CN107968435B - 风力发电双绕组发电机系统共模电压抑制方法 - Google Patents

风力发电双绕组发电机系统共模电压抑制方法 Download PDF

Info

Publication number
CN107968435B
CN107968435B CN201711348815.9A CN201711348815A CN107968435B CN 107968435 B CN107968435 B CN 107968435B CN 201711348815 A CN201711348815 A CN 201711348815A CN 107968435 B CN107968435 B CN 107968435B
Authority
CN
China
Prior art keywords
winding
converter
electric energy
side converter
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711348815.9A
Other languages
English (en)
Other versions
CN107968435A (zh
Inventor
刘勇
邓恒
库尔特·安徒生
刘佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision Energy Co Ltd
Original Assignee
Envision Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envision Energy Co Ltd filed Critical Envision Energy Co Ltd
Priority to CN201711348815.9A priority Critical patent/CN107968435B/zh
Publication of CN107968435A publication Critical patent/CN107968435A/zh
Application granted granted Critical
Publication of CN107968435B publication Critical patent/CN107968435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种风力发电双绕组发电机系统共模电压抑制方法,双绕组风力发电机每套绕组连接机侧变流器,将频率变化的交流电能变换为直流电能,再经过网侧变流器将直流电能变换为固定频率的交流电能,最后通过变压器升压传输到电网,双绕组风力发电机具有两套绕组,4个变流器均采用电压脉宽调制PWM信号对变流器进行控制,通过两个机侧变流器控制生成PWM信号所选用的载波相位反相;两个网侧变流器控制生成PWM信号所选用的载波相位反相的方法,降低系统共模电压。此方法对已制造的大型电机和变流器,不需不改变电机结构和其他任何硬件,即可降低系统的共模电压,延长电机绕组的绝缘使用寿命,减小系统电磁干扰的危害,符合电磁兼容标准要求。

