WO2016138708A1 - 电极及其制作方法、阵列基板及其制作方法 - Google Patents

电极及其制作方法、阵列基板及其制作方法 Download PDF

Info

Publication number
WO2016138708A1
WO2016138708A1 PCT/CN2015/083729 CN2015083729W WO2016138708A1 WO 2016138708 A1 WO2016138708 A1 WO 2016138708A1 CN 2015083729 W CN2015083729 W CN 2015083729W WO 2016138708 A1 WO2016138708 A1 WO 2016138708A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microlens structure
array
electrode layer
metal electrode
Prior art date
Application number
PCT/CN2015/083729
Other languages
English (en)
French (fr)
Inventor
王东方
闫梁臣
上官荣刚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/907,896 priority Critical patent/US20170018714A1/en
Publication of WO2016138708A1 publication Critical patent/WO2016138708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an electrode, a method for fabricating the same, an array substrate, and a method of fabricating the same.
  • an electrode as shown in FIG. 1 is generally used as the bottom electrode, as shown in FIG.
  • the electrode includes a metal electrode layer 10, a microlens structure layer 11 formed on the bottom electrode, and a transparent electrode layer 12 (usually made of an indium tin oxide (ITO) material) formed on the microlens structure layer.
  • the metal electrode layer 10 is generally an electrode layer having a reflective function. After the light is irradiated onto the metal electrode layer 10, the light is reflected by the metal electrode layer 10.
  • the reflected light passes through the respective microlenses in the microlens structure layer 11, due to the micro
  • the light diffusing through the transparent electrode layer 12 is greatly increased with respect to the absence of the microlens structure layer 12 due to the diffuse reflection of the lens, the microlens action, and the decrease in the refractive index caused by the nanoparticles.
  • the microlens structure layer 2 is generally fabricated by forming an indium tin oxide ITO material layer on the metal electrode layer 10, and then etching the ITO material layer using a solution to form a micro layer including a plurality of microlens structures.
  • Lens structure layer 11 In order to etch the ITO material layer, it is generally required to use a solution having a stronger acidity, but the acidic acid solution may cause the metal electrode layer 10 under the ITO material layer to be etched, which affects the conductivity and reflection properties of the metal electrode layer 10. .
  • the present invention provides an electrode comprising: a metal electrode layer, a microlens structure layer formed on the metal electrode layer, and a transparent electrode layer formed on the microlens structure layer; wherein the microlens structure layer Made of zinc oxynitride (ZnON) material.
  • ZnON zinc oxynitride
  • the height of the microlens structure in the microlens structure layer is 50-500 nm.
  • the transparent electrode layer is made of indium tin oxide (ITO) material, indium zinc oxide (IZO) material, indium tin zinc oxide (InSnZnO) ITZO material or indium gallium zinc oxide (IGZO) material.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • InSnZnO indium tin zinc oxide
  • IGZO indium gallium zinc oxide
  • the present invention also provides an array substrate comprising a substrate, an array of transistors formed on the substrate, an array of electroluminescent elements formed over the array of transistors; wherein the array of electroluminescent elements
  • the bottom electrode is the electrode according to any one of the above.
  • the invention also provides a method for manufacturing an electrode, comprising:
  • a transparent electrode layer is formed on the microlens structure layer.
  • the thickness of the ZnON material layer formed on the metal electrode layer is 50-500 nm.
  • the etching the formed ZnON material layer to form the microlens structure layer comprises:
  • the ZnON material layer is etched using an alkaline solution to form a microlens structure layer.
  • the etching the formed ZnON material layer to form the microlens structure layer comprises:
  • the ZnON material layer is etched using a hydrochloric acid, acetic acid or oxalic acid solution having a mass ratio of 0.1% to 5% to form a microlens structure layer.
  • forming the ZnON material layer on the metal electrode layer comprises:
  • the deposited ZnON material is annealed at a temperature of 200-500 degrees Celsius to obtain a ZnON material layer.
  • depositing the ZnON material on the metal electrode layer comprises:
  • a ZnON material is deposited on the metal electrode layer by a sputtering process.
  • the transparent electrode layer is made of an ITO material, an IZO material, an ITZO material or an IGZO material.
