nonspecific protein adsorption and to selectively immobilize the protease.
  • the spacer is preferably one that can bind to the protease and does not inactivate the protease. From the viewpoint of controlling the access range of the protease immobilized on the nanoparticle surface, the spacer preferably has a small molecular diameter.
  • the molecular diameter of the spacer is preferably 5 nm or less, more preferably 3 nm or less, and further preferably 2 nm or less.
  • the molecular weight of the spacer is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less.
  • the spacer molecule capable of immobilizing protease with the above molecular diameter is preferably a non-protein, and has an amino group, carboxyl group, ester group, epoxy group, tosyl group, hydroxyl group, thiol group, aldehyde group, maleimide group, succinimide group at the terminal.
  • Molecules having functional groups such as azide group, biotin, avidin, chelate and the like are preferable.
  • spacer molecules having an activated ester group are preferred for immobilizing trypsin.
  • spacer arm portions other than the above functional groups include polyethylene glycol and derivatives thereof, polypropylene glycol and derivatives thereof, polyacrylamide and derivatives thereof, polyethyleneimine and derivatives thereof, poly (ethylene oxide) and derivatives thereof, poly Hydrophilic molecules such as (ethylene terephthalic acid) and its derivatives are used.
  • nanoparticles surface-modified with spacer molecules are also commercially available and may be used.
  • nanoparticles modified with spacer molecules having an ester group (active ester group) activated with N-hydroxysuccinimide are commercially available under the trade name “FG beads NHS” (Tamakawa Seiki Co., Ltd.).
  • the method for immobilizing the protease on the surface of the nanoparticle is not particularly limited, and an appropriate method can be adopted depending on the properties of the protease and the nanoparticle (or the spacer molecule that modifies the nanoparticle surface).
  • An amine coupling method of nanoparticles and protease via the functional group is preferred.
  • the surface-modified carboxyl group of the nanoparticles can be esterified with N-hydroxysuccinimide (NHS) to form an activated ester group, and the protease amino group can be bound thereto.
  • NHS N-hydroxysuccinimide
  • This coupling reaction includes 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAC), N, N′-dicyclohexylcarbodiimide (DCC), bis (2,6-diisopropylphenyl) carbodiimide (DIPC), etc.
  • Carbodiimide can be carried out in the presence of a condensing agent.
  • the amino group of the surface of the nanoparticles is modified with a protease amino acid using a crosslinking agent such as glutaraldehyde, bifunctional succinimide, bis (sulfosuccinimidyl) suberate (BS3), sulfonyl chloride, maleimide, pyridyl disulfide.
  • a crosslinking agent such as glutaraldehyde, bifunctional succinimide, bis (sulfosuccinimidyl) suberate (BS3), sulfonyl chloride, maleimide, pyridyl disulfide.
  • the coupling method of nanoparticles and protease via the functional group of the spacer molecule can be performed by a simple operation of adding a protease solution to a suspension of nanoparticles and mixing and stirring under certain conditions.
  • the reaction conditions are not particularly limited.
  • the suspension of nanoparticles to which protease is added is stirred at a temperature of 1 to 10 ° C. and a pH of 7.0 at 50 to 200 rpm for 0.5 to 1 hour.
  • the active part that is not bound to the protease on the nanoparticle surface after the protease is immobilized on the nanoparticle surface.
  • the unbound spacer molecule binds to impurities in the sample and adversely affects protease digestion or is produced by protease digestion.
  • the peptide fragments may be immobilized on the nanoparticles. Such imperfections are suppressed by blocking unbound spacer molecules after immobilizing the protease.
  • chemical modification is preferred.
  • an activated ester group can be inactivated by forming an amide bond by reaction with a primary amine.
  • the type of protease immobilized on the nanoparticles may be appropriately selected according to the type of protein to be quantified or identified by mass spectrometry, and is not limited.
  • Cruly purified or self-digestion resistant Untreated trypsin (cleaves the peptide at the C-terminal side of basic amino acid residues (Arg and Lys)), chymotrypsin (the peptide at the C-terminal side of aromatic amino acid residues (Phe, Tyr and Trp)) Cleaving), lysyl endopeptidase (cleaving the peptide at the C-terminal side of Lys residue), V8 protease (cleaving the peptide at the C-terminal side of Glu residue), AspN protease (at the N-terminal side of Asp residue) Peptide), ArgC protease (cleaves the peptide at the C-terminal side of Arg residue), papain, pepsin, dipeptidyl
  • trypsin is particularly preferably used in the present invention. Trypsin has a small molecular diameter and an active site is present inside the molecule. Therefore, the region where the active site can access the substrate protein is limited, and the position selectivity of protease digestion can be enhanced. In particular, when the substrate protein is an antibody, trypsin is preferably used as a protease.
  • the protease used in the present invention is a crudely purified protease or a protease that has not been subjected to autolysis resistance treatment, and the purity is not limited. Therefore, when a commercially available protease is used, it is not limited to mass spectrometry grade or sequencing grade protease, and may be a native protease derived from a living body. For example, in the case of trypsin, native trypsin derived from living organisms generates pseudotrypsin that exhibits chymotrypsin-like activity by autolysis, so that chymotrypsin activity can be increased by treating with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK).
  • TPCK N-tosyl-L-phenylalanine chloromethyl ketone
  • Reduced or lysine residues of trypsin that have been treated with reductive dimethylation to increase resistance to autolysis are commercially available as mass spectrometry grade trypsin, but trypsin used in the present invention is Trypsin that has not undergone reductive dimethylation treatment of lysine residues may also be used.
  • the protease bound to the nanoparticles dramatically improves the resistance to changes in the external environment.
  • the external environment includes temperature (heat), pH, organic solvent, protein denaturant, protein reducing / alkylating agent, protein protecting / stabilizing agent, protein solubilizing surfactant, salting-out agent, salts And so on.
  • protein denaturing agents include urea, guanidine hydrochloride, dithiothreitol (DTT), mercaptoethanol, and the like.
  • protein reducing / alkylating agents include tris (2-carboxyethyl) phosphine hydrochloride (TCEP), iodoacetamide (IAA), and the like.
  • protein protecting / stabilizing agents include chelating agents such as EDTA, polyols such as glycerol, saccharides such as trehalose, glucose, and sucrose.
  • chelating agents such as EDTA
  • polyols such as glycerol
  • saccharides such as trehalose, glucose, and sucrose.
  • organic solvent include acetonitrile, methanol, ethanol, isopropanol, and the like.
  • surfactants include polyoxyethylene nonionic surfactants (Triton X-100, Tween 20/40/60/80, Nonidet P-40 (NP-40), etc.), alkylglycoside nonionic surfactants Agents (n-octyl- ⁇ -D-glucoside (OG), n-octyl- ⁇ -D-thioglucoside (OTG), n-dodecyl- ⁇ -D-maltoside (DDM), n-nonyl- ⁇ -D- Maltoside (NG) etc.), amphoteric surfactant (3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonic acid (CHAPS) or 3-[(3-cholamidopropyl) dimethylammonio] -2-hydroxypropanesulfonic acid (CHAPSO) and the like) and cationic surfactants (cetyltrimethylammonium bromide (CTAB) and the like).
  • the conditions are not particularly limited, and conditions similar to those for general protease digestion can be employed. For example, it is preferable to incubate at a temperature of about 37 ° C. for about 1 to 20 hours in a buffer solution adjusted to near the optimum pH of the protease. Further, the mixing amount ratio between the substrate protein and the immobilized protease is not particularly limited, and may be set so that the amount of protease corresponds to the amount of the substrate protein.
  • General protease digestion conditions are about 100: 1 to 10: 1 (weight ratio) of substrate protein: protease.
  • Mass spectrometry is suitable for identifying and quantifying substrate proteins from peptide fragments produced by digestion of substrate proteins with the immobilized protease of the present invention. Since mass spectrometry can determine an amino acid sequence, it can be determined whether or not a peptide fragment is a peptide fragment derived from a specific protein such as an antibody. Further, the concentration of the peptide fragment in the sample can be determined based on the peak intensity.