Description

风力发电双绕组发电机系统共模电压抑制方法
技术领域
本发明涉及一种电机控制技术,特别涉及一种风力发电双绕组发电机系统共模电压抑制方法。
背景技术
随着风力发电技术的发展,单个风力发电机组功率愈来愈大,在相同电压等级下,电流要求成比例不断增大。通过设计具有双绕组的发电机,可以使功率增加的条件下,电流平均分配保持在允许的容量内。
典型的双绕组风力发电机控制系统如图1所示,每套绕组连接两个硬件结构类似,软件功能不同的变流器,分别称为机侧变流器(generator-side converter)和网侧变流器(grid-side converter)。 首先风电机组通过叶片捕获风能转化为旋转的机械能,旋转的机械能经过发电机转化为频率变化的交流电能,然后经过机侧变流器将频率变化的交流电能变换为直流电能,再经过网侧变流器将直流电能变换为固定频率的交流电能,最后通过变压器升压传输到电网。如图1所示,与两套绕组连接的变流器分别为,机侧变流器1(generator-side converter 1)和网侧变流器1 (grid-side converter 1 );机侧变流器2 (generator-side converter 2)和网侧变流器2 (grid-side converter 2 )。
双绕组电机中一套绕组连接的变流器(generator-side converter 1和grid-side converter 1)与另一套绕组连接的变流器(generator-side converter 2和grid-side converter 2)的控制是对应相同的。 现以一套绕组为例说明,其控制示意图如图2所示。 其中PWM模块的作用是比较调制波(电压给定)和控制器内部产生的载波信号,生成变流器的功率开关信号,如图3所示调制波和载波信号比较生成PWM开关信号图,其中carrier为载波信号,PHA、PHB、PHC为三相调制波信号。
兆瓦级风力发电机和变流器系统,因采用电压脉宽调制(PWM)导致系统的共模电压高, 引起过高的轴电流, 容易造成轴承电腐蚀损坏;共模电压过高还会对电机绕组绝缘造成损坏,影响电机绕组绝缘寿命和失效率。共模电压过高也可能造成电气系统电磁干扰(EMI)和电磁兼容(EMC)的问题;如果有大量零序电流流通还会引起不必要的系统零序电流损耗。
发明内容
本发明是针对双绕组电机采用电压脉宽调制导致系统共模电压高的问题,提出了一种风力发电双绕组发电机系统共模电压抑制方法,通过改变控制策略,降低兆瓦级风力发电机和变流器系统的共模电压,从而大大降低发电机轴承电腐蚀的发生,延长电机绕组的绝缘使用寿命,减小系统电磁干扰的危害,符合电磁兼容标准要求。
本发明的技术方案为:一种风力发电双绕组发电机系统共模电压抑制方法,双绕组风力发电机每套绕组连接机侧变流器,将频率变化的交流电能变换为直流电能,再经过网侧变流器将直流电能变换为固定频率的交流电能,最后通过变压器升压传输到电网,双绕组风力发电机具有两套绕组,4个变流器均采用电压脉宽调制PWM信号对变流器进行控制,PWM信号为比较调制波和控制器内部产生的载波信号而生成的变流器的功率开关信号,两个机侧变流器控制器中生成PWM信号的载波相位反相;两个网侧变流器控制器中生成PWM信号的载波相位反相,降低系统共模电压。
本发明的有益效果在于:本发明风力发电双绕组发电机系统共模电压抑制方法,从共模电压过高的根源出发,通过改变PWM控制用于抑制系统共模电压,实际应用效果明显。高频共模电压的幅值大大降低;经过寄生电容流通的轴电流大大降低;轴承的电腐蚀现象大大减少;电机绕组的绝缘寿命延长,避免过早的失效;系统电磁辐射降低,电磁兼容性能改善;特别是已制造的大型电机和变流器,找到了一种不改变电机结构和其他任何硬件,简单易行、行之有效,经济实用的技术方案,对提高风电机组的可靠性,降低维护成本,具有很大的经济价值和前景。
附图说明
图1为双绕组风力发电机控制系统结构图;
图2为机侧变流器和网侧变流器控制示意图;
图3为调制波和载波信号比较生成PWM开关信号图;
图4a为本发明风力发电双绕组发电机第一套绕组连接的变流器采用载波示意图;
图4b为本发明风力发电双绕组发电机第二套绕组连接的变流器采用载波示意图;
图5a为本发明方案实施前共模电压频谱图;
图5b为本发明方案实施后共模电压频谱图。
具体实施方式
载波信号的频率定义了变流器的开关频率,载波的幅值为固定值,载波的初始相位没有任何要求。这在单一变流器中PWM不会有任何问题,然而在多个变流器的系统中,由于相互作用,PWM模块中载波初始相位会对系统性能产生一定的影响,特别是对风力发电系统多绕组电机和变流器系统结构中。因此如何利用此影响来进行共模电压降低未能找到相关文献和专利。
与同一套绕组连接的网侧变流器与机侧变流器的载波频率和相位不需要相同,但是两套绕组连接的对应的两个网侧变流器和两个机侧变流器载波频率和相位需要满足共模电压相互取消的关系。
改变PWM模块内部载波生成的相位关系,即要求两个机侧变流器-机侧变流器1和机侧变流器2(generator-side converter 1 and generator-side converter 2)控制中生成PWM信号所选用的载波相位反相;两个网侧变流器-网侧变流器1和网侧变流器2(grid-side converter 1 and grid-side converter 2)控制中生成PWM信号所选用的载波相位反相。通过此配置变流器的脉宽调制时序,使得共模电压相互抵消,从而达到降低系统共模电压的目的。
例如与发电机第一套绕组连接的变流器采用载波1如图4a所示,与发电机第二套绕组连接的对应的变流器采用的载波为载波1信号反相位的信号载波2如图4b所示。图4a、4b所示的PWM载波信号为三角波形,但本文描述并不限定于任何特定的载波波形。调制波与载波比较生成变流器PWM开关信号。 其实质是两套绕组连接的变流器间开关信号产生相位移动,使两套绕组产生的共模电压相互抵消。图5a、5b本发明方案实施前后共模电压频谱图,对比了系统共模电压实施本发明前后效果。可以看出本发明方案实施后,系统高频共模电压幅值有效降低。
本发明中描述的PWM生成控制模块修改, 适用于任何电机和变流器控制策略中使用到PWM生成模块, 在上述实施例的基础上进行其他部分控制策略的改进或变形不影响本发明的实施和权利要求的保护范围
本实施例以两套绕组发电机为例, 但本发明的方法可推广应用于多套绕组电机,因而不限于两套绕组的发电机,如: 4套绕组电机,也可控制中生成PWM信号所选用的载波相位两两反相,使得共模电压相互抵消。