  • the present invention also provides a method for fabricating an array substrate, comprising:
  • the bottom electrode of the electroluminescent element array is fabricated by the method described in any of the above.
  • ZnON is used as a material for forming a microlens structural layer
  • an alkaline solution or a weakly acidic solution can be used, so that the metal electrode layer can be alleviated or even prevented from being corroded.
  • FIG. 1 is a schematic structural view of an electrode in the prior art
  • FIG. 2 is a schematic flow chart of a method for fabricating an electrode according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an electrode according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for fabricating an electrode. As shown in FIG. 2, the method may include the following processes:
  • Step S11 forming a ZnON material layer on the metal electrode layer
  • Step S12 etching the formed ZnON material layer to form a microlens structure layer
  • Step S13 forming a transparent electrode layer on the microlens structure layer.
  • ZnON is used as a material for forming a microlens structure layer, and since ZnON can be etched by using a solution that is alkaline or weakly acidic, the technical solution provided by the present invention is in the manner of etching.
  • an alkaline solution or a weakly acidic solution can be used, thereby being able to alleviate or even prevent the metal electrode layer from being corroded.
  • the above method may further include a step S01 to form a metal electrode layer.
  • the metal electrode layer can be formed using a metal material having a higher reflectance and having a lower resistivity.
  • a metal electrode layer is formed using AlNd or AlNiB.
  • a corresponding metal material may be deposited on the substrate of the electrode by a sputtering process.
  • the substrate herein may be referred to as including a transistor formed to control the light emission of the OLED.
  • a transparent substrate of the array may be referred to as including a transistor formed to control the light emission of the OLED.
  • the thickness of the ZnON material layer formed on the metal electrode layer may be 50-500 nm. Such a height enables a better reflectance of the reflective electrode.
  • the step S11 may specifically include: depositing a ZnON material on the metal electrode layer; annealing the deposited ZnON material at a temperature of 200-500 degrees Celsius to obtain a ZnON material layer.
  • the inventors of the present invention found that the ZnON material layer obtained by annealing the ZnON material is more easily etched, and can make the microlens formed in the subsequent process more uniform and have a better shape. Further, the transmittance of light reflected by the metal electrode layer in the transparent electrode layer is further increased.
  • a ZnON material may be deposited on the metal electrode layer by a sputtering process.
  • the ZnON material can be deposited on the metal electrode layer, and the specific process does not affect the implementation of the present invention, the corresponding technical solutions should also fall within the scope of the present invention.
  • the ZnON material layer may be etched using an alkaline solution to form a microlens structure layer.
  • the alkaline solution herein generally refers to a strongly alkaline solution. Specifically, it may be a Ca(OH) 2 solution, a KOH solution, a NaOH solution or the like. These solutions do not corrode the metal electrode layer under the ZnON material layer, and the damage of the metal electrode layer can be well avoided.
  • the alkaline solution herein may specifically be a Ca(OH) 2 solution having a mass ratio of 0.1% to 5%, a KOH solution, or a NaOH solution.
  • the ZnON material layer may also be etched using a weakly acidic solution to form a microlens structure.
  • a hydrochloric acid, acetic acid or oxalic acid solution having a mass ratio of 0.1% to 5% may be used.
  • the ZnON material layer is etched to form a microlens structure layer.
  • These acidic solutions have a relatively high pH value and a slower reflection rate with the metal electrode layer, which can reduce the degree of corrosion of the metal electrode layer.
  • the transparent electrode layer may be formed using an ITO material, an IZO material, an ITZO material, or an IGZO material.
  • the present invention also provides a method of fabricating an array substrate, the method comprising the steps of forming a transistor array on a substrate and forming an array of electroluminescent elements on the transistor array, wherein an electro-deformation is formed on the transistor array
  • the bottom electrode of the electroluminescent element array can be fabricated by the method described in any of the above.
