WO2016136682A1 - 可変速発電電動装置および可変速発電電動システム - Google Patents

可変速発電電動装置および可変速発電電動システム Download PDF

Info

Publication number
WO2016136682A1
WO2016136682A1 PCT/JP2016/055119 JP2016055119W WO2016136682A1 WO 2016136682 A1 WO2016136682 A1 WO 2016136682A1 JP 2016055119 W JP2016055119 W JP 2016055119W WO 2016136682 A1 WO2016136682 A1 WO 2016136682A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
phase
terminals
armature winding
power converter
Prior art date
Application number
PCT/JP2016/055119
Other languages
English (en)
French (fr)
Inventor
明 阪東
理 名倉
Original Assignee
日立三菱水力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立三菱水力株式会社 filed Critical 日立三菱水力株式会社
Priority to US15/553,062 priority Critical patent/US10536104B2/en
Priority to JP2017502359A priority patent/JP6243083B2/ja
Priority to CN201680012006.8A priority patent/CN107408899B/zh
Priority to EP16755428.6A priority patent/EP3264583B1/en
Priority to CN201910575109.0A priority patent/CN110266243B/zh
Priority to EP19186876.9A priority patent/EP3576282B1/en
Priority to ES16755428T priority patent/ES2772831T3/es
Publication of WO2016136682A1 publication Critical patent/WO2016136682A1/ja
Priority to US16/707,629 priority patent/US10784808B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/50Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by changing over from asynchronous to synchronous operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a variable speed generator-motor apparatus in which a modular multi-level PWM power converter (hereinafter referred to as “MMC converter” in the present invention) and an AC rotating electric machine are connected, and the variable-speed generator-motor apparatus.
  • MMC converter modular multi-level PWM power converter
  • the present invention relates to the variable speed generator motor system used.
  • the circuit of the MMC converter includes a unit converter that generates a desired voltage by controlling a modulation rate of a PWM converter using a voltage source characteristic energy storage element such as a capacitor or a storage battery as a voltage source.
  • the voltage of the energy storage element of the unit converter varies due to charging / discharging with a period determined by the AC frequency.
  • the unit converters are connected in series to form a two-terminal arm, the first terminal of this arm is connected to each phase terminal of the AC power supply, and the second terminal connected in a star shape is connected to the terminal of the DC power supply.
  • the arm connected to each phase generates the desired AC frequency voltage and controls the AC current, and at the same time, superimposes the DC current to realize power conversion with the DC power supply.
  • the MMC converter is controlled by current control (hereinafter referred to as “converter current control” in the present invention) that adjusts the arm current to an AC current command and a DC current command from the outside, and PWM conversion provided in the unit converter.
  • the function of maintaining the average voltage of the energy storage element in a balanced state between the unit converters (hereinafter referred to as “interstage control” in the present invention) and the energy storage in the arm. It has a function of keeping the total stored energy of the element in equilibrium between the arms (hereinafter referred to as “phase equilibrium control” in the present invention).
  • phase equilibrium control In order to realize the interphase balance control, a circuit element for suppressing the circulating current between the arms is required.
  • Patent Document 1 discloses a system in which a circulating current suppression reactor is provided between the first terminal of each phase arm and the AC power supply terminal (hereinafter referred to as “DSMMC converter” in the present invention).
  • Patent Document 2 a transformer having secondary and tertiary windings connected in a double star configuration is provided, and the leakage reactances of the secondary and tertiary windings are used as current suppression circuit elements, depending on the circulating current.
  • a method for canceling the DC magnetomotive force of the transformer core is disclosed (hereinafter referred to as “DIMMC converter” in the present invention).
  • Patent Document 3 a transformer having a secondary and tertiary windings connected in a staggered manner is provided, and the leakage reactance of the secondary and tertiary windings is used as a current suppression circuit element.
  • ZCMMC converter Is disclosed (hereinafter referred to as “ZCMMC converter” in the present invention).
  • Non-Patent Document 1 the DC terminals of two MMC converters are connected back to make a variable frequency power source, one AC terminal is connected to an AC system, and the other AC terminal is connected to an AC rotating electrical machine to change the speed.
  • a method for forming a generator motor a method of connecting the DC terminals of two DSMMC converters in the back is disclosed.
  • Patent Document 4 discloses a method of connecting a ZCMMC converter to the AC rotating electric machine side. According to this method, it is claimed that an AC electric system can be realized without providing a circulating current suppression reactor.
  • Patent Document 5 discloses a vector measurement method for variable frequency voltage / current signals of an AC rotating electrical machine.
  • a static power converter using a power semiconductor switching element is a separately excited current type converter using a switching element having no self-extinguishing function such as a thyristor (
  • the present invention is referred to as “LCC converter”) and a self-excited voltage type converter using a switching element having a self-extinguishing function such as an IGBT (hereinafter referred to as “VSC converter” in the present invention).
  • LCC converter a separately excited current type converter using a switching element having no self-extinguishing function such as a thyristor
  • VSC converter self-excited voltage type converter using a switching element having a self-extinguishing function
  • the time change rate of the coil voltage of the rotating electrical machine increases as the switching element voltage increases, and the coil is increased by increasing the PWM frequency to suppress harmonic current as the switching characteristics improve.
  • the leakage current increases.
  • MMC converter is classified into VSC converter with PWM control. Unlike conventional PWM converters, MMC converters connect unit converters in N stages in series to suppress the voltage pulsation width by PWM control to 1 / N without using complicated connections for reactors and transformers. The harmonic component of the voltage applied to the AC rotating electrical machine can be suppressed. By adopting the MMC converter, it can be used without strengthening the coil insulation of the rotating electrical machine, and is particularly suitable for variable speed AC rotating electrical machines installed on the premise of a constant frequency of the AC power supply system. .
  • the MMC converter can increase the availability by providing redundancy in the number of unit converters connected in series and short-circuiting the output terminal of the failed unit converter. For this reason, the MMC converter is suitable for a case where a large-capacity AC rotating electrical machine that requires a large number of unit converters is made variable.
  • Non-Patent Document 1 discloses a technique suitable for realizing such a feature.
  • Patent Document 4 claims that a variable speed generator-motor apparatus can be realized by connecting a ZCMMC converter.
  • the first problem is due to the characteristic that the output current capacity of the MMC converter is proportional to the frequency. Since the current capacity is reduced in the low frequency output region, the starting torque of the AC rotating electrical machine in which the output torque is proportional to the current cannot be secured in principle. In particular, there is a problem that cannot be applied to the start-up of a synchronous machine that occupies most of the large-capacity rotating electrical machine suitable for taking advantage of the features of the MMC converter. This problem is a common problem when connecting to an AC rotating electrical machine regardless of DSMMC converter, DIMMC converter, and ZCMMC converter. However, Non-Patent Document 1 and Patent Document 4 disclose problems and solutions. Is not disclosed.
  • the second problem is a problem that occurs because a direct current is intentionally superimposed on the winding of the rotating electrical machine.
  • Non-Patent Document 2 p. No. 356 points out that “even the magnetic attraction force is unbalanced due to the zigzag leakage magnetic flux due to the combination of the number of core slots of the stator and rotor of the induction machine”.
  • Patent Document 4 stipulates that “the magnetic field generated by the zero-phase current becomes zero if a DC current divided into three equal parts is passed through the three-phase winding”.
  • Non-Patent Document 2 p. 76 to p. 79 introduces three types of armature windings.
  • FIG. 3.5 has a single-layer coil winding as shown in FIG. 3.6 includes a two-layer coil with a 60-degree phase band winding, FIG. In 3.7, a two-layer coil with a 120-degree phase band is introduced.
  • Patent Document 4 that “If a DC current divided into three equal parts is passed through the three-phase winding, the magnetomotive force in the slot is canceled and the magnetic field generated by the zero-phase current becomes zero” is established.
  • three types of windings will be described.
  • FIG. 21 shows an example in which a 60-degree phase band is formed by a two-layer coil in which an armature winding of a two-pole machine is accommodated in 18 slots.
  • FIG. 21 is a diagram of FIG. Fig. 3.6 shows a magnetomotive force distribution and a magnetic field distribution when a three-phase winding of Fig. 3.6 developed on the circumference is connected in a star shape and a DC current of three equal parts is passed through each phase.
  • the solid line indicates the upper coil of the two-layer coil, and the broken line indicates the lower coil.
  • FIG. 7 shows an example in which a 120-degree phase band is formed by a two-layer coil in which an armature winding of a two-pole machine is accommodated in 18 slots.
  • FIG. 7 is a diagram of FIG. Magnetomotive force distribution when the winding of 3.7 is changed from short-pitch winding (coil pitch 8/9) to full-pitch winding, three-phase winding is connected in star shape, and direct current of 3 parts is passed And magnetic field distribution.
  • the solid line indicates the upper coil of the two-layer coil, and the broken line indicates the lower coil.
  • variable speed generator-motor apparatus when a variable speed generator-motor apparatus is configured by connecting a ZCMMC converter and an AC rotating electrical machine, the AC rotating electrical machine has “3 etc. for each phase of the armature winding of the 120-degree phase band by the two-layer coil”. It is a necessary condition that "the DC current of the minute is superimposed”.
  • FIG. 4 it divides equally for every magnetic pole which the three-phase coil of FIG. 21 makes, and each of the first set of three-phase terminals (RP, SP, TP) and the second set of three-phase terminals (RN, SN, TN)
  • the superimposed direct current is divided into three equal parts, and direct currents having opposite polarities are superimposed.
  • the magnetomotive force distribution generated by each phase winding, and the magnetomotive force distribution and magnetic field distribution by the total of the three phases are shown.
  • the in-slot magnetomotive force due to the DC current superposition can be canceled out, and the contribution to the magnetic field distribution can be made zero.
  • the ZCMMC converter has a problem that a direct current of opposite polarity cannot be superimposed.
  • An object of the present invention is to solve the above-described problems and provide a variable speed generator-motor apparatus and a variable speed generator-motor system using a large AC generator motor.
  • the armature winding of an AC electric machine is a two-layer coil having a 60-degree phase band, and is divided into a positive side and a negative side, and a neutral point terminal is fastened to form a star connection.
  • the positive terminal is connected to the first terminal of the DIMMC converter arm
  • the negative terminal is connected to the second terminal of the DIMMC converter arm
  • the DC currents of the positive and negative windings have the same polarity.
  • the armature winding of the AC rotating electric machine is made into a 120-degree phase band with a two-layer coil, and each arm DC current of the ZCMMC converter is divided into three equal parts to thereby generate DC current in the coil slot.
  • An object of the present invention is to provide a stable variable speed generator-motor apparatus that cancels out magnetomotive force due to superposition.
  • n and m are natural numbers
  • the armature winding of an AC rotating electric machine having 4 ⁇ n poles is set to a 60-degree phase band with a two-layer coil.
  • Two sets of three-phase terminals are provided in a star connection that is divided into two equal parts and connected in series with (2 ⁇ n) pole windings for each phase, and the positive-phase three-phase terminals are connected to the DIMMC converter arm.
  • the negative three-phase terminal is connected to the second terminal of the DIMMC converter arm, and the first terminal is connected to the DC power supply device.
  • the DC current value to the MMC converter arm is the same, the positive and negative arms are of opposite polarity, and divided into three equal parts, so that the magnetomotive force due to the DC current superposition in the coil slot Is a variable speed generator motor that is stable and can bypass the DIMMC converter Is to provide.
  • the terminal voltage can be maintained before and after the change,
  • a variable speed generator-motor apparatus that realizes bypass operation without passing through a converter and can divert existing AC equipment.
  • the present invention connects a synchronous machine with a damper winding to a DSMMC converter, a DIMMC converter or a ZCMMC converter, and short-circuits the field winding in a stopped state,
  • the frequency is fixed at about 10% of each rating and the MMC converter is started, and the AC rotary electric machine is started.
  • the present invention stops the MMC converter once the rotation speed is accelerated to the converter frequency, and then changes the connection of the field winding from the resistor to the excitation converter, The MMC converter is restarted and accelerated with a current command proportional to the speed.
  • a variable speed generator-motor apparatus capable of self-starting is provided.
  • the present invention it is possible to change the speed of the AC rotating electric machine only by changing the coil end of the armature winding of the AC rotating electric machine installed on the assumption of constant frequency operation by the AC system.
  • FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
  • the circuit diagram of the unit converter which shows embodiment of this invention The circuit diagram of another unit converter which shows the embodiment of the present invention
  • the figure which shows the armature winding of the alternating current rotating electrical machine which shows the 1st Embodiment of this invention Control block diagram showing a first embodiment of the present invention
  • the circuit diagram which shows the 2nd Embodiment of this invention The figure which shows the armature winding of the alternating current rotating electrical machine which shows the 2nd Embodiment of this invention
  • Control block diagram showing a second embodiment of the present invention Circuit diagram showing a third embodiment of the present invention
  • Circuit diagram of another DC power supply device showing the third embodiment of the present invention
  • the figure which shows the armature winding of the alternating current rotating electrical machine which shows the 3rd Embodiment of this invention Control block diagram showing a third embodiment of the present invention Operation sequence diagram showing the third embodiment of the present
  • variable speed generator-motor apparatus and a variable speed generator-motor system according to the present invention will be described in detail with reference to the drawings.
  • this invention is not limited by this embodiment.
  • FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
  • 101A is a DC power supply device, and an AC rotating electric machine 102A having two sets of star connections is provided with three-phase terminals (RP, SP, TP) and three-phase terminals (RN, SN, TN).
  • the neutral point of the mold connection is fastened and pulled out to the N terminal and grounded through a high resistance.
  • Six arms (104RP, 104SP, 104TP, 104RN, 104SN, 104TN) with two terminals (a, b) consisting of N-stage series connection of output terminals (x, y) of the unit converter 103 of the MMC converter
  • the b terminals of the three arms (104RP, 104SP, 104TP) are star-connected to the first terminal (P) of the DC power supply device 101A, and the a terminal is connected to the three-phase terminals (RP, SP, TP).
  • the a terminals of the remaining three arms are star-connected to the second terminal (N) of the DC power supply device 101A, and the b terminal is connected to the three-phase terminals (RN, SN, TN) of the AC rotating electrical machine 102A. ).
  • a control device 105A is a DC current transformer 106 that measures the output current of the six arms, a DC voltage transformer 107A that measures the line voltage of the three-phase terminals (RP, SP, TP), and a three-phase terminal (RN). , SN, TN), the DC voltage transformer 107B for measuring the line voltage of the line, and the phase detector 108 for measuring the rotational phase ⁇ of the electrical angle display, control calculation is performed, and the unit converter 103 receives the gate signal. (GateP *, GateN *) is output.
