WO2016143059A1 - Mounting device, image processing method and imaging unit - Google Patents

Mounting device, image processing method and imaging unit Download PDF

Info

Publication number
WO2016143059A1
WO2016143059A1 PCT/JP2015/056957 JP2015056957W WO2016143059A1 WO 2016143059 A1 WO2016143059 A1 WO 2016143059A1 JP 2015056957 W JP2015056957 W JP 2015056957W WO 2016143059 A1 WO2016143059 A1 WO 2016143059A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
component
reference mark
mounting head
Prior art date
Application number
PCT/JP2015/056957
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 天野
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/056957 priority Critical patent/WO2016143059A1/en
Priority to JP2017504475A priority patent/JP6612845B2/en
Publication of WO2016143059A1 publication Critical patent/WO2016143059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a mounting apparatus, an imaging processing method, and an imaging unit.
  • an imaging processing method a method has been proposed in which a plurality of images including positional deviation are acquired, a plurality of images are aligned, and an interpolation image is generated by interpolation processing based on the plurality of images (for example, Patent Document 1).
  • an image to be used for generating a composite image is selected by an optimization process in which the alignment accuracy is weighted.
  • a mounting apparatus that includes a mounting head for collecting components and mounts the components on a substrate by the mounting head can be cited.
  • a mounting apparatus it is conceivable to capture a plurality of images including the component collected by the mounting head and perform image processing of the component using the plurality of images.
  • imaging of components under a plurality of imaging conditions has not been considered.
  • the present invention has been made in view of such problems, and a main object thereof is to provide a mounting apparatus, an imaging processing method, and an imaging unit that can further improve the productivity in the mounting process.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the mounting apparatus of the present invention is A mounting head having one or more reference marks and a sampling member for sampling the component, and moving the sampled component onto the substrate; An imaging unit that captures an image; While the mounting head collects the component and mounts it on the substrate, the imaging unit captures a first image including the component collected by the mounting head and the reference mark under a first imaging condition, A second image including the component collected by the mounting head and the reference mark is captured by the imaging unit under a second imaging condition different from the first imaging condition, and the first image and the second image are captured.
  • a control unit for performing a predetermined process using, It is equipped with.
  • the mounting apparatus while the mounting head picks up the component and mounts it on the substrate, the first image including the component picked up by the mounting head and the reference mark is picked up under the first imaging condition, and the component and the reference mark are picked up. A second image including the second image is captured under the second imaging condition, and a predetermined process is performed using the first image and the second image. Since the mounting apparatus captures a plurality of images including the reference mark and the component, for example, the position of the component is clarified by the reference mark in the first image and the second image captured under different conditions. For this reason, in this mounting apparatus, it is possible to capture a plurality of images while collecting the components and mounting them on the substrate without collecting the components again according to the imaging conditions. Alternatively, it is possible to capture a plurality of images while continuing to move the mounting head without temporarily stopping the mounting head and capturing an image. Therefore, in this mounting apparatus, productivity in the mounting process can be further improved.
  • FIG. 1 is a schematic explanatory diagram illustrating an example of a mounting system 10.
  • FIG. The block diagram showing the structure of the mounting apparatus.
  • FIG. Explanatory drawing of the 1st image 71 and the 2nd image 72.
  • FIG. Explanatory drawing of the moving speed of the mounting head 22, and the imaging order of an imaging target.
  • FIG. Explanatory drawing of the mounting head 22B.
  • Explanatory drawing of the mounting head 22C Explanatory drawing which images the image from which the imaging height of components differs as imaging conditions.
  • FIG. 1 is a schematic explanatory diagram illustrating an example of the mounting system 10.
  • FIG. 2 is an explanatory diagram of the mounting head 22 and the imaging unit 30.
  • FIG. 3 is a block diagram illustrating the configuration of the mounting apparatus 11.
  • the mounting system 10 is a system that executes a mounting process related to a process of mounting a component on the board S, for example.
  • the mounting system 10 includes a mounting device 11 and a management computer 50.
  • a plurality of mounting apparatuses 11 that perform a mounting process for mounting components on a substrate S are arranged from upstream to downstream. In FIG. 1, only one mounting apparatus 11 is shown for convenience of explanation.
  • the mounting process includes a process of placing, mounting, inserting, joining, and bonding components on the substrate S.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
  • the mounting apparatus 11 includes a board transfer unit 12, a mounting unit 13, a component supply unit 14, an imaging unit 30, and a control device 40.
  • the substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position.
  • the substrate transport unit 12 has a pair of conveyor belts provided at intervals in the front-rear direction of FIG. 1 and spanned in the left-right direction. The board
  • substrate S is conveyed by this conveyor belt.
  • the mounting unit 13 collects components from the component supply unit 14 and arranges them on the substrate S fixed to the substrate transport unit 12.
  • the mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24.
  • the head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider.
  • the mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20.
  • One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22.
  • FIG. 2 the case where the mounting head 22 is mounted with four nozzles of the suction nozzles 24a to 24d will be mainly described (FIG. 2).
  • the suction nozzles 24a to 24d are collectively referred to as the suction nozzle 24.
  • the suction nozzle 24 collects parts using negative pressure and is detachably mounted on the mounting head 22.
  • the mounting head 22 incorporates a Z-axis motor 23, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor.
  • the mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component collected (sucked) by the suction nozzle 24.
  • the mounting head 22 has a first reference mark 25a, 25b and a second reference mark 26a, 26b, which serve as a reference for the position of the collected components, on the lower surface side of the mounting head 22 so that they can be removed and replaced. It is installed.
  • the first reference marks 25a and 25b are collectively referred to as the first reference mark 25, and the second reference marks 26a and 26b are collectively referred to as the second reference mark 26.
  • the mounting head 22 is provided with a first reference mark 25 and a second reference mark 26 on the outer peripheral side with respect to the suction nozzle 24.
  • the first reference mark 25 and the second reference mark 26 are arranged at the corner of the mounting head 22, that is, at the corner of the imaging range of the imaging unit 30.
  • the mounting head 22 has first reference marks 25a and 25b arranged diagonally among the four corners of the mounting head 22, and second reference marks 26a and 26b arranged on the remaining diagonals.
  • the first reference mark 25 and the second reference mark 26 include a support column and a disk-shaped mark member disposed at the tip of the support column.
  • the mark member of the first reference mark 25 is different in optical characteristics from the mark member of the second reference mark 26.
  • the mark member of the first reference mark 25 is different from the mark member of the second reference mark 26 in terms of optical characteristics.
  • the mark member of the first fiducial mark 25 has a relatively high reflectance including the imaging surface imaged by the imaging unit 30 and is white.
  • the mark member of the second reference mark 26 has an achromatic color (gray) having a relatively low reflectance including the imaging surface imaged by the imaging unit 30.
  • the “optical characteristics” are, for example, characteristics according to light at the time of imaging, and may refer to characteristics that affect the captured image, and reflectivity, luminance, color, and imaging surface to be imaged. One or more of these angles are included.
  • the first reference mark 25a is disposed at a predetermined positional relationship with the second reference marks 26a and 26b, for example, at predetermined distances L1 and L2.
  • the first reference mark 25b is arranged in a predetermined positional relationship (predetermined distances L2 and L1) with the second reference marks 26a and 26b.
  • suction nozzles 24a to 24d have a predetermined positional relationship (distance and arrangement position) with the first reference mark 25 and the second reference mark 26, any one position of the first reference mark 25 and the second reference mark 26 is used. Can be recognized, each position can be recognized.
  • the component supply unit 14 includes a plurality of reels and is detachably attached to the front side of the mounting apparatus 11. A tape is wound around each reel, and a plurality of parts are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound from the reel toward the rear, and is sent out by the feeder unit to a sampling position where the tape is sucked by the suction nozzle 24 with the components exposed.
  • the component supply unit 14 includes a tray unit having a tray on which a plurality of components are arranged and placed. This tray unit includes a moving mechanism that fixes the tray to a pallet, pulls it out from a magazine cassette (not shown), and moves the tray to a predetermined collection position. A large number of rectangular pockets are formed in the tray, and parts are accommodated in the pockets. The components accommodated in the tray are larger in height and size than the components accommodated in the reel.
  • the image pickup unit 30 picks up an image, and is a unit for picking up an image of the parts adsorbed by the mounting head 22 and the first reference mark 25 and the second reference mark 26 of the mounting head 22.
  • the imaging unit 30 is disposed between the component supply unit 14 and the board transport unit 12. The imaging range of the imaging unit 30 is above the imaging unit 30.
  • the imaging unit 30 includes an illumination unit 31, an illumination control unit 32, an image sensor 33, and an image processing unit 34.
  • the illumination unit 31 is configured to be able to irradiate light in a plurality of illumination states with respect to components and reference marks that are irradiated with light upward and are held by the mounting head 22.
  • the illumination unit 31 includes, for example, lamps arranged in the upper, middle, and lower stages, and an epi-illumination lamp (not shown).
  • the brightness (light quantity) of light applied to the components sucked by the suction nozzle 24, It is a light source capable of adjusting the wavelength and the irradiation position of light.
  • the illumination unit 31 emits light from the side when the upper lamp is turned on (side illumination), emits light from the side and below when the lower lamp is turned on, and emits light from the whole when all lamps are turned on. Irradiate (full lighting).
  • the illumination control unit 32 controls the illumination unit 31 based on a predetermined illumination condition so that the illumination state according to the component sucked by the suction nozzle 24 is achieved.
  • the imaging element 33 is an element that generates charges by receiving light and outputs the generated charges.
  • the image sensor 33 may be a CMOS image sensor capable of performing high-speed continuous capture processing by overlapping the charge transfer processing after exposure and the exposure processing of the next image.
  • the image processing unit 34 performs processing for generating image data based on the input charges.
  • the imaging unit 30 captures a plurality of images and outputs captured image data to the control device 40 when the suction nozzle 24 that has suctioned the component 60 passes above the imaging unit 30.
  • the control device 40 is configured as a microprocessor centered on a CPU 41, and includes a ROM 42 that stores a processing program, an HDD 43 that stores various data, a RAM 44 that is used as a work area, an external device and an electrical device. An input / output interface 45 for exchanging signals is provided, and these are connected via a bus 46.
  • the control device 40 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, and the imaging unit 30, and inputs signals from the mounting unit 13, the component supply unit 14, and the imaging unit 30.
  • the management computer 50 is a computer that manages information of each device of the mounting system 10.
  • the management computer 50 includes an input device 52 such as a keyboard and a mouse for an operator to input various commands, and a display 54 for displaying various information.
  • the CPU 41 of the control device 40 controls the mounting unit 13 so that, for example, the suction nozzle 24 corresponding to the component to be collected is mounted on the mounting head 22 and the component is collected from the component supply unit 14.
  • the CPU 41 moves the mounting head 22 to the arrangement position on the substrate S.
  • the CPU 41 moves the mounting head 22 so as to pass above the imaging unit 30.
  • the imaging unit 30 images the mounting head 22 that moves upward a plurality of times (for example, twice).
  • the CPU 41 uses this captured image to check whether there is a defect, such as whether there is a mistake in the direction of the sucked part, whether the picking position deviation of the part is within an allowable range, or whether there is an abnormality in the shape of the part. judge.
  • the CPU 41 lowers the suction nozzle 24 and arranges the component on the substrate S when there is no defect in the component. Note that the time required from the plurality of imaging processes to the determination process is sufficiently shorter than the time required for picking up and moving the component to the mounting position. For this reason, in the mounting apparatus 11, a plurality of imaging processes can be performed while moving the mounting head 22. The CPU 41 repeats such processing until all the components are placed on the board S.
  • FIG. 4 is a flowchart illustrating an example of an imaging process routine executed by the CPU 41 of the control device 40.
  • This routine is stored in the HDD 43 of the control device 40, and is executed when a component is collected by the mounting head 22 and moved from the component supply unit 14 to the substrate transport unit 12 side in the mounting process.
  • FIG. 5 is an explanatory diagram of the mounting head 22 from which the component 60 is collected. For example, as shown in FIG.
  • the component 60 is a BGA component including a large number of bumps 61 arranged at the lower portion of a relatively large plate-shaped main body.
  • the direction of the part cannot be determined from the part shape.
  • an identification mark is often attached so that the part shape becomes asymmetric.
  • An identification mark 62 for recognizing the direction of the component 60 is attached to the lower surface of the component 60.
  • the case where the identification mark 62 is in the front left of the apparatus (lower right in FIG. 5) is assumed to be a normal arrangement direction. As shown in FIG.
  • the CPU 41 performs imaging to determine the position of the bump 61 of the component 60 under imaging conditions that clearly include the first reference mark 25 and recognize the shape related to the component 60 (for example, the outer shape and the shape of the bump 61). After that, imaging for confirming the position of the identification mark 62 is performed under an imaging condition that clearly includes the second reference mark 26 and recognizes the identification mark 62.
  • This imaging processing routine is executed while the mounting head 22 picks up and moves the component 60, and is repeatedly executed every time the picking and moving of the component 60 is repeated.
  • the CPU 41 of the control device 40 first determines whether or not the timing for capturing the first image has been reached (step S100). If the timing for capturing the first image has not been reached, the CPU 41 stands by. When the timing for capturing one image is reached, the first image is captured under the first imaging condition (step S110).
  • the imaging timing of the first image is set to a timing at which, for example, all the parts 60 collected by the suction nozzles 24a to 24d are in the same imaging range, and at least the first reference mark 25a enters the imaging range of the imaging unit 30. Also good.
  • the CPU 41 may cause the imaging unit 30 to capture the first image 71 before the first reference mark 25b enters the imaging range and after the component 60 and the first reference mark 25a enter the same imaging range.
  • FIG. 6 is an explanatory diagram of an imaging process for imaging a plurality of times.
  • FIG. 6A is an explanatory diagram of the first image 71, and FIG.
  • the first image 71 is set so as to capture the positioning image of the bump 61 under the side illumination condition.
  • the imaging unit 30 is caused to capture the first image 71 clearly including the entire bump 61 of the component 60 collected by the mounting head 22 and the first reference mark 25a while the mounting head 22 is moving. (FIG. 6A).
  • the CPU 41 determines whether or not the timing for capturing the second image has been reached (step S120). If the timing for capturing the second image has not been reached, the CPU 41 stands by, and when the timing for capturing the second image has been reached. Then, the second image is captured under a second imaging condition different from the first imaging condition (step S130).
  • the second image 72 is set so as to capture a mark check image of the identification mark 62 under all lighting conditions.
  • the imaging timing of the second image may be, for example, the timing after the image sensor 33 performs the exposure processing of the first image and the charge transfer after the exposure, and the exposure of the second image is completed.
  • the imaging timing of the second image is set to a timing at which, for example, all the parts 60 collected by the suction nozzles 24a to 24d are in the same imaging range, and at least the second reference mark 26a enters the imaging range of the imaging unit 30. It may be.
  • the CPU 41 may cause the imaging unit 30 to capture the second image 72 after the second reference mark 26b is out of the imaging range and the collected component 60 and the second reference mark 26a are in the same imaging range.
  • the second image 72 including the component 60 and the second reference mark 26 collected by the mounting head 22 can be captured by the imaging unit 30 while the mounting head 22 is moving (FIG. 6). (B)).
  • Each imaging timing does not exclude the case where the first reference mark 25b and the second reference mark 26a are included in the first image 71, and the first reference mark 25a and the second reference mark are included in the second image 72. The case where 26b is included is not excluded.
  • FIG. 7 is an explanatory diagram of the moving speed of the mounting head 22 and the imaging order of the imaging target. Since the mounting head 22 moves to the arrangement position after collecting the component 60, the moving speed gradually increases and tends to be constant at the highest speed, as shown in FIG.
  • imaging conditions such as a difference in illumination and a difference in exposure time are different for a plurality of images.
  • the exposure time of the camera may be different depending on the difference in the optical characteristics of the components and the difference in the light amount of the illumination device. Either the positioning image or the mark check image can be imaged first. However, the faster the moving speed of the imaging target, the more likely that imaging blur will occur, so the exposure time must also be shortened.
  • the exposure time of the imaging condition for the positioning image is short and the exposure time of the imaging condition for the mark check image is long, a mark check image that is an imaging condition with a long exposure time is captured as the first image, and the exposure time A positioning image having a short imaging condition is captured as the second image. According to this imaging process, imaging blur can be further reduced, and thus an image with better image quality can be obtained.
  • the CPU 41 uses the first image 71 and the second image 72 based on the positional relationship between the first reference mark 25 and the second reference mark 26 to identify the identification mark 62 (the suction direction of the component 60). Is detected) (step S140).
  • the CPU 41 detects the position of the first reference mark 25 in the first image 71, for example, and determines the position of the component 60 based on the positional relationship between the first reference mark 25 and the suction nozzle 24.
  • the position of the component 60 in the second image 72 is determined based on the positional relationship between the first reference mark 25 and the second reference mark 26, and the identification mark 62 will be present depending on the outer shape of the component 60.
  • FIG. 8 is a conceptual diagram of processing for recognizing the positional relationship between the first image 71 and the second image 72. Note that FIG. 8 shows the concept of superimposing images, but the actual processing does not need to superimpose images, and based on the positions of the first reference mark 25, the component 60, etc. in the first image 71, Processing for grasping the positional relationship between the component 60 and the identification mark 62 in the two images 72 is performed.
  • the identification mark 62 is not necessarily identifiable by image processing, but the first reference mark 25, the outer shape of the component 60, and the position of the bump 61 are identifiable images.
  • the outer shape of the component 60 and the position of the bump 61 are not necessarily identifiable by image processing, but the identification mark 62 and the second reference mark 26 are identifiable images. If at least the first reference mark 25a and the bump 61 are captured in the first image, and at least the second reference mark 26a is captured in the second image, the CPU 41 determines a predetermined positional relationship (for example, XY coordinates) of each reference mark. Accordingly, the position of the imaging target (component 60) in the second image 72 can be accurately grasped. In general, when the moving mounting head is imaged, the position of the mounting head may be shifted. Therefore, the CPU temporarily stops the mounting head above the imaging unit and captures a plurality of images with different imaging conditions. Sometimes. Here, since the positional deviation of the mounting head 22 can be taken into account by using the first reference mark 25 and the second reference mark 26, a plurality of images with different imaging conditions are captured while moving the mounting head 22. And productivity can be improved.
  • a predetermined positional relationship for example, XY coordinates