  • the step of forming a transistor array on the substrate may include: providing a transparent Substrate, and cleaning the transparent substrate by a standard method; then depositing 50-400 nm Mo as a gate material layer by a sputtering process or an evaporation process, and then patterning to form a gate electrode pattern; then on the gate pattern SiOx (x is a positive integer) gate insulating layer with a thickness of 100-500 nm is prepared by a chemical vapor deposition process; IGZO having a thickness of 10 to 80 nm is deposited on the SiOx gate insulating layer by a sputtering process, and light is required as needed Etching, etching, forming an active layer pattern; depositing SiOx having a thickness of 200 nm on a conductive layer pattern by a chemical vapor deposition process or a sputtering process, and depositing SiNy or SiOmNn (y, m, having a thickness of 100 nm on SiO
  • Etching and etching to form a source-drain electrode pattern then depositing SiOx or SiOxNy having a thickness of 100-500 nm as a passivation layer on the source-drain electrode pattern by a chemical vapor deposition process or a sputtering process, as needed Patterning; spin-coated resin layer and then patterned to form the easy to form a metal electrode layer and the planar surface to prevent moisture in the air into the transistor array.
  • the step of forming the array of electroluminescent elements may specifically include:
  • a transparent electrode layer is formed on the microlens structure layer.
  • a via hole may be formed in the resin layer, and the metal electrode layer is connected to the source/drain electrode pattern in the transistor array through the via hole.
  • the formed metal electrode layer, microlens structure layer, and transparent electrode layer serve as anodes of the organic electroluminescence element.
  • an organic emission layer may be formed after forming a top electrode pattern on another transparent substrate, and the other transparent substrate and the structure formed thereon are used as a cap to seal the array substrate formed thereby, thereby forming A complete array of organic electroluminescent elements.
  • the step of forming an organic emission layer and a top electrode is not included.
  • the manufacturing method provided by the present invention may not include the step of forming the organic emission layer and the top electrode.
  • the present invention also provides an electrode, as shown in FIG. 3, the electrode may include: a metal electrode layer 10, a microlens structure layer 11 formed on the metal electrode layer, and a microlens formed on the metal film layer The transparent electrode layer 12 on the structural layer; wherein the microlens structure layer 11 is made of a ZnON material.
  • the microlens structure layer in the electrode provided by the invention is made of ZnON material
  • the ZnON material layer can be etched by using an alkaline solution or a weakly acidic solution to form a microlens structure layer, which can slow or avoid the electrode.
  • the metal electrode layer is etched.
  • the height of the microlens structure in the microlens structure layer 11 herein may be specifically 50-500 nm. Such a height enables a better reflectance of the reflective electrode.
  • the transparent electrode layer 12 can be made of an ITO material, an IZO material, an ITZO material, or an IGZO material.
  • the present invention also provides an array substrate, as shown in FIG. 4, the array substrate may include a transparent substrate 1, and a transistor array and an organic electroluminescent element array formed on the transparent substrate 1, wherein
  • the transistor array includes: a gate pattern 2 formed on the base substrate 1, a gate insulating layer 3 formed over the gate pattern 2, and an active layer pattern 4 formed over the gate insulating layer 3, formed on the active layer pattern 4 and an etch barrier layer 5 over the gate insulating layer 3, forming a source-drain electrode pattern 6 over the etch barrier layer 5.
  • a passivation layer 7 formed over the source/drain electrode pattern 6, and a resin layer 8 formed over the passivation layer 7 are formed.
  • the organic electroluminescent element array includes a bottom electrode 9 formed on the resin layer 8, the bottom electrode 9 including a metal electrode layer 10, a microlens structure layer 11 formed on the bottom electrode, and formed on the microlens structure layer Transparent electrode layer 12.
  • the array substrate may be a WOLED (White OLED, white OLED) + COA (Color On Array) substrate, or a PLED (polymer light-emitting diode). ) array substrate.
  • WOLED White OLED, white OLED
  • COA Color On Array
  • PLED polymer light-emitting diode