Claims (1)

1.一种风力发电双绕组发电机系统共模电压抑制方法,双绕组风力发电机每套绕组连接机侧变流器,将频率变化的交流电能变换为直流电能,再经过网侧变流器将直流电能变换为固定频率的交流电能,最后通过变压器升压传输到电网,双绕组风力发电机具有两套绕组,4个变流器均采用电压脉宽调制PWM信号对变流器进行控制,PWM信号为比较调制波和控制器内部产生的载波信号而生成的变流器的功率开关信号,其特征在于,两个机侧变流器控制器中生成PWM信号的载波相位反相;两个网侧变流器控制器中生成PWM信号的载波相位反相,降低系统共模电压,以使兆瓦级风力发电机和变流器系统不改变电机结构和其他任何硬件,就能够实现降低经过寄生电容流通的轴电流、减少轴承的电腐蚀、延长电机绕组的绝缘寿命、降低系统电磁辐射、改善电磁兼容性能;
与同一套绕组连接的网侧变流器与机侧变流器的载波频率和相位不相同,两套绕组连接的对应的两个网侧变流器和两个机侧变流器载波频率和相位需要满足共模电压相互取消的关系。
CN201711348815.9A 2017-12-15 2017-12-15 风力发电双绕组发电机系统共模电压抑制方法 Active CN107968435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711348815.9A CN107968435B (zh) 2017-12-15 2017-12-15 风力发电双绕组发电机系统共模电压抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711348815.9A CN107968435B (zh) 2017-12-15 2017-12-15 风力发电双绕组发电机系统共模电压抑制方法

Publications (2)

Publication Number Publication Date
CN107968435A CN107968435A (zh) 2018-04-27
CN107968435B true CN107968435B (zh) 2022-01-25

Family

ID=61994550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711348815.9A Active CN107968435B (zh) 2017-12-15 2017-12-15 风力发电双绕组发电机系统共模电压抑制方法

Country Status (1)