  • the disconnectors 109A and 109B are closed during normal operation and opened during maintenance.
  • the phase detector 108 may estimate the rotational phase ⁇ by vector calculation from the line voltage from the DC voltage transformers 107A and 107B and the current signal from the DC current transformer 106.
  • Patent Document 5 discloses a vector calculation method for an alternating current signal that changes at the rotational speed frequency, and a method for calculating the phase of the internal induced voltage corresponding to the rotation phase ⁇ from the voltage signal and the current signal.
  • FIG. 2 is a circuit diagram of the unit converter 103 showing the first embodiment.
  • the unit converter 103 connects the switching element 201 and the switching element 202 constituting the bidirectional chopper circuit to the capacitor 203 as an energy storage element having voltage source characteristics, and from the optical communication cable 204A connected to the control device 105A to the optical / electrical conversion element.
  • PWM control is performed by the gate signal to the switching elements 201 and 202 input to the gate driver 207A via the serial / parallel conversion circuit 206A, and the average voltage between the two terminals (x, y) is 0 and the capacitor voltage VC. Adjust between.
  • the capacitor voltage VC returns the analog signal output of the DC voltage transformer 208 to the control device 105A via the analog / digital converter 209, the parallel / serial converter 210, and the electrical / optical conversion element 211 via the optical communication cable 204A. To do. According to this configuration, since the current flowing through the switching element is limited to any one of the switching elements 201 and 202, the loss can be minimized.
  • FIG. 3 is a circuit diagram of another form of the unit converter 103 showing the first embodiment.
  • the unit converter 103B uses switching elements 212, 213, 214, and 215 constituting a full bridge circuit instead of the bidirectional chopper circuit of FIG. According to this configuration, when the capacitor voltage is VC, the average voltage between the terminals (x, y) can be adjusted between ⁇ VC and + VC.
  • FIG. 4 shows an example of the armature winding and terminal connection of the AC rotating electric machine showing the first embodiment.
  • FIG. 4 shows an example of the armature winding and terminal connection of the AC rotating electric machine showing the first embodiment.
  • armature winding and terminal connection of the AC rotating electric machine showing the first embodiment.
  • FIG. 4 shows an example of a two-pole machine with 18 slots, which is a configuration close to the minimum configuration.
  • a salient pole synchronous machine is drawn for easy understanding of the relationship with the field, a cylindrical synchronous machine or an induction machine may be used.
  • winding and terminal configuration of FIG. 4 can be realized by changing the connection of the coil end and pulling out the terminal from the winding and terminal configuration shown in FIG. 4
  • FIG. 21 and 4 have no change in the coil portion passing through the slot in a 60-degree phase band configuration with two-layer coils.
  • a single star connection of ordinary three-phase terminals (R, S, T) is made, and coils that generate a magnetic field of normal and reverse polarity in the air gap are connected in series.
  • FIG. 4 after the modification two sets of three-phase terminals (RP, SP, TP) and (RN, SN, TN) are provided.
  • the modification is a change in the connection of the coil end of the armature winding and an additional drawer of 3 terminals. Since the number of turns of the three-phase winding is halved by the connection change, the line voltage is halved.
  • the current capacity of the armature coil does not change before and after modification. However, the usage of current capacity changes.
  • the current frequency before remodeling is only the frequency of the AC system, and the effective current value is the root square sum of the active power component and the reactive power component.
  • the current after modification is the root sum of squares of the effective value of the output frequency component of the power converter and the average value of the direct current.
  • the phase voltages of the two sets of three-phase terminals are in-phase and have the same effective value.
  • the alternating current is controlled to a power factor of 1.
  • the power converter AC phase voltage is VAC
  • the current effective value is IAC
  • the DC current is IDC
  • the DC current is equally divided into three windings.
  • the output voltage of the DC power supply device 101A is VDC
  • the ratio of (IDC / 3) to IAC differs depending on the capacity of the capacitor 203 of the unit converter 103, the operation method when the power supply is abnormal, and whether the unit converter is as shown in FIG.
  • the upper and lower limits of the PWM modulation rate of the unit converter are suppressed to lower the usage rate of the capacitor voltage VC.
  • the bidirectional chopper circuit of FIG. 2 is adopted as a unit converter with emphasis on the efficiency of (IDC / 3), the ratio of (IDC / 3) increases, and the equivalent power factor decreases.
  • (IDC / 3) /IAC 0.5.
  • the equivalent power factor is reduced to about 0.9. This value does not depend on the MMC converter system.
  • the rated power factor of the synchronous machine before remodeling is 0.9 or less, the same effective power output can be secured even after remodeling.
  • the power factor cannot be adjusted, so that the effective power output after modification is reduced to a value multiplied by the equivalent power factor of the MMC converter.
  • FIG. 5 is a control block diagram of the control device 105A showing the first embodiment.
  • Reference numeral 502 denotes a speed calculator that calculates the rotational speed frequency ⁇ from the number of samples Np from a signal having the same phase as the current value of the rotational phase ⁇ and the previous period.
  • 2 ⁇ ⁇ / (Np ⁇ ⁇ t)
  • the dq converter 504P performs the operation of Equation 1
  • the dq converter 504N performs the operation of Equation 2.
  • the phase order is RST.
  • 505A is a power calculator that calculates active power P and reactive power Q from the rotational phase signal, phase voltage signal, and alternating current signal by the instantaneous symmetric coordinate method.
  • 506A is an active power regulator and 507A is a reactive power regulator, which output current commands ID * and IQ * so that the calculated values P and Q coincide with the command values P * and Q *, respectively.
  • 508A is an AC current regulator that reverses the polarity of the other command value obtained by dividing one of the command values obtained by dividing the command value ID * into two and the measured operation value IDP and dividing the command value ID * by two.
  • the control value is calculated so that the obtained command value matches the measured calculation value IQP, and one of the command values obtained by dividing the command value IQ * into two equals the measured calculation value IQP, and the command value IQ * is equal to two, etc.
  • Reference numeral 509A denotes a direct current regulator that performs a control operation so that the direct current command IDC * obtained from the division of the output command value P * and the output voltage VDC * of the direct current power supply matches the measured computation value IDC.
  • the degree of freedom of the current path is 5
  • the AC current regulator 508A is provided with four integration calculators
  • the DC current regulator 509A is provided with one integration calculator. Since a total of five integration calculators equals 5 degrees of freedom in the current path, all integrators can be independently suppressed to zero input deviation.
  • 510P and 510N are inverse dq converters that calculate Equation (3).
  • 511P is a DC voltage command correction calculator for the arms 104RP, 104SP, and 104TP
  • 511N is a DC voltage command correction calculator for the arms 104RN, 104SN, and 104TN, and output voltage commands VRP *, VSP *, and VTP to the arms. *, VRN *, VSN *, VTN * are output.
  • phase voltages of the three-phase terminals (RP, SP, TP) and the three-phase terminals (RN, SN, TN) of the AC rotating electric machine 102A are substantially equal to each other (VR *, VS *, VT *).
  • VRN * ⁇ VR * + (1/2) ⁇ VDC It becomes.
  • the PWM calculators 512P and 512N From these output voltage commands and the capacitor voltage VC of the unit converter 103, the PWM calculators 512P and 512N output the gate commands GateP * and GateN *.
  • FIG. 6 is a circuit diagram showing a second embodiment of the present invention.
  • 101A is a DC power supply device, and an AC rotating electrical machine 102B having a set of star connection is provided with a three-phase terminal (R, S, T), and the neutral point of the star connection is drawn to the N terminal.
  • Three arms (604R, 604S, 604T) having two terminals (a, b) consisting of N-stage series connection of the output terminals (x, y) of the unit converter 103 of the MMC converter are provided.
  • the a terminal is connected to the three-phase terminals (R, S, T) of the AC rotating electric machine 102B, and the b terminal is connected to the first terminal (P) of the DC power supply device 101A in a star shape.
  • 605A is a control device, a DC current transformer 106 that measures the output current of the three arms, a DC voltage transformer 607 that measures the line voltage of the three-phase terminals (R, S, T), and an electrical angle display.
  • a signal from the phase detector 108 that measures the rotational phase ⁇ is input, a control calculation is performed, and a gate signal Gate * is output to the unit converter 103.
  • the disconnector 609 is closed during normal operation and opened during maintenance.
  • the phase detector 108 may estimate the rotational phase ⁇ by vector calculation from the line voltage from the DC voltage transformer 607 and the current signal from the DC current transformer 106.
  • FIG. 7 shows an example of the armature winding and terminal connection of the AC rotating electric machine showing the second embodiment.
  • FIG. 7 shows an example of a two-pole machine with 18 slots, which is a configuration close to the minimum configuration, is shown.
  • a salient pole synchronous machine is drawn for easy understanding of the relationship with the field, a cylindrical synchronous machine or an induction machine may be used.
  • the current before remodeling is the frequency of the AC system, and the current effective value is the root square sum of the active power component and the reactive power component.
  • the current after modification is the output frequency and direct current of the power converter.
  • the alternating current (IR, IS, IT) is controlled to a power factor of 1.
  • the effective values of the AC phase voltage and current of the power converter are VAC and IAC, the superimposed direct current is IDC, and the direct current is divided into three equal parts for each phase winding.
  • the rated power factor of the synchronous machine before remodeling is 0.9 or less, the same effective power output can be secured even after remodeling.
  • the power factor cannot be adjusted, so that the effective power output after modification is reduced to a value multiplied by the equivalent power factor of the MMC converter.
  • FIG. 8 is a control block diagram of the control device 605A showing the second embodiment.
  • a phase voltage calculator 501B calculates a phase voltage signal from a line voltage detection signal.
  • Reference numeral 502 denotes a speed calculator, and 503A denotes a moving average calculator, which calculates the DC current IDC by moving average of the three-phase AC currents (IR, IS, IT) Np times.
  • the dq converter 504C performs the calculation of Equation 4. However, the phase order indicates the case of RST.
  • 505B is a power calculator that calculates the active power P and the reactive power Q from the phase voltage signal and the alternating current signal by the instantaneous symmetric coordinate method.
  • 506B is an active power regulator and 507B is a reactive power regulator, which output current commands ID * and IQ * so that the calculated values P and Q coincide with the command values P * and Q *, respectively.
  • Reference numeral 508B denotes an alternating current regulator, which performs control calculations so that the command values ID * and IQ * coincide with the measured calculation values ID and IQ.
  • Reference numeral 509B denotes a direct current regulator, which performs a control calculation so that the direct current command IDC * obtained from the division of the output command value P * and the output voltage VDC * of the direct current power supply coincides with the measured computation value IDC.
  • the degree of freedom of the current path is 3, and the total of two integral calculators of the AC current regulator 508B and one integral calculator of the DC current regulator is equal to three.
  • the arithmetic unit input deviation can be independently reduced to zero.
  • 510C is an inverse dq converter that performs the calculation of Equation 3.
  • 511C is a DC voltage command correction calculator for the arms 604R, 604S, and 604T, and outputs output voltage commands VR *, VS *, and VT * to each arm.
  • the PWM calculator 512C From the output voltage command and the capacitor voltage VC of the unit converter 103, the PWM calculator 512C outputs the gate command Gate *.
  • FIG. 9 is a circuit diagram showing a third embodiment of the present invention.
  • the AC rotating electric machine 902A is a synchronous machine provided with a damper winding.
  • AC rotary electric machine 902A with two sets of star connections is equipped with three-phase terminals (RP, SP, TP) and three-phase terminals (RN, SN, TN), and neutral points of two sets of star connections Is connected to the N terminal and grounded through a high resistance.
  • the DC power supply device 901 performs power conversion between the AC system side terminals (A, B, C) and the DC side terminals (P, N).
  • the AC system side terminals (A, B, C) are connected from the AC system 903 via the circuit breaker 904.
  • the DC power supply device 901 includes three sets of AC terminals (UP, VP, WP) (UM, VM, WM) (UX, VX, WX).
  • the AC terminals (UP, VP, WP) are connected to the three-phase terminals (RP, SP, TP) of the AC rotating electric machine 902A through the disconnector 905P and the circuit breaker 906.
  • the AC terminals (UM, VM, WM) are connected to the three-phase terminals (RN, SN, TN) of the AC rotating electrical machine 902A via the disconnector 905N.
  • the disconnectors 907A and 907B are connected between the three-phase terminals (RP, SP, TP) and the three-phase terminals (RN, SN, TN).
  • the AC terminals (UX, VX, WX) are branched to the field power converter 911 via the on-site power supply system 920, the field circuit breaker 909, and the field transformer 910.
  • the field winding 908 is switched and connected by a circuit breaker 914 connected to the resistor 913 and a circuit breaker 912 connected to the field power converter 911.
  • the AC system 903 includes an AC terminal (UP, VP, WP) and (UM, VM, WM) via an initial charging transformer 915, an initial charging circuit breaker 916, a current limiting resistor 917, and an initial charging connection circuit breaker 918. ).
  • a bypass circuit breaker 919 is provided for the current limiting resistor 917.
  • FIG. 10 is a circuit diagram showing an embodiment of the DC power supply device 901A, to which the DIMMC converter disclosed in Patent Document 2 is applied.
  • the transformer 1001 connects the AC system side terminals (A, B, C) to the primary winding, and the secondary and tertiary windings are double star type connections, respectively with the AC terminals (UP, VP, WP) and Connect to (UM, VM, WM).
  • the AC terminal (Up, Vp, Wp) of the transformer 1001 is connected to the a terminal of three two-terminal arms (1004UP, 1004VP, 1004WP) connected in series with the unit converter 103, and the b terminal is connected to the DC terminal (P). Connect to the star.
  • the AC terminal (Um, Vm, Wm) is connected to the b terminal of three two-terminal arms (1004UM, 1004VM, 1004WM) connected in series with the unit converter 103, and the a terminal is connected to the DC terminal (N).
  • the transformer 1001 is provided with a delta-connected quaternary winding, which also serves as a power supply function for the in-house power supply and the field circuit and a third harmonic suppression function.
  • FIG. 11 is a circuit diagram showing another embodiment of the DC power supply device 901B, to which the DSMMC converter disclosed in Patent Document 1 is applied.
  • the transformer 1002 connects the AC system side terminals (A, B, C) to the primary windings and the delta-connected secondary winding terminals (Ut, Vt, Wt) to the neutrality of three sets of three-terminal reactors 1003. Connect to point (Ux, Vx, Wx).
  • the terminal (Up, Vp, Wp) of the three-terminal reactor 1003 is connected to the a terminal of three two-terminal arms (1004UP, 1004VP, 1004WP) connected in series with the unit converter 103, and the b terminal is connected to the DC terminal (P). Connect to the star.
  • the terminal (Um, Vm, Wm) of the three-terminal reactor 1003 is connected to the b terminal of three two-terminal arms (1004UM, 1004VM, 1004WM) connected in series with the unit converter 103, and the a terminal is connected to the DC terminal ( N) Star connection. Electric power is supplied from the secondary winding of the transformer 1002 to the in-house power supply and the field circuit via the AC terminals (UX, VX, WX).
  • disconnectors 905P and 905N are kept open.
  • the unit converter 103 of the six arms (104RP, 104SP, 104TP, 104RN, 104SN, 104TN) on the AC rotating electric machine 902A side is supplied with power from the DC power supply device 901, and the capacitor 203 of each unit converter is controlled by PWM control. To charge.