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电极及其制作方法、阵列基板及其制作方法。电极的制作方法包括:在金属电极层(10)上形成ZnON材料层;对所形成的ZnON材料层进行刻蚀形成微透镜结构层(11);在该微透镜结构层(11)上形成透明电极层(12)。由于采用ZnON材料作为用于形成微透镜结构层的材料,能够在通过刻蚀的方式形成微透镜结构时,使用碱性或者酸性较弱的溶液,从而能够阻止金属电极层被腐蚀。

Description

电极及其制作方法、阵列基板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种电极及其制作方法、阵列基板及其制作方法。
背景技术
在有机电致发光器件(Organic Light-Emitting Diode,OLED)显示面板中,为了提高作底电极的功函和反射率,通常会采用如图1所示的电极作为底电极,如图1所示,该电极包括金属电极层10、形成在底电极上的微透镜结构层11、形成在所述微透镜结构层上的透明电极层12(通常采用氧化铟锡(ITO)材料制作)。其中金属电极层10一般为具有反射功能的电极层,光线在照射到该金属电极层10之后被金属电极层10反射,反射的光线在经过微透镜结构层11中的各个微透镜时,由于微透镜的漫反射作用、微透镜作用和纳米粒子造成的折射系数降低等原因,使得透过透明电极层12的光线相对于没有设置微透镜结构层12时大幅提高。
现有技术中,微透镜结构层2一般通过如下工艺制作:在金属电极层10上形成氧化铟锡ITO材料层,之后使用溶液对ITO材料层进行刻蚀,形成包含多个微透镜结构的微透镜结构层11。为了对ITO材料层进行刻蚀,一般需要使用酸性较强的溶液,但是酸性过强的溶液又可能导致ITO材料层下方的金属电极层10被刻蚀,影响金属电极层10的导电和反射性能。
发明内容
本发明的一个目的在于提供一种能够阻止电极中的金属电极层被刻蚀的方法。
本发明提供了一种电极,包括:金属电极层、形成在所述金属电极层上的微透镜结构层、形成在所述微透镜结构层上的透明电极层;其中,所述微透镜结构层采用氮氧化锌(ZnON)材料制作。
进一步的,所述微透镜结构层中微透镜结构的高度为50-500nm。
进一步的,所述透明电极层采用氧化铟锡(ITO)材料、氧化铟锌 (IZO)材料、氧化铟锡锌(InSnZnO)ITZO材料或氧化铟镓锌(IGZO)材料制作。
本发明还提供了一种阵列基板,包括衬底,形成在所述衬底上的晶体管阵列,形成在所述晶体管阵列之上的电致发光元件阵列;其中,所述电致发光元件阵列中的底电极为上述任一项所述的电极。
本发明还提供了一种电极的制作方法,包括:
在金属电极层上形成ZnON材料层;
对所形成的ZnON材料层进行刻蚀形成微透镜结构层;
在所述微透镜结构层上形成透明电极层。
进一步的,在所述金属电极层上形成的ZnON材料层的厚度为50-500nm。
进一步的,所述对所形成的ZnON材料层进行刻蚀形成微透镜结构层包括:
使用碱性溶液对ZnON材料层进行刻蚀形成微透镜结构层。
进一步的,所述对所形成的ZnON材料层进行刻蚀形成微透镜结构层包括:
使用质量占比为0.1%-5%的盐酸、醋酸或者草酸溶液对ZnON材料层进行刻蚀形成微透镜结构层。
进一步的,所述在金属电极层上形成ZnON材料层包括:
在所述金属电极层上沉积ZnON材料;
在200-500摄氏度的温度下对沉积的ZnON材料退火得到ZnON材料层。
进一步的,所述在金属电极层上沉积ZnON材料包括:
通过溅射工艺在所述金属电极层上沉积ZnON材料。
进一步的,所述透明电极层采用ITO材料、IZO材料、ITZO材料或IGZO材料制作。
本发明还提供了一种阵列基板的制作方法,其特征在于,包括:
在衬底上形成晶体管阵列和在所述晶体管阵列上形成电致发光元件阵列的步骤;