Country Link
CN (1) CN107968435B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152254A (zh) * 2019-06-26 2020-12-29 北京金风科创风电设备有限公司 双绕组变流器的控制方法和控制系统
CN111224589B (zh) * 2020-02-19 2023-04-07 苏州乾能电气有限公司 一种双馈电机变流器系统共模电压控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246224B2 (ja) * 1994-09-27 2002-01-15 富士電機株式会社 Pwmコンバータ
EP1220432A3 (en) * 2000-12-19 2003-01-29 Fuji Electric Co., Ltd. Noise reduction apparatus for electric power conversion apparatus
US7215559B2 (en) * 2004-09-28 2007-05-08 Rockwell Automation Technologies, Inc. Method and apparatus to reduce common mode voltages applied to a load by a drive
US7852643B2 (en) * 2007-06-27 2010-12-14 General Electric Company Cross current control for power converter system
FR2965684B1 (fr) * 2010-10-04 2012-09-07 Schneider Toshiba Inverter Procede et systeme de commande pour reduire le courant de mode commun dans un convertisseur de puissance
CN202444277U (zh) * 2012-02-17 2012-09-19 湖南大学 一种适用于分布式发电的三相光伏并网发电装置
WO2014140414A1 (en) * 2013-03-13 2014-09-18 Kone Corporation Arrangement, frequency converter and elevator system
US9520800B2 (en) * 2014-01-09 2016-12-13 Rockwell Automation Technologies, Inc. Multilevel converter systems and methods with reduced common mode voltage
CN104092245B (zh) * 2014-07-24 2017-02-15 阳光电源股份有限公司 交流旁路单相光伏逆变器及其控制方法和控制装置
CN104467387A (zh) * 2014-12-01 2015-03-25 沈阳工业大学 抑制变频器共模电压的有源滤波器
CN204316429U (zh) * 2014-12-05 2015-05-06 天津电气科学研究院有限公司 多路mppt光伏逆变主回路系统
TWI599158B (zh) * 2014-12-09 2017-09-11 強生控制科技公司 變速驅動系統與其操作方法及電磁相容濾波器
WO2016136682A1 (ja) * 2015-02-25 2016-09-01 日立三菱水力株式会社 可変速発電電動装置および可変速発電電動システム
CN105450059B (zh) * 2015-12-22 2018-05-29 合肥工业大学 抑制两h桥级联逆变器漏电流的调制方法
CN107404215B (zh) * 2016-05-19 2019-08-09 瑞昱半导体股份有限公司 具有宽共模电压操作范围的电压调整器及其操作方法
CN106253733A (zh) * 2016-08-26 2016-12-21 合肥工业大学 基于改进型载波层叠的两h桥光伏逆变器漏电流抑制方法
CN106301051B (zh) * 2016-08-30 2019-03-05 阳光电源股份有限公司 单相非隔离级联h桥逆变器的漏电流抑制方法和抑制装置

Also Published As

Publication number Publication date
CN107968435A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
Faulstich et al. Medium voltage converter for permanent magnet wind power generators up to 5 MW
AU2013307405B2 (en) Wind farm with DC voltage network
EP3484007B1 (en) Dfig converter overmodulation
US20110310642A1 (en) Low cost current source converters for power generation application
US9611836B2 (en) Wind turbine power conversion system
US10778112B2 (en) DFIG converter with active filter
CN102891612B (zh) 一种变流器多单元并联系统的不均流控制方法
CN107968435B (zh) 风力发电双绕组发电机系统共模电压抑制方法
EP3123606B1 (en) Electrical converter with high machine side common mode voltage
Islam et al. A 43-level 33 kV 3-phase modular multilevel cascaded converter for direct grid integration of renewable generation systems
CN106356889A (zh) 永磁风力发电机组
CN104052060B (zh) 一种并网风力发动机组抑制谐振方法
CN102931685A (zh) 用于风力发电系统的变流装置
Hosseini et al. A novel technology for control of variable speed pumped storage power plant
Vekhande et al. Modulation of Indirect Matrix Converter under unbalanced source voltage condition
Yuan Low voltage ride through control of a cascaded high power converter for direct-drive permanent magnet wind generators
Barrios et al. DC-AC-AC converter for PV plant in medium voltage grid-connected systems
Wang et al. A current source converter fed high power wind energy conversion system with superconducting magnetic storage system in DC link
Nashed Comparison between types of doubly fed induction generators converter with various switching techniques
Bharatiraja et al. A comprehensive analysis of carrier shifting algorithms for diode-clamped MLI based drive
Tian et al. A new space vector modulation technique for common-mode voltage reduction in both magnitude and third-order component
CN110661298A (zh) 一种基于级联单元的中压变频风力发电系统和方法
Sasikumar et al. Modeling and analysis of cascaded H-bridge inverter for wind driven isolated squirrel cage induction generators
Elgenedy et al. A new five-phase to three-phase back-to-back current source converter based wind energy conversion system
Kimura et al. Low Loss & Low Cost Converter System for Wind Power Induction Generator with PAM Control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Shen Gang street of Jiangyin city in Jiangsu province 214443 Wuxi city Shen Zhuang Road No. 3

Applicant after: Vision Energy Co.,Ltd.

Address before: 8, B, building 200051, block SOHO, Zhongshan square, 1065 West Zhongshan Road, Shanghai, Changning District

Applicant before: Envision Energy (Denmark) APS

GR01 Patent grant
GR01 Patent grant