  • the unit converter since all the unit converters are in a charged state, the unit converter can be quickly activated in any rotation direction of power generation or electric drive.
  • FIG. 12 shows an example of the armature winding and terminal connection of the AC rotating electric machine showing the third embodiment.
  • armature winding and terminal connection of the AC rotating electric machine showing the third embodiment.
  • FIG. 12 shows an example of a 4-pole machine having 36 slots close to the minimum configuration.
  • a salient pole synchronous machine is drawn to show the relationship with the field, a cylindrical field synchronous machine or an induction machine may be used.
  • the winding and terminal configuration in FIG. 12 can be realized only by changing the coil end from the winding and terminal configuration shown in FIG.
  • FIG. 22 shows a 60-degree phase band configuration of a quadrupole machine having a double star connection and a general two-layer coil.
  • the total number of turns is 6 turns, 3 turns on the positive electrode side and 3 turns on the negative electrode side in each phase.
  • Two of these star-shaped connections are arranged in parallel with a cross-between wire.
  • the winding of the first set of three-phase terminals has two positive electrodes connected in series, for a total of six turns.
  • the other three-phase terminals have two negative electrodes connected in series, for a total of six turns.
  • the rated voltage can be maintained. For this reason, equipment, such as the circuit breaker 906, can be diverted. Further, when the embodiment of FIG. 11 is used as the DC power supply device, the secondary terminal voltage of the transformer 1002 does not change before and after the modification, so that the transformer 1002 can be used.
  • the MMC converter can be operated by bypass. Specifically, by closing the disconnectors 905P and 905N, the circuit breaker 906, and the disconnectors 907A and 907B, the AC rotating electrical machine 902A can be operated as a three-phase double star connection generator. When directly connected to the Francis pump turbine, the phase sequence is connected in the direction of power generation, so that the MMC converter can be bypassed to generate power.
  • FIG. 13 is a control block diagram of the control device 905 showing the third embodiment. Since the same numbers as those in FIG. 5 indicate the same products, the description is omitted to avoid duplication.
  • SW1 a command switcher
  • a current command generator 1302 outputs a current command ID * proportional to the rotational speed frequency ⁇ .
  • Reference numeral 1304 denotes a command switching unit (SW2) which selectively switches the active power regulator 506A, the current command generator 1302, and the current command generator 1303 and outputs a current command ID *.
  • a command switch (SW3), which selectively switches between the active power command P * and the active power measurement value P.
  • Reference numeral 1306 denotes a power calculator, which adds an output of the line voltage effective value VGM of the AC generator motor 902A to the power calculator 505.
  • a command switcher (SW4) 1310 selectively switches the voltage regulator 1308, current command generator 1309, and reactive power regulator 507A, and outputs a current command IQ *.
  • FIG. 14 shows a method of starting the AC generator motor in the embodiment of FIGS. 9 and 13.
  • the capacitor of the unit converter 103 is charged in advance at time Tm1, the circuit breaker 904 is closed, and the circuit breakers 905P, 905N, 907A, and 907B are held in the open state.
  • the ID * command outputs a command value proportional to the speed
  • the IQ * command also outputs a command value proportional to the speed.
  • field control is started.
  • MMC converter control is started at time Tm5 while maintaining this state (MMC control_ON)
  • acceleration is started with synchronous machine torque.
  • the switch SW3 is set to the command P * side and the command switch SW4 is set to the output side (AQR) of the reactive power regulator, and the operation of the normal variable speed motor mode is started.
  • self-starting can be performed in the electric motor mode without depending on the starting device.
  • the capacitor 203 of the unit converter 103 is charged in advance at Tg1, the circuit breaker 904 is closed, and the circuit breakers 905P, 905N, 907A, and 907B are held open.
  • the command switch SW3 is set on the active power measurement value P side, and the command switch SW4 is set on the voltage regulator output side.
  • the rotational speed is controlled by the prime mover directly connected to the AC rotating electric machine 902A, and the motor is started and accelerated with the driving torque on the prime mover side.
  • FIG. 15 is a circuit diagram showing a fourth embodiment of the present invention.
  • the same numbers as those in FIGS. 6 and 9 indicate the same items. The description is omitted to avoid duplication.
  • AC rotating electric machine 1502A is a synchronous machine provided with a damper winding.
  • AC rotary electric machine 1502A with two sets of star connections is provided with three-phase terminals (R1, S1, T1) and three-phase terminals (R2, S2, T2), and neutral points of two sets of star connections Is connected to the second terminal (N) of the DC power supply device 1501.
  • the b terminals of the remaining three arms (1504R2, 1504S2, 1504T2) are star-connected to the first terminal (P) of the DC power supply device 1501, and the a terminal is connected to the three-phase terminals (R2, S2, T2 of the AC rotating electric machine 1502A). ).
  • Reference numeral 1605 denotes a control device, which is a line of DC voltage transformer 107C and three-phase terminals (R2, S2, T2) for measuring the line voltage of the six DC current transformers 106 and three-phase terminals (R1, S1, T1).
  • a signal from the DC voltage transformer 107D for measuring the inter-voltage and the phase detector 108 for measuring the rotational phase ⁇ of the electrical angle display is input to perform control calculation, and gate signals (Gate1 *, Gate2 *) are supplied to the unit converter 103. Is output.
  • the disconnector 1505 is closed during normal operation and opened during maintenance.
  • the disconnector 1507 is opened during normal operation and closed during bypass operation.
  • the DC power supply device 1501 performs power conversion between the AC system side terminals (A, B, C) and the DC side terminals (P, N).
  • the AC system side terminals (A, B, C) are connected from the AC system 903 via the circuit breaker 904.
  • the DC power supply device 1501 includes two sets of AC terminals (U, V, W) (UX, VX, WX). From the AC terminal (U, V, W), via the disconnector 1505 and the circuit breaker 1506, after branching at the disconnector 1507, two sets of three-phase terminals (R1, S1, T1) and ( R2, S2, T2).
  • the AC terminals (UX, VX, WX) are branched to the field power converter 911 via the on-site power supply system 920, the field circuit breaker 909, and the field transformer 910.
  • the field winding 908 is switched and connected by a circuit breaker 914 connected to the resistor 913 and a circuit breaker 912 connected to the field power converter 911.
  • the AC system 903 is connected to an AC terminal (U, V, W) through an initial charging transformer 915, an initial charging circuit breaker 916, a current limiting resistor 917, and an initial charging connection circuit breaker 1518.
  • a bypass circuit breaker 919 is provided for the current limiting resistor 917.
  • FIG. 16 is a circuit diagram showing an embodiment of the DC power supply device 1501, and the ZCMMC converter disclosed in Patent Document 3 is applied.
  • the transformer 1601 connects the AC system side terminals (A, B, C) to the primary winding, and the secondary and tertiary windings are connected to the AC terminal (U, V, W) by staggered connection.
  • the AC terminal (U, V, W) of the transformer 1601 is connected to the a terminal of three two-terminal arms (1602U, 1602V, 1602W) in which the unit converter 103 is connected in series, and the b terminal is connected to the DC terminal (P). Connect to the star.
  • the neutral point of the staggered connection is connected to the DC terminal (N).
  • the transformer 1601 is provided with a delta-connected quaternary winding, which also serves as a power supply function for the in-house power supply and the field circuit and a third harmonic suppression function.
  • FIG. 17 shows an example of the armature winding and terminal connection of the AC rotating electric machine showing the fourth embodiment.
  • armature winding and terminal connection of the AC rotating electric machine showing the fourth embodiment.
  • FIG. 17 shows an example of a 4-pole machine having 36 slots close to the minimum configuration.
  • a salient pole synchronous machine is drawn to show the relationship with the field, a cylindrical field synchronous machine or an induction machine may be used.
  • FIG. 17 can be realized only by changing the coil end from the winding and terminal configuration shown in FIG.
  • FIG. 23 shows a 120-degree phase band configuration of a quadrupole machine having a double star connection and a general two-layer coil. In the example shown, there are 6 turns in each phase. Two of these star-shaped connections are arranged in parallel with a cross-between wire.
  • the double star connection is divided into two sets and independent terminals are pulled out, and the first set of three-phase terminals (R1, S1, T1) and the second set of three-phase terminals (R2, S2, T2). ) Is a total of 6 turns as in FIG.
  • the number of turns does not change before and after the modification, so that the rated voltage can be maintained. For this reason, equipment, such as the circuit breaker 1506, can be diverted.
  • the AC rotating electric machine 1502A can be operated as a generator of a three-phase double star connection.
  • the phase sequence is connected in the direction of power generation, so that the MMC converter can be bypassed to generate power.
  • the current per arm is reduced by dividing the parallel winding equally and extracting the terminals. can do.
  • the parallel number of switching elements in the unit converter 103 can be reduced, the configuration can be simplified, and the reliability can be improved.
  • FIG. 18 is a control block diagram of the control device 1605 showing the fourth embodiment. Since the same numbers as those in FIGS. 5 and 8 indicate the same product, the description is omitted to avoid duplication.
  • 1801A calculates a phase voltage signal from a phase voltage calculator and a line voltage detection signal.
  • 502 is a speed calculator
  • 503A and 503B are moving average calculators
  • a total of two sets of three-phase AC currents (IR1, IS1, IT1) (IR2, IS2, IT2) is averaged Np times to obtain a DC current IDC1.
  • IDC2 is calculated.
  • the dq converters 1804A and 1804B perform the calculation of Equation 4, and output (ID1, IQ1) (ID2, IQ2), respectively.
  • the phase order indicates the case of RST.
  • 1806 is a power calculator that calculates the active power P and the reactive power Q from the phase voltage signal and the alternating current signal by the instantaneous symmetric coordinate method.
  • 506B is an active power regulator
  • 507B is a reactive power regulator, which output current commands ID * and IQ * so that the calculated values P and Q match the active power command P * and the reactive power command Q *, respectively.
  • Reference numeral 508B denotes an AC current regulator that performs control calculation so that each of the command values obtained by dividing the current command ID * into two equal to the measured calculation values ID1 and IQ1, and the command value obtained by dividing the current command IQ * into two equal parts. The control calculation is performed so that each of them matches the measured calculation values ID2 and IQ2.
  • the 1809A and 1809B are direct current regulators, and the direct current regulator 1809A measures and measures the command value obtained by dividing the direct current command IDC * obtained by dividing the output command value P * and the output voltage command VDC * of the direct current power supply into two equal parts.
  • the DC current regulator 1809B performs control calculation so that the calculated value IDC1 matches, and the DC current regulator 1809B divides the DC current command IDC * obtained by dividing the output command value P * and the DC power supply output voltage command VDC * into two equal parts. And control calculation so that the measured calculation value IDC2 matches.
  • the degree of freedom of the current path is 6, and the total of the four integration calculators of the AC current regulator 508B and the two integral calculators of the DC current regulator is equal to six.
  • the arithmetic unit input deviation can be independently reduced to zero.
  • Reference numerals 1810C and 1810D denote inverse dq converters that perform the calculation of Equation 3.
  • 1811A is a DC voltage command correction calculator for the arms 1504R1, 1504S1, and 1504T1, and outputs output voltage commands VR1 *, VS1 *, and VT1 *
  • 1811B is a DC voltage command correction calculator for the arms 1504R2, 1504S2, and 1504T2.
  • the PWM commands 1812A and 1812B output the gate commands Gate1 * and Gate2 *.
  • FIG. 19 is a control block diagram of the control device 905 according to the fifth embodiment. Since the same numbers as those in FIG. 13 indicate the same products, the description is omitted to avoid duplication.
  • a pump or a reversible pump turbine is directly connected to the damper winding synchronous machine 902A of the system of the present invention, and a sealing valve is provided on the discharge side of the pump or the reversible pump turbine.
  • Reference numeral 1901 denotes a rotational speed command generator, which outputs a speed ⁇ p at which the input Pp at the time of water pressure establishment and the motor input Pm at the time of acceleration determined by the characteristics of the variable speed generator-motor system match from the total head signal Hp. If the fluctuation range of the total head is small, it may be simplified to a command generator with a constant value output.
  • Reference numeral 1902 denotes a rotation speed adjuster that adjusts the current command ID * so that the deviation between the rotation speed command ⁇ p * and the rotation speed frequency ⁇ becomes zero.
  • a command switcher (SW5) 1903 switches the current command ID * using the rotational speed command ⁇ p * and the rotational speed frequency ⁇ as determination conditions.
  • FIG. 20 shows a method for starting the AC generator motor system in the embodiment of FIGS. 9 and 19.
  • the same symbols as those in FIG. 14 have the same contents, and the description is omitted to avoid duplication.
  • the ID * command outputs a command value proportional to the speed
  • the IQ * command also outputs a command value proportional to the speed.
  • field control is started (field control_ON).
  • MMC converter control is started at time Tm5 while maintaining this state (MMC control_ON)
  • acceleration is started with synchronous machine torque. Since the voltage and current during this period are proportional to the rotational speed ⁇ , the motor input Pm increases in proportion to the square of the rotational speed ⁇ .
  • the input Pp at the time of establishing the water pressure gradually increases with the rotational speed ⁇ , but is smaller than the change in the motor input Pm, so there is always a rotational speed ⁇ that matches both.
  • This value varies depending on the total head range and the specific speed of the turbomachine. However, if the rotational speed at the rated input is 100%, it is empirically within 50% and 90%. This value is calculated by a speed command generator 1901 and output as a rotational speed command ⁇ p *.
  • the rotational speed ⁇ accelerates to the command value ⁇ p *
  • the current command ID * output from the command switch SW5 is switched to the rotational speed adjuster 1902 output (ASR) at time Tm8 and at the same time the command switch SW4 is changed to the reactive power adjuster 507A. Switch to output (AQR). Since the acceleration is stopped at time Tm8, the motor input Pm once decreases.
  • the timing for opening the sealing valve is adjusted so as to make the time difference ⁇ Tp between the time Tm9 and the time Tm8 as short as possible, and the accuracy of the rotational speed command generator 1901 is increased to increase ⁇ Pp. Just make it smaller.
  • the current command ID * is set to the output (APR) of the active power adjuster by the command switch SW5 and the command switch SW3 is set to the command P * side at time Tm10.
  • APR the output of the active power adjuster
  • the water surface depressing device is not required, and the pump or the pump turbine can be accelerated from the full state from the stop time, so that the starting time can be shortened. Further, during the acceleration period, the operation can be performed at the upper limit of the output current capacity of the unit converter 103, so that the acceleration time can be shortened. Moreover, since fluctuations in the motor input at the time of establishing the water pressure can be minimized, there is no need to adjust the load on the AC system, which is necessary for conventional pumps, and there is an effect of realizing flexible operation.
  • a three-phase AC rotating electric machine has been described as an example, but it goes without saying that the embodiment of the present invention can be applied to an N-phase AC rotating electric machine.
  • the wrapping method has been described as an example of the winding method, but it goes without saying that each embodiment of the present invention can be developed into a wave winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Synchronous Machinery (AREA)
  • Inverter Devices (AREA)