其中,在所述晶体管阵列上形成电致发光元件阵列时,采用上述任一项所述的方法制作所述电致发光元件阵列的底电极。
本发明中,由于采用ZnON作为用于形成微透镜结构层的材料, 能够在通过刻蚀的方式形成微透镜结构时,使用碱性溶液或者酸性较弱的溶液,从而能够减缓甚至避免金属电极层被腐蚀。
附图说明
图1为现有技术中一种电极的结构示意图;
图2为本发明一实施例提供的一种电极的制作方法的流程示意图;
图3为本发明一实施例提供的一种电极的结构示意图;
图4为本发明一实施例提供的一种阵列基板的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他的实施例,都属于本发明保护的范围。
本发明一实施例提供了一种电极的制作方法,如图2所示,该方法可以包括如下流程:
步骤S11,在金属电极层上形成ZnON材料层;
步骤S12,对所形成的ZnON材料层进行刻蚀形成微透镜结构层;
步骤S13,在所述微透镜结构层上形成透明电极层。
本发明实施例中,采用ZnON作为用于形成微透镜结构层的材料,由于ZnON能够采用碱性或者酸性较弱的溶液进行刻蚀,则本发明提供的技术方案中,在通过刻蚀的方式形成微透镜结构的过程中,可以使用碱性溶液或者酸性较弱的溶液,从而能够减缓甚至避免金属电极层被腐蚀。
在步骤S11之前,上述的方法还可以包括图中未示出的:步骤S01,形成金属电极层。具体的,可以采用具有较高反射率、且具有较低电阻率的金属材料形成金属电极层。比如使用AlNd或者AlNiB形成金属电极层。进一步的,在具体实施时,可以采用溅射工艺将相应的金属材料沉积在该电极的基底上。这里的电极作为OLED显示器件的底电极时,这里的基底可以是指包括形成有用于控制OLED发光的晶体管 阵列的透明衬底。
在具体实施时,上述的步骤S11中,在所述金属电极层上形成的ZnON材料层的厚度可以为50-500nm。这样的高度能够使得反射电极的具有更佳的反射率。
在具体实施时,上述的步骤S11可以具体包括:在所述金属电极层上沉积ZnON材料;在200-500摄氏度的温度下对沉积的ZnON材料退火得到ZnON材料层。在实现本发明的过程中,本申请发明人发现,对ZnON材料进行退火得到的ZnON材料层更容易被刻蚀,且能够使得后续工艺中形成的微透镜更加均匀,具有更好的形态,能够进一步提高光线经金属电极层反射的光线在透明电极层的透过率。
在具体实施时,可以通过溅射工艺在所述金属电极层上沉积ZnON材料。当然,只要能够在金属电极层上沉积ZnON材料,具体采用何种工艺并不会影响本发明的实施,相应的技术方案也应该落入本发明的保护范围。
在具体实施时,在步骤S12中,可以使用碱性溶液对ZnON材料层进行刻蚀形成微透镜结构层。这里的碱性溶液一般是指强碱性溶液。具体来说,可以为Ca(OH)2溶液,KOH溶液,NaOH溶液等,这些溶液不会腐蚀ZnON材料层下面的金属电极层,能够很好的避免金属电极层的损坏。在具体实施时,这里的碱性溶液可以具体为质量占比为0.1%-5%的Ca(OH)2溶液,KOH溶液,NaOH溶液。
另外在实际应用中,也可以使用酸性较弱的溶液对ZnON材料层进行刻蚀以形成微透镜结构,具体来说,可以使用质量占比为0.1%-5%的盐酸、醋酸或者草酸溶液对ZnON材料层进行刻蚀形成微透镜结构层。这些酸性溶液具有相对较高的PH值,与金属电极层的反映速率较慢,能够降低金属电极层被腐蚀的程度。
在具体实施时,在上述的步骤S13中,可以采用ITO材料、IZO材料、ITZO材料或IGZO材料制作所述透明电极层。
本发明还提供了一种阵列基板的制作方法,该方法可以包括在基底上形成晶体管阵列和在所述晶体管阵列上形成电致发光元件阵列的步骤,其中,在所述晶体管阵列上形成电致发光元件阵列时,可以采用上述任一项所述的方法制作所述电致发光元件阵列的底电极。