  • step S140 the CPU 41 detects the shape of the component 60 collected by the mounting head 22 and the suction position deviation amount using the captured first image 71 (step S150).
  • step S150 an image of the component 60 whose position is specified using the first reference mark 25 in step S140 is used.
  • the CPU 41 performs matching between the captured image of the component 60 and the reference image of the component 60, and performs a process of obtaining a matching degree based on, for example, the defect or deformation of the bump 61.
  • the amount of suction position deviation is, for example, the X-axis between the center position of the component 60 and the center position of the suction nozzle 24 based on the positional relationship of the center coordinates of the first reference mark 25, the second reference mark 26, and the suction nozzle 24. , And the difference between the coordinate values of the Y axis.
  • the positions of the first reference mark 25 and the second reference mark 26 will be described.
  • a component 60 having a relatively large outer shape and a relatively small component (bump 61) disposed on the component may be mounted. In this case, in order to determine whether the component 60 is normal, a defect or deformation of the bump 61 may be detected.
  • the reference mark is disposed on the outer peripheral side with respect to the suction nozzle, if the component 60 collected by the mounting head 22 is included in the imaging range of the imaging unit 30, the reference mark is likely to be out of the imaging range. (See FIG. 6).
  • any one of reference marks (first reference marks 25 a and 25 b or second reference marks 26 a and 26 b) having a clear positional relationship is used depending on the captured image, and the reference mark is out of the imaging range. It solves easy problems.
  • step S160 determines whether or not the direction of the component 60 is correct based on the result in step S140 (step S160). If the direction of the component 60 is incorrect, an error is output (step S170). This routine is terminated.
  • the error may be displayed and output on a display unit of an operation panel (not shown), for example. Since the possibility of human error is high when the direction of the component 60 is not appropriate, this error output may include, for example, a message confirming the direction of the component 60 placed on the tray.
  • step S180 determines whether or not the detected suction position deviation amount is within an allowable range
  • This allowable range is set to this range, for example, by empirically obtaining a range of misalignment in which the component 60 can be properly placed on the substrate S.
  • the CPU 41 determines whether or not the shape of the component 60 is within the allowable range (step S190). This determination can be performed based on, for example, matching between the image of the component 60 and the reference image, for example, whether the matching degree based on the defect or deformation of the bump 61 is within a predetermined allowable range.
  • step S180 or step S190 When it is determined in step S180 or step S190 that the amount of positional deviation or the difference in shape is not within the allowable range, the CPU 41 causes the mounting unit 13 to perform disposal processing assuming that the component 60 is a defective component (step S200), this routine is finished as it is.
  • step S190 the CPU 41 outputs that the arrangement of the component 60 is permitted (step S210), and this routine is ended as it is. Thereafter, the CPU 41 causes the mounting unit 13 to perform a process of placing the component 60 at a predetermined mounting position.
  • the mounting apparatus 11 includes the bumps 61 and the identification marks 62 and performs the mounting process by moving the mounting head 22 while performing the imaging process of the component 60 that needs to be imaged under different imaging conditions. .
  • FIG. 9 is an explanatory diagram of the mounting head 22 from which the parts 64 and 66 are collected.
  • the case where the component 64 imaged on all lighting conditions and the component 66 imaged on side illumination conditions is imaged mainly.
  • a part (part 64) under an imaging condition with a shorter exposure time is imaged as the second image.
  • the CPU 41 starts this routine when the components 64 and 66 are attracted to and moved by the mounting head 22.
  • FIG. 10 is an explanatory diagram of an imaging process for imaging a plurality of times.
  • FIG. 10A is an explanatory diagram of the first image 73 and
  • FIG. 10B is an explanatory diagram of the second image 74.
  • the first image 73 is not necessarily clear in the component 64, but the first reference mark 25 and the component 66 are clear images.
  • the component 66 is not necessarily clear, but the second reference mark 26 and the component 64 are clear images.
  • the CPU 41 captures the first image 73 after the first reference mark 25a and the component 66 enter the same imaging range before the second reference mark 26a enters the imaging range, and then the first reference mark The second image 74 may be picked up after 25a is out of the imaging range and the second reference mark 26a and the component 64 are in the same imaging range. Further, the CPU 41 may capture the first image 73 and the second image 74 at the timing when the plurality of types of components 64 and 66 having different optical characteristics are in the same imaging range.
  • step S150 the CPU 41 detects the shape of the component 60 collected by the mounting head 22 and the amount of suction position deviation.
  • the position of the component 66 is obtained based on the position of the first reference mark 25 in the first image 73
  • the position of the component 64 is obtained based on the position of the second reference mark 26 in the second image 74.
  • the CPU 41 performs processing for matching the captured image of the component 66 of the first image 73 with the reference image of the component 66 and obtaining the matching degree of the component 66.
  • the CPU 41 identifies the shape of the component 64 using the second image 74.
  • the CPU 41 shifts the position of the component 66 based on the first reference mark 25 of the first image 73, the position of the component 66, and the position of the suction nozzle 24 in a predetermined positional relationship. Find the amount. Similarly, the CPU 41 calculates the positional deviation amount of the component 64 from the second image 74.
  • the CPU 41 determines whether or not the positional deviation amount is within an allowable range at step S180, and determines whether or not the shape is within an allowable range at step S190.
  • the CPU 41 controls the mounting unit 13 to discard the defective part in step S200 when any of them is not within the allowable range, and permits the component placement when any of them is within the allowable range.
  • the position of each component can be specified using the first reference mark 25 and the second reference mark 26 corresponding to the imaging conditions. For this reason, the positional deviation of the mounting head 22 can be taken into consideration, and a plurality of images with different imaging conditions can be imaged while moving the mounting head 22, and productivity can be improved.
  • the suction nozzle 24 of this embodiment corresponds to the sampling member of the present invention
  • the mounting head 22 corresponds to the mounting head
  • the imaging unit 30 corresponds to the imaging unit
  • the control device 40 corresponds to the control unit.
  • the first reference marks 25, 25a, and 25b correspond to the first reference marks
  • the second reference marks 26, 26a, and 26b correspond to the second reference marks.
  • the first reference mark 25 corresponds to a first condition reference mark determined according to the imaging condition and a first position reference mark serving as a position reference
  • the second reference mark 26 is determined according to the imaging condition. This corresponds to the second condition reference mark and the second position reference mark serving as a position reference.
  • an example of the imaging processing method of the present invention is also clarified by describing the operation of the mounting apparatus 11.
  • the first image including the component collected by the mounting head 22 and the first reference mark 25 during the movement in which the mounting head 22 collects the component and mounts it on the substrate S is displayed in the first image.
  • An image is captured under one imaging condition
  • a second image including the component and the second reference mark 26 is captured under the second imaging condition
  • a predetermined process is performed using the first image and the second image. Since the mounting apparatus captures a plurality of images including the reference mark and the component, for example, the position of the component is clarified by the reference mark in the first image and the second image captured under different conditions.
  • the mounting apparatus 11 a plurality of images can be captured while the components are collected and mounted on the substrate S without collecting the components again according to the imaging conditions.
  • an identification mark 62 is formed on the component 60, and the CPU 41 captures the first image 71 under the first imaging condition for recognizing the shape related to the component 60 while the mounting head 22 is moving, and for identification.
  • the second image 72 is imaged under the second imaging condition for recognizing the mark 62, and a process for determining the direction of the component is performed as a predetermined process.
  • the component 60 to which the identification mark 62 is attached may have different imaging conditions for its shape recognition and identification mark recognition. In the mounting apparatus 11, productivity can be improved in the mounting process of the component 60 with the identification mark 62.
  • the CPU 41 performs a process of determining one or more of the component direction, the component shape, and the component position as a predetermined process using the first image and the second image.
  • productivity can be improved by determining the direction of the component, the component shape, and the component position using images captured under different imaging conditions.
  • the CPU 41 causes the second image to be captured as a second imaging condition under a condition with a shorter exposure time than the first imaging condition.
  • the mounting head 22 gradually accelerates and then reaches a relatively high moving speed.
  • the mounting apparatus 11 captures an image with a long exposure time when the speed of the mounting head 22 is slower, and captures an image with a short exposure time when the speed of the mounting head 22 is faster. For this reason, in this mounting apparatus 11, the image which reduced the blurring at the time of imaging can be obtained.
  • the mounting head 22 includes two or more suction nozzles 24 (collecting members), and the CPU 41 performs the first image and the second image at the timing when the components collected by the two or more suction nozzles 24 are in the same imaging range.
  • the image is picked up by the image pickup unit 30.
  • the CPU 41 causes the imaging unit 30 to capture the first image and the second image at a timing at which a plurality of types of components with different optical characteristics collected by the two or more suction nozzles 24 fall within the same imaging range.
  • a plurality of components having different optical characteristics are imaged in the same image, so that the imaging efficiency is good.
  • the mounting head 22 has a first reference mark 25 used in the first imaging condition and a second reference mark 26 used in the second imaging condition.
  • the CPU 41 is sampled by the mounting head 22.
  • the component and the first reference mark 25 are imaged under the first imaging condition, and the component and the second reference mark 26 collected by the mounting head 22 are imaged under the second imaging condition. Since the mounting apparatus 11 uses the reference mark that matches the imaging conditions, an image that can more reliably recognize the positional relationship between the component and the reference mark can be obtained.
  • the mounting head 22 includes two or more suction nozzles 24 for collecting the first component and the second component having different optical characteristics from the first component, and the first component adapted to the optical characteristics of the first component.
  • the CPU 41 causes the component picked up by the mounting head 22 and the first reference mark 25 to be imaged under the first imaging condition, and the component picked up by the mounting head and the second reference mark 26 are subjected to the second imaging. Make an image under conditions. In the mounting apparatus 11, a more suitable image can be taken according to the optical characteristics of the component.
  • the mounting head 22 includes a first reference mark 25 and a second reference mark 26 having a predetermined positional relationship with the first reference mark 25.
  • the CPU 41 moves the mounting head 22 while the mounting head 22 is moving.
  • the first image including the component collected in 22 and the first reference mark 25 is imaged by the imaging unit under the first imaging condition, while the first image including the component collected in the mounting head 22 and the second reference mark 26 is included.
  • Two images are imaged by the imaging unit under the second imaging condition, and predetermined processing is performed using the first image and the second image based on the positional relationship between the first reference mark 25 and the second reference mark 26.
  • the positional relationship between the first image and the second image is clarified using the positional relationship between the first reference mark 25 and the second reference mark 26. For this reason, in this mounting apparatus 11, the imaging range can be further expanded to a range including any one of the reference marks, and the components picked up by the mounting head can be imaged while further stopping the movement of the mounting head. .
  • the CPU 41 causes the imaging unit 30 to capture the first image after the first reference mark 25a and the component enter the same imaging range before the second reference mark 26a enters the imaging range. After the reference mark 25a is out of the imaging range and the second reference mark 26a and the component are in the same imaging range, the imaging unit 30 is caused to capture the second image.
  • the mounting apparatus 11 since either the first reference mark 25 or the second reference mark 26 can be used, the imaging range can be further expanded.
  • the mounting head 22 is provided with a reference mark on the outer peripheral side with respect to the suction nozzle 24.
  • the positions of the reference marks and the reference marks can be further separated, and a plurality of images can be obtained by further widening the imaging range. Can be imaged in one movement of the mounting head.
  • the mounting head 22 is provided with reference marks on the front side and the rear side in the main movement direction of the mounting head 22. In this mounting apparatus 11, even if the mounting head 22 moves, any one of the reference marks easily enters the imaging range, and it is easy to capture a plurality of images in one movement of the mounting head by further expanding the imaging range.
  • the mounting head 22 has the four reference marks of the first reference marks 25a and 25b and the second reference marks 26a and 26b, but is not particularly limited thereto.
  • FIG. 11 is an explanatory diagram of a mounting head 22B having one first reference mark 25B and one second reference mark 26B. As shown in FIG. 11, for example, if the mounting head 22B can keep the mounting head 22 parallel to the longitudinal direction of the apparatus, the first reference mark 25B and the second reference mark 26B are each one. can do.
  • the mounting head 22 may have three reference marks arranged in an L shape such as the first reference marks 25a and 25b and the second reference mark 26a.
  • the mounting head 22 has four reference marks, the first reference marks 25a and 25b and the second reference marks 26a and 26b, arranged diagonally, but is not particularly limited thereto.
  • the first reference mark 25b may be disposed at any position of the second reference marks 26a and 26b. The same applies to the second reference mark 26. Even in this case, the mounting apparatus can improve productivity in the mounting process.
  • the mounting head 22 is provided with the reference mark on the outer peripheral side with respect to the suction nozzle 24, but is not particularly limited, and the reference mark is on the inner peripheral side with respect to the suction nozzle 24. It is good also as what is arrange
  • FIG. 12 is an explanatory diagram of the mounting head 22C in which the first reference mark 25C and the second reference mark 26C are disposed on the inner peripheral side. This mounting head 22C can also improve productivity in the mounting process. When the number of reference marks is increased, the reference marks are preferably disposed on the outer peripheral side of the suction nozzle 24.
  • the mounting head 22 is provided with a plurality of types of reference marks. However, for example, if one that can be used under a plurality of imaging conditions is used, one type of reference mark is used. It is good.
  • the imaging condition includes the illumination condition and the exposure condition, but other conditions may be used.
  • Illumination conditions include side-lighting, full lighting, epi-illumination, etc. In addition to this, for example, it may be simply a difference in light quantity, a difference in wavelength, or illumination and light quantity in the upper, middle, and lower stages. Or a combination of wavelengths.
  • the imaging conditions may include the imaging height of the component.
  • FIG. 13 is an explanatory diagram for capturing images with different imaging heights of components as imaging conditions.
  • the imaging unit 30 captures the component 67 sucked by the suction nozzle 24 at the first imaging height while the mounting head 22 is moving, and then a second different from the first imaging height. Imaging at the imaging height.
  • the component 67 includes a lead 68 having a horizontal portion at the same height as the bottom surface of the main body, and an insertion pin 69 whose tip is located below the bottom surface of the main body. Since the lead 68 and the insertion pin 69 are fixed to the substrate S, it is necessary to determine their shapes. Further, the lead 68 and the insertion pin 69 have different heights, and therefore have different heights for focusing. Here, the CPU 41 raises and lowers the suction nozzle 24 above the imaging unit 30 and images the lead 68 with full lighting illumination and the insertion pin 69 with side illumination.
  • the mounting apparatus 11 captures a plurality of images while continuing the movement of the mounting head 22 without temporarily stopping the mounting head 22 and capturing an image with respect to the components 67 having different heights of the imaging regions. Can do. Therefore, the mounting apparatus 11 can improve productivity in the mounting process.
  • the CPU 41 may take the first image and then take the second image as the second imaging condition under the condition that the imaging height of the component is lower than the first imaging condition. Good.
  • the mounting apparatus 11 since the component 67 approaches the substrate S when the second image is captured, the vertical movement efficiency when arranging the component 67 is good, and the productivity in the mounting process can be improved.
  • the mounting apparatus 11 may use imaging conditions in which one or more of illumination conditions, exposure conditions, and imaging height conditions of components are appropriately combined.
  • the processing performed using a plurality of images has been described as the processing for determining the direction of the component, the shape of the component, and the position of the component.
  • the present invention is not particularly limited thereto. It is also possible to perform processing for displaying and outputting the information obtained in this way.
  • imaging is first performed under an imaging condition with a long exposure time, and then imaging is performed under an imaging condition with a short exposure time.
  • the present invention is not particularly limited thereto. Note that, from the viewpoint of suppressing imaging blur due to exposure conditions, it is preferable that the imaging order be captured from images with imaging conditions having a long exposure time.
  • the first image and the second image are captured at the timing when all the components sucked by the mounting head 22 are in the same imaging range while the mounting head 22 is moving.
  • at least one or more images of the first image and the second image may be captured at the timing when a part of the component sucked by the mounting head 22 is captured. If the parts are imaged while moving the mounting head 22 without stopping, the productivity in the mounting process can be improved.
  • the case where the first image 71 and the second image 72 are imaged while moving the mounting head 22 in the front-rear direction of the apparatus has been mainly described, but the front-rear direction and the left-right direction, that is, on the imaging unit 30 are described.
  • the first image and the second image may be captured when moving obliquely.
  • two images are captured under two types of imaging conditions.
  • the present invention is not particularly limited as long as a plurality of images are captured under a plurality of imaging conditions. Three or more images may be picked up under the image pickup conditions.
  • two types of components 64 and 66 are attracted to the mounting head 22 and imaged under two types of imaging conditions.
  • three or more types of components are attracted to the mounting head 22. It is good also as what is imaged on 2 or 3 or more types of imaging conditions.
  • the mounting head 22 may be provided with three or more types of reference marks.
  • the mounting head 22 is not particularly limited as long as one or two or more suction nozzles 24 can be mounted.
  • the mounting head 22 may be mounted with 12 suction nozzles 24 or 16 mounting nozzles.
  • a plurality of image data is output from the imaging unit 30 while the mounting head 22 is moving, and the determination processing in steps S160 to S210 is completed before the component reaches the mounting position. .
  • the first reference mark 25 and the second reference mark 26 have the functions of the first and second position reference marks having a predetermined positional relationship with the functions of the first and second conditional reference marks having different optical characteristics. However, it may have one of the functions.
  • the sampling member is described as the suction nozzle 24.
  • the sampling member is not particularly limited as long as the component is collected.
  • a mechanical chuck that mechanically clamps and collects the component may be used. .
  • the present invention has been described as the mounting apparatus 11.
  • the imaging unit 30 may be used, or an imaging processing method or a control method for the imaging unit 30 may be used. It may be a program.
  • the present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.
  • 10 mounting system 11 mounting device, 12 substrate transport unit, 13 mounting unit, 14 component supply unit, 20 head moving unit, 22, 22B, 22C mounting head, 23 Z-axis motor, 24, 24a to 24d suction nozzle, 25, 25a, 25b, 25B, 25C 1st reference mark, 26, 26a, 26b, 26B, 26C 2nd reference mark, 30 imaging unit, 31 illumination unit, 32 illumination control unit, 33 imaging element, 34 image processing unit, 40 control Device, 41 CPU, 42 ROM, 43 HDD, 44 RAM, 45 I / O interface, 46 bus, 50 management computer, 52 input device, 54 display, 60 parts, 61 bump, 62 identification mark, 64, 66, 67 parts , 68 leads, 69 Input pins, 71 and 73 the first image, 72 and 74 second image, S substrate.