Abstract

 可変速発電電動装置において、電力変換器は任意の電圧を出力可能な単位変換器をk個直列接続した2端子アームを6個備え、交流回転電気機械は2層コイルで60度位相帯の電機子巻線を備え、電機子巻線の第1極側と第2極側に分けて中性点を2重星型結線として2組の3相端子で引き出し、第1極側の3相端子を電力変換器の3個のアームの第1端子に接続し、3個の2端子アームの第2端子を直流電源の第1端子に星型結線し、電機子巻線の第2極側の3相端子を電力変換器の残り3個の2端子アームの第2端子に接続し、3個の2端子アームの第1端子を直流電源の第2端子に星型結線し、直流電源の直流電流を3等分し、直流電源の第2端子に接続された3個の2端子アーム、電機子巻線、直流電源の第1端子に接続された3個の2端子アームの順に貫流させる。

Description

可変速発電電動装置および可変速発電電動システム
 本発明は、モジュラー・マルチレベルPWM電力変換器(以下、本発明では「MMC変換器」と称する。)と交流回転電気機械を接続した可変速発電電動装置、および、この可変速発電電動装置を用いた可変速発電電動システムに関する。
 MMC変換器の回路は、コンデンサや蓄電池などの電圧源特性のエネルギー蓄積素子を電圧源とするPWM変換器の変調率を制御することによって所期の電圧を発生させる単位変換器からなる。単位変換器のエネルギー蓄積素子の電圧は、交流周波数で決まる周期の充放電によって変動する。この単位変換器を直列接続して2端子アームとし、このアームの第1端子を交流電源の各相端子に接続し、星型結線した第2端子を直流電源の端子に接続する。
 この構成で、各相に接続されたアームは、所期の交流周波数電圧を発生して交流電流制御すると同時に、直流電流を重畳して直流電源との間で電力変換を実現する。
 MMC変換器の制御は、外部からの交流電流指令と直流電流指令にアーム電流を調整する電流制御(以下、本発明では「変換器電流制御」と称する。)、単位変換器に設けたPWM変換器の変調率をアーム内で相互調整することによってエネルギー蓄積素子の平均電圧を単位変換器間で平衡に保つ機能(以下、本発明では「段間制御」と称する。)、アーム内のエネルギー蓄積素子の合計蓄積エネルギーをアーム間で平衡に保つ機能(以下、本発明では「相間平衡制御」と称する。)を備える。この相間平衡制御の実現には、アーム間の循環電流を抑制する為の回路素子が必要となる。
 特許文献1では、このために各相アームの第1端子と交流電源端子の間に循環電流抑制リアクトルを設ける方式が開示されている(以下、本発明では「DSMMC変換器」と称する。)。
 特許文献2では、2重星型結線した第2次と第3次巻線を備えた変圧器を設け、第2次・第3次巻線の漏れリアクタンスを電流抑制回路素子としながら循環電流による変圧器鉄心の直流起磁力を相殺する方法が開示されている(以下、本発明では「DIMMC変換器」と称する。)。
 特許文献3では、千鳥結線した第2次と第3次巻線を備えた変圧器を設け、第2次・第3次巻線の漏れリアクタンスを電流抑制回路素子とし、循環電流による変圧器鉄心の直流起磁力を相殺する方法が開示されている(以下、本発明では「ZCMMC変換器」と称する。)。
 非特許文献1では、2台のMMC変換器の直流端子を背後接続して可変周波数電源とし、一方の交流端子を交流系統に接続、他方の交流端子を交流回転電気機械に接続して可変速発電電動装置とする方法として、2台のDSMMC変換器の直流端子を背後接続する方法が開示されている。
 この方法によれば、MMC変換器に接続しても交流回転電気機械には直流電流が重畳されない。このため、交流系統に直接接続して固定周波数で運転する交流回転電気機械を可変速化する場合に適する。
 特許文献4では、交流回転電気機械側にZCMMC変換器を接続する方法が開示されている。この方法によれば、循環電流抑制リアクトルを設けなくとも交流電動システムを実現できると主張している。
 特許文献5では、交流回転電気機械の可変周波数電圧・電流信号のベクトル計測方法が開示されている。
特許第5189105号公報 国際公開第2009/135523号 特許第5268739号公報 特開2013-162735号公報 特許第5537095号公報
萩原誠・西村和敬・赤城泰文、「モジュラー・マルチレベルPWMインバータを用いた高圧モータドライブ:第1報、400V、15kWミニモデルによる実験的検証」、電気学会論文誌D、2010年4月、130巻、4号、pp.544-551 Philip L.Alger, ‘Induction Machines’, Second Edition,April,1969
 電力用半導体スイッチング素子(以下、本発明では「スイッチング素子」と称す。)を用いた静止電力変換装置は、サイリスタなどの自己消弧機能を持たないスイッチング素子を用いた他励式電流型変換器(以下、本発明では「LCC変換器」と称す。)と、IGBTなど自己消弧機能を備えたスイッチング素子を用いた自励式電圧型変換器(以下、本発明では「VSC変換器」と称す。)に大別できる。
 特に、VSC変換器の場合、スイッチング素子の高圧化に伴って回転電気機械のコイル電圧の時間変化率が高くなり、スイッチング特性改善に伴って高調波電流を抑えるためにPWM周波数を上げることでコイルの漏れ電流は増加する。
 特に、商用の交流周波数電源を前提に設置した交流回転電気機械を可変速化する場合の隘路になっている。
 MMC変換器は、PWM制御を備えたVSC変換器に区分される。MMC変換器は、従来のPWM変換器と異なり、単位変換器をN段直列接続することで、リアクトルや変圧器に複雑な結線を使わずにPWM制御による電圧脈動幅を1/Nに抑制し、交流回転電気機械に印加される電圧の高調波成分を抑えることができる。MMC変換器の採用によって回転電気機械のコイル絶縁を強化せずに使用することができ、特に交流電源系統の一定周波数を前提に設置された交流回転電気機械を可変速化する場合に好適である。
 また、MMC変換器は、単位変換器の直列接続数に冗長を持たせ、故障した単位変換器の出力端子を短絡することによって可用性を高めることができる。このため、MMC変換器は、多数の単位変換器を必要とする大容量の交流回転電気機械を可変速化する場合に好適である。
 非特許文献1は、こうした特長を実現するのに好適な技術が開示されている。特許文献4では、ZCMMC変換器を接続することによって可変速発電電動装置が実現できると主張している。
 しかし、上記の2文献には、MMC変換器を適用して交流回転電気機械を可変速化する場合、必然的に発生する課題と解決策が開示されていない。
 第1の課題は、MMC変換器の出力電流容量が周波数に比例する特性による。低周波出力領域で電流容量が低下するため、原理的に出力トルクが電流に比例する交流回転電気機械の起動トルクを確保できないという課題である。特にMMC変換器の特長を生かすのに好適な大容量回転電気機械の大半を占める同期機の起動に適用できない課題がある。この課題は、DSMMC変換器、DIMMC変換器、ZCMMC変換器を問わず、交流回転電気機械に接続する場合に共通の課題であるが、非特許文献1と特許文献4には、課題と解決手段は開示されていない。
 第2の課題は、回転電気機械の巻線に意図的に直流電流を重畳するために発生する課題である。
 非特許文献2のp.356には、「誘導機の固定子と回転子の鉄心スロット数の組み合わせによるジグザグ漏れ磁束による磁気吸引力の不平衡すら問題になる。」ことが指摘されている。
 まして、DIMMC変換器やZCMMC変換器のように直流電流を意図的に重畳させる場合、鉄心スロット内部のコイル電流による直流起磁力を相殺することは、必要最低条件である。この課題は、交流回転電気機械として同期機、誘導機を採用する場合に共通である。
 一方、特許文献4では、「3相巻線に3等分した直流電流を流せば、零相電流によって生じる磁界は零になる」と主張している。
 非特許文献2のp.76からp.79には、3種類の電機子巻線が紹介されている。同文献のFig.3.5には単層コイルによる巻線が、Fig.3.6には2層コイルで60度位相帯の巻線が、Fig.3.7には2層コイルで120度位相帯の巻線が紹介されている。このうち、「3相巻線に3等分した直流電流を流せば、スロット内の起磁力が相殺され、零相電流によって生じる磁界は零になる」という特許文献4の主張が成立するのはFig.3.7に示された2層コイルによる120度位相帯構成のみである。以下、3種類の巻線について説明する。
 単層コイルの場合、スロット内部のコイル電流は単一相なため、原理的に起磁力の相殺はできない。
 図21に2極機の電機子巻線を18スロットに収めた2層コイルによる60度位相帯を構成した例を示す。
 図21は、非特許文献2のFig.3.3を円周上に展開したFig.3.6の3相巻線を星型結線し、各相に3等分の直流電流を流した時の起磁力分布と磁界分布を示す。なお、図21で、実線は2層コイルの上コイルを、破線は下コイルを示す。
 ここで、N端子から3相(RST)端子に向かって3等分した直流電流IDC/3を流した時に各相巻線が作る起磁力分布、3相分合計による起磁力分布と磁界分布を示す。図21に示すように、直流電流は正弦波に近い磁界束分布を作るため、実用的でない。
 次に、図7に2極機の電機子巻線を18スロットに収めた2層コイルで120度位相帯を構成した例を示す。
 図7は、非特許文献2のFig.3.7の巻線を短節巻(コイルピッチ8/9)から全節巻に変更した上で3相巻線を星型結線し、3等分の直流電流を流した時の起磁力分布と磁界分布を示す。なお、図7で、実線は2層コイルの上コイルを、破線は下コイルを示す。
 ここで、N端子から3相(RST)端子に向かって3等分した直流電流IDC/3を流した時に各相巻線が作る起磁力分布、および3相合計による起磁力分布と磁界分布を示す。図7に示すように、直流電流重畳分によるスロット内起磁力は相殺され、磁界分布への寄与は零になる。
 以上より、ZCMMC変換器と交流回転電気機械を接続して可変速発電電動装置を構成する場合、交流回転電気機械に「2層コイルによる120度位相帯の電機子巻線の各相に3等分の直流電流を重畳する」ことが必要条件である。
 しかし、既設の交流回転電気機械を可変速化する場合、巻線係数や高調波成分が優先される場合が多く、120度位相帯の適用例は必ずしも多くない。従って、特許文献4の方法を既設機の可変速化に適用できる場合は限定的である。
 一方、2層コイルによる60度位相帯の電機子巻線の場合でも、図4に示す方法によって、3等分の直流重畳電流によるスロット内起磁力を相殺し、磁界分布への寄与を零にすることができる。
 図4では図21の3相コイルが作る磁極毎に等分し、第1組の3相端子(RP、SP、TP)と第2組の3相端子(RN、SN、TN)の各々に重畳する直流電流を3等分し、互いに逆極性の直流電流を重畳する。
 この時、各相巻線が作る起磁力分布、および3相合計による起磁力分布と磁界分布を示す。図4に示すように、直流電流重畳分によるスロット内起磁力を相殺し、磁界分布への寄与を零にすることができる。しかし、ZCMMC変換器には、反対極性の直流電流を重畳できない課題がある。
 本発明の目的は、上記の課題を解決し、大型の交流発電電動機を用いた可変速発電電動装置、可変速発電電動システムを提供することにある。
 上記目的を達成するため、本発明は、交流電気機械の電機子巻線を2層コイルで60度位相帯とし、正極側と負極側に分けて中性点端子を締結して星型結線とし、正極側の端子をDIMMC変換器アームの第1端子に接続し、負極側の端子をDIMMC変換器アームの第2端子に接続し、正側と負側巻線の直流電流を反対極性の同一値とし、各相へ3等分することでコイルスロット内の直流電流分による起磁力を相殺し、安定な可変速発電電動装置を提供する。
 あるいは、上記目的を達成するため、交流回転電気機械の電機子巻線を2層コイルで120度位相帯とし、ZCMMC変換器の各アーム直流電流を3等分することでコイルスロット内の直流電流重畳分による起磁力を相殺し、安定な可変速発電電動装置を提供することにある。
 あるいは、上記目的を達成するため、本発明は、n,mは自然数であって4×n極の交流回転電気機械の電機子巻線を2層コイルで60度位相帯とし、正極と負極に2等分して各相に(2×n)極の巻線を直列接続してm重並列した星型結線に2組の3相端子を設け、正極側の3相端子をDIMMC変換器アームの第1端子に接続し、第2端子を直流電源装置の正側端子に接続し、負極側の3相端子をDIMMC変換器アームの第2端子に接続し、第1端子を直流電源装置の負側端子に接続し、MMC変換器アームへの直流電流値が同一で正側と負側アームを反対極性とし、各相へ3等分することでコイルスロット内の直流電流重畳分による起磁力を相殺し、安定であると同時に、DIMMC変換器をバイパス運用可能な可変速発電電動装置を提供することにある。特に(4×n)極の(2×m)重並列星型結線の交流回転電気機械を電機子巻線のコイル端接続変更で可変速化する場合、変更前後で端子電圧を保持できるため、変換器を通さぬバイパス運転を実現し、既設の交流機器を流用可能な可変速発電電動装置を提供する。
 あるいは、上記目的を達成するため、本発明は、ダンパー巻線付きの同期機とDSMMC変換器もしくはDIMMC変換器もしくはZCMMC変換器を接続し、停止状態で界磁巻線を抵抗短絡し、アーム電流と周波数を各々の定格の約10%に固定してMMC変換器を起動、交流回転電気機械を誘導機起動する。
 あるいは、上記目的を達成するため、本発明は、回転速度が変換器周波数相当に加速したら一旦MMC変換器を停止、続いて界磁巻線の接続を抵抗から励磁用変換器に変更し、回転速度に比例する電流指令でMMC変換器を再起動して加速する。これにより自己始動可能な可変速発電電動装置を提供する。
 本発明によれば、交流系統による一定周波数運転を前提に設置された交流回転電気機械の電機子巻線のコイル端部の変更だけで交流回転電気機械を可変速化できる。特に、太陽光発電システムや風力発電システムなどによる再生エネルギー利用拡大に伴う電力系統の動揺を抑制するのに有効な水力発電所および揚水発電所における交流回転電気機械の可変速化を迅速に実現できる。
本発明の第1の実施形態を示す回路図 本発明の実施形態を示す単位変換器の回路図 本発明の実施形態を示す別の単位変換器の回路図 本発明の第1の実施形態を示す交流回転電気機械の電機子巻線を示す図 本発明の第1の実施形態を示す制御ブロック図 本発明の第2の実施形態を示す回路図 本発明の第2の実施形態を示す交流回転電気機械の電機子巻線を示す図 本発明の第2の実施形態を示す制御ブロック図 本発明の第3の実施形態を示す回路図 本発明の第3の実施形態を示す直流電源装置の回路図 本発明の第3の実施形態を示す別の直流電源装置の回路図 本発明の第3の実施形態を示す交流回転電気機械の電機子巻線を示す図 本発明の第3の実施形態を示す制御ブロック図 本発明の第3の実施形態を示す運転シーケンス図 本発明の第4の実施形態を示す回路図 本発明の第4の実施形態を示す直流電源装置の回路図 本発明の第4の実施形態を示す交流回転電気機械の電機子巻線を示す図 本発明の第4の実施形態を示す制御ブロック図 本発明の第5の実施形態を示す制御ブロック図 本発明の第5の実施形態を示す運転シーケンス図 従来の交流回転電気機械の電機子巻線を示す図(1重星型結線60度位相帯) 従来の交流回転電気機械の電機子巻線を示す図(2重星型結線60度位相帯) 従来の交流回転電気機械の電機子巻線を示す図(2重星型結線120度位相帯)
 以下に、本発明にかかる可変速発電電動装置および可変速発電電動システムの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
 図1は、本発明の第1の実施形態を示す回路図である。
 101Aは直流電源装置、2組の星型結線を備えた交流回転電気機械102Aには3相端子(RP、SP、TP)と3相端子(RN、SN、TN)を設け、2組の星型結線の中性点を締結してN端子に引き出し、高抵抗を介して接地する。MMC変換器の単位変換器103の出力端子(x、y)のN段直列接続からなる2端子(a、b)を備えたアームを6台(104RP、104SP、104TP、104RN、104SN、104TN)設け、アーム3台(104RP、104SP,104TP)のb端子を直流電源装置101Aの第1端子(P)に星型接続し、a端子を交流回転電気機械102Aの3相端子(RP、SP、TP)に接続する。残るアーム3台(104RN、104SN、104TN)のa端子を直流電源装置101Aの第2端子(N)に星型接続し、b端子を交流回転電気機械102Aの3相端子(RN、SN、TN)に接続する。
 105Aは制御装置で、6台のアームの出力電流を計測する直流電流変成器106、3相端子(RP、SP、TP)の線間電圧を計測する直流電圧変成器107A、3相端子(RN、SN、TN)の線間電圧を計測する直流電圧変成器107B、電気角表示の回転位相θを計測する位相検出器108からの信号を入力して制御演算し、単位変換器103にゲート信号(GateP*、GateN*)を出力する。断路器109Aと109Bは通常運用時は閉路、保守時に開路する。位相検出器108は、直流電圧変成器107A,107Bからの線間電圧、直流電流変成器106からの電流信号からベクトル演算で回転位相θを推定しても良い。
 特許文献5には、回転速度周波数で変化する交流信号のベクトル演算方法、および電圧信号と電流信号から回転位相θに相当する内部誘起電圧の位相を演算する方法が開示されている。
 図2は、第1の実施形態を示す単位変換器103の回路図である。単位変換器103は双方向チョッパ回路を構成するスイッチング素子201とスイッチング素子202を電圧源特性のエネルギー蓄積素子としてコンデンサ203に接続し、制御装置105Aと接続した光通信ケーブル204Aから光・電気変換素子205A、シリアル・パラレル変換回路206Aを介してゲートドライバ207Aに入力されるスイッチング素子201と202へのゲート信号でPWM制御し、2端子(x、y)間の平均電圧を0とコンデンサ電圧VCの間で調整する。一方、コンデンサ電圧VCは、直流電圧変成器208のアナログ信号出力をアナログ・ディジタル変換器209とパラレル・シリアル変換器210、電気・光変換素子211を介して光通信ケーブル204Aで制御装置105Aに帰還する。この構成によれば、スイッチング素子に流れる電流はスイッチング素子201または202の何れか1素子に限られるため、損失を最小に抑えることができる。