具体的,在基底上形成晶体管阵列的步骤可以包括:提供一透明 衬底,并对透明衬底采用标准方法进行清洗;之后用溅射工艺或蒸镀工艺沉积50~400nm Mo作为栅极材料层,之后进行图形化形成栅电极图形;之后在栅极图形之上利用化学气相沉淀工艺制备厚度为100~500nm的SiOx(x为正整数)栅极绝缘层;在SiOx栅极绝缘层之上采用溅射工艺沉积厚度为10~80nm的IGZO,并根据需要进行光刻、刻蚀,形成有源层图形;在有源层图形之上采用化学气相沉淀工艺或溅射工艺沉积厚度为200nm的SiOx、在SiOx上沉积厚度为100nm的SiNy或SiOmNn(y、m、n均为也为正整数)作为刻蚀阻挡层,根据需要进行图形化;在刻蚀阻挡层上采用溅射工艺制备厚度为50~400nm Mo作为源漏电极膜,并根据所需图形进行光刻和刻蚀,形成源漏电极图形;之后在源漏电极图形之上采用化学气相沉淀工艺或溅射工艺沉积厚度为100~500nm的SiOx或SiOxNy作为钝化层,根据需要进行图形化;之后旋涂树脂层并图形化,以形成便于形成金属电极层的平坦表面并防止空气中的水汽进入到晶体管阵列。
在形成晶体管阵列之后,形成电致发光元件阵列的步骤可以具体包括:
在树脂层上形成金属电极层;
在金属电极层上形成ZnON材料层;
对所形成的ZnON材料层进行刻蚀形成微透镜结构层;
在所述微透镜结构层上形成透明电极层。
在具体实施时,在上述的树脂层中还可以形成有过孔,金属电极层通过所述过孔与晶体管阵列中的源漏电极图形相连。此时,所形成的金属电极层、微透镜结构层和透明电极层作为有机电致发光元件的阳极。
在实际应用中,在阵列基板上可能仅形成有机电致发光元件阵列的一部分,而不形成有机发射层和顶电极。在具体应用中,可以在另一透明衬底上形成顶电极图形之后形成有机发射层,将该另一透明衬底以及其上形成的结构作为盖板对上述形成的阵列基板进行密封,从而形成完整的有机电致发光元件阵列。当本发明提供的方法用于制作这样的阵列基板时,不包括形成有机发射层和顶电极的步骤。
此时,本发明提供的制作方法可以不包括形成有机发射层和顶电极的步骤。
另一方面,本发明还提供了一种电极,如图3所示,该电极可以包括:金属电极层10、形成在所述金属电极层上的微透镜结构层11、形成在所述微透镜结构层上的透明电极层12;其中,所述微透镜结构层11采用ZnON材料制作。
由于本发明提供的电极中微透镜结构层采用ZnON材料制作,能够在制作时,采用碱性溶液或者酸性较弱的溶液对ZnON材料层进行刻蚀形成微透镜结构层,能够减缓或者避免电极中的金属电极层被刻蚀。
在具体实施时,这里的微透镜结构层11中微透镜结构的高度可以具体为50-500nm。这样的高度能够使得反射电极的具有更佳的反射率。
在具体实施时,所述透明电极层12可以采用ITO材料、IZO材料、ITZO材料或IGZO材料制作。
另一方面,本发明还提供了一种阵列基板,如图4所示,该阵列基板可以包括透明衬底1、以及形成在透明衬底1上的晶体管阵列和有机电致发光元件阵列,其中晶体管阵列包括:形成在基底衬底1上的栅极图形2,形成在栅极图形2上方的栅绝缘层3,形成在栅绝缘层3上方的有源层图形4,形成在有源层图形4和栅绝缘层3之上的刻蚀阻挡层5,形成在刻蚀阻挡层5上方的源漏电极图形6。形成在源漏电极图形6之上的钝化层7,以及形成在钝化层7之上的树脂层8。有机电致发光元件阵列包括形成在树脂层8之上的底电极9,该底电极9包括金属电极层10、形成在底电极上的微透镜结构层11、形成在所述微透镜结构层上的透明电极层12。
实际应用中,上述的阵列基板可以为WOLED(White OLED,白光OLED)+COA(Color On Array,彩膜制作在基板上)基板,或者也可以为PLED(polymer light-emitting diode,高分子发光二极管)等阵列基板。