Abstract

In this mounting device (11), during movement in which a mounting head (22) picks up a component and mounts the same on a substrate S, a first image is captured, under a first imaging condition, that includes a first reference mark and the component picked up by the mounting head (22), and a second image is captured, under a second imaging condition, that includes a second reference mark and the component, and prescribed processing is carried out using the first image and the second image. As the prescribed processing using the first image and the second image, the mounting device 11 optionally carries out processing for determining one or more of: the component direction, the component shape, and the component position.

Description

実装装置、撮像処理方法及び撮像ユニットMounting apparatus, imaging processing method, and imaging unit
 本発明は、実装装置、撮像処理方法及び撮像ユニットに関する。 The present invention relates to a mounting apparatus, an imaging processing method, and an imaging unit.
 従来、撮像処理方法としては、位置ずれを含む複数の画像を取得し、複数の画像の位置合わせを行い、複数の画像に基づく補間処理により補間画像を生成するものが提案されている(例えば、特許文献1参照)。この方法では、位置合わせの精度を重み付けした最適化処理により合成画像を生成するのに用いる画像を選択する。 Conventionally, as an imaging processing method, a method has been proposed in which a plurality of images including positional deviation are acquired, a plurality of images are aligned, and an interpolation image is generated by interpolation processing based on the plurality of images (for example, Patent Document 1). In this method, an image to be used for generating a composite image is selected by an optimization process in which the alignment accuracy is weighted.
特開2012-003469号公報JP 2012-003469 A
 ところで、このような画像処理方法を採用する装置としては、部品を採取する実装ヘッドを備え、実装ヘッドによって基板に部品を実装する実装装置が挙げられる。このような実装装置において、実装ヘッドに採取された部品を含む画像を複数撮像し、複数の画像を用いて部品の画像処理を行うことが考えられる。しかしながら、上述した画像処理方法では、複数の撮像条件で部品を撮像することについては考慮されていなかった。このため、上述した画像処理方法では、例えば、撮像条件に応じて部品を採取し直したり、実装ヘッドを一旦停止させて撮像するという処理を繰り返し行う必要が生じ、生産性が低下することがあった。 By the way, as an apparatus that employs such an image processing method, a mounting apparatus that includes a mounting head for collecting components and mounts the components on a substrate by the mounting head can be cited. In such a mounting apparatus, it is conceivable to capture a plurality of images including the component collected by the mounting head and perform image processing of the component using the plurality of images. However, in the above-described image processing method, imaging of components under a plurality of imaging conditions has not been considered. For this reason, in the above-described image processing method, for example, it may be necessary to repeat the process of re-collecting components according to the imaging conditions, or temporarily stopping the mounting head to perform imaging, which may reduce productivity. It was.
 本発明は、このような課題に鑑みなされたものであり、実装処理における生産性をより向上することができる実装装置、撮像処理方法及び撮像ユニットを提供することを主目的とする。 The present invention has been made in view of such problems, and a main object thereof is to provide a mounting apparatus, an imaging processing method, and an imaging unit that can further improve the productivity in the mounting process.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の実装装置は、
 1又は2以上の基準マークと、部品を採取する採取部材とを有し、採取した部品を基板上へ移動させる実装ヘッドと、
 画像を撮像する撮像部と、
 前記実装ヘッドが前記部品を採取し前記基板に実装する間に、前記実装ヘッドに採取された部品と前記基準マークとを含む第1画像を第1の撮像条件で前記撮像部に撮像させると共に、前記実装ヘッドに採取された部品と前記基準マークとを含む第2画像を第1の撮像条件と異なる第2の撮像条件で前記撮像部に撮像させ、前記第1画像と前記第2画像とを用いて所定の処理を行う制御部と、
 を備えたものである。
The mounting apparatus of the present invention is
A mounting head having one or more reference marks and a sampling member for sampling the component, and moving the sampled component onto the substrate;
An imaging unit that captures an image;
While the mounting head collects the component and mounts it on the substrate, the imaging unit captures a first image including the component collected by the mounting head and the reference mark under a first imaging condition, A second image including the component collected by the mounting head and the reference mark is captured by the imaging unit under a second imaging condition different from the first imaging condition, and the first image and the second image are captured. A control unit for performing a predetermined process using,
It is equipped with.
 この実装装置では、実装ヘッドが部品を採取し基板に実装する間に、実装ヘッドに採取された部品と基準マークとを含む第1画像を第1の撮像条件で撮像し、この部品と基準マークとを含む第2画像を第2の撮像条件で撮像し、第1画像と第2画像とを用いて所定の処理を行う。この実装装置では、基準マークと部品とを含む画像を複数撮像するため、例えば、異なる条件で撮像された第1画像及び第2画像において、基準マークにより部品の位置が明らかになる。このため、この実装装置では、撮像条件に応じて部品を採取し直すことなく、部品を採取し基板に実装する間に複数の画像を撮像することができる。あるいは、実装ヘッドを一旦停止させて撮像することなく、実装ヘッドの移動を継続したまま複数の画像を撮像することができる。したがって、この実装装置では、実装処理における生産性をより向上することができる。 In this mounting apparatus, while the mounting head picks up the component and mounts it on the substrate, the first image including the component picked up by the mounting head and the reference mark is picked up under the first imaging condition, and the component and the reference mark are picked up. A second image including the second image is captured under the second imaging condition, and a predetermined process is performed using the first image and the second image. Since the mounting apparatus captures a plurality of images including the reference mark and the component, for example, the position of the component is clarified by the reference mark in the first image and the second image captured under different conditions. For this reason, in this mounting apparatus, it is possible to capture a plurality of images while collecting the components and mounting them on the substrate without collecting the components again according to the imaging conditions. Alternatively, it is possible to capture a plurality of images while continuing to move the mounting head without temporarily stopping the mounting head and capturing an image. Therefore, in this mounting apparatus, productivity in the mounting process can be further improved.
実装システム10の一例を表す概略説明図。1 is a schematic explanatory diagram illustrating an example of a mounting system 10. FIG. 実装ヘッド22及び撮像ユニット30の説明図。Explanatory drawing of the mounting head 22 and the imaging unit 30. FIG. 実装装置11の構成を表すブロック図。The block diagram showing the structure of the mounting apparatus. 撮像処理ルーチンの一例を表すフローチャート。The flowchart showing an example of an imaging process routine. 部品60を採取した実装ヘッド22の説明図。Explanatory drawing of the mounting head 22 which extract | collected the component 60. FIG. 第1画像71及び第2画像72の説明図。Explanatory drawing of the 1st image 71 and the 2nd image 72. FIG. 実装ヘッド22の移動速度と撮像対象の撮像順の説明図。Explanatory drawing of the moving speed of the mounting head 22, and the imaging order of an imaging target. 第1画像71と第2画像72との位置関係を認識する処理の概念図。The conceptual diagram of the process which recognizes the positional relationship of the 1st image 71 and the 2nd image 72. FIG. 部品64,66を採取した実装ヘッド22の説明図。Explanatory drawing of the mounting head 22 which extract | collected the components 64 and 66. FIG. 第1画像73及び第2画像74の説明図。Explanatory drawing of the 1st image 73 and the 2nd image 74. FIG. 実装ヘッド22Bの説明図。Explanatory drawing of the mounting head 22B. 実装ヘッド22Cの説明図。Explanatory drawing of the mounting head 22C. 撮像条件として部品の撮像高さが異なる画像を撮像する説明図。Explanatory drawing which images the image from which the imaging height of components differs as imaging conditions.
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は、実装システム10の一例を表す概略説明図である。図2は、実装ヘッド22及び撮像ユニット30の説明図である。図3は、実装装置11の構成を表すブロック図である。実装システム10は、例えば、部品を基板Sに実装する処理に関する実装処理を実行するシステムである。この実装システム10は、実装装置11と、管理コンピュータ50とを備えている。実装システム10は、部品を基板Sに実装する実装処理を実施する複数の実装装置11が上流から下流に配置されている。図1では、説明の便宜のため実装装置11を1台のみ示している。なお、実装処理とは、部品を基板S上に配置、装着、挿入、接合、接着する処理などを含む。また、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1、2に示した通りとする。 Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory diagram illustrating an example of the mounting system 10. FIG. 2 is an explanatory diagram of the mounting head 22 and the imaging unit 30. FIG. 3 is a block diagram illustrating the configuration of the mounting apparatus 11. The mounting system 10 is a system that executes a mounting process related to a process of mounting a component on the board S, for example. The mounting system 10 includes a mounting device 11 and a management computer 50. In the mounting system 10, a plurality of mounting apparatuses 11 that perform a mounting process for mounting components on a substrate S are arranged from upstream to downstream. In FIG. 1, only one mounting apparatus 11 is shown for convenience of explanation. The mounting process includes a process of placing, mounting, inserting, joining, and bonding components on the substrate S. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
 実装装置11は、図1、3に示すように、基板搬送ユニット12と、実装ユニット13と、部品供給ユニット14と、撮像ユニット30と、制御装置40とを備えている。基板搬送ユニット12は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板搬送ユニット12は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。基板Sはこのコンベアベルトにより搬送される。 As shown in FIGS. 1 and 3, the mounting apparatus 11 includes a board transfer unit 12, a mounting unit 13, a component supply unit 14, an imaging unit 30, and a control device 40. The substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position. The substrate transport unit 12 has a pair of conveyor belts provided at intervals in the front-rear direction of FIG. 1 and spanned in the left-right direction. The board | substrate S is conveyed by this conveyor belt.
 実装ユニット13は、部品を部品供給ユニット14から採取し、基板搬送ユニット12に固定された基板Sへ配置するものである。実装ユニット13は、ヘッド移動部20と、実装ヘッド22と、吸着ノズル24とを備えている。ヘッド移動部20は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備えている。実装ヘッド22は、スライダに取り外し可能に装着されており、ヘッド移動部20によりXY方向へ移動する。実装ヘッド22の下面には、1以上の吸着ノズル24が取り外し可能に装着されている。ここでは、吸着ノズル24a~24dの4つのノズルを実装ヘッド22が装着する場合を主として説明する(図2)。また、ここでは、吸着ノズル24a~24dを吸着ノズル24と総称する。吸着ノズル24は、負圧を利用して部品を採取するものであり、実装ヘッド22に取り外し可能に装着されている。この実装ヘッド22は、Z軸モータ23を内蔵しており、このZ軸モータによってZ軸に沿って吸着ノズル24の高さを調整する。また、実装ヘッド22は、図示しない駆動モータによって吸着ノズル24を回転(自転)させる回転装置を備え、吸着ノズル24に採取(吸着)された部品の角度を調整可能となっている。 The mounting unit 13 collects components from the component supply unit 14 and arranges them on the substrate S fixed to the substrate transport unit 12. The mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24. The head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider. The mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20. One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22. Here, the case where the mounting head 22 is mounted with four nozzles of the suction nozzles 24a to 24d will be mainly described (FIG. 2). Here, the suction nozzles 24a to 24d are collectively referred to as the suction nozzle 24. The suction nozzle 24 collects parts using negative pressure and is detachably mounted on the mounting head 22. The mounting head 22 incorporates a Z-axis motor 23, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor. Further, the mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component collected (sucked) by the suction nozzle 24.
 実装ヘッド22は、図2に示すように、その下面側に、採取された部品の位置の基準となる第1基準マーク25a,25bと、第2基準マーク26a,26bとが取外し交換可能に配設されている。なお、ここでは、第1基準マーク25a,25bを第1基準マーク25と総称し、第2基準マーク26a,26bを第2基準マーク26と総称する。実装ヘッド22は、吸着ノズル24に対して外周側に第1基準マーク25および第2基準マーク26が配設されている。第1基準マーク25及び第2基準マーク26は、実装ヘッド22の角部、即ち、撮像ユニット30の撮像範囲の隅側に配設されている。実装ヘッド22は、実装ヘッド22の4隅のうち対角に第1基準マーク25a、25bが配設され、残りの対角に第2基準マーク26a,26bが配設されている。この第1基準マーク25及び第2基準マーク26は、支柱と、支柱の先端に配設された円盤状のマーク部材とを備える。この第1基準マーク25のマーク部材は、第2基準マーク26のマーク部材とは光学特性が異なっている。ここでは、第1基準マーク25のマーク部材は、光学特性として、反射率及び色が第2基準マーク26のマーク部材と異なるものとする。例えば、第1基準マーク25のマーク部材は、撮像ユニット30に撮像される撮像面を含め反射率が比較的高く白色である。一方、第2基準マーク26のマーク部材は、撮像ユニット30に撮像される撮像面を含め反射率が比較的低く無彩色(灰色)である。ここで、「光学特性」とは、例えば、撮像時の光に応じた特性であり、撮像画像にその影響が現れる特性をいうものとしてもよく、反射率、輝度、色及び撮像される撮像面の角度などのうち1以上が含まれる。この第1基準マーク25aは、第2基準マーク26a,26bと所定の位置関係、例えば、所定の距離L1,L2で配設されている。また、第1基準マーク25bは、第2基準マーク26a,26bと所定の位置関係(所定距離L2,L1)で配設されている。吸着ノズル24a~24dは、第1基準マーク25及び第2基準マーク26と所定の位置関係(距離や配置位置)を有するから、第1基準マーク25及び第2基準マーク26のうちいずれかの位置が認識できれば、それぞれの位置を認識することができる。 As shown in FIG. 2, the mounting head 22 has a first reference mark 25a, 25b and a second reference mark 26a, 26b, which serve as a reference for the position of the collected components, on the lower surface side of the mounting head 22 so that they can be removed and replaced. It is installed. Here, the first reference marks 25a and 25b are collectively referred to as the first reference mark 25, and the second reference marks 26a and 26b are collectively referred to as the second reference mark 26. The mounting head 22 is provided with a first reference mark 25 and a second reference mark 26 on the outer peripheral side with respect to the suction nozzle 24. The first reference mark 25 and the second reference mark 26 are arranged at the corner of the mounting head 22, that is, at the corner of the imaging range of the imaging unit 30. The mounting head 22 has first reference marks 25a and 25b arranged diagonally among the four corners of the mounting head 22, and second reference marks 26a and 26b arranged on the remaining diagonals. The first reference mark 25 and the second reference mark 26 include a support column and a disk-shaped mark member disposed at the tip of the support column. The mark member of the first reference mark 25 is different in optical characteristics from the mark member of the second reference mark 26. Here, it is assumed that the mark member of the first reference mark 25 is different from the mark member of the second reference mark 26 in terms of optical characteristics. For example, the mark member of the first fiducial mark 25 has a relatively high reflectance including the imaging surface imaged by the imaging unit 30 and is white. On the other hand, the mark member of the second reference mark 26 has an achromatic color (gray) having a relatively low reflectance including the imaging surface imaged by the imaging unit 30. Here, the “optical characteristics” are, for example, characteristics according to light at the time of imaging, and may refer to characteristics that affect the captured image, and reflectivity, luminance, color, and imaging surface to be imaged. One or more of these angles are included. The first reference mark 25a is disposed at a predetermined positional relationship with the second reference marks 26a and 26b, for example, at predetermined distances L1 and L2. The first reference mark 25b is arranged in a predetermined positional relationship (predetermined distances L2 and L1) with the second reference marks 26a and 26b. Since the suction nozzles 24a to 24d have a predetermined positional relationship (distance and arrangement position) with the first reference mark 25 and the second reference mark 26, any one position of the first reference mark 25 and the second reference mark 26 is used. Can be recognized, each position can be recognized.
 部品供給ユニット14は、複数のリールを備え、実装装置11の前側に着脱可能に取り付けられている。各リールには、テープが巻き付けられ、テープの表面には、複数の部品がテープの長手方向に沿って保持されている。このテープは、リールから後方に向かって巻きほどかれ、部品が露出した状態で、吸着ノズル24で吸着される採取位置にフィーダ部により送り出される。この部品供給ユニット14は、部品を複数配列して載置するトレイを有するトレイユニットを備えている。このトレイユニットは、トレイをパレットに固定して図示しないマガジンカセットから引きだし、所定の採取位置へトレイを移動する移動機構を備えている。トレイには、多数の矩形のポケットが形成されており、このポケットに部品を収容している。このトレイに収容される部品は、リールに収容される部品に比して高さや大きさが大きいものである。 The component supply unit 14 includes a plurality of reels and is detachably attached to the front side of the mounting apparatus 11. A tape is wound around each reel, and a plurality of parts are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound from the reel toward the rear, and is sent out by the feeder unit to a sampling position where the tape is sucked by the suction nozzle 24 with the components exposed. The component supply unit 14 includes a tray unit having a tray on which a plurality of components are arranged and placed. This tray unit includes a moving mechanism that fixes the tray to a pallet, pulls it out from a magazine cassette (not shown), and moves the tray to a predetermined collection position. A large number of rectangular pockets are formed in the tray, and parts are accommodated in the pockets. The components accommodated in the tray are larger in height and size than the components accommodated in the reel.
 撮像ユニット30は、画像を撮像するものであり、実装ヘッド22に吸着された部品と実装ヘッド22が有する第1基準マーク25及び第2基準マーク26とを撮像するユニットである。この撮像ユニット30は、部品供給ユニット14と基板搬送ユニット12との間に配置されている。この撮像ユニット30の撮像範囲は、撮像ユニット30の上方である。撮像ユニット30は、照明部31と、照明制御部32と、撮像素子33と、画像処理部34とを備える。照明部31は、上方に光を照射し実装ヘッド22に保持された部品や基準マークに対して複数の照明状態で光を照射可能に構成されている。照明部31は、例えば、上、中、下段に配設されたランプ、及び図示しない落射ランプを有し、吸着ノズル24に吸着された部品へ照射される光の明るさ(光量)、光の波長及び光の照射位置などを調整可能な光源である。照明部31は、上段のランプを点灯すると側方から光を照射し(側射照明)、下段のランプを点灯すると側方且つ下方から光を照射し、すべてのランプを点灯すると全体から光を照射する(全点灯照明)。照明制御部32は、所定の照明条件に基づき、吸着ノズル24に吸着された部品に応じた照明状態になるように照明部31を制御する。撮像素子33は、受光により電荷を発生させ発生した電荷を出力する素子である。撮像素子33は、露光後の電荷の転送処理と次画像の露光処理とをオーバーラップさせることにより高速な連続取込み処理をすることができるCMOSイメージセンサとしてもよい。画像処理部34は、入力された電荷に基づいて画像データを生成する処理を行う。撮像ユニット30は、部品60を吸着した吸着ノズル24が撮像ユニット30の上方を通過する際、複数の画像を撮像し、撮像画像データを制御装置40へ出力する。 The image pickup unit 30 picks up an image, and is a unit for picking up an image of the parts adsorbed by the mounting head 22 and the first reference mark 25 and the second reference mark 26 of the mounting head 22. The imaging unit 30 is disposed between the component supply unit 14 and the board transport unit 12. The imaging range of the imaging unit 30 is above the imaging unit 30. The imaging unit 30 includes an illumination unit 31, an illumination control unit 32, an image sensor 33, and an image processing unit 34. The illumination unit 31 is configured to be able to irradiate light in a plurality of illumination states with respect to components and reference marks that are irradiated with light upward and are held by the mounting head 22. The illumination unit 31 includes, for example, lamps arranged in the upper, middle, and lower stages, and an epi-illumination lamp (not shown). The brightness (light quantity) of light applied to the components sucked by the suction nozzle 24, It is a light source capable of adjusting the wavelength and the irradiation position of light. The illumination unit 31 emits light from the side when the upper lamp is turned on (side illumination), emits light from the side and below when the lower lamp is turned on, and emits light from the whole when all lamps are turned on. Irradiate (full lighting). The illumination control unit 32 controls the illumination unit 31 based on a predetermined illumination condition so that the illumination state according to the component sucked by the suction nozzle 24 is achieved. The imaging element 33 is an element that generates charges by receiving light and outputs the generated charges. The image sensor 33 may be a CMOS image sensor capable of performing high-speed continuous capture processing by overlapping the charge transfer processing after exposure and the exposure processing of the next image. The image processing unit 34 performs processing for generating image data based on the input charges. The imaging unit 30 captures a plurality of images and outputs captured image data to the control device 40 when the suction nozzle 24 that has suctioned the component 60 passes above the imaging unit 30.
 制御装置40は、図3に示すように、CPU41を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM42、各種データを記憶するHDD43、作業領域として用いられるRAM44、外部装置と電気信号のやり取りを行うための入出力インタフェース45などを備えており、これらはバス46を介して接続されている。この制御装置40は、基板搬送ユニット12、実装ユニット13、部品供給ユニット14、撮像ユニット30へ制御信号を出力し、実装ユニット13や部品供給ユニット14、撮像ユニット30からの信号を入力する。 As shown in FIG. 3, the control device 40 is configured as a microprocessor centered on a CPU 41, and includes a ROM 42 that stores a processing program, an HDD 43 that stores various data, a RAM 44 that is used as a work area, an external device and an electrical device. An input / output interface 45 for exchanging signals is provided, and these are connected via a bus 46. The control device 40 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, and the imaging unit 30, and inputs signals from the mounting unit 13, the component supply unit 14, and the imaging unit 30.
 管理コンピュータ50は、実装システム10の各装置の情報を管理するコンピュータである。管理コンピュータ50は、作業者が各種指令を入力するキーボード及びマウス等の入力装置52と、各種情報を表示するディスプレイ54とを備えている。 The management computer 50 is a computer that manages information of each device of the mounting system 10. The management computer 50 includes an input device 52 such as a keyboard and a mouse for an operator to input various commands, and a display 54 for displaying various information.
 次に、こうして構成された本実施形態の実装システム10の動作、具体的には、実装装置11の実装処理について説明する。実装処理を開始すると、制御装置40のCPU41は、例えば、採取する部品に応じた吸着ノズル24を実装ヘッド22に装着させ、部品供給ユニット14から部品を採取するよう実装ユニット13を制御する。次に、CPU41は、基板S上の配置位置へ実装ヘッド22を移動させる。このとき、CPU41は、撮像ユニット30の上方を通過するように実装ヘッド22を移動させる。また、撮像ユニット30は、上方を移動する実装ヘッド22を複数回(例えば2回)撮像する。CPU41は、この撮像された画像を用いて、吸着された部品の方向に間違いがないか、部品の吸着位置ずれが許容範囲にあるか、部品の形状に異常がないかなど、不具合の有無を判定する。次に、部品が基板S上の配置位置へ移動すると、CPU41は、部品に不具合がない場合には、吸着ノズル24を下降させて部品を基板Sに配置させる。なお、複数回の撮像処理から上記判定処理に要する時間は、部品を吸着移動して実装位置に至るまでの時間に比して十分短い。このため、実装装置11では、複数回の撮像処理を実装ヘッド22を移動しながら行うことができる。CPU41は、このような処理を、基板Sへの部品の配置がすべて終了するまで繰り返し行う。 Next, the operation of the mounting system 10 of this embodiment configured as described above, specifically, the mounting process of the mounting apparatus 11 will be described. When the mounting process is started, the CPU 41 of the control device 40 controls the mounting unit 13 so that, for example, the suction nozzle 24 corresponding to the component to be collected is mounted on the mounting head 22 and the component is collected from the component supply unit 14. Next, the CPU 41 moves the mounting head 22 to the arrangement position on the substrate S. At this time, the CPU 41 moves the mounting head 22 so as to pass above the imaging unit 30. Further, the imaging unit 30 images the mounting head 22 that moves upward a plurality of times (for example, twice). The CPU 41 uses this captured image to check whether there is a defect, such as whether there is a mistake in the direction of the sucked part, whether the picking position deviation of the part is within an allowable range, or whether there is an abnormality in the shape of the part. judge. Next, when the component moves to the arrangement position on the substrate S, the CPU 41 lowers the suction nozzle 24 and arranges the component on the substrate S when there is no defect in the component. Note that the time required from the plurality of imaging processes to the determination process is sufficiently shorter than the time required for picking up and moving the component to the mounting position. For this reason, in the mounting apparatus 11, a plurality of imaging processes can be performed while moving the mounting head 22. The CPU 41 repeats such processing until all the components are placed on the board S.
 次に、この実装処理において撮像ユニット30で実行される撮像処理について説明する。図4は、制御装置40のCPU41が実行する撮像処理ルーチンの一例を表すフローチャートである。このルーチンは、制御装置40のHDD43に記憶され、実装処理で部品が実装ヘッド22に採取され部品供給ユニット14から基板搬送ユニット12側へ移動される際に実行される。ここでは、まず、部品60(図5)を基板Sへ実装する場合を具体例として説明する。図5は、部品60を採取した実装ヘッド22の説明図である。部品60は、例えば、図5に示すように、比較的大きい板状の本体の下部に多数配列されているバンプ61を備えたBGA部品である。部品60のように部品形状が上下や左右に対象である部品は、部品形状からは部品の方向を判別することができない。そのため、部品の方向判別を目的として、部品形状が非対称となるような識別用マークを付することが多い。この部品60は、その下面に、部品60の方向を認識するための識別用マーク62が付されている。ここでは、装置の左前(図5では右下)に識別用マーク62がある場合が正常な配置方向であるものとして説明する。図5に示すように、比較的大きな部品60を吸着保持すると、実装ヘッド22の領域のうち大きな面積が占められる。なお、この吸着処理では、1以上の部品60を吸着ノズル24a~24dに吸着させるものとしてもよい。部品60は、外形が比較的大きいものであり、部品供給ユニット14では、トレイユニットのトレイに配列される。作業者が、部品60をトレイに載置する際に、配置方向を誤る場合があるため、実装処理での撮像処理では、部品60の方向を確認する処理を行う。この撮像処理ルーチンでは、CPU41は、第1基準マーク25を明確に含み部品60に関する形状(例えば外形やバンプ61の形状)を認識する撮像条件で部品60のバンプ61の位置を決める撮像を行ったのち、第2基準マーク26を明確に含み識別用マーク62を認識する撮像条件で識別用マーク62の位置確認をする撮像を行う。 Next, an imaging process executed by the imaging unit 30 in this mounting process will be described. FIG. 4 is a flowchart illustrating an example of an imaging process routine executed by the CPU 41 of the control device 40. This routine is stored in the HDD 43 of the control device 40, and is executed when a component is collected by the mounting head 22 and moved from the component supply unit 14 to the substrate transport unit 12 side in the mounting process. Here, first, a case where the component 60 (FIG. 5) is mounted on the substrate S will be described as a specific example. FIG. 5 is an explanatory diagram of the mounting head 22 from which the component 60 is collected. For example, as shown in FIG. 5, the component 60 is a BGA component including a large number of bumps 61 arranged at the lower portion of a relatively large plate-shaped main body. For a part whose shape is the target, such as the part 60, up and down or left and right, the direction of the part cannot be determined from the part shape. For this reason, for the purpose of discriminating the direction of the part, an identification mark is often attached so that the part shape becomes asymmetric. An identification mark 62 for recognizing the direction of the component 60 is attached to the lower surface of the component 60. Here, the case where the identification mark 62 is in the front left of the apparatus (lower right in FIG. 5) is assumed to be a normal arrangement direction. As shown in FIG. 5, when a relatively large component 60 is sucked and held, a large area is occupied in the region of the mounting head 22. In this suction process, one or more components 60 may be sucked by the suction nozzles 24a to 24d. The components 60 have a relatively large outer shape, and are arranged on the tray of the tray unit in the component supply unit 14. When the operator places the component 60 on the tray, the arrangement direction may be wrong. Therefore, in the imaging process in the mounting process, a process for confirming the direction of the component 60 is performed. In this imaging processing routine, the CPU 41 performs imaging to determine the position of the bump 61 of the component 60 under imaging conditions that clearly include the first reference mark 25 and recognize the shape related to the component 60 (for example, the outer shape and the shape of the bump 61). After that, imaging for confirming the position of the identification mark 62 is performed under an imaging condition that clearly includes the second reference mark 26 and recognizes the identification mark 62.
 この撮像処理ルーチンは、実装ヘッド22が部品60を吸着し移動している間に実行され、この部品60の吸着移動が繰り返されるたびに、繰り返し実行される。このルーチンを開始すると、制御装置40のCPU41は、まず、第1画像の撮像タイミングに至ったか否かを判定し(ステップS100)、第1画像の撮像タイミングに至っていないときはそのまま待機し、第1画像の撮像タイミングに至ったときには、第1の撮像条件で第1画像を撮像処理する(ステップS110)。第1画像の撮像タイミングは、例えば、吸着ノズル24a~24dに採取された部品60すべてが同一撮像範囲となり、且つ少なくとも第1基準マーク25aが撮像ユニット30の撮像範囲に入るタイミングに設定されていてもよい。例えば、CPU41は、第1基準マーク25bが撮像範囲に入る前であって部品60と第1基準マーク25aとが同一撮像範囲に入ったあとに第1画像71を撮像ユニット30に撮像させてもよい。図6は、複数回撮像する撮像処理の説明図であり、図6(a)が第1画像71、図6(b)が第2画像72の説明図である。ここでは、第1画像71としてバンプ61の位置決め画像を側射照明条件で撮像するよう設定されている。この撮像タイミングで撮像すると、実装ヘッド22の移動中において、実装ヘッド22に採取された部品60のバンプ61全体と第1基準マーク25aとを明確に含む第1画像71を撮像ユニット30に撮像させることができる(図6(a))。 This imaging processing routine is executed while the mounting head 22 picks up and moves the component 60, and is repeatedly executed every time the picking and moving of the component 60 is repeated. When this routine is started, the CPU 41 of the control device 40 first determines whether or not the timing for capturing the first image has been reached (step S100). If the timing for capturing the first image has not been reached, the CPU 41 stands by. When the timing for capturing one image is reached, the first image is captured under the first imaging condition (step S110). The imaging timing of the first image is set to a timing at which, for example, all the parts 60 collected by the suction nozzles 24a to 24d are in the same imaging range, and at least the first reference mark 25a enters the imaging range of the imaging unit 30. Also good. For example, the CPU 41 may cause the imaging unit 30 to capture the first image 71 before the first reference mark 25b enters the imaging range and after the component 60 and the first reference mark 25a enter the same imaging range. Good. FIG. 6 is an explanatory diagram of an imaging process for imaging a plurality of times. FIG. 6A is an explanatory diagram of the first image 71, and FIG. Here, the first image 71 is set so as to capture the positioning image of the bump 61 under the side illumination condition. When imaging is performed at this imaging timing, the imaging unit 30 is caused to capture the first image 71 clearly including the entire bump 61 of the component 60 collected by the mounting head 22 and the first reference mark 25a while the mounting head 22 is moving. (FIG. 6A).
 次に、CPU41は、第2画像の撮像タイミングに至ったか否かを判定し(ステップS120)、第2画像の撮像タイミングに至っていないときはそのまま待機し、第2画像の撮像タイミングに至ったときには、第1の撮像条件とは異なる第2の撮像条件で第2画像を撮像処理する(ステップS130)。ここでは、第2画像72として識別用マーク62のマークチェック画像を全点灯照明条件で撮像するよう設定されている。第2画像の撮像タイミングは、例えば、撮像素子33において、第1画像の露光処理及び露光後の電荷の転送を行い、第2画像の露光が終了したあとのタイミングとしてもよい。あるいは、第2画像の撮像タイミングは、例えば、吸着ノズル24a~24dに採取された部品60すべてが同一撮像範囲となり、且つ少なくとも第2基準マーク26aが撮像ユニット30の撮像範囲に入るタイミングに設定されていてもよい。例えば、CPU41は第2基準マーク26bが撮像範囲から外れ、採取された部品60と第2基準マーク26aとが同一撮像範囲に入ったあとに第2画像72を撮像ユニット30に撮像させてもよい。この撮像タイミングで撮像すると、実装ヘッド22の移動中において、実装ヘッド22に採取された部品60と第2基準マーク26とを含む第2画像72を撮像ユニット30に撮像させることができる(図6(b))。なお、各撮像タイミングとしては、第1画像71に第1基準マーク25b及び第2基準マーク26aが含まれる場合を排除するものではなく、第2画像72に第1基準マーク25a及び第2基準マーク26bが含まれる場合を排除するものでもない。 Next, the CPU 41 determines whether or not the timing for capturing the second image has been reached (step S120). If the timing for capturing the second image has not been reached, the CPU 41 stands by, and when the timing for capturing the second image has been reached. Then, the second image is captured under a second imaging condition different from the first imaging condition (step S130). Here, the second image 72 is set so as to capture a mark check image of the identification mark 62 under all lighting conditions. The imaging timing of the second image may be, for example, the timing after the image sensor 33 performs the exposure processing of the first image and the charge transfer after the exposure, and the exposure of the second image is completed. Alternatively, the imaging timing of the second image is set to a timing at which, for example, all the parts 60 collected by the suction nozzles 24a to 24d are in the same imaging range, and at least the second reference mark 26a enters the imaging range of the imaging unit 30. It may be. For example, the CPU 41 may cause the imaging unit 30 to capture the second image 72 after the second reference mark 26b is out of the imaging range and the collected component 60 and the second reference mark 26a are in the same imaging range. . When imaging is performed at this imaging timing, the second image 72 including the component 60 and the second reference mark 26 collected by the mounting head 22 can be captured by the imaging unit 30 while the mounting head 22 is moving (FIG. 6). (B)). Each imaging timing does not exclude the case where the first reference mark 25b and the second reference mark 26a are included in the first image 71, and the first reference mark 25a and the second reference mark are included in the second image 72. The case where 26b is included is not excluded.
 ここで、第1画像及び第2画像の撮像について説明する。部品60の撮像においては、第1画像である位置決め画像の撮像ではバンプ61が突起形状であるため側射照明が適しており、第2画像であるマークチェック画像の撮像では識別用マーク62が非突起形状であるため全点灯照明が適している。このため、撮像処理では、異なる撮像条件で複数の画像を撮像する処理を行う。図7は、実装ヘッド22の移動速度と撮像対象の撮像順の説明図である。実装ヘッド22は、部品60を採取してから配置位置へ移動することから、図7に示すように、その移動速度は、徐々に増加して最速で一定になる傾向を示す。一方、撮像処理は、例えば、複数の画像で照明の違いや露光時間の違いなどの撮像条件が異なる。位置決め画像とマークチェック画像では、部品の光学特性の差および照明装置の光量の差によって、カメラの露光時間が異なる場合がある。位置決め画像とマークチェック画像とは、どちらを先に撮像することもできるが、撮像対象の移動速度が速いほど撮像ブレが発生し易くなるため、露光時間も短くする必要がある。ここでは、位置決め画像の撮像条件の露光時間が短く、マークチェック画像の撮像条件の露光時間が長いとした場合、露光時間が長い撮像条件であるマークチェック画像を第1画像として撮像し、露光時間が短い撮像条件である位置決め画像を第2画像として撮像する。この撮像処理によれば、撮像ブレをより低減することができるので、より画質のよい画像を得ることができる。 Here, imaging of the first image and the second image will be described. In the imaging of the component 60, in the imaging of the positioning image, which is the first image, the bumps 61 have a protruding shape, so that the side illumination is suitable. In the imaging of the mark check image, which is the second image, the identification mark 62 is not used. All-illumination lighting is suitable because of the projection shape. For this reason, in an imaging process, the process which images a some image on different imaging conditions is performed. FIG. 7 is an explanatory diagram of the moving speed of the mounting head 22 and the imaging order of the imaging target. Since the mounting head 22 moves to the arrangement position after collecting the component 60, the moving speed gradually increases and tends to be constant at the highest speed, as shown in FIG. On the other hand, in the imaging process, for example, imaging conditions such as a difference in illumination and a difference in exposure time are different for a plurality of images. In the positioning image and the mark check image, the exposure time of the camera may be different depending on the difference in the optical characteristics of the components and the difference in the light amount of the illumination device. Either the positioning image or the mark check image can be imaged first. However, the faster the moving speed of the imaging target, the more likely that imaging blur will occur, so the exposure time must also be shortened. Here, if the exposure time of the imaging condition for the positioning image is short and the exposure time of the imaging condition for the mark check image is long, a mark check image that is an imaging condition with a long exposure time is captured as the first image, and the exposure time A positioning image having a short imaging condition is captured as the second image. According to this imaging process, imaging blur can be further reduced, and thus an image with better image quality can be obtained.
 続いて、CPU41は、第1基準マーク25及び第2基準マーク26の位置関係に基づいて第1画像71と第2画像72とを用いて、識別用マーク62の識別処理(部品60の吸着方向の検出処理)を行う(ステップS140)。識別用マーク62の識別処理では、CPU41は、例えば、第1画像71において第1基準マーク25の位置を検出して第1基準マーク25と吸着ノズル24との位置関係により部品60の存在位置を認識し、第1基準マーク25と第2基準マーク26との位置関係に基づいて第2画像72での部品60の位置を求め、部品60の外形などにより識別用マーク62が存在するであろう領域に対して画像処理を行い、第2画像72での識別用マーク62の存在位置を認識する。図8は、第1画像71と第2画像72との位置関係を認識する処理の概念図である。なお、図8では、画像を重ね合わせる概念を示したが、実際の処理は、画像を重ね合わせる必要はなく、第1画像71での第1基準マーク25や部品60などの位置に基づき、第2画像72での部品60や識別用マーク62などの位置の関係を把握する処理を行う。第1画像71は、識別用マーク62は必ずしも画像処理で識別可能ではないが、第1基準マーク25や部品60の外形、バンプ61の位置は識別可能な画像である。また、第2画像72は、部品60の外形やバンプ61の位置は必ずしも画像処理で識別可能ではないが、識別用マーク62や第2基準マーク26は識別可能な画像である。第1画像に第1基準マーク25a及びバンプ61が少なくとも撮像され、第2画像に第2基準マーク26aが少なくとも撮像されていれば、CPU41は、各基準マークの所定の位置関係(例えばXY座標)に応じて、第2画像72における撮像対象(部品60)の位置を正確に把握することができる。一般的に、移動中の実装ヘッドを撮像すると、実装ヘッドの位置がずれる場合があることから、CPUは、撮像ユニットの上方で実装ヘッドを一旦停止させ、撮像条件の異なる複数の画像を撮像することがある。ここでは、第1基準マーク25及び第2基準マーク26を用いることにより、実装ヘッド22の位置ずれを考慮することができるため、撮像条件の異なる複数の画像を実装ヘッド22を移動させながら撮像することができ、生産性を向上することができる。 Subsequently, the CPU 41 uses the first image 71 and the second image 72 based on the positional relationship between the first reference mark 25 and the second reference mark 26 to identify the identification mark 62 (the suction direction of the component 60). Is detected) (step S140). In the identification process of the identification mark 62, the CPU 41 detects the position of the first reference mark 25 in the first image 71, for example, and determines the position of the component 60 based on the positional relationship between the first reference mark 25 and the suction nozzle 24. The position of the component 60 in the second image 72 is determined based on the positional relationship between the first reference mark 25 and the second reference mark 26, and the identification mark 62 will be present depending on the outer shape of the component 60. Image processing is performed on the area, and the presence position of the identification mark 62 in the second image 72 is recognized. FIG. 8 is a conceptual diagram of processing for recognizing the positional relationship between the first image 71 and the second image 72. Note that FIG. 8 shows the concept of superimposing images, but the actual processing does not need to superimpose images, and based on the positions of the first reference mark 25, the component 60, etc. in the first image 71, Processing for grasping the positional relationship between the component 60 and the identification mark 62 in the two images 72 is performed. In the first image 71, the identification mark 62 is not necessarily identifiable by image processing, but the first reference mark 25, the outer shape of the component 60, and the position of the bump 61 are identifiable images. In the second image 72, the outer shape of the component 60 and the position of the bump 61 are not necessarily identifiable by image processing, but the identification mark 62 and the second reference mark 26 are identifiable images. If at least the first reference mark 25a and the bump 61 are captured in the first image, and at least the second reference mark 26a is captured in the second image, the CPU 41 determines a predetermined positional relationship (for example, XY coordinates) of each reference mark. Accordingly, the position of the imaging target (component 60) in the second image 72 can be accurately grasped. In general, when the moving mounting head is imaged, the position of the mounting head may be shifted. Therefore, the CPU temporarily stops the mounting head above the imaging unit and captures a plurality of images with different imaging conditions. Sometimes. Here, since the positional deviation of the mounting head 22 can be taken into account by using the first reference mark 25 and the second reference mark 26, a plurality of images with different imaging conditions are captured while moving the mounting head 22. And productivity can be improved.