 図3は、第1の実施形態を示す単位変換器103の別形態の回路図である。単位変換器103Bは図2の双方向チョッパ回路に代えてフルブリッジ回路を構成するスイッチング素子212、213、214、215を使用する。この構成によれば、コンデンサ電圧をVCとしたとき、端子(x、y)間の平均電圧を-VCから+VCの間で調整することができる。
 図4は、第1の実施形態を示す交流回転電気機械の電機子巻線と端子接続の例を示す。簡単のために最小構成に近い構成であるスロット数18の2極機の例を示す。また、界磁との関係を分かりやすくするために突極同期機を描いているが、円筒同期機や誘導機であっても良い。
 以下、図4の巻線と端子構成は、図21に示す巻線と端子構成からコイル端の接続変更と端子引き出しで実現できることを説明する。
 図21、図4共に2層コイルによる60度位相帯構成でスロット内を通るコイル部分に変更はない。改造前の図21では、通常の3相端子(R、S、T)の1重星型結線であり、空隙上で正逆極性の磁界をつくるコイルを直列接続している。改造後の図4では、2組の3相端子(RP、SP、TP)と(RN、SN、TN)を設ける。
 以上のとおり、改造は電機子巻線のコイルエンドの接続変更と3端子の追加引き出しである。接続変更により、3相巻線の巻数が半分になるため、線間電圧は1/2になる。改造前後で電機子コイルの電流容量は変わらない。しかし、電流容量の使い方が変わる。
 以下、交流回転電気機械として同期機を使う場合について説明する。改造前の電流周波数は交流系統の周波数のみであり、電流実効値は有効電力成分と無効電力成分の根2乗和となる。改造後の電流は電力変換装置の出力周波数成分の実効値と直流電流平均値の根2乗和となる。原理的に2組の3相端子の相電圧は同相で実効値も等しい。2組の巻線に流れる交流電流(IRP_AC、ISP_AC、ITP_AC)、(IRN_AC、ISN_AC、ITN_AC)の符号を図1で定義する場合、電流は逆位相で実効値が等しくなる。交流電流は力率1に制御する。ここで電力変換装置交流相電圧をVAC、電流実効値をIACとし、直流電流をIDCとし、直流電流は各相巻線に3等分する。直流電源装置101Aの出力電圧をVDCとすると、交流回転電気機械や電力変換装置の損失を無視すると、出力容量Pとの関係は(P=6×VAC×IAC=VDC×IDC)となる。IACに対する(IDC/3)の比率は、単位変換器103のコンデンサ203の容量、電源異常時の運用方法や単位変換器を図2とするか図3とするかによって異なる。
 一般に、コンデンサ203の容量を小さくし、電源異常時の可用性(運転継続性)を高めるために単位変換器のPWM変調率の上下限を抑制してコンデンサ電圧VCの利用率を下げ、電力変換装置の効率を重視して単位変換器として図2の双方向チョッパ回路を採用すると(IDC/3)の比率が高くなり、等価的な力率が下がる。(IDC/3)の比率を高く設計する場合、概略で(IDC/3)/IAC=0.5となる。この結果、出力に寄与する電流容量の有効分をIACとし、直流重畳分(IDC/3)を無効分とすると、等価的な力率は0.9程度まで下がる。この値は、MMC変換器の方式によらない。
 この結果、改造前の同期機の定格力率が0.9以下であれば、改造後も同じ有効電力出力を確保できる。交流回転電気機械として誘導機を使う場合、力率調整できないので、改造後の有効電力出力はMMC変換器の等価的な力率を掛けた値に減少する。
 図5は、第1の実施形態を示す制御装置105Aの制御ブロック図である。
 501Aは相電圧演算器、2組の3相線間電圧検出信号から相電圧信号を演算する。502は速度演算器で、回転位相θの現在値と前回周期で同一位相の信号からのサンプル数Npから回転速度周波数ωを演算する。ここで、サンプル周期をΔtとすると、ω=2×π/(Np×Δt)の関係が成り立つ。
 503Aは移動平均演算器で、3相交流電流(IRP、ISP、ITP)の合計をNp回の移動平均で直流電流IDCを演算する。d-q変換器504Pは数式1、d-q変換器504Nは数式2の演算を行う。ただし、ここでは相順をRSTとする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 505Aは電力演算器で、回転位相信号と相電圧信号と交流電流信号とから瞬時対称座標法で有効電力Pと無効電力Qを演算する。
 506Aは有効電力調整器、507Aは無効電力調整器で、各々指令値P*とQ*に演算値P,Qが一致するように電流指令ID*とIQ*を出力する。508Aは交流電流調整器で、指令値ID*を2等分した指令値の一方と計測演算値IDPが一致し、かつ指令値ID*を2等分した指令値の他方の極性を反転して得られた指令値と計測演算値IQPが一致するように制御演算するとともに、指令値IQ*を2等分した指令値の一方と計測演算値IQPが一致し、かつ指令値IQ*を2等分した指令値の他方の極性を反転して得られた指令値と計測演算値IQNが一致するように制御演算する。509Aは直流電流調整器で、出力指令値P*と直流電源の出力電圧VDC*の除算から求めた直流電流指令IDC*と計測演算値IDCが一致するように制御演算する。
 本実施例の場合、電流経路の自由度は5であり、交流電流調整器508Aには積分演算器を4台設け、直流電流調整器509Aには積分演算器を1台設ける。積分演算器の合計5台で電流経路の自由度5と等しいため、全ての積分器は独立に入力偏差ゼロに抑えることができる。510Pと510Nは逆d-q変換器で、数式3を演算する。
Figure JPOXMLDOC01-appb-M000003
 511Pはアーム104RP、104SP、104TPへの直流電圧指令補正演算器、511Nはアーム104RN、104SN、104TNへの直流電圧指令補正演算器であり、各アームへの出力電圧指令VRP*,VSP*,VTP*,VRN*,VSN*,VTN*を出力する。
 以上より、交流回転電気機械102Aの3相端子(RP、SP、TP)と3相端子(RN、SN、TN)の相電圧はほぼ等しく、これを(VR*、VS*、VT*)とすると、アーム104RPとアーム104RNへの出力電圧指令は、各々概略で
 VRP*=+VR*+(1/2)×VDC
 VRN*=-VR*+(1/2)×VDC
となる。
 これらの出力電圧指令と単位変換器103のコンデンサ電圧VCとからPWM演算器512Pと512Nでゲート指令GateP*とGateN*を出力する。
(第2の実施形態)
 図6は、本発明の第2の実施形態を示す回路図である。
 101Aは直流電源装置、1組の星型結線を備えた交流回転電気機械102Bには3相端子(R、S、T)を設け、星型結線の中性点をN端子に引き出し、直流電源装置101Aの第2端子(N)に接続する。MMC変換器の単位変換器103の出力端子(x、y)のN段直列接続からなる2端子(a、b)を備えたアームを3台(604R、604S、604T)設け、アーム3台のa端子を交流回転電気機械102Bの3相端子(R、S、T)に接続し、b端子を直流電源装置101Aの第1端子(P)に星型接続する。
 605Aは制御装置で、3台のアームの出力電流を計測する直流電流変成器106、3相端子(R、S、T)の線間間電圧を計測する直流電圧変成器607、電気角表示の回転位相θを計測する位相検出器108からの信号を入力し制御演算し、単位変換器103にゲート信号Gate*を出力する。断路器609は通常運用時は閉路、保守時に開路する。位相検出器108は、直流電圧変成器607からの線間電圧、直流電流変成器106からの電流信号からベクトル演算で回転位相θを推定しても良い。単位変換器103の実施形態としては図2あるいは図3がある。
 図7は、第2の実施形態を示す交流回転電気機械の電機子巻線と端子接続の例を示す。簡単のために最小構成に近い構成であるスロット数18の2極機の例を示す。また、界磁との関係を分かりやすくするために突極同期機を描いているが、円筒同期機や誘導機であっても良い。
 図7の巻線は2層コイルによる120度位相帯構成である。通常の3相端子(R、S、T)引き出しの1重星型結線である。
 以下、交流回転電気機械が同期機の場合について説明する。改造前の電流は交流系統の周波数であり、電流実効値は有効電力成分と無効電力成分の根2乗和となる。改造後の電流は電力変換装置の出力周波数と直流電流となる。交流電流(IR、IS、IT)は力率1に制御する。ここで電力変換装置交流相電圧と電流の実効値をVACとIACとし、重畳する直流電流をIDC、直流電流は各相巻線に3等分する。直流電源装置101Aの出力電圧をVDCとすると、交流回転電気機械や電力変換装置の損失を無視すると、出力容量Pとの関係は、(P=3×VAC×IAC=VDC×IDC)となる。IACに対する(IDC/3)の比率は、図1の場合と同様であり、重複を避けるために説明を省略する。
 改造前の同期機の定格力率が0.9以下であれば、改造後も同じ有効電力出力を確保できる。交流回転電気機械として誘導機を使う場合、力率調整できないので、改造後の有効電力出力はMMC変換器の等価的な力率を掛けた値に減少する。
 図8は、第2の実施形態を示す制御装置605Aの制御ブロック図である。
501Bは相電圧演算器、線間電圧検出信号から相電圧信号を演算する。502は速度演算器、503Aは移動平均演算器で、3相交流電流(IR、IS、IT)の合計をNp回移動平均して直流電流IDCを演算する。d-q変換器504Cは数式4の演算をおこなう。ただし、相順はRSTの場合を示す。
Figure JPOXMLDOC01-appb-M000004
 505Bは電力演算器で、相電圧信号と交流電流信号から瞬時対称座標法で有効電力Pと無効電力Qを演算する。
 506Bは有効電力調整器、507Bは無効電力調整器で、各々指令値P*とQ*に演算値P,Qが一致するように電流指令ID*とIQ*を出力する。508Bは交流電流調整器で、指令値ID*、IQ*と計測演算値ID,IQが一致するように制御演算する。509Bは直流電流調整器で、出力指令値P*と直流電源の出力電圧VDC*の除算から求めた直流電流指令IDC*と計測演算値IDCが一致するように制御演算する。
 本実施例の場合、電流経路の自由度は3であり、交流電流調整器508Bの積分演算器2台と直流電流調整器の積分演算器1台の合計は3台で等しいため、全ての積分演算器入力偏差を独立にゼロに抑えることができる。510Cは逆d-q変換器で、数式3の演算を行う。
 511Cはアーム604R、604S、604Tへの直流電圧指令補正演算器で、各アームへの出力電圧指令VR*,VS*,VT*を出力する。
 以上より、交流回転電気機械102Bの3相端子(R、S、T)の相電圧を(VRG*、VSG*、VTG*)とすると、アーム104Rへの出力電圧指令は、
 VR*=+VRG*+(1/2)×VDC
となる。
 これらの出力電圧指令と単位変換器103のコンデンサ電圧VCとからPWM演算器512Cでゲート指令Gate*を出力する。
(第3の実施形態)
 図9は、本発明の第3の実施形態を示す回路図である。ここで、交流回転電気機械902Aは、ダンパー巻線を備えた同期機である。
 2組の星型結線を備えた交流回転電気機械902Aには3相端子(RP、SP、TP)と3相端子(RN、SN、TN)を設け、2組の星型結線の中性点を締結してN端子に引き出し、高抵抗を介して接地する。
 直流電源装置901は、交流系統側端子(A、B、C)と直流側端子(P、N)の間で電力変換する。交流系統側端子(A、B、C)は、交流系統903から遮断器904を介して接続される。
 直流電源装置901には、このほかに3組の交流端子(UP、VP、WP)(UM、VM、WM)(UX、VX、WX)を備える。交流端子(UP、VP、WP)からは、断路器905Pと遮断器906を介して交流回転電気機械902Aの3相端子(RP、SP、TP)に接続される。交流端子(UM、VM、WM)からは、断路器905Nを介して交流回転電気機械902Aの3相端子(RN、SN、TN)に接続される。また、3相端子(RP、SP、TP)と3相端子(RN、SN、TN)の間は断路器907Aと907Bで接続される。交流端子(UX、VX、WX)は、所内電源系統920と、界磁用遮断器909と界磁用変圧器910を介して界磁用電力変換器911に分岐される。界磁巻線908は、抵抗器913に接続する遮断器914と、界磁用電力変換器911に接続する遮断器912によって切り替え接続する。
 交流系統903には初充電用変圧器915と初充電用遮断器916、限流抵抗917、初充電接続用遮断器918を介して交流端子(UP、VP、WP)と(UM、VM、WM)に接続される。また、限流抵抗917用にはバイパス遮断器919を設ける。
 図10は、直流電源装置901Aの実施形態を示す回路図で、特許文献2に開示されたDIMMC変換器を適用している。
 変圧器1001は、交流系統側端子(A、B、C)を一次巻線に接続し、2次・3次巻線は2重星型結線で、各々交流端子(UP、VP、WP)と(UM、VM、WM)に接続する。変圧器1001の交流端子(Up、Vp、Wp)には単位変換器103を直列接続した2端子アーム3台(1004UP、1004VP、1004WP)のa端子に接続し、b端子を直流端子(P)に星型接続する。一方、交流端子(Um、Vm、Wm)には単位変換器103を直列接続した2端子アーム3台(1004UM、1004VM、1004WM)のb端子に接続し、a端子を直流端子(N)に星型接続する。変圧器1001にデルタ結線された4次巻線を設け、所内電源と界磁回路への給電機能と3次高調波抑制機能を兼ねる。
 図11は、直流電源装置901Bの別の実施形態を示す回路図で、特許文献1に開示されたDSMMC変換器を適用している。
 図10と同一番号は同一品であり、重複を避けるために説明を省略する。
 変圧器1002は、交流系統側端子(A、B、C)を一次巻線に接続し、デルタ結線の2次巻線端子(Ut、Vt、Wt)を3組の3端子リアクトル1003の中性点(Ux、Vx、Wx)に接続する。3端子リアクトル1003の端子(Up、Vp、Wp)には単位変換器103を直列接続した2端子アーム3台(1004UP、1004VP、1004WP)のa端子に接続し、b端子を直流端子(P)に星型接続する。一方、3端子リアクトル1003の端子(Um、Vm、Wm)には単位変換器103を直列接続した2端子アーム3台(1004UM、1004VM、1004WM)のb端子に接続し、a端子を直流端子(N)に星型接続する。変圧器1002の2次巻線からは交流端子(UX、VX、WX)を介して所内電源や界磁回路に給電される。
 以下、図9の構成で、直流電源装置901の単位変換器103のコンデンサ203を充電する手順を示す。充電期間中、断路器905Pと905Nは開路状態に保つ。
 バイパス遮断器919を開路状態に保ったまま初充電用遮断器916、初充電接続用遮断器918を閉路すると限流抵抗器917で突入電流を抑えながら単位変換器103のコンデンサ203の充電を開始する。続いてバイパス遮断器919を閉路して充電を加速する。初充電用変圧器915の交流端子電圧のダイオード整流による充電が終了したら初充電接続用遮断器918を開路し、遮断器904を閉路して直流電源装置901の変圧器10001または1002を充電したのち、単位変換器103のPWM制御で所期の電圧までコンデンサ電圧を昇圧充電する。
 次に交流回転電気機械902A側の6アーム(104RP、104SP、104TP、104RN、104SN、104TN)の単位変換器103には直流電源装置901から給電し、PWM制御によって各々の単位変換器のコンデンサ203を充電する。
 以上によって充電を完了した後、交流回転電気機械902Aを停止したまま直流電源装置901側の単位変換器103のみを動作させ、無効電力調整装置として運用することができる。交流回転電気機械902Aにフランシスポンプ水車を直結した場合、発電方向と揚水方向では相順が反転するが、いずれも変換器の制御のみで切り替え可能であり相反転断路器は不要である。
 本実施形態によれば単位変換器は全て充電済み状態であるため、発電・電動何れの回転方向の運転にも迅速に起動することができる。
 図12は、第3の実施形態を示す交流回転電気機械の電機子巻線と端子接続の例を示す。簡単のために最小構成に近いスロット数36の4極機の例を示す。また、界磁との関係を示すために突極同期機を描いているが、円筒界磁同期機や誘導機であっても良い。
 図12の巻線と端子構成は、図22に示す巻線と端子構成からコイル端部の変更のみで実現できる。図22は、2重星型結線の4極機、一般的な2層コイルの60度位相帯構成である。図の例では、各相で正極側3回巻、負極側3回巻の合計6回巻である。この星型結線を極間亘り線で2並列している。
 一方、図12では1組目の3相端子(RP、SP、TP)の巻線は2つの正極を直列接続し、合計6回巻である。もう一方の3相端子(RN、SN、TN)の巻線は2つの負極を直列接続し、合計6回巻である。
 図12の実施形態によれば、改造前後で巻数が変わらぬため、定格電圧を維持できる。このため、遮断器906などの機器を流用することができる。また、直流電源装置として図11の実施形態を用いた場合、変圧器1002の2次側端子電圧が改造前後で変わらぬため、変圧器1002を流用することができる。
 図9の構成では、MMC変換器をバイパスして運転することができる。具体的には、断路器905P、905N、遮断器906、断路器907A、907Bを閉路することにより、交流回転電気機械902Aを3相の2重星型結線の発電機として運用することができる。フランシスポンプ水車と直結する場合、相順は発電方向に接続することにより、MMC変換器をバイパスして発電運用が可能となる。
 図13は、第3の実施形態を示す制御装置905の制御ブロック図である。前の図5と同一番号は同一品を示すため、重複を避けるため説明を省略する。
 1301は指令切替器(SW1)で、一定の始動周波数ωSと、回転速度周波数ωに指令を切り替える。1302は電流指令発生器で、回転速度周波数ωに比例する電流指令ID*を出力する。1303は電流指令発生器でID*=0を出力する。1304は指令切替器(SW2)で、有効電力調整器506A、電流指令発生器1302、電流指令発生器1303を選択切り替えして電流指令ID*を出力する。