以上所述,仅为本发明的具体实施方式,但是,本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替代,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种电极,其特征在于,包括:金属电极层、形成在所述金属电极层上的微透镜结构层、形成在所述微透镜结构层上的透明电极层;其中,所述微透镜结构层采用氮氧化锌材料制作。
  2. 如权利要求1所述的电极,其特征在于,所述微透镜结构层中微透镜结构的高度为50-500nm。
  3. 如权利要求1所述的电极,其特征在于,所述透明电极层采用氧化铟锡材料、氧化铟锌材料、氧化铟锡锌材料或氧化铟镓锌材料制作。
  4. 一种阵列基板,其特征在于,包括衬底,形成在所述衬底上的晶体管阵列,形成在所述晶体管阵列之上的电致发光元件阵列;其中,所述电致发光元件阵列中的底电极为如权利要求1-3任一项所述的电极。
  5. 一种电极的制作方法,其特征在于,包括:
    在金属电极层上形成氮氧化锌材料层;
    对所形成的氮氧化锌材料层进行刻蚀形成微透镜结构层;
    在所述微透镜结构层上形成透明电极层。
  6. 如权利要求5所述的方法,其特征在于,在所述金属电极层上形成的氮氧化锌材料层的厚度为50-500nm。
  7. 如权利要求5所述的方法,其特征在于,所述对所形成的氮氧化锌材料层进行刻蚀形成微透镜结构层包括:
    使用碱性溶液对氮氧化锌材料层进行刻蚀形成微透镜结构层。
  8. 如权利要求5所述的方法,其特征在于,所述对所形成的氮氧化锌材料层进行刻蚀形成微透镜结构层包括:
    使用质量占比为0.1%-5%的盐酸、醋酸或者草酸溶液对氮氧化锌材料层进行刻蚀形成微透镜结构层。
  9. 如权利要求5所述的方法,其特征在于,所述在金属电极层上形成氮氧化锌材料层包括:
    在所述金属电极层上沉积氮氧化锌材料;
    在200-500摄氏度的温度下对沉积的氮氧化锌材料退火得到氮氧化锌材料层。
  10. 如权利要求9所述的方法,其特征在于,所述在金属电极层上沉积氮氧化锌材料包括:
    通过溅射工艺在所述金属电极层上沉积氮氧化锌材料。
  11. 如权利要求5所述的方法,其特征在于,所述透明电极层采用氧化铟锡材料、氧化铟锌材料、氧化铟锡锌材料或氧化铟镓锌材料制作。
  12. 一种阵列基板的制作方法,其特征在于,包括:
    在衬底上形成晶体管阵列和在所述晶体管阵列上形成电致发光元件阵列的步骤;
    其中,在所述晶体管阵列上形成电致发光元件阵列时,采用如权利要求6-11任一项所述的方法制作所述电致发光元件阵列的底电极。
PCT/CN2015/083729 2015-03-03 2015-07-10 电极及其制作方法、阵列基板及其制作方法 WO2016138708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,896 US20170018714A1 (en) 2015-03-03 2015-07-10 An electrode and manufacturing method thereof, an array substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510094993.8A CN104701350B (zh) 2015-03-03 2015-03-03 电极及其制作方法、阵列基板及其制作方法
CN201510094993.8 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016138708A1 true WO2016138708A1 (zh) 2016-09-09