  • the ionization method in mass spectrometry is not particularly limited.
  • Electron ionization (EI) method chemical ionization (CI) method, field desorption (FD) method, fast atom collision (FAB) method, matrix-assisted laser desorption ionization (MALDI)
  • EI electrospray ionization
  • the analysis method of the ionized sample is not particularly limited. Magnetic field deflection type, quadrupole (Q) type, ion trap (IT) type, time of flight (TOF) type, Fourier transform ion cyclotron resonance (FT-ICR) type Etc. can be appropriately determined according to the ionization method.
  • MS / MS analysis or multistage mass spectrometry of MS3 or higher can be performed using a triple quadrupole mass spectrometer or the like.
  • the immobilized protease of the present invention can stably maintain high activity in a state of being immobilized on the surface of the nanoparticle, it is a component of a kit for preparing a sample of a peptide fragment to be used for protein quantification or identification by mass spectrometry Can be provided as.
  • the immobilized protease of the present invention is particularly suitable for antibody detection and quantification, and includes the amino acid sequence of the complementarity-determining region by mass spectrometry of the peptide fragment sample obtained by selectively digesting the Fab region with protease. The sequence and amount of peptide fragments can be determined.
  • the immobilized protease of the present invention can also be used for pharmacokinetic analysis, interaction analysis using antigen-antibody reaction, various interactome analysis, basic research such as identification of immunoprecipitation proteins, and arrangement of biomolecular drugs such as antibody drugs. It can also be used for analysis, quality assurance, generic drug identity verification tests, and so on.
  • HEPES buffer 25 mM HEPES-NaOH, pH 7.0
  • Ethanolamine buffer 1M ethanolamine-HCl, pH 8.0
  • Tris buffer 25 mM Tris-HCl, pH 8.0
  • Example 1 Preparation of Immobilized Protease As nanoparticles for immobilizing protease, a spacer in which a carboxy group is activated with N-hydroxysuccinimide (see the following chemical formula (L is a binding site to the nanoparticle surface), spacer length FG beads (Tamakawa Seiki, FG beads NHS) having an average particle diameter of 190 nm (dispersion range ⁇ 20 nm) modified with 1 nm) were used.
  • FG beads 1 mg of isopropanol suspension (50 ⁇ L) was centrifuged (15000 rpm, 5 minutes) at 4 ° C. to precipitate the nanoparticles, and the supernatant was removed, followed by washing with methanol.
  • a solution containing 50 ⁇ g of protease dissolved in 200 ⁇ L of HEPES buffer was added to the above nanoparticles to suspend the nanoparticles. During suspension, ultrasonic treatment was performed for several seconds so that the temperature of the suspension did not increase.
  • the suspension of nanoparticles was stirred at 4 ° C. for 30 minutes, and then centrifuged at 4 ° C. (15000 rpm, 5 minutes) to precipitate the nanoparticles, and the supernatant was removed. Subsequently, 200 ⁇ L of ethanolamine buffer was added to suspend the particles, and the mixture was stirred at 4 ° C. for 30 minutes to block excess N-hydroxysuccinimide groups on the surface of the nanoparticles with ethanolamine. ⁇ g / mg solid phase) was obtained. Thereafter, the mixture was centrifuged (15000 rpm, 5 minutes) at 4 ° C. to precipitate the nanoparticles, and the supernatant was removed. Then, washing with Tris buffer and centrifugation were repeated twice and suspended in Tris buffer (100 ⁇ L) ( Protease concentration in suspension: 0.5 ⁇ g / ⁇ L).
  • Enzyme stability test 1 Comparison between nanoparticle-immobilized protease and unimmobilized protease
  • FG-Gold and “FG-TPCK” immobilized on nanoparticles according to the above, enzyme reactions were performed under various conditions, and enzyme stability was examined.
  • Gold is resistant to autolysis by reductive dimethylation treatment in addition to chymotrypsin deactivation treatment (TPCK treatment), and has high activity on broad without depending on temperature or pH. Maintaining mass spectrometry grade protease.
  • TPCK has been inactivated by chymotrypsin, but due to its low purity, impurity-derived chymotrypsin remains and does not completely suppress chymotrypsin activity. Because it is not digestion-resistant, it is a protease with poor heat resistance and limited pH tolerance, compatible buffer and its pH.
  • the protease substrate was dissolved in DMSO to a final concentration of 10 mM to prepare a stock solution.
  • a substrate solution, a reaction buffer, an unfixed (free) protease solution or an immobilized protease suspension were mixed at the ratio shown in Table 1 to prepare an enzyme reaction solution.
  • an enzyme reaction was carried out under the following conditions.
  • the additive (c) was added to the reaction buffer (25 mM Tris) to a predetermined final concentration.
  • the enzyme reaction was carried out for 1.5 hours under vortexing.
  • 50 ⁇ L of 2N-HCl or 10% sulfuric acid was added to completely stop the enzyme reaction.
  • Filtration through a multi-screen filter plate, removal of nanoparticles, dispensing into an optical bottom plate, and absorbance of paranitroaniline (p-NA) released from the substrate using a microplate reader (TECAN Infinite M200Pro) (405 nm , Extinction coefficient 9920 M ⁇ 1 ⁇ cm ⁇ 1 ), and the enzyme activity was evaluated.
  • TPCK protein denaturant often used in proteomics
  • TPCK is in a state equivalent to its inactivated trypsin activity, even though it is at the optimum pH of trypsin (pH 8).
  • FG-TPCK remained more active than FG-Gold (see upper panel in FIGS. 1-6).
  • FG-TPCK significantly increases trypsin activity compared to TPCK, and FG-TPCK and FG-Gold are almost identical. (See FIGS. 7 and 8).
  • Example 3 Enzyme stability test 2 (comparison of nanoparticle-immobilized protease and normal particle-immobilized protease) Using FG beads (Tamakawa Seiki, FG beads NHS) as nanoparticles, immobilize “Gold” and “TPCK” in the same manner as in Example 1 to prepare “FG-Gold” and “FG-TPCK”. And suspended in Tris buffer (100 ⁇ L) (protease concentration in suspension: 0.5 ⁇ g / ⁇ L).
  • CR-TPCK Cellulose resin
  • AR Pierce Immobilized TPCK Trypsin (4% crosslinked Agarose resin)
  • the particles were washed 5 times with 25 mM Tris pH 8.0 and then 75 ml slurry.
  • a protease substrate (N- ⁇ -benzoyl-DL-arginine-p-nitroanilide hydrochloride) was dissolved in DMSO to a final concentration of 10 ⁇ m to obtain a stock solution.
  • An enzyme reaction solution was prepared by adding 50 ⁇ L of substrate solution, 25 ⁇ L of nanoparticle-immobilized protease suspension or 12.5 ⁇ L of normal particle (microparticle) -immobilized protease suspension to 500 ⁇ L of reaction buffer (25 mM Tris). .
  • the additive (b) was added to the reaction buffer (25 mM Tris) to a predetermined final concentration.
  • the nanoparticle-immobilized protease In the vicinity of neutrality (pH 7.0 to 7.5), the nanoparticle-immobilized protease had higher enzyme activity than the microparticle-immobilized protease, and was able to maintain the activity in a wide pH range including the alkali side (Fig. 9). . From this result, the nanoparticle-immobilized protease is advantageous when digesting a sample such as a human body fluid or blood having a pH of about 7, for example.
  • the immobilized protease showed higher enzyme activity than the microparticle-immobilized protease (FIGS. 10 and 11).
  • the microparticle-immobilized protease is fatal in that it has no resistance to NaCl.
  • the nanoparticle-immobilized protease is stable even in the presence of a high concentration of NaCl. It was recognized that the microparticle-immobilized protease tends to decrease the enzyme activity when a stabilizer is present.
  • nanoparticle-immobilized protease does not decrease the enzyme activity even when a stabilizer is present, because the particles are nano-sized, so the dispersibility (probability of contact with the substrate) increases with the viscosity of the solution. This is thought to be due to the fact that it is difficult for the decrease to occur. From the above, it can be said that the nanoparticle-immobilized protease is suitable for application to clinical laboratory tests in which proteins and the like in crude biological samples are analyzed.
  • the present invention can be used in the field of reagent production for product evaluation and analysis tests in the development of biopharmaceuticals such as antibody drugs and protein preparations, and clinical tests in medical settings. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