 1305は指令切替器(SW3)で、有効電力指令P*と有効電力計測値Pを選択切り替える。1306は電力演算器で、電力演算器505に交流発電電動機902Aの線間電圧実効値VGMの出力を追加している。1307は電圧指令発生器で、回転速度周波数ωに比例した電圧指令VGM*の発生器、1308は交流発電電動機902Aの電圧調整器、1309は電流指令発生器でIQ*=0を出力する。1310は指令切替器(SW4)で、電圧調整器1308、電流指令発生器1309、無効電力調整器507Aを選択切り替えして電流指令IQ*を出力する。
 以上より、図9と図13の実施形態で、交流発電電動装置を起動する方法を図14に示す。
 最初に電動機モードでの起動方法を説明する。
 図14では、時刻Tm1で予め単位変換器103のコンデンサは充電済み、遮断器904は閉路、断路器905P、905N、907A、907Bは開路状態に保持する。
 遮断器CBE2は閉路(ON)、CBE3は開路状態(OFF)、指令切替器SW1は一定速度指令ωS固定側に設定、指令切替器SW2は速度比例のID*指令側(ID*=kω)に設定する。指令切替器SW3は有効電力計測値P側に設定、指令切替器SW4はIQ*=0に設定する。
 以上の状態で時刻Tm2でMMC変換器を起動すると(MMC制御_ON)、交流回転電気機械902Aは、ダンパー巻線による誘導機モードで起動する。時刻Tm3で回転速度が設定値ωS相当になったらMMC変換器を一旦停止し(MMC制御_OFF)、CBE3を閉路して界磁用電力変換器911に接続する。続いて時刻Tm4でCBE2を開路し、抵抗器913を切り離す。同時に指令切替器SW1を回転速度周波数ω(回転速度ω)に切り替えて指令切替器SW4を電圧調整器1308の出力側(AVR)に切り替える。これにより、ID*指令は速度に比例した指令値を出力し、IQ*指令も速度に比例した指令値を出力する。同時に界磁制御を開始する。この状態を保ちながら時刻Tm5でMMC変換器制御を開始すると(MMC制御_ON)、同期機トルクで加速を開始する。回転速度ωが可変速運転範囲に入ると時刻Tm6で指令切替器SW2の出力をID*=0に一旦切り替え、時刻Tm7で指令切替器SW2を有効電力調整器の出力側(APR)に、指令切替器SW3を指令P*側に、指令切替器SW4を無効電力調整器の出力側(AQR)に設定し、通常の可変速電動機モードの運転に入る。
 以上、本実施形態によれば、始動用装置に頼ることなく、電動機モードで自己始動が可能となる。
 次に発電モードでの始動方法を説明する。
 図14では、Tg1で予め単位変換器103のコンデンサ203は充電済み、遮断器904は閉路、断路器905P、905N、907A,907Bは開路状態に保持する。
 遮断器CBE2は開路、CBE3は閉路状態、指令切替器SW1は使用せず(不定なので一方に固定)、指令切替器SW2はID*=0側に設定する。指令切替器SW3は有効電力計測値P側に設定、指令切替器SW4は電圧調整器出力側に設定する。
 発電モードでは交流回転電気機械902Aに直結された原動機の調速機で回転速度制御し、原動機側の駆動トルクで起動・加速する。
 以上の状態で、Tg1で原動機側の調速機で調整しながら加速する。交流回転電気機械902Aは無負荷状態のままとする。回転速度が可変速範囲まで加速された後、Tg2で調速機への回転速度指令を一定に保つ。この時、位相信号θは回転位相なので、交流回転電気機械902Aの端子に誘起される電圧と電圧指令の位相は同期する。Tg3でMMC制御を開始すると同時に指令切替器SW4を無効電力調整器側に切り替え設定する。続いてTg4で指令切替器SW2を有効電力調整器出力側に、指令切替器SW3を有効電力指令P*側に切り替え、通常の可変速発電機モードの運転に入る。
(第4の実施形態)
 図15は、本発明の第4の実施形態を示す回路図である。前の図6、図9と同一番号は同一品を示す。重複を避けるため説明を省略する。ここで、交流回転電気機械1502Aは、ダンパー巻線を備えた同期機である。
 2組の星型結線を備えた交流回転電気機械1502Aには3相端子(R1、S1、T1)と3相端子(R2、S2、T2)を設け、2組の星型結線の中性点を締結してN端子に引き出し、直流電源装置1501の第2端子(N)に接続する。MMC変換器の単位変換器103の出力端子(x、y)のN段直列接続からなる2端子(a、b)を備えたアームを6台(1504R1、1504S1、1504T1、1504R2、1504S2,1504T2)設け、アーム3台(1504R1、1504S1、1504T1)のb端子を直流電源装置1501の第1端子(P)に星型接続し、a端子を交流回転電気機械1502Aの3相端子(R1、S1、T1)に接続する。残るアーム3台(1504R2、1504S2、1504T2)のb端子を直流電源装置1501の第1端子(P)に星型接続し、a端子を交流回転電気機械1502Aの3相端子(R2、S2、T2)に接続する。
 1605は制御装置で、6台の直流電流変成器106、3相端子(R1、S1、T1)の線間電圧を計測する直流電圧変成器107C、3相端子(R2、S2、T2)の線間電圧を計測する直流電圧変成器107D、電気角表示の回転位相θを計測する位相検出器108からの信号を入力して制御演算し、単位変換器103にゲート信号(Gate1*、Gate2*)を出力する。断路器1505は通常運用時は閉路、保守時に開路する。断路器1507は通常運用時は開路、バイパス運転時は閉路する。
 直流電源装置1501は、交流系統側端子(A、B、C)と直流側端子(P、N)の間で電力変換する。交流系統側端子(A、B、C)は、交流系統903から遮断器904を介して接続される。
 直流電源装置1501には、このほかに2組の交流端子(U、V、W)(UX、VX、WX)を備える。交流端子(U、V、W)からは、断路器1505と遮断器1506を介し、断路器1507で分岐してから交流回転電気機械の2組の3相端子(R1、S1、T1)と(R2、S2、T2)に接続される。交流端子(UX、VX、WX)は、所内電源系統920と、界磁用遮断器909と界磁用変圧器910を介して界磁用電力変換器911に分岐される。界磁巻線908は、抵抗器913に接続する遮断器914と、界磁用電力変換器911に接続する遮断器912によって切り替え接続する。
 交流系統903には初充電用変圧器915と初充電用遮断器916、限流抵抗917、初充電接続用遮断器1518を介して交流端子(U、V、W)に接続される。また、限流抵抗917用にはバイパス遮断器919を設ける。
 図16は、直流電源装置1501の実施形態を示す回路図で、特許文献3に開示されたZCMMC変換器を適用している。
 変圧器1601は、交流系統側端子(A、B、C)を一次巻線に接続し、2次・3次巻線は千鳥結線で、交流端子(U、V、W)に接続する。変圧器1601の交流端子(U、V、W)には単位変換器103を直列接続した2端子アーム3台(1602U、1602V、1602W)のa端子に接続し、b端子を直流端子(P)に星型接続する。一方、千鳥結線の中性点は直流端子(N)に接続する。変圧器1601にデルタ結線された4次巻線を設け、所内電源と界磁回路への給電機能と3次高調波抑制機能を兼ねる。
 図17は、第4の実施形態を示す交流回転電気機械の電機子巻線と端子接続の例を示す。簡単のために最小構成に近いスロット数36の4極機の例を示す。また、界磁との関係を示すために突極同期機を描いているが、円筒界磁同期機や誘導機であっても良い。
 図17の巻線と端子構成は、図23に示す巻線と端子構成からコイル端部の変更のみで実現できる。図23は、2重星型結線の4極機、一般的な2層コイルの120度位相帯構成である。図の例では、各相で6回巻である。この星型結線を極間亘り線で2並列している。
 一方、図17では2重星型結線を2組に分けて独立の端子を引き出し、1組目の3相端子(R1、S1、T1)、2組目の3相端子(R2、S2、T2)の巻線は図23と同様に合計6回巻である。
 図17の実施形態によれば、改造前後で巻数が変わらぬため、定格電圧を維持できる。このため、遮断器1506などの機器を流用することができる。
 図15の構成では、MMC変換器をバイパスして運転することができる。具体的には、断路器1505、遮断器1506、断路器1507を閉路することにより、交流回転電気機械1502Aを3相の2重星型結線の発電機として運用することができる。フランシスポンプ水車と直結する場合、相順は発電方向に接続することにより、MMC変換器をバイパスして発電運用が可能となる。
 図17の実施形態によれば、交流回転電気機械1502Aの電流容量増大と共に星型結線を並列する場合、並列巻線を等分して端子を分割して引き出すことにより、アームあたりの電流を削減することができる。これによって単位変換器103内のスイッチング素子の並列数を削減し、構成を簡素化して信頼性を向上することが可能となる。
 図18は、第4の実施形態を示す制御装置1605の制御ブロック図である。前の図5および図8と同一番号は同一品を示すため、重複を避けるため説明を省略する。
 1801Aは相電圧演算器、線間電圧検出信号から相電圧信号を演算する。502は速度演算器、503Aと503Bは移動平均演算器で、2組の3相交流電流(IR1、IS1、IT1)(IR2、IS2、IT2)の合計をNp回移動平均して直流電流IDC1とIDC2を演算する。d-q変換器1804Aと1804Bは数式4の演算を行い、各々(ID1、IQ1)(ID2、IQ2)を出力する。ただし、相順はRSTの場合を示す。
 1806は電力演算器で、相電圧信号と交流電流信号から瞬時対称座標法で有効電力Pと無効電力Qを演算する。
 506Bは有効電力調整器、507Bは無効電力調整器で、各々有効電力指令P*と無効電力指令Q*に演算値P,Qが一致するように電流指令ID*とIQ*を出力する。508Bは交流電流調整器で、電流指令ID*を2等分した指令値のそれぞれが計測演算値ID1、IQ1と一致するように制御演算するとともに、電流指令IQ*を2等分した指令値のそれぞれが計測演算値ID2、IQ2と一致するように制御演算する。1809Aと1809Bは直流電流調整器で、直流電流調整器1809Aは、出力指令値P*と直流電源の出力電圧指令VDC*の除算から求めた直流電流指令IDC*を2等分した指令値と計測演算値IDC1が一致するように制御演算し、直流電流調整器1809Bは、出力指令値P*と直流電源の出力電圧指令VDC*の除算から求めた直流電流指令IDC*を2等分した指令値と計測演算値IDC2が一致するように制御演算する。
 本実施例の場合、電流経路の自由度は6であり、交流電流調整器508Bの積分演算器4台と直流電流調整器の積分演算器2台の合計は6台で等しいため、全ての積分演算器入力偏差を独立にゼロに抑えることができる。1810Cと1810Dは逆d-q変換器で、数式3の演算を行う。
 1811Aはアーム1504R1、1504S1、1504T1への直流電圧指令補正演算器で、出力電圧指令VR1*,VS1*,VT1*を出力し、1811Bはアーム1504R2、1504S2、1504T2への直流電圧指令補正演算器で、出力電圧指令VR2*,VS2*,VT2*を出力する。
 以上より、交流回転電気機械1502Aの2組の並列巻線の3相端子(R1、S1、T1)(R2、S2、T2)の相電圧は等しく(VR*、VS*、VT*)とすると、アーム1504R1への出力電圧指令VR1*と1504R2への出力電圧指令VR2*は、各々
 VR1*=+VR*+(1/2)×VDC
 VR2*=+VR*+(1/2)×VDC
となる。
 これらの出力電圧指令と単位変換器103のコンデンサ電圧VCとからPWM演算器1812Aと1812Bでゲート指令Gate1*とGate2*を出力する。
(第5の実施形態)
 図19は、第5の実施形態を示す制御装置905の制御ブロック図である。前の図13と同一番号は同一品を示すため、重複を避けるため説明を省略する。
 この実施形態では、本発明のシステムのダンパー巻線付同期機902Aにポンプあるいは可逆式ポンプ水車を直結し、ポンプあるいは可逆式ポンプ水車の吐出側に封止弁を設けている。1901は回転速度指令発生器で、全揚程信号Hpから水圧確立時の入力Ppと可変速発電電動システムの特性で決まる加速時の電動機入力Pmが一致する速度ωpを出力する。全揚程の変動幅が小さい場合は一定値出力の指令発生器に簡素化してもよい。1902は回転速度調整器で、回転速度指令ωp*と回転速度周波数ωの偏差が零となるよう電流指令ID*を調整する。1903は指令切替器(SW5)で、回転速度指令ωp*と回転速度周波数ωを判定条件に電流指令ID*を切り替える。
 以上より、図9と図19の実施形態で、交流発電電動システムを起動する方法を図20に示す。前の図14と同じ記号は同じ内容であり、重複を避ける為に説明を省略する。
 時刻Tm2でMMC変換器を起動すると(MMC制御_ON)、交流回転電気機械902Aは、ダンパー巻線による誘導機モードで起動し、有効電力Pmが0から上昇開始する。時刻Tm3で回転速度ωが設定値ωS相当になったらMMC変換器を一旦停止し(MMC制御_OFF)、有効電力Pmは0に戻る。CBE3を閉路して界磁用電力変換器911に接続する。続いて時刻Tm4でCBE2を開路し、抵抗器913を切り離す。同時に指令切替器SW1を回転速度周波数ωに切り替えて指令切替器SW4を電圧調整器1308の出力側(AVR)に切り替える。これにより、ID*指令は速度に比例した指令値を出力し、IQ*指令も速度に比例した指令値を出力する。同時に界磁制御を開始する(界磁制御_ON)。この状態を保ちながら時刻Tm5でMMC変換器制御を開始すると(MMC制御_ON)、同期機トルクで加速を開始する。この期間の電圧・電流ともに回転速度ωに比例するため、電動機入力Pmは回転速度ωの2乗に比例して増加する。一方、水圧確立時の入力Ppは回転速度ωにより漸増するが、電動機入力Pmの変化に比べて小さいので、両者が一致する回転速度ωが必ず存在する。この値は全揚程範囲やターボ機械の比速度によって変わるが、定格入力時の回転速度を100%とすれば、経験的に50%と90%の間に収まる。この値を速度指令発生器1901で演算して回転速度指令ωp*として出力する。回転速度ωが指令値ωp*まで加速したら、時刻Tm8で指令切替器SW5から出力する電流指令ID*を回転速度調整器1902出力(ASR)に切替えると同時に指令切替器SW4を無効電力調整器507A出力(AQR)に切り替える。時刻Tm8で加速を停止するため、電動機入力Pmはいったん低下するが、時刻Tm9で封止弁を開いて水圧確立すると(封止弁_開)、電動機入力Pmはポンプあるいはポンプ水車入力Ppの急上昇に応じて再上昇する。この間の電動機入力Pmの変動を抑えるためには、時刻Tm9と時刻Tm8の時間差ΔTpを出来るだけ短くするよう封止弁を開くタイミングを調整し、回転速度指令発生器1901の精度を高めてΔPpを小さくすれば良い。水圧確立時の回転速度動揺を回転速度調整器1902で整定したら、時刻Tm10で指令切替器SW5で電流指令ID*を有効電力調整器の出力(APR)に、指令切替器SW3を指令P*側に切替し、通常の可変速電動機モードの運転に入る。
 本実施形態によれば、起動トルクを確保できるために水面押し下げ装置が不要となり、停止時からポンプあるいはポンプ水車を充水状態から加速できるので起動時間を短縮できる。また、加速期間中は単位変換器103の出力電流容量の上限で運転できるので加速時間を短縮できる。また、水圧確立時の電動機入力変動を最小限に抑えることができるため、従来の揚水機で必要だった交流系統の負荷調整等が不要となり、柔軟な運用を実現する効果がある。
 以上の実施形態では3相の交流回転電気機械を例に説明してきたが、本発明の実施形態をN相の交流回転電気機械に展開できることは言うまでもない。また、以上の実施の形態では巻線方式として重ね巻を例に説明してきたが、本発明の各実施の形態を波巻に展開できることは言うまでもない。
 101A、901、901A、901B、1501 直流電源装置
 102A、102B、902A、1502A 交流回転電気機械
 903 交流系統
 904、906、912、914、1506 遮断器
 1001、1002、1601 変圧器
 1003 3端子リアクトル
 920 所内電源系統
 908 界磁巻線
 909 界磁用遮断器
 910 界磁用変圧器
 911 界磁用電力変換器
 913 抵抗器
 917 限流抵抗
 915 初充電用変圧器
 916 初充電用遮断器
 918、1518 初充電接続用遮断器
 919 バイパス遮断器
 109A、109B、609、905P、905N、907A、907B、1505、 1507 断路器
 104RP、104SP、104TP、104RN、104SN、104TN、604R、604S、604T、1004UP、1004VP、1004WP、1004UM、1004VM、1004WM、1504R1、1504S1、1504T1、1504R2、1504S2、1504T2、1602U、1602V、1602W アーム
 106 直流電流変成器
 107A、107B、107C、107D、208、607、507A、507B 直流電圧変成器
 103 単位変換器
 201、202、212、213、214、215 スイッチング素子
 105A、605A、905、1605 制御装置
 203 コンデンサ
 204A、204B 光通信ケーブル
 205A、205B 光・電気変換素子
 206A シリアル・パラレル変換回路
 207A ゲートドライバ
 209 アナログ・ディジタル変換器
 210 パラレル・シリアル変換器
 211 電気・光変換素子
 501A、501B、1801A 相電圧演算器
 502 速度演算器
 503A、503B 移動平均演算器
 504P、504N、504C、1804A、1804B d-q変換器
 505A、505B、1306、1806 電力演算器
 506A、506B 有効電力調整器
 507A、507B 無効電力調整器
 508A、508B 交流電流調整器
 509A、509B、1809A、1809B 直流電流調整器
 510P、510N、510C、1810C、1810D 逆d-q変換器
 511P、511N、511C、1811A、1811B 直流電圧指令補正演算器
 512P、512N、512C、1812A、1812B PWM演算器
 1301、1304、1305、1310、1903 指令切替器
 1302、1303、1309 電流指令発生器
 1307 電圧指令発生器
 1308 電圧調整器
 1901 回転速度指令発生器
 1902 回転速度調整器