Family

ID=53348284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083729 WO2016138708A1 (zh) 2015-03-03 2015-07-10 电极及其制作方法、阵列基板及其制作方法

Country Status (3)

Country Link
US (1) US20170018714A1 (zh)
CN (1) CN104701350B (zh)
WO (1) WO2016138708A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701350B (zh) * 2015-03-03 2017-03-01 京东方科技集团股份有限公司 电极及其制作方法、阵列基板及其制作方法
CN107507920B (zh) * 2017-09-22 2024-05-24 京东方科技集团股份有限公司 有机电致发光二极管、显示基板及其制作方法、显示装置
CN109973935A (zh) * 2019-03-27 2019-07-05 京东方科技集团股份有限公司 Oled发光装置和车尾灯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057417A1 (en) * 2001-09-25 2003-03-27 Korea Advanced Institute Of Science And Technology Photonic crystal organic light emitting device having high extraction efficiency
CN101308859A (zh) * 2007-05-17 2008-11-19 东部高科股份有限公司 图像传感器及其制造方法
CN103579435A (zh) * 2012-08-08 2014-02-12 广东量晶光电科技有限公司 一种GaN基功率型发光二极管及其制备方法
CN104701350A (zh) * 2015-03-03 2015-06-10 京东方科技集团股份有限公司 电极及其制作方法、阵列基板及其制作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223094B2 (ja) * 1998-06-12 2009-02-12 株式会社半導体エネルギー研究所 電気光学表示装置
JP2001033602A (ja) * 1999-07-22 2001-02-09 Seiko Epson Corp マイクロレンズ基板、液晶パネル用対向基板、液晶パネルおよび投射型表示装置
US7511419B2 (en) * 2002-05-14 2009-03-31 Casio Computer Co., Ltd. Luminescent panel having a reflecting film to reflect light outwardly which is shaped to condense the reflected light
JP3938099B2 (ja) * 2002-06-12 2007-06-27 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、マイクロレンズアレイ板、電気光学装置及び電子機器
JP4230187B2 (ja) * 2002-09-25 2009-02-25 シャープ株式会社 マイクロレンズアレイの製造方法およびマイクロレンズアレイの製造装置
KR100581831B1 (ko) * 2004-02-05 2006-05-23 엘지전자 주식회사 발광 다이오드
JP2005259469A (ja) * 2004-03-10 2005-09-22 Sharp Corp 有機エレクトロルミネッセンス表示装置
JP4340199B2 (ja) * 2004-07-09 2009-10-07 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
JP5530087B2 (ja) * 2008-10-17 2014-06-25 ユー・ディー・シー アイルランド リミテッド 発光素子
EP2359109B1 (en) * 2008-11-19 2017-08-23 BAE Systems PLC Mirror structure
KR102221207B1 (ko) * 2009-09-04 2021-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 제작하기 위한 방법
KR101125395B1 (ko) * 2009-10-28 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 제조방법
US9722212B2 (en) * 2011-02-14 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Lighting device, light-emitting device, and manufacturing method and manufacturing apparatus thereof
CN104040722B (zh) * 2012-01-13 2017-05-17 应用材料公司 通过低温工艺制造的薄膜半导体
WO2013190621A1 (ja) * 2012-06-18 2013-12-27 パイオニア株式会社 エレクトロルミネッセンス素子
CN103258966B (zh) * 2013-05-27 2016-05-18 上海和辉光电有限公司 用于有机发光装置的反射阳极电极及其制造方法
US20150257283A1 (en) * 2014-03-06 2015-09-10 Carolyn Rae Ellinger Forming vertically spaced electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057417A1 (en) * 2001-09-25 2003-03-27 Korea Advanced Institute Of Science And Technology Photonic crystal organic light emitting device having high extraction efficiency
CN101308859A (zh) * 2007-05-17 2008-11-19 东部高科股份有限公司 图像传感器及其制造方法
CN103579435A (zh) * 2012-08-08 2014-02-12 广东量晶光电科技有限公司 一种GaN基功率型发光二极管及其制备方法
CN104701350A (zh) * 2015-03-03 2015-06-10 京东方科技集团股份有限公司 电极及其制作方法、阵列基板及其制作方法

Also Published As

Publication number Publication date
CN104701350B (zh) 2017-03-01
CN104701350A (zh) 2015-06-10
US20170018714A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US9881985B2 (en) OLED device, AMOLED display device and method for manufacturing same
US10347869B2 (en) Organic light-emitting display device and method of manufacturing the same
KR101801349B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
TWI549329B (zh) 有機發光裝置及其製造方法
US8519612B2 (en) Organic light emitting diode display device and method of fabricating the same
WO2016206150A1 (zh) Amoled显示器件的制作方法及其结构
US20200152719A1 (en) Organic light-emitting display apparatus and method of manufacturing the same
CN104538563B (zh) 阵列基板及其制作方法、显示面板及显示装置
US20160365539A1 (en) Organic light emitting display device and method for packaging organic light emitting diode
US20140326990A1 (en) Array substrate, method for fabricating the same and display device
US10290822B2 (en) Thin film transistor including recessed gate insulation layer and its manufacturing method, array substrate, and display device
WO2016138708A1 (zh) 电极及其制作方法、阵列基板及其制作方法
CN104241394A (zh) 一种薄膜晶体管及相应的制备方法、显示基板和显示装置
TW201123442A (en) Organic light emitting display and manufacturing method thereof
US9799856B2 (en) Method of manufacturing organic light emitting diode with light-scattering layer
US7867797B2 (en) Method of fabricating organic light emitting diode display device
US9818810B2 (en) OLED and fabrication method thereof, and display apparatus
CN108511502B (zh) 一种阵列基板、显示面板、显示装置及阵列基板的制备方法
WO2020113749A1 (zh) Oled 显示面板的制作方法及 oled 显示面板
US20190123278A1 (en) Stripping method for a flexible substrate and flexible substrate
KR102235076B1 (ko) 박막트랜지스터 어레이 기판 및 그 제조방법
TWI566416B (zh) 薄膜電晶體基板及其製作方法
US12022679B2 (en) Display apparatus and method of manufacturing the display apparatus
KR101436548B1 (ko) 유기발광소자용 광추출 기판 및 그 제조방법
WO2015176487A1 (zh) 柔性显示基板及其制造方法、和柔性显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907896

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15883765

Country of ref document: EP

Kind code of ref document: A1