 本発明は、タンパク質の質量分析用のサンプル調製に用いることのできる、外部環境変化に対する安定性に優れた高活性なプロテアーゼを提供することを課題とする。 本発明によれば、ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化させたことを特徴とする、固定化プロテアーゼ及びその製造方法が提供される。本発明の固定化プロテアーゼは、外部環境の変化を受けずに高い活性を維持することができるので、例えば臨床検体中のタンパク質の質量分析に供する際のサンプル調製に有効である。

Description

外部環境変化に対する耐性が向上した固定化プロテアーゼ
 本発明は、タンパク質の質量分析用のサンプル調製に用いることができる、外部環境変化に対する耐性が向上した固定化プロテアーゼに関する。
 質量分析技術の進展に伴い、タンパク質についても多検体処理に対応したハイスループット解析プラットフォームの開発が進んでいるが、その開発の基盤となるタンパク質解析は、ゲノム解析よりも遅れている。その原因は、ゲノム解析においては、PCRやプラスミド増幅など、サンプル調製のための非常に汎用的かつ定量的な手法が数多く存在するのに対し、タンパク質解析においては、再現性の高いサンプルを調製する技術が確立できていないことにある。第一には、タンパク質は効率的な増幅手段がまだ確立されていない。第二には、質量分析の対象が抗体等の巨大タンパク質である場合はそのままでは分析することが困難であるためその前処理としてタンパク質をプロテアーゼにより消化して断片化することが行われているが、その消化反応の再現性の確保が十分でない。
 タンパク質の消化反応の再現性を高める試みとして、プロテアーゼを固相担体に結合させることが行われている。これまでトリプシンなどのプロテアーゼをガラス表面、膜、中空糸、高分子、ゲル、ゾル、多孔質シリカなどの固相担体に結合させることによって、酵素活性や反応速度が向上するという数多くの報告がある(非特許文献1~5等)。また、プロテアーゼの基質へのアクセスを制限することによって選択的にタンパク質を加水分解する方法に、トリプシンを固定化したナノ粒子を用いることが報告されている(非特許文献6)。これらの固定化プロテアーゼの性能は、繰り返し使用が可能かどうか、短時間での消化反応に使用可能かどうか、基質タンパク質のペプチド配列回収率(シーケンスカバレージ)が十分かどうか、といった指標で評価されている。しかしながら、従来の報告はいずれも定性的な評価に過ぎず、定量的な物理化学的性質に基づく評価ではない。また、温度やpH、固定化プロテアーゼの調製や基質タンパク質との反応に用いる種々の試薬などの外部環境の変化に対する安定性については何ら検討されていない。
Junfeng Ma, et. al., Organic-Inorganic Hybrid Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity, Analytical Chemistry, 2008, 80, 2949 J. Robert Freije, Et. al., Chemically Modified, Immobilized Trypsin Reactor with Improved Digestion Efficiency, Journal of Proteome Research, 2005, 4, 1805 Maria T. Dulay, et. al., Enhanced Proteolytic Activity of Covalently Bound Enzymes in Photopolymerized Sol Gel, Analytical Chemistry, 2005, 77, 4604 Jana Krenkova, et. al., Highly Efficient Enzyme Reactors Containing Trypsin and Endoproteinase LysC Immobilized on Porous Polymer Monolith Coupled to MS Suitable for Analysis of Antibodies, Analytical Chemistry, 2009, 81, 2004 Yan Li, et. al., Immobilization of Trypsin on Superparamagnetic Nanoparticles for Rapid and Effective Proteolysis, Journal of Proteome Research, 2007, 6, 3849 Noriko Iwamoto et al., Selective detection of complementarity determining regions of monoclonal antibody by limiting protease access to the substrate: nanosurface and molecular-orientation limited proteolysis, Analyst, 2014, 139, 576
 本発明の課題は、タンパク質の質量分析用のサンプル調製に用いることのできる、外部環境変化に対する安定性に優れた高活性なプロテアーゼを提供することにある。
 本発明者らは上記課題を解決するために鋭意検討した結果、トリプシンなどのプロテアーゼをナノ粒子に固定化することによって、還元的ジメチル化などの機能強化されていない純度が低いプロテアーゼであっても、広い範囲の温度とpHで高い活性を維持でき、しかも有機溶媒や界面活性剤による影響もないことを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の発明を包含する。
(1)ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化させたことを特徴とする、固定化プロテアーゼ。
(2)ナノ粒子の粒子径が、100~500 nmである、(1)に記載の固定化プロテアーゼ。
(3)ナノ粒子が磁性ナノ粒子である、(1)または(2)に記載の固定化プロテアーゼ。
(4)プロテアーゼが、トリプシン、キモトリプシン、リジルエンドペプチダーゼ、V8プロテアーゼ、AspNプロテアーゼ、ArgCプロテアーゼ、パパイン、ペプシン、またはジペプチジルペプチダーゼである、(1)~(3)のいずれかに記載の固定化プロテアーゼ。
(5)自己消化耐性処理が還元的ジメチル化処理である、(1)~(3)のいずれかに記載の固定化プロテアーゼ。
(6)プロテアーゼがトリプシンまたはリジルエンドペプチダーゼである、(5)に記載の固定化プロテアーゼ。
(7)ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化する工程を含む、固定化プロテアーゼの調製方法。
(8)ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化することにより、プロテアーゼに外部環境変化に対する耐性を付与する方法。
(9)プロテアーゼが、トリプシン、キモトリプシン、リジルエンドペプチダーゼ、V8プロテアーゼ、AspNプロテアーゼ、ArgCプロテアーゼ、パパイン、ペプシン、またはジペプチジルペプチダーゼである、(7)または(8)に記載の方法。
(10)自己消化耐性処理が還元的ジメチル化処理である、(7)または(8)に記載の方法。
(11)プロテアーゼがトリプシンまたはリジルエンドペプチダーゼである、(10)に記載の方法。
 本願は、2015年3月9日に出願された日本国特許出願2015-046380の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。
 本発明のナノ粒子表面にプロテアーゼの固定化してなる固定化プロテアーゼは、温度やpH、添加物などの外部環境の変化を受けずに高い活性を維持することができ、安定性に優れている。よって、本発明の固定化プロテアーゼは、質量分析法によるタンパク質の定量または同定に供するペプチド断片のサンプル調製に用いることにより、質量分析により得られるデータの信頼性と再現性を向上させることができる。本発明の固定化プロテアーゼは、ナノ粒子に固定するプロテアーゼの種類や純度を問わず、質量分析グレードの優れた性能を発揮することができる。よって、本発明の固定化プロテアーゼを、質量分析によるタンパク質定量用または同定用キットの同梱試薬として利用すれば経済的であり、試薬の収益性を高めることができる。