Claims (8)

  1.  直流電源に接続された電力変換器と、この電力変換器の交流側に接続された3相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを6個備え、
     前記交流回転電気機械は2層コイルで60度位相帯の電機子巻線を備え、この電機子巻線を第1極側と第2極側に分けて中性点端子を締結して2重星型結線として2組の3相端子で引き出し、
     前記電機子巻線の第1極側の前記3相端子を前記電力変換器の3個の2端子アームの第1端子にそれぞれ接続し、これら3個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、
     前記電機子巻線の第2極側の前記3相端子を前記電力変換器の残り3個の2端子アームの第2端子にそれぞれ接続し、これら3個の2端子アームの第1端子を前記直流電源の第2端子に星型結線し、
     前記直流電源の直流電流を3等分して相毎に前記直流電源の第2端子に接続された前記3個の2端子アーム、前記電機子巻線の第2極側の3相端子、前記電機子巻線の第1極側の3相端子、前記直流電源の第1端子に接続された前記3個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
  2.  直流電源に接続された電力変換器と、この電力変換器の交流側に接続された3相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを3個備え、
     前記交流回転電気機械は2層コイルで120度位相帯の電機子巻線を備え、この電機子巻線を星型結線して3相端子で引き出し、
     前記星型結線の前記3相端子を前記電力変換器を構成する3個の2端子アームの第1端子にそれぞれ接続し、これら3個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、前記電機子巻線の中性点を前記直流電源の第2端子に接続し、前記直流電源の直流電流を3等分して相毎に前記直流電源の第2端子に接続された前記電機子巻線の前記中性点、前記電機子巻線の前記3相端子、前記直流電源の第1端子に接続された前記3個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
  3.  直流電源に接続された電力変換器と、この電力変換器の交流側に接続された(4×n)極(nは1以上の自然数)の3相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを6個備え、
     前記交流回転電気機械は2層コイルで60度位相帯の電機子巻線を備え、この電機子巻線の第1極側と第2極側に分けて各相に(2×n)極の巻線を直列接続してm(mは1以上の自然数)重並列した星型結線の中性点端子を締結し、巻線の反対側を2組の3相端子で引き出し、
     前記電機子巻線の第1極側の前記3相端子を前記電力変換器の3個の2端子アームの第1端子にそれぞれ接続し、これら3個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、
     前記電機子巻線の第2極側の前記3相端子を前記電力変換器の残り3個の2端子アームの第2端子にそれぞれ接続し、これら3個の2端子アームの第1端子を前記直流電源の第2端子に星型結線し、
     前記直流電源の直流電流を3等分して相毎に前記直流電源の第2端子に接続された前記3個の2端子アーム、前記電機子巻線の第2極側の前記3相端子、前記電機子巻線の第1極側の前記3相端子、前記直流電源の第1端子に接続された前記3個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
  4.  直流電源に接続された電力変換器と、この電力変換器の交流側に接続されたダンパー巻線付きの同期機とからなる可変速発電電動システムにおいて、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを備え、
     前記電力変換器から前記同期機に供給する電流の周波数および振幅を一定値に調整する第1の制御手段と、
     前記電力変換器から前記同期機に供給する電流の周波数を前記同期機の回転速度に同期させ、この電流の振幅を周波数に比例した値に調整する第2の制御手段と、
     前記第1の制御手段を用いる時は前記同期機の界磁巻線を抵抗で短絡し、前記第2の制御手段を用いる時は前記同期機の界磁巻線を励磁装置に接続する切り替え手段と、
     を設け、
     前記同期機を停止状態から起動する時は前記第1の制御手段を用い、周波数が設定値に達したら前記第2の制御手段に切り替えることを特徴とする可変速発電電動システム。
  5.  前記ダンパー巻線付きの同期機にポンプまたは可逆式ポンプ水車を直結して吐出側に封止弁を設け、このポンプまたは可逆式ポンプ水車の揚程信号に応じて回転速度指令を発生し、この回転速度指令に回転速度を調整する第3の制御手段、を設け、
     前記第2の制御手段で前記回転速度指令への加速を検出した場合に前記封止弁を開き、第3の制御手段に切替ることを特徴とする請求項4に記載の可変速発電電動システム。
  6.  直流電源に接続された電力変換器と、Nは2以上の自然数であって、この電力変換器の交流側に接続されたN相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを(2×N)個備え、
     前記交流回転電気機械は2層コイルで(180/N)度位相帯の電機子巻線を備え、この電機子巻線の第1極側と第2極側に分けて中性点端子を締結して2重星型結線として2組のN相端子で引き出し、
     前記電機子巻線の第1極側の前記N相端子を前記電力変換器のN個の2端子アームの第1端子にそれぞれ接続し、これらN個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、前記電機子巻線の第2極側の前記N相端子を前記電力変換器の残りN個の2端子アームの第2端子にそれぞれ接続し、これらN個の2端子アームの第1端子を前記直流電源の第2端子に星型結線し、
     前記直流電源の直流電流をN等分して相毎に前記直流電源の第2端子に接続された前記N個の2端子アーム、前記電機子巻線の第2極側の前記N相端子、前記電機子巻線の第1極側の前記N相端子、前記直流電源の第1端子に接続された前記N個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
  7.  直流電源に接続された電力変換器と、Nは2以上の自然数であって、この電力変換器の交流側に接続されたN相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームをN個備え、
     前記交流回転電気機械は2層コイルで(360/N)度位相帯の電機子巻線を備え、この電機子巻線を星型結線してN相端子で引き出し、
     前記星型結線の前記N相端子を前記電力変換器を構成するN個の2端子アームの第1端子にそれぞれ接続し、これらN個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、前記電機子巻線の前記中性点を前記直流電源の第2端子に接続し、
     前記直流電源の直流電流をN等分して相毎に前記直流電源の第2端子に接続された前記電機子巻線の中性点、前記電機子巻線の前記N相端子、前記直流電源の第1端子に接続された前記N個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
  8.  直流電源に接続された電力変換器と、Nは2以上の自然数であって、この電力変換器の交流側に接続された(4×n)極(nは1以上の自然数)のN相交流回転電気機械とからなる可変速発電電動装置において、
     前記電力変換器は電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器をk個(kは1以上の自然数)直列に接続した2端子アームを(2×N)個備え、
     前記交流回転電気機械は2層コイルで(180/N)度位相帯の電機子巻線を備え、この電機子巻線の第1極側と第2極側に分けて各相に(2×n)極の巻線を直列接続してm(mは1以上の自然数)重並列した星型結線の中性点端子を締結し、巻線の反対側を2組のN相端子で引き出し、
     前記電機子巻線の第1極側の前記N相端子を前記電力変換器のN個の2端子アームの第1端子にそれぞれ接続し、これらN個の2端子アームの第2端子を前記直流電源の第1端子に星型結線し、
     前記電機子巻線の第2極側の前記N相端子を前記電力変換器の残りN個の2端子アームの第2端子にそれぞれ接続し、これらN個の2端子アームの第1端子を前記直流電源の第2端子に星型結線し、
     前記直流電源の直流電流をN等分して相毎に前記直流電源の第2端子に接続された前記N個の2端子アーム、前記電機子巻線の第2極側の前記N相端子、前記電機子巻線の第1極側の前記N相端子、前記直流電源の第1端子に接続された前記N個の2端子アームの順に貫流させる手段、
     を設けたことを特徴とする可変速発電電動装置。
PCT/JP2016/055119 2015-02-25 2016-02-22 可変速発電電動装置および可変速発電電動システム WO2016136682A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/553,062 US10536104B2 (en) 2015-02-25 2016-02-22 Variable speed generator-motor apparatus and variable speed generator-motor system
JP2017502359A JP6243083B2 (ja) 2015-02-25 2016-02-22 可変速発電電動装置および可変速発電電動システム
CN201680012006.8A CN107408899B (zh) 2015-02-25 2016-02-22 可变速发电电动装置以及可变速发电电动系统
EP16755428.6A EP3264583B1 (en) 2015-02-25 2016-02-22 Variable-speed generator-motor device and variable-speed generator-motor system
CN201910575109.0A CN110266243B (zh) 2015-02-25 2016-02-22 可变速发电电动系统
EP19186876.9A EP3576282B1 (en) 2015-02-25 2016-02-22 Variable speed generator-motor aapparatus and variable speed generator-motor system
ES16755428T ES2772831T3 (es) 2015-02-25 2016-02-22 Dispositivo generador-motor de velocidad variable y sistema generador-motor de velocidad variable
US16/707,629 US10784808B2 (en) 2015-02-25 2019-12-09 Variable speed generator-motor apparatus and variable speed generator-motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-035772 2015-02-25
JP2015035772 2015-02-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/553,062 A-371-Of-International US10536104B2 (en) 2015-02-25 2016-02-22 Variable speed generator-motor apparatus and variable speed generator-motor system
US16/707,629 Division US10784808B2 (en) 2015-02-25 2019-12-09 Variable speed generator-motor apparatus and variable speed generator-motor system