 ステップS140のあと、CPU41は、撮像した第1画像71を用いて、実装ヘッド22に採取された部品60の形状及び吸着位置ずれ量を検出する(ステップS150)。この処理では、ステップS140での第1基準マーク25を用いて位置を特定した部品60の画像を用いる。形状識別では、CPU41は、例えば、部品60の撮像画像と部品60のリファレンス画像とのマッチングを行い、例えば、バンプ61の欠損や変形に基づくマッチング度を求める処理を行う。吸着位置ずれ量は、例えば、第1基準マーク25、第2基準マーク26及び吸着ノズル24の中心座標の位置関係に基づいて、部品60の中心位置と、吸着ノズル24の中心位置とのX軸、Y軸の座標値の差として求めることができる。ここで、第1基準マーク25、第2基準マーク26の位置について説明する。実装装置11では、外形が比較的大きく、且つその部品に比較的小さな構成物(バンプ61)が配設されている部品60を実装処理することがある。この場合に、部品60が正常であるかを判断するため、バンプ61の欠損や変形などを検出することがある。また、実装ヘッド22では、部品60のように比較的外形が大きい部品を複数吸着する場合は、吸着ずれや回転など考慮すると、基準マークを実装ヘッド22の中央側に配設しにくい(図5参照)。例えば、基準マークが吸着ノズルに対して外周側に配設された場合、実装ヘッド22に採取された部品60を撮像ユニット30の撮像範囲に含めようとすると、基準マークが撮像範囲から外れやすくなる(図6参照)。この実装装置11では、撮像画像によって、位置関係が明確な異なる基準マーク(第1基準マーク25a,25b又は第2基準マーク26a,26b)のいずれかを使用し、基準マークが撮像範囲外になりやすい問題を解決するのである。 After step S140, the CPU 41 detects the shape of the component 60 collected by the mounting head 22 and the suction position deviation amount using the captured first image 71 (step S150). In this process, an image of the component 60 whose position is specified using the first reference mark 25 in step S140 is used. In the shape identification, for example, the CPU 41 performs matching between the captured image of the component 60 and the reference image of the component 60, and performs a process of obtaining a matching degree based on, for example, the defect or deformation of the bump 61. The amount of suction position deviation is, for example, the X-axis between the center position of the component 60 and the center position of the suction nozzle 24 based on the positional relationship of the center coordinates of the first reference mark 25, the second reference mark 26, and the suction nozzle 24. , And the difference between the coordinate values of the Y axis. Here, the positions of the first reference mark 25 and the second reference mark 26 will be described. In the mounting apparatus 11, a component 60 having a relatively large outer shape and a relatively small component (bump 61) disposed on the component may be mounted. In this case, in order to determine whether the component 60 is normal, a defect or deformation of the bump 61 may be detected. Further, in the mounting head 22, when a plurality of components having a relatively large outer shape, such as the component 60, are picked up, it is difficult to place the reference mark on the center side of the mounting head 22 in consideration of sucking deviation and rotation (FIG. reference). For example, when the reference mark is disposed on the outer peripheral side with respect to the suction nozzle, if the component 60 collected by the mounting head 22 is included in the imaging range of the imaging unit 30, the reference mark is likely to be out of the imaging range. (See FIG. 6). In this mounting apparatus 11, any one of reference marks (first reference marks 25 a and 25 b or second reference marks 26 a and 26 b) having a clear positional relationship is used depending on the captured image, and the reference mark is out of the imaging range. It solves easy problems.
 次に、CPU41は、ステップS140での結果に基づいて部品60の方向が正しいか否かを判定し(ステップS160)、部品60の方向が誤りである場合は、エラーを出力し(ステップS170)、このルーチンを終了する。エラーは、例えば、図示しない操作パネルの表示部に表示出力されてもよい。部品60の方向が適正でない場合、人為的なミスの可能性が高いため、このエラー出力は、例えば、トレイに載置された部品60の方向を確認する旨のメッセージを含むものとしてもよい。一方、ステップS160で部品60の方向が正しい場合は、CPU41は、検出した吸着位置ずれ量が許容範囲内であるか否かを判定する(ステップS180)。この許容範囲は、例えば、部品60を適正に基板Sに配置できる位置ずれ量の範囲を経験的に求め、この範囲に設定されている。吸着位置ずれ量が許容範囲内であるときには、CPU41は、部品60の形状が許容範囲内であるか否かを判定する(ステップS190)。この判定は、例えば、部品60の画像とリファレンス画像とのマッチングを行い、例えば、バンプ61の欠損や変形に基づくマッチング度が所定の許容範囲にあるか否かに基づいて行うことができる。 Next, the CPU 41 determines whether or not the direction of the component 60 is correct based on the result in step S140 (step S160). If the direction of the component 60 is incorrect, an error is output (step S170). This routine is terminated. The error may be displayed and output on a display unit of an operation panel (not shown), for example. Since the possibility of human error is high when the direction of the component 60 is not appropriate, this error output may include, for example, a message confirming the direction of the component 60 placed on the tray. On the other hand, if the direction of the component 60 is correct in step S160, the CPU 41 determines whether or not the detected suction position deviation amount is within an allowable range (step S180). This allowable range is set to this range, for example, by empirically obtaining a range of misalignment in which the component 60 can be properly placed on the substrate S. When the suction position deviation amount is within the allowable range, the CPU 41 determines whether or not the shape of the component 60 is within the allowable range (step S190). This determination can be performed based on, for example, matching between the image of the component 60 and the reference image, for example, whether the matching degree based on the defect or deformation of the bump 61 is within a predetermined allowable range.
 ステップS180やステップS190で位置ずれ量や形状相違が許容範囲内にないと判定されたときには、CPU41は、その部品60が不具合の生じる部品であるものとして廃棄処理を実装ユニット13に行わせ(ステップS200)、そのままこのルーチンを終了する。一方、ステップS190で部品の形状が許容範囲内であるときには、CPU41は、部品60の配置を許可する旨を出力し(ステップS210)、そのままこのルーチンを終了する。その後、CPU41は、部品60を所定の実装位置に配置する処理を実装ユニット13に行わせる。このようにして、実装装置11では、バンプ61及び識別用マーク62を備え、異なる撮像条件で撮像することを要する部品60の撮像処理を実装ヘッド22を移動しながら行い、実装処理を行うのである。 When it is determined in step S180 or step S190 that the amount of positional deviation or the difference in shape is not within the allowable range, the CPU 41 causes the mounting unit 13 to perform disposal processing assuming that the component 60 is a defective component (step S200), this routine is finished as it is. On the other hand, when the shape of the component is within the allowable range in step S190, the CPU 41 outputs that the arrangement of the component 60 is permitted (step S210), and this routine is ended as it is. Thereafter, the CPU 41 causes the mounting unit 13 to perform a process of placing the component 60 at a predetermined mounting position. In this way, the mounting apparatus 11 includes the bumps 61 and the identification marks 62 and performs the mounting process by moving the mounting head 22 while performing the imaging process of the component 60 that needs to be imaged under different imaging conditions. .
 次に、好適な撮像条件の異なる2以上の部品を実装ヘッド22に吸着させた場合の撮像処理について説明する。この処理では、図4の撮像処理ルーチンのステップS140、S160、S170の処理(識別用マークの識別処理)を省略する以外は、上述と同様の処理を行う。図9は、部品64,66を採取した実装ヘッド22の説明図である。ここでは、全点灯照明条件で撮像する部品64と、側射照明条件で撮像する部品66とを撮像する場合について、主として説明する。この部品64,66においても、露光時間がより短い撮像条件の部品(部品64)を第2画像として撮像する。CPU41は、実装ヘッド22に部品64,66を吸着させ、移動させると、このルーチンを開始する。 Next, an imaging process when two or more parts having different suitable imaging conditions are attracted to the mounting head 22 will be described. In this processing, the same processing as described above is performed except that the processing (identification mark identification processing) of steps S140, S160, and S170 of the imaging processing routine of FIG. 4 is omitted. FIG. 9 is an explanatory diagram of the mounting head 22 from which the parts 64 and 66 are collected. Here, the case where the component 64 imaged on all lighting conditions and the component 66 imaged on side illumination conditions is imaged mainly. Also in the parts 64 and 66, a part (part 64) under an imaging condition with a shorter exposure time is imaged as the second image. The CPU 41 starts this routine when the components 64 and 66 are attracted to and moved by the mounting head 22.
 このルーチンを開始すると、CPU41は、ステップS100で第1画像の撮像タイミングまで待機し、撮像タイミングに至るとステップS110で第1撮像条件の第1画像を撮像させる。第1撮像条件は、側射照明であり、比較的長い露光時間の条件である。次に、CPU41は、ステップS120で第2画像の撮像タイミングまで待機し、撮像タイミングに至るとステップS130で第2撮像条件の第2画像を撮像させる。第2撮像条件は、全点灯照明であり、比較的短い露光時間の条件である。図10は、複数回撮像する撮像処理の説明図であり、図10(a)が第1画像73、図10(b)が第2画像74の説明図である。撮像条件の違いにより、第1画像73は、部品64は必ずしも明確でないが、第1基準マーク25や部品66は明確な画像である。また、第2画像74は、部品66は必ずしも明確でないが、第2基準マーク26や部品64は明確な画像である。このとき、CPU41は、第2基準マーク26aが撮像範囲に入る前に第1基準マーク25aと部品66とが同一撮像範囲に入ったあとに第1画像73を撮像させ、その後、第1基準マーク25aが撮像範囲から外れ第2基準マーク26aと部品64とが同一撮像範囲に入ったあとに第2画像74を撮像させるものとしてもよい。また、CPU41は、光学特性が異なる複数種別の部品64,66が同一撮像範囲となるタイミングで第1画像73及び第2画像74を撮像させるものとしてもよい。 When this routine is started, the CPU 41 waits until the imaging timing of the first image in step S100, and when the imaging timing is reached, causes the first image under the first imaging condition to be captured in step S110. The first imaging condition is side illumination and is a condition with a relatively long exposure time. Next, the CPU 41 waits until the second image capturing timing in step S120, and when the imaging timing is reached, causes the second image under the second imaging condition to be captured in step S130. The second imaging condition is a fully lit illumination and a condition with a relatively short exposure time. FIG. 10 is an explanatory diagram of an imaging process for imaging a plurality of times. FIG. 10A is an explanatory diagram of the first image 73 and FIG. 10B is an explanatory diagram of the second image 74. Due to the difference in imaging conditions, the first image 73 is not necessarily clear in the component 64, but the first reference mark 25 and the component 66 are clear images. In the second image 74, the component 66 is not necessarily clear, but the second reference mark 26 and the component 64 are clear images. At this time, the CPU 41 captures the first image 73 after the first reference mark 25a and the component 66 enter the same imaging range before the second reference mark 26a enters the imaging range, and then the first reference mark The second image 74 may be picked up after 25a is out of the imaging range and the second reference mark 26a and the component 64 are in the same imaging range. Further, the CPU 41 may capture the first image 73 and the second image 74 at the timing when the plurality of types of components 64 and 66 having different optical characteristics are in the same imaging range.
 次に、CPU41は、ステップS150で、実装ヘッド22に採取された部品60の形状及び吸着位置ずれ量を検出する。この処理では、第1画像73の第1基準マーク25の位置に基づいて部品66の位置を求め、第2画像74の第2基準マーク26の位置に基づいて部品64の位置を求める処理を行う。形状識別では、CPU41は、第1画像73の部品66の撮像画像と、部品66のリファレンス画像とのマッチングを行い、部品66のマッチング度を求める処理を行う。同様に、CPU41は、第2画像74で部品64の形状識別を行う。また、吸着位置ずれ量では、CPU41は、第1画像73の第1基準マーク25と、部品66の位置と、所定の位置関係にある吸着ノズル24の位置と、に基づいて部品66の位置ずれ量を求める。同様に、CPU41は、第2画像74で部品64の位置ずれ量を算出する。 Next, in step S150, the CPU 41 detects the shape of the component 60 collected by the mounting head 22 and the amount of suction position deviation. In this process, the position of the component 66 is obtained based on the position of the first reference mark 25 in the first image 73, and the position of the component 64 is obtained based on the position of the second reference mark 26 in the second image 74. . In the shape identification, the CPU 41 performs processing for matching the captured image of the component 66 of the first image 73 with the reference image of the component 66 and obtaining the matching degree of the component 66. Similarly, the CPU 41 identifies the shape of the component 64 using the second image 74. Further, with respect to the suction position deviation amount, the CPU 41 shifts the position of the component 66 based on the first reference mark 25 of the first image 73, the position of the component 66, and the position of the suction nozzle 24 in a predetermined positional relationship. Find the amount. Similarly, the CPU 41 calculates the positional deviation amount of the component 64 from the second image 74.
 続いて、CPU41は、ステップS180で位置ずれ量が許容範囲内であるか否かを判定し、ステップS190で形状は許容範囲内であるか否かを判定する。そして、CPU41は、いずれかが許容範囲内でないときには、ステップS200で不具合部品の廃棄処理を行うよう実装ユニット13を制御し、いずれもが許容範囲内であるときには、部品配置を許可し、このルーチンを終了する。一般に、撮像条件の異なる部品を実装する場合、複数の撮像条件で撮像する際には、実装ヘッドを停止して複数の画像を撮像するか、実装ヘッドに同一の撮像条件である部品のみを吸着させて画像を撮像するかのいずれかであったため、生産性の低下を引き起こしていた。ここでは、撮像条件に応じた第1基準マーク25、第2基準マーク26を用い、各部品の位置を特定することができる。このため、実装ヘッド22の位置ずれを考慮することができ、撮像条件の異なる複数の画像を実装ヘッド22を移動させながら撮像することができ、生産性を向上することができる。 Subsequently, the CPU 41 determines whether or not the positional deviation amount is within an allowable range at step S180, and determines whether or not the shape is within an allowable range at step S190. The CPU 41 controls the mounting unit 13 to discard the defective part in step S200 when any of them is not within the allowable range, and permits the component placement when any of them is within the allowable range. Exit. In general, when mounting components with different imaging conditions, when imaging under multiple imaging conditions, the mounting head is stopped to capture multiple images, or only the components with the same imaging conditions are attracted to the mounting head. Therefore, the productivity was reduced. Here, the position of each component can be specified using the first reference mark 25 and the second reference mark 26 corresponding to the imaging conditions. For this reason, the positional deviation of the mounting head 22 can be taken into consideration, and a plurality of images with different imaging conditions can be imaged while moving the mounting head 22, and productivity can be improved.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の吸着ノズル24が本発明の採取部材に相当し、実装ヘッド22が実装ヘッドに相当し、撮像ユニット30が撮像部に相当し、制御装置40が制御部に相当する。また、第1基準マーク25,25a,25bが第1基準マークに相当し、第2基準マーク26,26a,26bが第2基準マークに相当する。また、第1基準マーク25は、撮像条件に応じて定められた第1条件基準マーク及び位置の基準となる第1位置基準マークに相当し、第2基準マーク26は、撮像条件に応じて定められた第2条件基準マーク及び位置の基準となる第2位置基準マークに相当する。なお、本実施形態では、実装装置11の動作を説明することにより本発明の撮像処理方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The suction nozzle 24 of this embodiment corresponds to the sampling member of the present invention, the mounting head 22 corresponds to the mounting head, the imaging unit 30 corresponds to the imaging unit, and the control device 40 corresponds to the control unit. The first reference marks 25, 25a, and 25b correspond to the first reference marks, and the second reference marks 26, 26a, and 26b correspond to the second reference marks. The first reference mark 25 corresponds to a first condition reference mark determined according to the imaging condition and a first position reference mark serving as a position reference, and the second reference mark 26 is determined according to the imaging condition. This corresponds to the second condition reference mark and the second position reference mark serving as a position reference. In the present embodiment, an example of the imaging processing method of the present invention is also clarified by describing the operation of the mounting apparatus 11.
 以上説明した実施形態の実装装置11では、実装ヘッド22が部品を採取し基板Sに実装する移動中に、実装ヘッド22に採取された部品と第1基準マーク25とを含む第1画像を第1の撮像条件で撮像し、この部品と第2基準マーク26とを含む第2画像を第2の撮像条件で撮像し、第1画像と第2画像とを用いて所定の処理を行う。この実装装置では、基準マークと部品とを含む画像を複数撮像するため、例えば、異なる条件で撮像された第1画像及び第2画像において、基準マークにより部品の位置が明らかになる。このため、この実装装置11では、撮像条件に応じて部品を採取し直すことなく、部品を採取し基板Sに実装する間に複数の画像を撮像することができる。あるいは、実装ヘッド22を一旦停止させて撮像することなく、実装ヘッド22の移動を継続したまま複数の画像を撮像することができる。したがって、この実装装置11では、実装処理における生産性を向上することができる。 In the mounting apparatus 11 according to the embodiment described above, the first image including the component collected by the mounting head 22 and the first reference mark 25 during the movement in which the mounting head 22 collects the component and mounts it on the substrate S is displayed in the first image. An image is captured under one imaging condition, a second image including the component and the second reference mark 26 is captured under the second imaging condition, and a predetermined process is performed using the first image and the second image. Since the mounting apparatus captures a plurality of images including the reference mark and the component, for example, the position of the component is clarified by the reference mark in the first image and the second image captured under different conditions. For this reason, in the mounting apparatus 11, a plurality of images can be captured while the components are collected and mounted on the substrate S without collecting the components again according to the imaging conditions. Alternatively, it is possible to capture a plurality of images while continuing the movement of the mounting head 22 without temporarily stopping the mounting head 22 and capturing an image. Therefore, the mounting apparatus 11 can improve productivity in the mounting process.
 また、CPU41は、撮像条件として照明条件及び露光条件の異なる複数の画像を撮像するため、照明条件や露光条件の異なる画像を撮像する際に生産性を向上することができる。更に、部品60には識別用マーク62が形成されており、CPU41は、実装ヘッド22の移動中において、部品60に関する形状を認識する第1の撮像条件で第1画像71を撮像させ、識別用マーク62を認識する第2の撮像条件で第2画像72を撮像させ、所定の処理として部品の方向を判定する処理を行う。識別用マーク62が付された部品60は、その形状認識と、識別用マーク認識とにおいて撮像条件が異なる場合がある。この実装装置11では、識別用マーク62が付された部品60の実装処理において生産性を向上することができる。更にまた、CPU41は、第1画像と第2画像とを用いて所定の処理として部品の方向、部品の形状及び部品の位置のうち1以上を判定する処理を行う。この実装装置11では、異なる撮像条件で撮像した画像を用いて部品の方向や部品形状、部品位置を判定することにより、生産性を向上することができる。 Further, since the CPU 41 captures a plurality of images having different illumination conditions and exposure conditions as imaging conditions, it is possible to improve productivity when capturing images having different illumination conditions and exposure conditions. Further, an identification mark 62 is formed on the component 60, and the CPU 41 captures the first image 71 under the first imaging condition for recognizing the shape related to the component 60 while the mounting head 22 is moving, and for identification. The second image 72 is imaged under the second imaging condition for recognizing the mark 62, and a process for determining the direction of the component is performed as a predetermined process. The component 60 to which the identification mark 62 is attached may have different imaging conditions for its shape recognition and identification mark recognition. In the mounting apparatus 11, productivity can be improved in the mounting process of the component 60 with the identification mark 62. Furthermore, the CPU 41 performs a process of determining one or more of the component direction, the component shape, and the component position as a predetermined process using the first image and the second image. In the mounting apparatus 11, productivity can be improved by determining the direction of the component, the component shape, and the component position using images captured under different imaging conditions.
 また、CPU41は、第1画像を撮像させたのち、第2の撮像条件として第1の撮像条件に比して短い露光時間の条件で第2画像を撮像させる。実装装置11では、一般に、実装ヘッド22は、徐々に加速し、よりあとに比較的大きな移動速度になる。この実装装置11では、実装ヘッド22の速度がより遅いときに長い露光時間の画像を撮像し、実装ヘッド22の速度がより速いときに短い露光時間で画像を撮像する。このため、この実装装置11では、撮像時のブレをより低減した画像を得ることができる。更に、実装ヘッド22は、2以上の吸着ノズル24(採取部材)を有し、CPU41は、2以上の吸着ノズル24に採取されている部品が同一撮像範囲となるタイミングで第1画像及び第2画像を撮像ユニット30に撮像させる。この実装装置11では、複数の部品を同一画像に撮像するため、撮像効率がよい。更にまた、CPU41は、2以上の吸着ノズル24に採取されている、光学特性が異なる複数種別の部品が同一撮像範囲となるタイミングで第1画像及び第2画像を撮像ユニット30に撮像させる。この実装装置11では、光学特性の異なる複数の部品を同一画像に撮像するため、撮像効率がよい。 In addition, after the first image is captured, the CPU 41 causes the second image to be captured as a second imaging condition under a condition with a shorter exposure time than the first imaging condition. In the mounting apparatus 11, generally, the mounting head 22 gradually accelerates and then reaches a relatively high moving speed. The mounting apparatus 11 captures an image with a long exposure time when the speed of the mounting head 22 is slower, and captures an image with a short exposure time when the speed of the mounting head 22 is faster. For this reason, in this mounting apparatus 11, the image which reduced the blurring at the time of imaging can be obtained. Further, the mounting head 22 includes two or more suction nozzles 24 (collecting members), and the CPU 41 performs the first image and the second image at the timing when the components collected by the two or more suction nozzles 24 are in the same imaging range. The image is picked up by the image pickup unit 30. In this mounting apparatus 11, since a plurality of components are captured in the same image, the imaging efficiency is good. Furthermore, the CPU 41 causes the imaging unit 30 to capture the first image and the second image at a timing at which a plurality of types of components with different optical characteristics collected by the two or more suction nozzles 24 fall within the same imaging range. In the mounting apparatus 11, a plurality of components having different optical characteristics are imaged in the same image, so that the imaging efficiency is good.
 また、実装ヘッド22は、第1の撮像条件で用いられる第1基準マーク25と、第2の撮像条件で用いられる第2基準マーク26とを有し、CPU41は、実装ヘッド22に採取された部品と第1基準マーク25とを第1の撮像条件で撮像させ、実装ヘッド22に採取された部品と第2基準マーク26とを第2の撮像条件で撮像させる。この実装装置11では、撮像条件に合わせた基準マークを用いるため、部品と基準マークとの位置関係をより確実に認識できる画像を得ることができる。更にまた、実装ヘッド22は、第1部品と第1部品に対して光学特性の異なる第2部品とをそれぞれ採取する2以上の吸着ノズル24と、第1部品の光学特性に適応する第1の撮像条件で用いられる第1基準マーク25と、第2部品の光学特性に適応する第2の撮像条件で用いられる第2基準マーク26とを有している。このとき、CPU41は、実装ヘッド22に採取された部品と第1基準マーク25とを第1の撮像条件で撮像させ、実装ヘッドに採取された部品と第2基準マーク26とを第2の撮像条件で撮像させる。この実装装置11では、部品の光学特性に合わせて、より適した画像を撮像することができる。 The mounting head 22 has a first reference mark 25 used in the first imaging condition and a second reference mark 26 used in the second imaging condition. The CPU 41 is sampled by the mounting head 22. The component and the first reference mark 25 are imaged under the first imaging condition, and the component and the second reference mark 26 collected by the mounting head 22 are imaged under the second imaging condition. Since the mounting apparatus 11 uses the reference mark that matches the imaging conditions, an image that can more reliably recognize the positional relationship between the component and the reference mark can be obtained. Furthermore, the mounting head 22 includes two or more suction nozzles 24 for collecting the first component and the second component having different optical characteristics from the first component, and the first component adapted to the optical characteristics of the first component. It has the 1st reference mark 25 used on imaging conditions, and the 2nd reference mark 26 used on the 2nd imaging conditions adapted to the optical characteristic of the 2nd part. At this time, the CPU 41 causes the component picked up by the mounting head 22 and the first reference mark 25 to be imaged under the first imaging condition, and the component picked up by the mounting head and the second reference mark 26 are subjected to the second imaging. Make an image under conditions. In the mounting apparatus 11, a more suitable image can be taken according to the optical characteristics of the component.
 また、実装ヘッド22は、第1基準マーク25と、この第1基準マーク25と所定の位置関係を有する第2基準マーク26とを有し、CPU41は、実装ヘッド22の移動中において、実装ヘッド22に採取された部品と第1基準マーク25とを含む第1画像を第1の撮像条件で撮像部に撮像させる一方、実装ヘッド22に採取された部品と第2基準マーク26とを含む第2画像を第2の撮像条件で撮像部に撮像させ、第1基準マーク25と第2基準マーク26との位置関係に基づき第1画像と第2画像とを用いて所定の処理を行う。この実装装置11では、第1基準マーク25と第2基準マーク26との位置関係を利用して第1画像と第2画像との位置関係が明らかになる。このため、この実装装置11では、いずれかの基準マークを含む範囲まで撮像範囲をより広げることができ、実装ヘッドの移動停止をより抑制して実装ヘッドに採取された部品を撮像することができる。 The mounting head 22 includes a first reference mark 25 and a second reference mark 26 having a predetermined positional relationship with the first reference mark 25. The CPU 41 moves the mounting head 22 while the mounting head 22 is moving. The first image including the component collected in 22 and the first reference mark 25 is imaged by the imaging unit under the first imaging condition, while the first image including the component collected in the mounting head 22 and the second reference mark 26 is included. Two images are imaged by the imaging unit under the second imaging condition, and predetermined processing is performed using the first image and the second image based on the positional relationship between the first reference mark 25 and the second reference mark 26. In the mounting apparatus 11, the positional relationship between the first image and the second image is clarified using the positional relationship between the first reference mark 25 and the second reference mark 26. For this reason, in this mounting apparatus 11, the imaging range can be further expanded to a range including any one of the reference marks, and the components picked up by the mounting head can be imaged while further stopping the movement of the mounting head. .
 更にまた、CPU41は、第2基準マーク26aが撮像範囲に入る前に第1基準マーク25aと部品とが同一撮像範囲に入ったあとに第1画像を撮像ユニット30に撮像させ、その後、第1基準マーク25aが撮像範囲から外れ第2基準マーク26aと部品とが同一撮像範囲に入ったあとに第2画像を撮像ユニット30に撮像させる。この実装装置11では、第1基準マーク25と第2基準マーク26とのいずれかを用いることができるため、より撮像範囲を広げることができる。更にまた、実装ヘッド22は、吸着ノズル24に対して外周側に基準マークが配設されている。この実装装置11では、例えば、2以上の基準マークを有する場合などに、基準マークと基準マークとの位置をより離れた位置にすることが可能であり、撮像範囲をより広げることによって複数の画像を1回の実装ヘッドの移動において撮像することができる。そしてまた、実装ヘッド22は、この実装ヘッド22の主たる移動方向の前方側と後方側とに基準マークが配設されている。この実装装置11では、実装ヘッド22が移動してもいずれかの基準マークが撮像範囲に入りやすく、撮像範囲をより広げることによって複数の画像を1回の実装ヘッドの移動において撮像しやすい。 Furthermore, the CPU 41 causes the imaging unit 30 to capture the first image after the first reference mark 25a and the component enter the same imaging range before the second reference mark 26a enters the imaging range. After the reference mark 25a is out of the imaging range and the second reference mark 26a and the component are in the same imaging range, the imaging unit 30 is caused to capture the second image. In the mounting apparatus 11, since either the first reference mark 25 or the second reference mark 26 can be used, the imaging range can be further expanded. Furthermore, the mounting head 22 is provided with a reference mark on the outer peripheral side with respect to the suction nozzle 24. In the mounting apparatus 11, for example, when there are two or more reference marks, the positions of the reference marks and the reference marks can be further separated, and a plurality of images can be obtained by further widening the imaging range. Can be imaged in one movement of the mounting head. The mounting head 22 is provided with reference marks on the front side and the rear side in the main movement direction of the mounting head 22. In this mounting apparatus 11, even if the mounting head 22 moves, any one of the reference marks easily enters the imaging range, and it is easy to capture a plurality of images in one movement of the mounting head by further expanding the imaging range.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、実装ヘッド22は、第1基準マーク25a,25b、第2基準マーク26a,26bの4つの基準マークを有するものとしたが、特にこれに限定されない。図11は、第1基準マーク25Bと第2基準マーク26Bとを1つ備えた実装ヘッド22Bの説明図である。図11に示すように、例えば、実装ヘッド22Bは、装置の前後方向に対し実装ヘッド22の平行が保てるものとすれば、第1基準マーク25Bと第2基準マーク26Bとを各々1つずつとすることができる。あるいは、実装ヘッド22は、例えば、第1基準マーク25a,25b及び第2基準マーク26aなど、L字型に配置された3つの基準マークを有するものとしてもよい。 For example, in the above-described embodiment, the mounting head 22 has the four reference marks of the first reference marks 25a and 25b and the second reference marks 26a and 26b, but is not particularly limited thereto. FIG. 11 is an explanatory diagram of a mounting head 22B having one first reference mark 25B and one second reference mark 26B. As shown in FIG. 11, for example, if the mounting head 22B can keep the mounting head 22 parallel to the longitudinal direction of the apparatus, the first reference mark 25B and the second reference mark 26B are each one. can do. Alternatively, the mounting head 22 may have three reference marks arranged in an L shape such as the first reference marks 25a and 25b and the second reference mark 26a.
 上述した実施形態では、実装ヘッド22は、第1基準マーク25a,25b、第2基準マーク26a,26bの4つの基準マークをそれぞれ対角に配設するものとしたが、特にこれに限定されず、例えば、第2基準マーク26a,26bのいずれかの位置に第1基準マーク25bを配設してもよい。また、第2基準マーク26も同様である。こうしても、実装装置は、実装処理における生産性を向上することができる。 In the above-described embodiment, the mounting head 22 has four reference marks, the first reference marks 25a and 25b and the second reference marks 26a and 26b, arranged diagonally, but is not particularly limited thereto. For example, the first reference mark 25b may be disposed at any position of the second reference marks 26a and 26b. The same applies to the second reference mark 26. Even in this case, the mounting apparatus can improve productivity in the mounting process.
 上述した実施形態では、実装ヘッド22は、吸着ノズル24に対して外周側に基準マークが配設されているものとしたが、特に限定されず、吸着ノズル24に対して内周側に基準マークが配設されているものとしてもよい。図12は、第1基準マーク25Cと第2基準マーク26Cとを内周側に配設した実装ヘッド22Cの説明図である。この実装ヘッド22Cによっても、実装処理における生産性を向上することができる。なお、基準マークの配設数が多くなる場合は、基準マークを吸着ノズル24の外周側に配設することが好ましい。 In the above-described embodiment, the mounting head 22 is provided with the reference mark on the outer peripheral side with respect to the suction nozzle 24, but is not particularly limited, and the reference mark is on the inner peripheral side with respect to the suction nozzle 24. It is good also as what is arrange | positioned. FIG. 12 is an explanatory diagram of the mounting head 22C in which the first reference mark 25C and the second reference mark 26C are disposed on the inner peripheral side. This mounting head 22C can also improve productivity in the mounting process. When the number of reference marks is increased, the reference marks are preferably disposed on the outer peripheral side of the suction nozzle 24.
 上述した実施形態では、実装ヘッド22には、複数種別の基準マークが配設されているものとしたが、例えば、複数の撮像条件で利用できるものを用いれば、1種の基準マークを用いるものとしてもよい。 In the above-described embodiment, the mounting head 22 is provided with a plurality of types of reference marks. However, for example, if one that can be used under a plurality of imaging conditions is used, one type of reference mark is used. It is good.
 上述した実施形態では、撮像条件としては、照明条件及び露光条件などを挙げたが、その他の条件としてもよい。照明条件は、側射照明、全点灯照明、落射照明などを挙げたが、これ以外に、例えば、単に光量の違いとしてもよいし、波長の違いとしてもよいし、上中下段の照明と光量や波長などを組み合わせるものとしてもよい。例えば、撮像条件として、部品の撮像高さを含むものとしてもよい。図13は、撮像条件として部品の撮像高さが異なる画像を撮像する説明図である。この実装装置11では、撮像ユニット30は、実装ヘッド22の移動中に、吸着ノズル24に吸着された部品67を第1の撮像高さで撮像したのち、第1の撮像高さと異なる第2の撮像高さで撮像する。部品67は、本体底面と同じ高さに水平部を有するリード68と、本体底面より下方に先端が位置する挿入ピン69とを備えている。リード68及び挿入ピン69は、基板Sに固定されるため形状を判定する必要がある。また、リード68及び挿入ピン69は、その高さが異なることから、ピントがあう高さが異なる。ここでは、CPU41は、撮像ユニット30の上方で吸着ノズル24を上下させ、リード68を全点灯照明で、挿入ピン69を側射照明で撮像する。こうすれば、実装装置11は、撮像部位の高さが異なる部品67に対して実装ヘッド22を一旦停止させて撮像することなく、実装ヘッド22の移動を継続したまま複数の画像を撮像することができる。したがって、この実装装置11では、実装処理における生産性を向上することができる。このとき、CPU41は、第1の画像を撮像させたのち、第2の撮像条件として第1の撮像条件に比して低い部品の撮像高さの条件で第2の画像を撮像させるものとしてもよい。この実装装置11では、第2画像を撮像した際に部品67が基板Sに近づくため、部品67を配置する際の上下方向の移動効率がよく、実装処理における生産性を向上することができる。なお、実装装置11は、照明条件、露光条件及び部品の撮像高さ条件の1以上を適宜組み合わせた撮像条件を用いるものとしてもよい。 In the above-described embodiment, the imaging condition includes the illumination condition and the exposure condition, but other conditions may be used. Illumination conditions include side-lighting, full lighting, epi-illumination, etc. In addition to this, for example, it may be simply a difference in light quantity, a difference in wavelength, or illumination and light quantity in the upper, middle, and lower stages. Or a combination of wavelengths. For example, the imaging conditions may include the imaging height of the component. FIG. 13 is an explanatory diagram for capturing images with different imaging heights of components as imaging conditions. In the mounting apparatus 11, the imaging unit 30 captures the component 67 sucked by the suction nozzle 24 at the first imaging height while the mounting head 22 is moving, and then a second different from the first imaging height. Imaging at the imaging height. The component 67 includes a lead 68 having a horizontal portion at the same height as the bottom surface of the main body, and an insertion pin 69 whose tip is located below the bottom surface of the main body. Since the lead 68 and the insertion pin 69 are fixed to the substrate S, it is necessary to determine their shapes. Further, the lead 68 and the insertion pin 69 have different heights, and therefore have different heights for focusing. Here, the CPU 41 raises and lowers the suction nozzle 24 above the imaging unit 30 and images the lead 68 with full lighting illumination and the insertion pin 69 with side illumination. In this way, the mounting apparatus 11 captures a plurality of images while continuing the movement of the mounting head 22 without temporarily stopping the mounting head 22 and capturing an image with respect to the components 67 having different heights of the imaging regions. Can do. Therefore, the mounting apparatus 11 can improve productivity in the mounting process. At this time, the CPU 41 may take the first image and then take the second image as the second imaging condition under the condition that the imaging height of the component is lower than the first imaging condition. Good. In this mounting apparatus 11, since the component 67 approaches the substrate S when the second image is captured, the vertical movement efficiency when arranging the component 67 is good, and the productivity in the mounting process can be improved. Note that the mounting apparatus 11 may use imaging conditions in which one or more of illumination conditions, exposure conditions, and imaging height conditions of components are appropriately combined.
 上述した実施形態では、複数の画像を用いて行う処理を部品の方向、部品の形状及び部品の位置を判定する処理として説明したが、特にこれに限定されず、例えば、複数の画像を撮像して得られた情報を表示出力する処理などとしてもよい。 In the above-described embodiment, the processing performed using a plurality of images has been described as the processing for determining the direction of the component, the shape of the component, and the position of the component. However, the present invention is not particularly limited thereto. It is also possible to perform processing for displaying and outputting the information obtained in this way.
 上述した実施形態では、露光時間の長い撮像条件で先に撮像し、その後露光時間の短い撮像条件で撮像するものとしたが、特にこれに限定されない。なお、撮像順は、露光条件による撮像ぶれを抑制する観点からは、露光時間が長い撮像条件の画像から撮像する方が好ましい。 In the above-described embodiment, imaging is first performed under an imaging condition with a long exposure time, and then imaging is performed under an imaging condition with a short exposure time. However, the present invention is not particularly limited thereto. Note that, from the viewpoint of suppressing imaging blur due to exposure conditions, it is preferable that the imaging order be captured from images with imaging conditions having a long exposure time.
 上述した実施形態では、実装ヘッド22の移動中に実装ヘッド22に吸着されている部品すべてが同一撮像範囲となるタイミングで第1画像及び第2画像を撮像するものとしたが、特にこれに限定されず、実装ヘッド22に吸着されている部品の一部が撮像されるタイミングで第1画像及び第2画像のうち少なくとも1以上の画像を撮像するものとしてもよい。実装ヘッド22を停止せず移動しながら部品の撮像を行うものとすれば、実装処理における生産性を向上することができる。 In the above-described embodiment, the first image and the second image are captured at the timing when all the components sucked by the mounting head 22 are in the same imaging range while the mounting head 22 is moving. Alternatively, at least one or more images of the first image and the second image may be captured at the timing when a part of the component sucked by the mounting head 22 is captured. If the parts are imaged while moving the mounting head 22 without stopping, the productivity in the mounting process can be improved.
 上述した実施形態では、実装ヘッド22を装置の前後方向に移動させながら第1画像71及び第2画像72を撮像する場合を主として説明したが、前後方向及び左右方向、即ち、撮像ユニット30上を斜めに移動する際に第1画像及び第2画像を撮像するものとしてもよい。 In the above-described embodiment, the case where the first image 71 and the second image 72 are imaged while moving the mounting head 22 in the front-rear direction of the apparatus has been mainly described, but the front-rear direction and the left-right direction, that is, on the imaging unit 30 are described. The first image and the second image may be captured when moving obliquely.
 上述した実施形態では、2種の撮像条件で2つの画像を撮像するものとしたが、複数の撮像条件で複数の画像を撮像するものとすれば、特にこれに限定されず、2又は3以上の撮像条件で3以上の画像を撮像するものとしてもよい。また、上述した実施形態では、2種類の部品64,66を実装ヘッド22に吸着させ、2種類の撮像条件で撮像するものとしたが、例えば、3種類以上の部品を実装ヘッド22に吸着させ、2又は3種類以上の撮像条件で撮像するものとしてもよい。このとき、実装ヘッド22には、3種類以上の基準マークが配設されているものとしてもよい。なお、実装ヘッド22は、1又は2以上の吸着ノズル24を装着可能とすれば特に限定されず、吸着ノズル24を12本装着するものや、16本装着するものとしてもよい。また、上述した実施形態では、実装ヘッド22の移動中に複数の画像データが撮像ユニット30から出力され、部品が実装位置に到達する前にステップS160~S210の判定処理などが終了するものとする。 In the above-described embodiment, two images are captured under two types of imaging conditions. However, the present invention is not particularly limited as long as a plurality of images are captured under a plurality of imaging conditions. Three or more images may be picked up under the image pickup conditions. In the above-described embodiment, two types of components 64 and 66 are attracted to the mounting head 22 and imaged under two types of imaging conditions. However, for example, three or more types of components are attracted to the mounting head 22. It is good also as what is imaged on 2 or 3 or more types of imaging conditions. At this time, the mounting head 22 may be provided with three or more types of reference marks. The mounting head 22 is not particularly limited as long as one or two or more suction nozzles 24 can be mounted. The mounting head 22 may be mounted with 12 suction nozzles 24 or 16 mounting nozzles. In the above-described embodiment, a plurality of image data is output from the imaging unit 30 while the mounting head 22 is moving, and the determination processing in steps S160 to S210 is completed before the component reaches the mounting position. .
 上述した実施形態では、第1基準マーク25及び第2基準マーク26は、光学特性の異なる第1及び第2条件基準マークの機能と所定の位置関係を有する第1及び第2位置基準マークの機能とを有するものとしたが、いずれか一方の機能を有するものとしてもよい。 In the above-described embodiment, the first reference mark 25 and the second reference mark 26 have the functions of the first and second position reference marks having a predetermined positional relationship with the functions of the first and second conditional reference marks having different optical characteristics. However, it may have one of the functions.
 上述した実施形態では、採取部材を吸着ノズル24として説明したが、部品を採取ずるものであれば特にこれに限定されず、例えば、部品を機械的に挟持して採取するメカニカルチャックなどとしてもよい。 In the above-described embodiment, the sampling member is described as the suction nozzle 24. However, the sampling member is not particularly limited as long as the component is collected. For example, a mechanical chuck that mechanically clamps and collects the component may be used. .
 上述した実施形態では、本発明を実装装置11として説明したが、例えば、撮像ユニット30としてもよいし、撮像処理方法や撮像ユニット30の制御方法としてもよいし、上述した処理をコンピュータが実行するプログラムとしてもよい。 In the above-described embodiment, the present invention has been described as the mounting apparatus 11. However, for example, the imaging unit 30 may be used, or an imaging processing method or a control method for the imaging unit 30 may be used. It may be a program.
 本発明は、部品を基板上に配置する実装処理を行う装置に利用可能である。 The present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.
10 実装システム、11 実装装置、12 基板搬送ユニット、13 実装ユニット、14 部品供給ユニット、20 ヘッド移動部、22,22B,22C 実装ヘッド、23 Z軸モータ、24,24a~24d 吸着ノズル、25,25a,25b,25B,25C 第1基準マーク、26,26a,26b,26B,26C 第2基準マーク、30 撮像ユニット、31 照明部、32 照明制御部、33 撮像素子、34 画像処理部、40 制御装置、41 CPU、42 ROM、43 HDD、44 RAM、45 入出力インタフェース、46 バス、50 管理コンピュータ、52 入力装置、54 ディスプレイ、60 部品、61 バンプ、62 識別用マーク、64,66,67 部品、68 リード、69 挿入ピン、71,73 第1画像、72,74 第2画像、S 基板。 10 mounting system, 11 mounting device, 12 substrate transport unit, 13 mounting unit, 14 component supply unit, 20 head moving unit, 22, 22B, 22C mounting head, 23 Z-axis motor, 24, 24a to 24d suction nozzle, 25, 25a, 25b, 25B, 25C 1st reference mark, 26, 26a, 26b, 26B, 26C 2nd reference mark, 30 imaging unit, 31 illumination unit, 32 illumination control unit, 33 imaging element, 34 image processing unit, 40 control Device, 41 CPU, 42 ROM, 43 HDD, 44 RAM, 45 I / O interface, 46 bus, 50 management computer, 52 input device, 54 display, 60 parts, 61 bump, 62 identification mark, 64, 66, 67 parts , 68 leads, 69 Input pins, 71 and 73 the first image, 72 and 74 second image, S substrate.

Claims (16)

  1.  1又は2以上の基準マークと、部品を採取する採取部材とを有し、採取した部品を基板上へ移動させる実装ヘッドと、
     画像を撮像する撮像部と、
     前記実装ヘッドが前記部品を採取し前記基板に実装する間に、前記実装ヘッドに採取された部品と前記基準マークとを含む第1画像を第1の撮像条件で前記撮像部に撮像させると共に、前記実装ヘッドに採取された部品と前記基準マークとを含む第2画像を第1の撮像条件と異なる第2の撮像条件で前記撮像部に撮像させ、前記第1画像と前記第2画像とを用いて所定の処理を行う制御部と、
     を備えた実装装置。
    A mounting head having one or more reference marks and a sampling member for sampling the component, and moving the sampled component onto the substrate;
    An imaging unit that captures an image;
    While the mounting head collects the component and mounts it on the substrate, the imaging unit captures a first image including the component collected by the mounting head and the reference mark under a first imaging condition, A second image including the component collected by the mounting head and the reference mark is captured by the imaging unit under a second imaging condition different from the first imaging condition, and the first image and the second image are captured. A control unit for performing a predetermined process using,
    Mounting device.
  2.  前記制御部は、前記撮像条件として照明条件、露光条件及び部品の撮像高さ条件のうち1以上が異なる前記第2画像を撮像させる、請求項1に記載の実装装置。 2. The mounting apparatus according to claim 1, wherein the control unit causes the second image to differ in one or more of an illumination condition, an exposure condition, and a component imaging height condition as the imaging condition.
  3.  前記部品には識別用マークが形成されており、
     前記制御部は、前記実装ヘッドの移動中において、前記第1の撮像条件として前記部品に関する形状を認識する条件で前記第1の画像を撮像させ、前記第2の撮像条件として前記識別用マークを認識する条件で前記第2の画像を撮像させ、前記所定の処理として前記部品の方向を判定する処理を行う、請求項1又は2に記載の実装装置。
    An identification mark is formed on the part,
    The control unit causes the first image to be captured under a condition for recognizing a shape related to the component as the first imaging condition while the mounting head is moving, and the identification mark is used as the second imaging condition. The mounting apparatus according to claim 1, wherein the second image is captured under a recognition condition, and a process of determining a direction of the component is performed as the predetermined process.
  4.  前記制御部は、前記第1画像と前記第2画像とを用いて前記所定の処理として前記部品の方向、前記部品の形状及び前記部品の位置のうち1以上を判定する処理を行う、請求項1~3のいずれか1項に記載の実装装置。 The said control part performs the process which determines 1 or more among the direction of the said component, the shape of the said component, and the position of the said component as said predetermined process using the said 1st image and the said 2nd image. 4. The mounting apparatus according to any one of 1 to 3.
  5.  前記制御部は、前記第1の画像を撮像させたのち、前記第2の撮像条件として前記第1の撮像条件に比して短い露光時間の条件で前記第2の画像を撮像させる、請求項1~4のいずれか1項に記載の実装装置。 The said control part makes the said 2nd image be imaged on the conditions of short exposure time compared with the said 1st imaging condition as a said 2nd imaging condition after imaging the said 1st image. 5. The mounting apparatus according to any one of 1 to 4.
  6.  前記実装ヘッドは、2以上の前記採取部材を有し、
     前記制御部は、2以上の前記採取部材に採取されている部品が同一撮像範囲となるタイミングで前記第1画像及び前記第2画像を前記撮像部に撮像させる、請求項1~5のいずれか1項に記載の実装装置。
    The mounting head has two or more sampling members,
    6. The control unit according to claim 1, wherein the control unit causes the imaging unit to capture the first image and the second image at a timing at which components collected by two or more of the sampling members are in the same imaging range. The mounting apparatus according to Item 1.
  7.  前記実装ヘッドは、2以上の前記採取部材を有し、
     前記制御部は、2以上の前記採取部材に採取されている、光学特性が異なる複数種別の部品が同一撮像範囲となるタイミングで前記第1画像及び前記第2画像を前記撮像部に撮像させる、請求項1~6のいずれか1項に記載の実装装置。
    The mounting head has two or more sampling members,
    The control unit causes the imaging unit to capture the first image and the second image at a timing at which a plurality of types of components with different optical characteristics collected in the two or more sampling members are in the same imaging range. The mounting apparatus according to any one of claims 1 to 6.
  8.  前記実装ヘッドは、前記第1の撮像条件で用いられる第1条件基準マークと、前記第2の撮像条件で用いられる第2条件基準マークとを有し、
     前記制御部は、前記実装ヘッドに採取された部品と前記第1条件基準マークとを前記第1の撮像条件で撮像させ、前記実装ヘッドに採取された部品と前記第2条件基準マークとを前記第2の撮像条件で撮像させる、請求項1~7のいずれか1項に記載の実装装置。
    The mounting head has a first condition reference mark used in the first imaging condition and a second condition reference mark used in the second imaging condition,
    The control unit causes the component collected by the mounting head and the first condition reference mark to be imaged under the first imaging condition, and the component collected by the mounting head and the second condition reference mark are The mounting apparatus according to any one of claims 1 to 7, wherein imaging is performed under a second imaging condition.
  9.  前記実装ヘッドは、第1の部品と第1の部品に対して光学特性の異なる第2の部品とをそれぞれ採取する2以上の前記採取部材と、前記第1の部品の光学特性に適応する前記第1の撮像条件で用いられる第1条件基準マークと、前記第2の部品の光学特性に適応する前記第2の撮像条件で用いられる第2条件基準マークとを有し、
     前記制御部は、前記実装ヘッドに採取された部品と前記第1条件基準マークとを前記第1の撮像条件で撮像させ、前記実装ヘッドに採取された部品と前記第2条件基準マークとを前記第2の撮像条件で撮像させる、請求項1~8のいずれか1項に記載の実装装置。
    The mounting head adapts to the optical characteristics of the first component and the two or more sampling members that respectively sample the first component and the second component having different optical characteristics from the first component. A first condition reference mark used in the first imaging condition; and a second condition reference mark used in the second imaging condition adapted to the optical characteristics of the second component;
    The control unit causes the component collected by the mounting head and the first condition reference mark to be imaged under the first imaging condition, and the component collected by the mounting head and the second condition reference mark are The mounting apparatus according to any one of claims 1 to 8, wherein imaging is performed under a second imaging condition.
  10.  前記実装ヘッドは、第1位置基準マークと、該第1位置基準マークと所定の位置関係を有する第2位置基準マークとを有し、
     前記制御部は、前記実装ヘッドの移動中において、前記実装ヘッドに採取された部品と前記第1位置基準マークとを含む第1画像を前記第1の撮像条件で前記撮像部に撮像させる一方、前記実装ヘッドに採取された部品と前記第2位置基準マークとを含む第2画像を前記第2の撮像条件で前記撮像部に撮像させ、前記第1位置基準マークと前記第2位置基準マークとの位置関係に基づき前記第1画像と前記第2画像とを用いて前記所定の処理を行う、請求項1~9のいずれか1項に記載の実装装置。
    The mounting head includes a first position reference mark and a second position reference mark having a predetermined positional relationship with the first position reference mark,
    While the control unit moves the mounting head, the control unit causes the imaging unit to capture a first image including a component collected by the mounting head and the first position reference mark under the first imaging condition. A second image including the component collected by the mounting head and the second position reference mark is imaged by the imaging unit under the second imaging condition, and the first position reference mark, the second position reference mark, The mounting apparatus according to claim 1, wherein the predetermined process is performed using the first image and the second image based on the positional relationship.
  11.  前記実装ヘッドは、2以上の前記基準マークを有し、
     前記制御部は、他の前記基準マークが撮像範囲に入る前であって該他の基準マーク以外の特定の基準マークと前記部品とが同一撮像範囲に入ったあとに前記第1画像を前記撮像部に撮像させ、その後、前記特定の基準マークが撮像範囲から外れ、前記他の基準マークと前記部品とが同一撮像範囲に入ったあとに前記第2画像を前記撮像部に撮像させる、請求項1~10のいずれか1項に記載の実装装置。
    The mounting head has two or more fiducial marks,
    The control unit captures the first image before another reference mark enters the imaging range and after a specific reference mark other than the other reference mark and the component enter the same imaging range. The image is picked up by the image capturing unit, and then the second image is captured by the image capturing unit after the specific reference mark is out of the image capturing range and the other reference mark and the component are in the same image capturing range. 11. The mounting apparatus according to any one of 1 to 10.
  12.  前記制御部は、前記第1の画像を撮像させたのち、前記第2の撮像条件として前記第1の撮像条件に比して低い部品の撮像高さの条件で前記第2の画像を撮像させる、請求項1~11のいずれか1項に記載の実装装置。 After the first image is captured, the control unit causes the second image to be captured as a second imaging condition under a condition of an imaging height of a component lower than that of the first imaging condition. The mounting apparatus according to any one of claims 1 to 11.
  13.  前記実装ヘッドは、前記採取部材に対して外周側に前記基準マークが配設されている、請求項1~12のいずれか1項に記載の実装装置。 The mounting apparatus according to any one of claims 1 to 12, wherein the reference mark is disposed on an outer peripheral side of the mounting member with respect to the sampling member.
  14.  前記実装ヘッドは、該実装ヘッドの移動方向の前方側と後方側とに前記基準マークが配設されている、請求項1~13のいずれか1項に記載の実装装置。 The mounting apparatus according to any one of claims 1 to 13, wherein the mounting head is provided with the reference marks on a front side and a rear side in a moving direction of the mounting head.
  15.  1又は2以上の基準マークと、部品を採取する採取部材とを有し、採取した部品を基板上へ移動させる実装ヘッドと、画像を撮像する撮像部と、を備えた実装装置での撮像処理方法であって、
    (a)前記実装ヘッドが前記部品を採取し前記基板に実装する間に、前記実装ヘッドに採取された部品と前記基準マークとを含む第1画像を第1の撮像条件で前記撮像部に撮像させると共に、前記実装ヘッドに採取された部品と前記基準マークとを含む第2画像を第1の撮像条件と異なる第2の撮像条件で前記撮像部に撮像させるステップと、
    (b)前記第1画像と前記第2画像とを用いて所定の処理を行うステップと、
     を含む撮像処理方法。
    Imaging processing in a mounting apparatus that includes one or more reference marks and a sampling member that samples components, a mounting head that moves the collected components onto a substrate, and an imaging unit that captures an image A method,
    (A) While the mounting head picks up the component and mounts it on the substrate, the first image including the component picked up by the mounting head and the reference mark is picked up by the image pickup unit under a first image pickup condition. And causing the imaging unit to image a second image including the component collected by the mounting head and the reference mark under a second imaging condition different from the first imaging condition;
    (B) performing a predetermined process using the first image and the second image;
    An imaging processing method including:
  16.  1又は2以上の基準マークと、部品を採取する採取部材とを有し、採取した部品を基板上へ移動させる実装ヘッドを備えた実装装置に用いられる撮像ユニットであって、
     画像を撮像する撮像部と、
     前記実装ヘッドが前記部品を採取し前記基板に実装する間に、前記実装ヘッドに採取された部品と前記基準マークとを含む第1画像を第1の撮像条件で前記撮像部に撮像させると共に、前記実装ヘッドに採取された部品と前記基準マークとを含む第2画像を第1の撮像条件と異なる第2の撮像条件で前記撮像部に撮像させ、前記第1画像と前記第2画像とを用いて所定の処理を行う制御部と、
     を備えた撮像ユニット。
    An imaging unit used in a mounting apparatus having a mounting head that includes one or more reference marks and a sampling member for sampling a component and moves the sampled component onto a substrate,
    An imaging unit that captures an image;
    While the mounting head collects the component and mounts it on the substrate, the imaging unit captures a first image including the component collected by the mounting head and the reference mark under a first imaging condition, A second image including the component collected by the mounting head and the reference mark is captured by the imaging unit under a second imaging condition different from the first imaging condition, and the first image and the second image are captured. A control unit for performing a predetermined process using,
    An imaging unit comprising
PCT/JP2015/056957 2015-03-10 2015-03-10 Mounting device, image processing method and imaging unit WO2016143059A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/056957 WO2016143059A1 (en) 2015-03-10 2015-03-10 Mounting device, image processing method and imaging unit
JP2017504475A JP6612845B2 (en) 2015-03-10 2015-03-10 Mounting apparatus, imaging processing method, and imaging unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056957 WO2016143059A1 (en) 2015-03-10 2015-03-10 Mounting device, image processing method and imaging unit

Publications (1)

Publication Number Publication Date
WO2016143059A1 true WO2016143059A1 (en) 2016-09-15

Family

ID=56878576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056957 WO2016143059A1 (en) 2015-03-10 2015-03-10 Mounting device, image processing method and imaging unit

Country Status (2)

Country Link
JP (1) JP6612845B2 (en)
WO (1) WO2016143059A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016952A1 (en) * 2018-07-18 2020-01-23 株式会社Fuji Component recognition device and component recognition method
CN114287176A (en) * 2019-08-30 2022-04-05 株式会社富士 Working machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011950A (en) * 2003-06-18 2005-01-13 Yamaha Motor Co Ltd Surface mounting machine
JP2008211009A (en) * 2007-02-27 2008-09-11 Hitachi High-Tech Instruments Co Ltd Method of preparing component library data
JP2012064781A (en) * 2010-09-16 2012-03-29 Hitachi High-Tech Instruments Co Ltd Method for checking component recognition camera state, and electronic component mounting apparatus having function to check component recognition camera state
JP2013021196A (en) * 2011-07-13 2013-01-31 Fuji Mach Mfg Co Ltd Image processing apparatus of component mounting machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201911A (en) * 1998-01-13 1999-07-30 Meidensha Corp Inspecting device
JP4939391B2 (en) * 2007-03-28 2012-05-23 ヤマハ発動機株式会社 Mounting machine
JP5476609B2 (en) * 2011-03-04 2014-04-23 パナソニック株式会社 Component mounting system and component mounting method
JP5753020B2 (en) * 2011-08-03 2015-07-22 ヤマハ発動機株式会社 Component mounting equipment
JP6250876B2 (en) * 2012-12-20 2017-12-20 富士機械製造株式会社 Splicing error detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011950A (en) * 2003-06-18 2005-01-13 Yamaha Motor Co Ltd Surface mounting machine
JP2008211009A (en) * 2007-02-27 2008-09-11 Hitachi High-Tech Instruments Co Ltd Method of preparing component library data
JP2012064781A (en) * 2010-09-16 2012-03-29 Hitachi High-Tech Instruments Co Ltd Method for checking component recognition camera state, and electronic component mounting apparatus having function to check component recognition camera state
JP2013021196A (en) * 2011-07-13 2013-01-31 Fuji Mach Mfg Co Ltd Image processing apparatus of component mounting machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016952A1 (en) * 2018-07-18 2020-01-23 株式会社Fuji Component recognition device and component recognition method
JPWO2020016952A1 (en) * 2018-07-18 2021-05-13 株式会社Fuji Parts recognition device and parts recognition method
JP7063995B2 (en) 2018-07-18 2022-05-09 株式会社Fuji Parts recognition device and parts recognition method
CN114287176A (en) * 2019-08-30 2022-04-05 株式会社富士 Working machine
CN114287176B (en) * 2019-08-30 2024-03-12 株式会社富士 Working machine

Also Published As

Publication number Publication date
JPWO2016143059A1 (en) 2017-12-21
JP6612845B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6684792B2 (en) Mounting device, imaging processing method, and imaging unit
JP6522735B2 (en) Component mounting machine
JP6021560B2 (en) Parts inspection method and apparatus
JP6279581B2 (en) Mounting apparatus and component detection method
WO2015040667A1 (en) Mounting inspection device
JP4801558B2 (en) Mounting machine and component imaging method thereof
JP6712260B2 (en) Mounting device, imaging processing method, and imaging unit
JP2013115229A (en) Component mounting method and component mounting system
JP6795520B2 (en) Mounting device and imaging processing method
JP6612845B2 (en) Mounting apparatus, imaging processing method, and imaging unit
JP6828223B2 (en) Mounting device
WO2018158888A1 (en) Backup-pin recognizing method and component mounting device
JP6475165B2 (en) Mounting device
JP6789602B2 (en) Mounting device
JP6789603B2 (en) Mounting device
JP2010261965A (en) Component recognition device, surface mounting machine, and component inspection device
JP2009212373A (en) Component mounting apparatus
JP5977579B2 (en) Board work equipment
JPWO2018122903A1 (en) Mounting device, setting device, mounting system, mounting method and setting method
WO2016151797A1 (en) Mounting device and mounting method
JP6482165B2 (en) Recognition device and recognition method
JP4697176B2 (en) Component take-out inspection apparatus and method for component mounting apparatus
JP6423193B2 (en) Mounting apparatus and mounting method
JP6831460B2 (en) Component mounting device and component data creation method
JP2005175315A (en) Part recognizing device, surface mounting machine mounted therewith and part testing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884551

Country of ref document: EP

Kind code of ref document: A1