図1は、温度25℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図2は、温度37℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図3は、温度45℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図4は、温度50℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図5は、温度60℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図6は、温度70℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、添加物(urea、OTG、MeCN)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図7は、温度37℃、pH8.0、添加物(DTT、TCEP、CHAPS、SDS、Tween 20、Triton X-100、NP-40)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図8は、温度37℃、pH8.0、添加物(NaCl、AS、IAA、Trehalose、Glycerol、EDTA)存在下におけるトリプシンの酵素活性を示す(上のパネル:固定化トリプシン(FG-Gold、FG-TPCK)、下のパネル:未固定トリプシン(Gold、TPCK))。 図9は、温度37℃、各pH(pH6.5、pH7.0、pH7.5、pH8.0、pH8.5、pH9.0)、におけるトリプシンの酵素活性を示す(FG-Gold、FG-TPCK:ナノ粒子固定化トリプシン、CR-TPCK、AR-TPCK:マイクロ粒子固定化トリプシン)。 図10は、温度37℃、pH8.0、添加物(urea、NaCl、AS、IAA、EDTA)存在下におけるトリプシンの酵素活性を示す(FG-Gold、FG-TPCK:ナノ粒子固定化トリプシン、CR-TPCK、AR-TPCK:マイクロ粒子固定化トリプシン)。 図11は、温度37℃、pH8.0、添加物(Trehalose、Glycerol)存在下におけるトリプシンの酵素活性を示す(FG-Gold、FG-TPCK:ナノ粒子固定化トリプシン、CR-TPCK、AR-TPCK:マイクロ粒子固定化トリプシン)。
 以下、本発明を詳細に説明する。
 本発明の固定化プロテアーゼは、ナノ粒子を固相担体として用い、その表面にプロテアーゼを固定化させたことを特徴とする。本発明の固定化プロテアーゼは、プロテアーゼがナノ粒子に固定化されることで、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼであっても、外部環境の変化を受けずに高い活性を維持することができる。
 本発明で用いるナノ粒子は、その表面にプロテアーゼが多点結合できる限り大きさは限定されないが、トリプシンやリジルエンドペプチダーゼ等のプロテアーゼの分子径が5 nm程度であることから、その粒子径は、100~500 nmが好ましく、150~400 nmがより好ましく、200~300nm がさらに好ましい。粒子径が大きくなると(例えば、マイクロオーダーレベル)、添加剤などの影響で粒子の収縮を考慮する必要があるが、ナノ粒子でかつ粒子表面に固定化した場合、この収縮を考慮する必要がないため、より安定性のある酵素を作製することが可能となる。ここで「粒子径」とは、粒子分布で最も出現頻度の高い粒径、すなわち中心粒径をいう。
 ナノ粒子に対して固定化するプロテアーゼの量は、ナノ粒子の粒子径、プロテアーゼの種類や純度などにより異なるが、ナノ粒子1重量%に対して、通常1~10重量%、好ましくは2~5重量%である。
 ナノ粒子の種類としては、水性媒体に分散又は懸濁することができ、分散液又は懸濁液から磁気分離または磁性沈殿分離により容易に回収することができる磁気ナノ粒子が好ましい。また、凝集が起こりにくいという点において、その表面が有機ポリマーで被覆された磁気ナノ粒子がより好ましい。磁気ナノ粒子の基材としては、酸化鉄(マグネタイト(Fe3O4)、マグヘマイト(γ‐Fe2O3))、フェライト(Fe/M)3O4などの強磁性合金が挙げられる。フェライト(Fe/M)3O4において、Mは、鉄イオンと共に用いて磁性金属酸化物を形成することのできる金属イオンを意味し、典型的にはCo2+、Ni2+、Mn2+、Mg2+、Cu2+、Ni2+などが用いられる。また、磁気ナノ粒子を被覆する有機ポリマーとしては、ポリグリシジルメタクリレート(ポリGMA)、GMAとスチレンのコポリマー、ポリメタクリル酸メチル(PMMA)、ポリアクリル酸メチル(PMA)などを挙げることができる。有機ポリマーで被覆された磁性ナノ粒子の具体例としては、FGビーズ、SGビーズ、Adembeads、nanomagなどが挙げられる。市販品としては、例えば、多摩川精機株式会社製のFG beads(フェライト粒子をポリグリシジルメタクリレート(ポリGMA)で被覆した粒径約200nmのポリマー磁性ナノ粒子)が好適に用いられる。
 上記ナノ粒子は、非特異的なタンパク質の吸着抑制と、プロテアーゼの選択的な固定化のために、プロテアーゼと結合可能なスペーサ分子で修飾されていることが好ましい。スペーサ分子を介してプロテアーゼを固定化することにより、ナノ粒子表面からのプロテアーゼの脱離が抑制され、プロテアーゼ消化の位置選択性が高められる。また、スペーサの分子サイズを調整することにより、基質タンパク質の所望の位置にプロテアーゼを選択的にアクセスさせ、位置選択性を高めることもできる。
 スペーサは、プロテアーゼと結合可能であり、かつプロテアーゼを失活させないものが好ましい。ナノ粒子表面に固定化されたプロテアーゼのアクセス範囲を制御する観点から、スペーサは分子径が小さいものが好ましい。スペーサの分子径は、5nm以下が好ましく、3nm以下がより好ましく、2nm以下がさらに好ましい。また、スペーサの分子量は2000以下が好ましく、1500以下がより好ましく、1000以下がさらに好ましい。
 上記分子径で、プロテアーゼを固定化できるスペーサ分子は、非タンパク質が好ましく、末端にアミノ基、カルボキシル基、エステル基、エポキシ基、トシル基、ヒドロキル基、チオール基、アルデヒド基、マレイミド基、スクシンイミド基、アジド基、ビオチン、アビジン、キレート等の官能基を有する分子が好ましい。例えば、トリプシンの固定には、活性化されたエステル基を有するスペーサ分子が好ましい。また、スペーサ分子のうち、上記官能基以外のスペーサアーム部分は、ポリエチレングリコールおよびその誘導体、ポリプロピレングリコールおよびその誘導体、ポリアクリルアミドおよびその誘導体、ポリエチレンイミンおよびその誘導体、ポリ(エチレンオキシド)およびその誘導体、ポリ(エチレンテレフタル酸)およびその誘導体などの親水性分子が用いられる。
 このようなスペーサ分子で表面修飾されたナノ粒子もまた市販されており、それらを利用すればよい。例えば、N-ヒドロキシスクシンイミドで活性化されたエステル基(活性エステル基)を有するスペーサ分子で修飾されたナノ粒子は、商品名「FG beads NHS」(多摩川精機株式会社)として市販されている。
 プロテアーゼをナノ粒子の表面に固定化する方法は特に限定されず、プロテアーゼとナノ粒子(あるいはナノ粒子表面を修飾するスペーサ分子)の特性等に応じて適宜の方法を採用できるが、上記のスペーサ分子の官能基を介したナノ粒子とプロテアーゼのアミンカップリング法が好ましい。例えば、ナノ粒子に表面修飾したカルボキシル基をN-ヒドロキシスクシンイミド(NHS)でエステル化して活性化エステル基とし、これに、プロテアーゼのアミノ基を結合させることができる。このカップリング反応は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDAC)、N,N'-ジシクロヘキシルカルボジイミド(DCC)、ビス(2,6-ジイソプロピルフェニル)カルボジイミド(DIPC)等のカルボジイミドを縮合剤の存在下に行うことができる。また、ナノ粒子に表面修飾したアミノ基に、グルタルアルデヒド、2官能性スクシンイミド、ビス(スルホスクシンイミジル)スベレート(BS3)、スルホニルクロリド、マレイミド、ピリジルジスルフィド等の架橋剤を用いてプロテアーゼのアミノ基を結合させてもよい。
 スペーサ分子の官能基を介したナノ粒子とプロテアーゼのカップリング法は、ナノ粒子の懸濁液にプロテアーゼ溶液を添加し、一定の条件下で混合撹拌するという簡便な操作で行うことができる。反応条件は特に限定はされないが、例えば、プロテアーゼを添加したナノ粒子の懸濁液を温度1~10℃、pH7.0で、50~200 rpmで0.5~1時間撹拌する。
 ナノ粒子表面にプロテアーゼを固定化後に、ナノ粒子表面のプロテアーゼと未結合の活性部分を不活性化させることが好ましい。例えば、ナノ粒子表面にプロテアーゼが固定化されていないスペーサ分子が存在すると、未結合のスペーサ分子が、試料中の夾雑物等と結合して、プロテアーゼ消化に悪影響を及ぼしたり、プロテアーゼ消化により産生されたペプチド断片がナノ粒子に固定化される等の不具合を生じる場合がある。プロテアーゼを固定化後に、未結合のスペーサ分子をブロックすることにより、このような不具合が抑制される。プロテアーゼと未結合の活性部分を不活性化する方法としては、化学修飾が好ましい。例えば、活性化エステル基は、一級アミンとの反応によりアミド結合を形成して不活性化させることができる。
 本発明においてナノ粒子に固定化させるプロテアーゼの種類は、質量分析による定量または同定の対象となるタンパク質の種類に応じて適宜選択すればよく、限定はされないが、例えば、粗精製のまたは自己消化耐性処理を行っていない、トリプシン(塩基性アミノ酸残基(ArgおよびLys)のC末端側でペプチドを切断する)、キモトリプシン(芳香族アミノ酸残基(Phe、TyrおよびTrp)のC末端側でペプチドを切断する)、リジルエンドペプチダーゼ(Lys残基のC末端側でペプチドを切断する)、V8プロテアーゼ(Glu残基のC末端側でペプチドを切断する)、AspNプロテアーゼ(Asp残基のN末端側でペプチドを切断する)、ArgCプロテアーゼ(Arg残基のC末端側でペプチドを切断する)、パパイン、ペプシン、ジペプチジルペプチダーゼなどが挙げられる。上記プロテアーゼの中でも、本発明においては、トリプシンが特に好ましく用いられる。トリプシンは分子径が小さく、かつ活性部位が分子の内部に存在している。そのため、活性部位が基質タンパク質にアクセスできる領域が制限され、プロテアーゼ消化の位置選択性を高めることができる。特に、基質タンパク質が抗体の場合には、プロテアーゼとしてトリプシンを用いることが好ましい。
 本発明において使用するプロテアーゼは、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼであって、純度は問わない。よって、市販のプロテアーゼを用いる場合、質量分析グレードや配列決定(シーケンス)グレードのプロテアーゼには限定されず、生体由来のネイティブのプロテアーゼであってよい。例えば、トリプシンの場合、生体由来のネイティブのトリプシンは、自己消化によりキモトリプシン様の活性を示す疑似トリプシンを生成するため、N-トシル-L-フェニルアラニンクロロメチルケトン(TPCK)処理することでキモトリプシン活性を低下させたもの、もしくはトリプシンのリジン残基を還元的ジメチル化処理して自己消化に対する抵抗性を高めたものが質量分析グレードのトリプシンとして市販されているが、本発明において使用するトリプシンはこのようなリジン残基の還元的ジメチル化処理を行っていないトリプシンであってもよい。
 上記のようにしてナノ粒子に結合させたプロテアーゼは、外部環境変化に対する耐性が飛躍的に向上する。ここで、外部環境とは、温度(熱)、pH、有機溶媒、タンパク質変性剤、タンパク質還元・アルキル化剤、タンパク質保護・安定化剤、タンパク質の可溶化用界面活性剤、塩析剤、塩類などをいう。タンパク質変性剤としては、例えば、尿素、塩酸グアニジン、ジチオトレイトール(DTT)、メルカプトエタノール等が挙げられる。タンパク質還元・アルキル化剤としては、例えば、トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、ヨードアセトアミド(IAA)等が挙げられる。タンパク質保護・安定化剤としては、例えば、EDTAなどのキレート剤、グリセロールなどのポリオール、トレハロース、グルコース、ショ糖などの糖類等が挙げられる。有機溶媒としては、例えば、アセトニトリル、メタノール、エタノール、イソプロパノール等が挙げられる。界面活性剤としては、例えばポリオキシエチレン系非イオン界面活性剤(Triton X-100, Tween 20/40/60/80、Nonidet P-40(NP-40)等)、アルキルグリコシド系非イオン界面活性剤(n-オクチル-β-D-グルコシド(OG)、n-オクチル-β-D-チオグルコシド(OTG)、n-ドデシル-β-D-マルトシド(DDM)、n-ノニル-β-D-マルトシド(NG)等)、両性界面活性剤(3-[(3-コールアミドプロピル)ジメチルアンモニオ]-1-プロパンスルホン酸(CHAPS)または3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホン酸(CHAPSO)等)、陽イオン性界面活性剤(セチルトリメチルアンモニウムブロミド(CTAB)等)が挙げられる。塩析剤としては、例えば、硫酸アンモニウム(AS)、塩類としては、例えば、塩化ナトリウム、塩化カリウム、酢酸ナトリウム、硫酸マグネシウムなどが挙げられる。
 本発明の固定化プロテアーゼを用いて基質タンパク質を消化する場合は、その条件は特に限定されず、一般的なプロテアーゼ消化と同様の条件を採用できる。例えば、プロテアーゼの至適pH近傍に調整された緩衝溶液中で、通常37℃程度の温度で、1時間~20時間程度インキュベートすることが好ましい。また、基質タンパク質と、固定化プロテアーゼとの混合量比も特に制限されず、基質タンパク質の量に応じたプロテアーゼ量となるように設定すればよい。なお、一般的なプロテアーゼ消化条件は、基質タンパク質:プロテアーゼが100:1~10:1(重量比)程度である。
 本発明の固定化プロテアーゼによる基質タンパク質の消化により産生されたペプチド断片から、基質タンパク質の同定や定量を行うには、質量分析が適している。質量分析は、アミノ酸配列を決定可能であるため、ペプチド断片が抗体等の特定のタンパク質に由来のペプチド断片であるか否かを判別可能である。また、ピーク強度に基づいて試料中のペプチド断片の濃度を決定できる。質量分析におけるイオン化法は特に限定されず、電子イオン化(EI)法、化学イオン化(CI)法、電界脱離(FD)法、高速原子衝突(FAB)法、マトリクス支援レーザー脱離イオン化(MALDI)法、エレクトロスプレーイオン化(ESI)法等を採用することができる。イオン化された試料の分析方法も特に限定されず、磁場偏向型、四重極(Q)型、イオントラップ(IT)型、飛行時間(TOF)型、フーリエ変換イオンサイクロトロン共鳴(FT-ICR)型等を、イオン化法に応じて適宜に決定できる。また、三連四重極型質量分析装置等を用いて、MS/MS分析、あるいはMS3以上の多段階質量分析を行うこともできる。
 本発明の固定化プロテアーゼは、ナノ粒子表面に固定化された状態で安定に高い活性を保持することできるため、質量分析法によるタンパク質の定量または同定に供するペプチド断片のサンプル調製用キットの構成要素として提供できる。本発明の固定化プロテアーゼは特に、抗体の検出や定量に適しており、Fab領域を選択的にプロテアーゼ消化して、得られたペプチド断片試料の質量分析により、相補性決定領域のアミノ酸配列を含むペプチド断片の配列や量を決定できる。本発明の固定化プロテアーゼはまた、薬物動態の解析、抗原抗体反応を用いた相互作用の解析、各種のインタラクトーム解析、免疫沈降タンパク質の同定等の基礎研究、抗体医薬等の生体分子医薬の配列解析、品質保証、後発医薬品の同一性確認試験等にも利用できる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
 以下の実施例において使用した試薬等について、特に記載のないものは和光純薬工業より入手した。また以下のバッファーは、精密pHメーターを用いてpHを調整した。
 HEPESバッファー: 25 mM HEPES-NaOH, pH 7.0
 エタノールアミンバッファー: 1M ethanolamine-HCl, pH 8.0
 Trisバッファー: 25 mM Tris-HCl, pH 8.0
(実施例1)固定化プロテアーゼの調製
 プロテアーゼ固定化用のナノ粒子として、カルボキシ基がN-ヒドロキシスクシンイミドで活性化されたスペーサ(下記化学式(Lはナノ粒子表面への結合部位)参照、スペーサ長さ1nm)で修飾された、平均粒径190 nm(分散範囲±20 nm)のFG beads(多摩川精機、FG beads NHS)を用いた。
Figure JPOXMLDOC01-appb-C000001
 FG beads 1mgのイソプロパノール懸濁液50μLを、4℃で遠心(15000rpm,5分)してナノ粒子を沈降させ、上清を取り除いた後、メタノールで洗浄した。50μgのプロテアーゼを含む溶液を200μLのHEPESバッファーに溶解したものを、上記のナノ粒子に加えて、ナノ粒子を懸濁させた。なお、懸濁に際しては、懸濁液の温度が上昇しないように、数秒の超音波処理を行った。
 このナノ粒子の懸濁液を、4℃で30分撹拌した後、4℃で遠心(15000rpm,5分)してナノ粒子を沈降させ、上清を取り除いた。続いて、エタノールアミンバッファー200μLを加えて粒子を懸濁させ、4℃で30分撹拌して、ナノ粒子表面の余剰のN-ヒドロキシスクシンイミド基をエタノールアミンによりブロックし、ナノ粒子固定化プロテアーゼ(50 μg/mg固相)を得た。その後、4℃で遠心(15000rpm,5分)してナノ粒子を沈降させ、上清を取り除いた後、Trisバッファーによる洗浄と遠心を2回繰り返し、Trisバッファー(100μL)中に懸濁させた(懸濁液中のプロテアーゼ濃度:0.5μg/μL)。
(実施例2)酵素安定性試験1(ナノ粒子固定化プロテアーゼと未固定プロテアーゼの比較)
 プロテアーゼ基質としてN-α-ベンゾイル-DL-アルギニン-p-ニトロアニリド塩酸塩(MW=434.9)を用い、プロテアーゼとしてTrypsin Gold, Mass Spec Grade(プロメガ社製)(以下、「Gold」と表記する)およびTrypsin TPCK Treated from bovine pancreas, Product Number T1426(Sigma Aldrich社製)(以下、「TPCK」と表記する)の2種のトリプシン、ならびに「Gold」、「TPCK」をそれぞれ実施例1に記載の方法に従ってナノ粒子に固定化した「FG-Gold」、「FG-TPCK」を用いて、種々の条件下で酵素反応を行い、酵素安定性を調べた。「Gold」は、キモトリプシン失活処理(TPCK処理)に加え、還元的ジメチル化処理を施すことによって、自己消化に対して抵抗性を有し、温度やpHに依存することなくブロードに高い活性を維持している質量分析グレードのプロテアーゼである。一方、「TPCK」は、キモトリプシン失活処理をしているが、精製度が低いために不純物由来のキモトリプシンが残存し、完全にキモトリプシン活性を抑えているものではなく、また還元的ジメチル化など自己消化耐性処理などもしていないため、熱耐性に乏しく、pH許容範囲や適合緩衝液およびそのpHも限られているプロテアーゼである。
 プロテアーゼ基質を終濃度10 mMとなるようにDMSOに溶解してストック溶液とした。基質溶液、反応緩衝液、未固定(フリーな)プロテアーゼ溶液または固定化プロテアーゼ懸濁液を表1の割合で混合して酵素反応液を調製した。
Figure JPOXMLDOC01-appb-T000002
 調製した酵素反応液を用いて以下の条件を設定して酵素反応を行った。(c)の添加剤は、反応緩衝液(25mM Tris)に所定の終濃度となるよう添加した。
(a)温度
 25℃, 37℃, 45℃, 50℃, 60℃, 70℃
(b)pH
 6.5, 7.0, 7.5, 8.0, 8.5, 9.0 
(c)添加剤(タンパク質変性剤、界面活性剤、有機溶媒など/温度37℃, pH 8.0)
 1M, 2M尿素 (urea)
 0.1% n-オクチル-β-D-チオグルコシド(OTG)
 10%, 20%, 50%アセトニトリル(MeCN)
 5 mM, 10 mM, 20 mMジチオトレトール(DTT)
 1 mM, 5 mM, 10 mM トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)
 0.1% CHAPS
 0.1% SDS
 0.1% Tween 20
 0.1% Triton X-100
 0.1% NP-40
 50 mM, 150 mM, 500 mM NaCl
 50 mM, 150 mM, 500 mM AS
 50 mM IAA
 50 mM, 500 mM トレハロース(Trehalose)
 10% グリセロール (Glycerol)
 10 mM EDTA
 それぞれの条件で酵素反応を1.5時間、ボルテックス攪拌下にて行った。反応終了時は、2N-HClまたは10%硫酸を50μL加えて酵素反応を完全に停止した。マルチスクリーンフィルタープレートでろ過し、ナノ粒子を除去後、Optical bottom plateに分注し、マイクロプレートリーダー(TECAN Infinite M200Pro)を用いて基質より遊離したパラニトロアニリン(p-NA)の吸光度(405 nm, 吸光係数=9920 M-1・cm-1)を測定し、酵素活性を評価した。
 結果を図1~8に示す。GoldはpHや添加物の存在を問わず、25~70℃という非常に広い温度範囲でトリプシン活性を有するのに対し、TPCKはトリプシン活性が弱く、特に60℃以上では顕著に低かった(図1~6の下のパネル参照)。これに対し、FG beadsに固定したTPCK(FG-TPCK)は、温度やpHに関係なく、飛躍的にトリプシン活性が増加し、FG beadsに固定したGold(FG-Gold)を上回るまたは同程度の結果となった(図1~6の上のパネル)。特に、プロテオミクスでよく用いられるタンパク質変性剤である尿素存在下では、TPCKはトリプシンの至適pH(pH8)であるにも関わらず、トリプシン活性が失活しているのに等しい状態であるのに対し、FG-TPCKはFG-Goldを上回る活性を維持した(図1~6の上のパネル参照)。その他の添加物(タンパク質変性剤、界面活性剤、有機溶媒など)の添加環境下においても、FG-TPCKはTPCKに比べて顕著にトリプシン活性が増加し、FG-TPCKとFG-Goldはほぼ同一の挙動をとった(図7、8参照)。
(実施例3)酵素安定性試験2(ナノ粒子固定化プロテアーゼと通常粒子固定化プロテアーゼの比較)
 ナノ粒子としてFG beads(多摩川精機、FG beads NHS)を用い、実施例1と同様にして、「Gold」、「TPCK」をそれぞれ固定化して「FG-Gold」、「FG-TPCK」を調製し、Trisバッファー(100μL)中に懸濁させた(懸濁液中のプロテアーゼ濃度:0.5μg/μL)。通常粒子(マイクロ粒子)固定化プロテアーゼとして、市販品のPromega Immobilized Trypsin(Cellulose resin)(以下、「CR-TPCK」と表記する)またはPierce Immobilized TPCK Trypsin(4% crosslinked Agarose resin)(以下、「AR-TPCK」と表記する)を用いた。粒子は25 mM Tris pH8.0にて5回洗浄し、その後75mlのスラリーとした。
 プロテアーゼ基質(N-α-ベンゾイル-DL-アルギニン-p-ニトロアニリド塩酸塩)を終濃度10 mMとなるようにDMSOに溶解してストック溶液とした。反応緩衝液(25mM Tris) 500 μLに対し、基質溶液50 μL、ナノ粒子固定化プロテアーゼ懸濁液25μLまたは通常粒子(マイクロ粒子)固定化プロテアーゼ懸濁液12.5μLを加えて酵素反応液を調製した。
 調製した酵素反応液を用いて以下の条件を設定して酵素反応を行った。(b)の添加剤は、反応緩衝液(25mM Tris)に所定の終濃度となるよう添加した。
(a)pH (温度:37℃)
 6.5, 7.0, 7.5, 8.0, 8.5, 9.0 
(b)添加剤 (タンパク変性剤など/pH 8.0, 温度37℃)
 1M, 2M尿素 (urea)
 50 mM, 150 mM, 500 mM NaCl
 50 mM, 150 mM, 500 mM AS
 50 mM IAA
 10 mM EDTA
 50 mM, 500 mM トレハロース(Trehalose)
 10% グリセロール (Glycerol)
 それぞれの条件で酵素反応を1.5時間、ボルテックス攪拌下にて行った。反応終了時は、10%硫酸を50μL加えて酵素反応を完全に停止した。マルチスクリーンフィルタープレートでろ過し、ナノ粒子を除去後、Optical bottom plateに分注し、マイクロプレートリーダー(TECAN Infinite M200Pro)を用いて基質より遊離したパラニトロアニリン(p-NA)の吸光度(405 nm, 吸光係数=9920 M-1・cm-1)を測定し、酵素活性を評価した。なお、上記市販品の酵素活性の評価は、pH8.0の酵素活性を1とした相対酵素活性で比較した。
 結果を図9~11に示す。中性付近(pH7.0~7.5)ではナノ粒子固定化プロテアーゼのほうがマイクロ粒子固定化プロテアーゼよりも酵素活性が高く、また、アルカリ側を含めて広いpH範囲で活性を維持できた(図9)。この結果から、ナノ粒子固定化プロテアーゼは、例えばpH7程度のヒト体液や血液などのサンプルを消化する場合には有利である。また、タンパク質変性剤(urea)、塩類(NaCl)、塩析剤(AS)、タンパク質還元・アルキル化剤(IAA)、タンパク質保護・安定化剤(EDTA、Trehalose、Glycerol)添加環境下においてナノ粒子固定化プロテアーゼのほうがマイクロ粒子固定化プロテアーゼよりも高い酵素活性を示した(図10、11)。特に、マイクロ粒子固定化プロテアーゼは、NaClに対する耐性がないのが致命的であるが、ナノ粒子固定化プロテアーゼでは、高濃度のNaClの存在下でも安定であった。マイクロ粒子固定化プロテアーゼは、安定化剤が存在した場合にかえって酵素活性が低下するという傾向が認められた。これに対し、ナノ粒子固定化プロテアーゼでは安定化剤が存在しても酵素活性が低下しないのは、粒子がナノサイズであるために、溶液の粘性増加に伴う分散性(基質との接触確率)の低下が起こりにくいことが要因と考えられる。以上から、ナノ粒子固定化プロテアーゼは、粗精製の生体試料中のタンパク質などを分析対象とする臨床検査試験などへの応用に適しているといえる。
 本発明は、抗体医薬品、タンパク質製剤などのバイオ医薬品の開発における製品の評価や分析試験、医療現場における臨床検査のための試薬製造分野において利用できる。
  本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。

Claims (11)

  1.  ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化させたことを特徴とする、固定化プロテアーゼ。
  2.  ナノ粒子の粒子径が、100~500 nmである、請求項1に記載の固定化プロテアーゼ。
  3.  ナノ粒子が磁性ナノ粒子である、請求項1または2に記載の固定化プロテアーゼ。
  4.  プロテアーゼが、トリプシン、キモトリプシン、リジルエンドペプチダーゼ、V8プロテアーゼ、AspNプロテアーゼ、ArgCプロテアーゼ、パパイン、ペプシン、またはジペプチジルペプチダーゼである、請求項1~3のいずれかに記載の固定化プロテアーゼ。
  5.  自己消化耐性処理が還元的ジメチル化処理である、請求項1~3のいずれかに記載の固定化プロテアーゼ。
  6.  プロテアーゼがトリプシンまたはリジルエンドペプチダーゼである、請求項5に記載の固定化プロテアーゼ。
  7.  ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化する工程を含む、固定化プロテアーゼの調製方法。
  8.  ナノ粒子表面に、粗精製のプロテアーゼまたは自己消化耐性処理を行っていないプロテアーゼを固定化することにより、プロテアーゼに外部環境変化に対する耐性を付与する方法。
  9.  プロテアーゼが、トリプシン、キモトリプシン、リジルエンドペプチダーゼ、V8プロテアーゼ、AspNプロテアーゼ、ArgCプロテアーゼ、パパイン、ペプシン、またはジペプチジルペプチダーゼである、請求項7または8に記載の方法。
  10.  自己消化耐性処理が還元的ジメチル化処理である、請求項7または8に記載の方法。
  11.  プロテアーゼがトリプシンまたはリジルエンドペプチダーゼである、請求項10に記載の方法。
PCT/JP2015/085444 2015-03-09 2015-12-18 外部環境変化に対する耐性が向上した固定化プロテアーゼ WO2016143223A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112017017494A BR112017017494A2 (pt) 2015-03-09 2015-12-18 protease imobilizada com resistência melhorada à mudança no ambiente externo
KR1020177027414A KR20170120691A (ko) 2015-03-09 2015-12-18 외부 환경 변화에 대한 내성이 향상된 고정화 프로테아제
JP2017504577A JPWO2016143223A1 (ja) 2015-03-09 2015-12-18 外部環境変化に対する耐性が向上した固定化プロテアーゼ
US15/556,909 US20180051272A1 (en) 2015-03-09 2015-12-18 Immobilized protease with improved resistance to change in external environment
EP15884707.9A EP3269807A4 (en) 2015-03-09 2015-12-18 Immobilized protease with improved resistance to change in external environment
CN201580077541.7A CN107406841A (zh) 2015-03-09 2015-12-18 对外部环境变化的耐性提高的固定化蛋白酶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046380 2015-03-09
JP2015046380 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143223A1 true WO2016143223A1 (ja) 2016-09-15

Family

ID=56879446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085444 WO2016143223A1 (ja) 2015-03-09 2015-12-18 外部環境変化に対する耐性が向上した固定化プロテアーゼ

Country Status (7)

Country Link
US (1) US20180051272A1 (ja)
EP (1) EP3269807A4 (ja)
JP (1) JPWO2016143223A1 (ja)
KR (1) KR20170120691A (ja)
CN (1) CN107406841A (ja)
BR (1) BR112017017494A2 (ja)
WO (1) WO2016143223A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130549A1 (ja) * 2017-12-28 2019-07-04 株式会社島津製作所 モノクローナル抗体の検出結果を向上する方法
WO2019130536A1 (ja) 2017-12-28 2019-07-04 株式会社島津製作所 モノクローナル抗体の簡素化された定量方法
WO2022270126A1 (ja) 2021-06-23 2022-12-29 株式会社島津製作所 抗体を分析する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672475B (zh) * 2022-03-29 2024-02-06 广东海洋大学 一种固定化碱性蛋白酶及其制备方法
CN118546777A (zh) * 2024-07-30 2024-08-27 杭州珞米医疗科技有限公司 一种蛋白酶生物反应器及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305021A (ja) * 2003-04-02 2004-11-04 Asahi Denka Kogyo Kk 酵素処理卵黄の製造方法
JP2005534284A (ja) * 2002-03-12 2005-11-17 パーセプティブ バイオシステムズ,インコーポレイテッド 生体分子の同定および定量のための方法および装置
CN1737135A (zh) * 2005-07-28 2006-02-22 浙江大学 纳米固定化酶体外定向生产tf2a粗提物的方法
JP2009531296A (ja) * 2006-02-24 2009-09-03 エイティージェン カンパニー リミテッド 造影剤、知能型造影剤、同時診断及び治療のための薬物伝達体及び/又はタンパク質分離用磁性ナノ複合体
JP2012523234A (ja) * 2009-04-07 2012-10-04 ダウ アグロサイエンシィズ エルエルシー 配列特異的ヌクレアーゼのナノ粒子媒介送達
JP2013524811A (ja) * 2010-04-20 2013-06-20 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド ナノザイム、ナノザイムの製造方法、およびナノザイムの使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882002B (zh) * 2014-01-16 2016-10-19 中国人民解放军军事医学科学院放射与辐射医学研究所 一种固定化蛋白酶试剂的制备及其应用
CN103887030A (zh) * 2014-04-04 2014-06-25 华东理工大学 一种用于纯化并固定化组氨酸标签蛋白的磁性亲和纳米颗粒及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534284A (ja) * 2002-03-12 2005-11-17 パーセプティブ バイオシステムズ,インコーポレイテッド 生体分子の同定および定量のための方法および装置
JP2004305021A (ja) * 2003-04-02 2004-11-04 Asahi Denka Kogyo Kk 酵素処理卵黄の製造方法
CN1737135A (zh) * 2005-07-28 2006-02-22 浙江大学 纳米固定化酶体外定向生产tf2a粗提物的方法
JP2009531296A (ja) * 2006-02-24 2009-09-03 エイティージェン カンパニー リミテッド 造影剤、知能型造影剤、同時診断及び治療のための薬物伝達体及び/又はタンパク質分離用磁性ナノ複合体
JP2012523234A (ja) * 2009-04-07 2012-10-04 ダウ アグロサイエンシィズ エルエルシー 配列特異的ヌクレアーゼのナノ粒子媒介送達
JP2013524811A (ja) * 2010-04-20 2013-06-20 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド ナノザイム、ナノザイムの製造方法、およびナノザイムの使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269807A4 *
TANG,ZHEN-XING ET AL.: "Adsorption of Neutral Proteinase on Chitosan Nano-Particles", BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, vol. 21, no. 2, 2007, pages 223 - 228, XP055464105 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130549A1 (ja) * 2017-12-28 2019-07-04 株式会社島津製作所 モノクローナル抗体の検出結果を向上する方法
WO2019130536A1 (ja) 2017-12-28 2019-07-04 株式会社島津製作所 モノクローナル抗体の簡素化された定量方法
JPWO2019130536A1 (ja) * 2017-12-28 2020-10-22 株式会社島津製作所 モノクローナル抗体の簡素化された定量方法
JPWO2019130549A1 (ja) * 2017-12-28 2021-01-21 株式会社島津製作所 モノクローナル抗体の検出結果を向上する方法
US11209392B2 (en) 2017-12-28 2021-12-28 Shimadzu Corporation Simplified monoclonal antibody quantification method
WO2022270126A1 (ja) 2021-06-23 2022-12-29 株式会社島津製作所 抗体を分析する方法

Also Published As

Publication number Publication date
JPWO2016143223A1 (ja) 2017-12-28
EP3269807A4 (en) 2018-08-08
CN107406841A (zh) 2017-11-28
BR112017017494A2 (pt) 2018-04-17
KR20170120691A (ko) 2017-10-31
EP3269807A1 (en) 2018-01-17
US20180051272A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2016143223A1 (ja) 外部環境変化に対する耐性が向上した固定化プロテアーゼ
JP6428911B2 (ja) 質量分析を用いたモノクローナル抗体の検出方法
CN107709980B (zh) 单克隆抗体的定量方法
JP5924455B2 (ja) ペプチド断片の調製方法およびそれに用いられるペプチド断片調製用キット、ならびに分析方法
JP6515995B2 (ja) モノクローナル抗体の検出のためのサンプル調製用キット
Doucette et al. Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions
JP6984657B2 (ja) 抗原または抗抗体が結合したモノクローナル抗体の定量方法
WO2018167847A1 (ja) モノクローナル抗体の同時定量方法
Kruszewska et al. How to effectively prepare a sample for bottom-up proteomic analysis of nanoparticle protein corona? A critical review
Bayramoglu et al. Hydrophilic spacer-arm containing magnetic nanoparticles for immobilization of proteinase K: Employment for speciation of proteins for mass spectrometry-based analysis
WO2016143226A1 (ja) 反応場を制限したプロテアーゼ分解反応による抗体からペプチド断片を得る方法
WO2019155576A1 (ja) モノクローナル抗体の検出結果を向上する方法
WO2022270126A1 (ja) 抗体を分析する方法
JP6152908B2 (ja) ペプチド断片の調製方法および分析方法
Lewin et al. Proteomic sample preparation through extraction by unspecific adsorption on silica beads for ArgC-like digestion
Jankovicova et al. Benefits of immunomagnetic separation for epitope identification in clinically important protein antigens: A case study using ovalbumin, carbonic anhydrase I and Tau protein
Karbassi et al. Proteomic expression profiling and identification of serum proteins using immobilized trypsin beads with MALDI-TOF/TOF
JP2008292390A (ja) タンパク質の同定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884707

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017494

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015884707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556909

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017504577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027414

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017017494

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170815