Publications (1)

Publication Number Publication Date
WO2016136682A1 true WO2016136682A1 (ja) 2016-09-01

Family

ID=56788811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055119 WO2016136682A1 (ja) 2015-02-25 2016-02-22 可変速発電電動装置および可変速発電電動システム

Country Status (6)

Country Link
US (2) US10536104B2 (ja)
EP (2) EP3576282B1 (ja)
JP (1) JP6243083B2 (ja)
CN (2) CN107408899B (ja)
ES (2) ES2772831T3 (ja)
WO (1) WO2016136682A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235595A1 (ja) * 2018-06-07 2019-12-12 日立三菱水力株式会社 可変速発電電動装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819782A (zh) 2017-08-15 2020-10-23 鲲腾科技公司 具有分布式绕组结构的电机系统
CN107968435B (zh) * 2017-12-15 2022-01-25 远景能源有限公司 风力发电双绕组发电机系统共模电压抑制方法
JP7271090B2 (ja) * 2018-04-26 2023-05-11 ニデックエレシス株式会社 モータ制御装置及び電動パワーステアリング装置
DK180754B1 (en) * 2018-05-25 2022-02-24 Kk Wind Solutions As Wind turbine converter with integrated battery storage
US20210118611A1 (en) * 2018-07-09 2021-04-22 Hitachi Mitsubishi Hydro Corporation Variable speed generator/motor device
US11671049B2 (en) 2018-09-21 2023-06-06 Nippon Steel Corporation System for exciting iron core in electric device, method for exciting iron core in electric device, program, and modulation operation-setting device for inverter power supply
CN111434512B (zh) * 2019-06-30 2021-01-01 比亚迪股份有限公司 一种能量转换装置、动力系统及车辆
EP3780366A1 (en) * 2019-08-13 2021-02-17 Vestas Wind Systems A/S Dc chopper for mmc cell with integrated chopper resistor
JP7312332B2 (ja) 2020-08-24 2023-07-20 日立三菱水力株式会社 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム
EP4216422A1 (en) 2020-09-18 2023-07-26 Hitachi Mitsubishi Hydro Corporation Modular multilevel power converter and variable speed electric motor/generator device
CN112332724B (zh) * 2020-11-13 2022-02-11 中国科学院电工研究所 发电机、发电系统及发电机控制方法
US11539322B1 (en) * 2021-06-15 2022-12-27 Hamilton Sundstrand Corporation Fault tolerant motor including redundant wye winding and dual-state neutral leads

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068677A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 電力変換装置、及びモータ駆動システム
JP2013255422A (ja) * 2010-03-15 2013-12-19 Hitachi Ltd 電力変換装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1359687A (en) * 1917-07-02 1920-11-23 Wagner Electric Mfg Co Dynamo-electric machine
JPS5491175A (en) 1977-12-28 1979-07-19 Fujitsu Ltd Vapour-phase growth method of compound semiconductor crystal
CA1167147A (en) * 1981-09-02 1984-05-08 Thomas M. Jahns Marine drive system
SE503106C2 (sv) * 1994-07-01 1996-03-25 Asea Brown Boveri Lastkommuterad synkronmotordrift
JPH0880094A (ja) * 1994-09-02 1996-03-22 Hitachi Ltd 可変速発電電動機の運転制御方法及び装置
JPH099696A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp 可変速調相電動発電装置
JPH10323052A (ja) * 1997-05-16 1998-12-04 Shibafu Eng Kk 分圧変圧器及び分圧変圧器を用いた電力変換装置
US7928683B2 (en) * 2000-10-23 2011-04-19 Borealis Technical Limited High phase order AC machine with short pitch winding
DE10121767A1 (de) * 2001-05-04 2002-11-14 Bosch Gmbh Robert Elektronisch kommutierte Mehrphasen-Synchronmaschine
JP3668938B2 (ja) * 2001-12-11 2005-07-06 三菱電機株式会社 回転電機
DE10343293B4 (de) * 2003-09-18 2009-06-10 Siemens Ag Elektrische Maschine mit Dämpfungseinrichtung
FR2869478B1 (fr) * 2004-04-23 2007-07-20 Renault Sas Moteur synchrone a faibles ondulations de couple, procede pour realiser le bobinage de ce moteur et direction assistee de vehicule automobile comportant un tel moteur
ES2369291T3 (es) 2006-12-08 2011-11-29 Siemens Aktiengesellschaft Dispositivo para la transformación de una corriente eléctrica.
WO2009135523A1 (en) 2008-05-06 2009-11-12 Abb Technology Ag An arrangement for voltage conversion
US8792261B2 (en) * 2009-03-30 2014-07-29 Hitachi, Ltd. Power conversion device
JP5268739B2 (ja) * 2009-03-30 2013-08-21 株式会社日立製作所 電力変換装置
KR101670309B1 (ko) * 2009-06-22 2016-10-28 제네럴 일렉트릭 테크놀러지 게엠베하 컨버터
JP5537095B2 (ja) 2009-08-28 2014-07-02 株式会社日立製作所 ベクトル計測装置及びベクトル計測システム
FR2952130B1 (fr) * 2009-10-30 2018-09-07 Safran Electrical & Power Demarreur-generateur de turbomachine et procede pour sa commande.
JP5036918B2 (ja) * 2010-03-26 2012-09-26 三菱電機株式会社 電力変換装置
JP2011234485A (ja) 2010-04-27 2011-11-17 Honda Motor Co Ltd インバータ式発動発電機
JP5126302B2 (ja) * 2010-06-30 2013-01-23 株式会社安川電機 3レベルインバータ、パワーコンディショナ及び発電システム
EP2608392A1 (de) 2011-12-19 2013-06-26 Siemens Aktiengesellschaft Modularer mehrstufiger Wechselrichter mit einer Vielzahl seriell geschalteter Wechselrichtermodule zur Erzeugung mehrphasiger Ausgangsspannungen
DK2806552T3 (en) 2012-01-18 2017-01-09 Toshiba Mitsubishi-Electric Ind Systems Corp Energy converter layout
JP5865104B2 (ja) 2012-02-09 2016-02-17 株式会社日立製作所 電圧型電力変換器の電流制御装置及び電圧型電力変換器の電流制御方法
EP2645552B1 (en) 2012-02-09 2020-04-22 Hitachi, Ltd. Switching element, power converter, direct current transmission system, current control device, method of controlling power converter, and method of controlling current in voltage source converter
US9748848B2 (en) * 2012-10-11 2017-08-29 Siemens Aktiengesellschaft Modular multilevel DC/DC converter for HVDC applications
JP2014087141A (ja) * 2012-10-23 2014-05-12 Hitachi Ltd 回転機およびそのドライブシステム
US9800193B2 (en) * 2013-03-15 2017-10-24 Hengchun Mao Dynamically reconfigurable motors and generators and systems
US9240748B2 (en) * 2013-03-15 2016-01-19 Hengchun Mao Dynamically reconfigurable motor and generator systems
JP6180825B2 (ja) * 2013-07-02 2017-08-16 株式会社日立製作所 電力変換装置および電気・機械エネルギ変換システム
EP2924850B1 (en) * 2014-03-28 2021-05-19 Goodrich Actuation Systems SAS Motor with damping means

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068677A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 電力変換装置、及びモータ駆動システム
JP2013255422A (ja) * 2010-03-15 2013-12-19 Hitachi Ltd 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264583A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235595A1 (ja) * 2018-06-07 2019-12-12 日立三菱水力株式会社 可変速発電電動装置
CN112236934A (zh) * 2018-06-07 2021-01-15 日立三菱水力株式会社 可变速发电电动装置
JPWO2019235595A1 (ja) * 2018-06-07 2021-05-13 日立三菱水力株式会社 可変速発電電動装置
US11223310B2 (en) 2018-06-07 2022-01-11 Hitachi Mitsubishi Hydro Corporation Variable speed generator/motor device
JP6995991B2 (ja) 2018-06-07 2022-01-17 日立三菱水力株式会社 可変速発電電動装置
CN112236934B (zh) * 2018-06-07 2024-04-19 日立三菱水力株式会社 可变速发电电动装置

Also Published As

Publication number Publication date
US10536104B2 (en) 2020-01-14
EP3264583A1 (en) 2018-01-03
US10784808B2 (en) 2020-09-22
JP6243083B2 (ja) 2017-12-06
US20180034399A1 (en) 2018-02-01
JPWO2016136682A1 (ja) 2017-07-27
CN107408899B (zh) 2020-05-12
US20200144949A1 (en) 2020-05-07
CN110266243A (zh) 2019-09-20
CN110266243B (zh) 2023-04-07
EP3264583A4 (en) 2018-10-17
ES2927210T3 (es) 2022-11-03
EP3264583B1 (en) 2019-12-04
EP3576282B1 (en) 2022-06-15
EP3576282A1 (en) 2019-12-04
CN107408899A (zh) 2017-11-28
ES2772831T3 (es) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6243083B2 (ja) 可変速発電電動装置および可変速発電電動システム
Rajaei et al. Vienna-rectifier-based direct torque control of PMSG for wind energy application
DK2672624T3 (en) Power regulator and generator system
EP3806318B1 (en) Variable-speed power generation electric device
Mohamadian et al. Steady-state simulation of LCI-fed synchronous motor drives through a computationally efficient algebraic method
US8933584B2 (en) Method and apparatus for dynamic load sharing
CN107681692B (zh) 一种交流励磁电源故障穿越控制系统
EP2731262B1 (en) Variable frequency speed control system for motor
Benyoussef et al. Direct torque control based on space vector modulation with balancing strategy of dual star induction motor
Rabiaa et al. Scalar speed control of dual three phase induction motor using PI and IP controllers
WO2020013015A1 (ja) 可変速発電電動装置
Pantea et al. Efficient field oriented control with power losses optimisation of a six-phase induction generator for wind turbines
Rathore et al. Analytical model based performance characteristics analysis of six-phase induction motor
CN104953912B (zh) 基于矩阵变换器的电力推进船舶变频调速系统
Alcaso et al. Asymmetrical operation of a twelve-pulse LCI drive system with power converter faults
Xiaojie et al. Full digital control and application of high power synchronous motor drive with dual stator winding fed by cycloconverter
US20230018916A1 (en) Rectifier
JP2017163660A (ja) 風力発電システム
Kant et al. Power Quality Improvement in Sensorless Direct Torque Controlled Induction Motor Drive
Su et al. Drive the PMSM motor using hexagram converter
Tang et al. Error analysis and limit value design of a simple sensorless control for MW-level DDWT-PMSG
Amah-Tchiou et al. Back to back tests simulations of an interior permanent magnet machine
Seng Contributions to Control of an Asymmetrical Six-Phase Indcution Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502359

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755428

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE