WO2016136335A1 - Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法 - Google Patents

Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法 Download PDF

Info

Publication number
WO2016136335A1
WO2016136335A1 PCT/JP2016/051493 JP2016051493W WO2016136335A1 WO 2016136335 A1 WO2016136335 A1 WO 2016136335A1 JP 2016051493 W JP2016051493 W JP 2016051493W WO 2016136335 A1 WO2016136335 A1 WO 2016136335A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
rfic
rfic device
resin block
hole
Prior art date
Application number
PCT/JP2016/051493
Other languages
English (en)
French (fr)
Inventor
邦宏 駒木
俊治 萬代
健吾 松本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201690000510.1U priority Critical patent/CN207529410U/zh
Priority to JP2017501980A priority patent/JP6315145B2/ja
Publication of WO2016136335A1 publication Critical patent/WO2016136335A1/ja
Priority to US15/676,140 priority patent/US10366321B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07754Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being galvanic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07788Antenna details the antenna being of the capacitive type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna

Definitions

  • the present invention relates to an RFIC device and a method for producing a resin molded body including the RFIC device.
  • the RFID tag includes an RFIC chip that stores predetermined information and processes predetermined radio signals, and an antenna that transmits and receives high-frequency signals.
  • the RFID tag is attached to an article to be managed.
  • attachment to the article surface is generally used.
  • the RFID tag may be embedded in the article itself by injection molding or the like.
  • FIG. 22 is a schematic diagram showing a resin flow 55 when injection molding is performed using a conventional RFID tag 51.
  • the RFID tag 51 has a flat plate shape in which an RFIC chip is mounted on an antenna substrate.
  • the injected molding resin 55 may hit the tag, thereby obstructing the resin flow.
  • a defective part due to insufficient wraparound of the molding resin 55 in the molding die 52 may be formed, or the RFID tag may be displaced due to the pressure of the resin.
  • the RFIC chip may be damaged.
  • the RFIC chip is more likely to be damaged when the tag must be arranged so that the surface having a large size faces the direction in which the resin flows.
  • a heat-resistant sheet may be laminated on the surface of the RFID tag to protect the tag from heat during injection molding.
  • the wraparound property of the molding resin tends to be hindered, and a defective portion may be generated or the tag may be displaced from a predetermined arrangement position.
  • the communication characteristics of the RFID tag may be hindered depending on the material and thickness of the heat-resistant sheet.
  • an object of the present invention is to provide an RFIC device that has excellent communication characteristics and is less likely to have a defective portion or a positional shift during molding.
  • An RFIC device includes a first surface and a second surface facing the first surface, and a resin block having a through-hole penetrating the first surface and the second surface; An RFIC element embedded in the resin block; A coil antenna provided on the resin block, connected to the RFIC element, and having a winding axis from the first surface toward the second surface; With The through hole is provided inside the coil antenna.
  • the molding resin can be flowed through the through hole at the time of injection molding. It is possible to prevent the RFIC device (RFID tag) from being damaged without significantly impairing the communication characteristics.
  • FIG. 1 is a perspective view showing a structure of an RFIC device according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure viewed from the AA direction with the RFIC device of FIG. 1 turned upside down.
  • 2 is an equivalent circuit diagram of the RFIC device according to the first embodiment.
  • FIG. It is the schematic which shows the flow of the resin in the case of performing injection molding using the RFIC device which concerns on Embodiment 1.
  • FIG. 5 is a schematic diagram showing a step of printing a wiring pattern on the upper surface side in the method for manufacturing an RFIC device according to the first embodiment.
  • the manufacturing method of the RFIC device concerning Embodiment 1 it is the schematic showing the process of plating a wiring pattern on the upper surface side and the lower surface side.
  • FIG. 6 is a schematic diagram showing a process of providing a through hole penetrating the first surface and the second surface perpendicular to the upper surface and the lower surface in the RFIC device manufacturing method according to the first embodiment.
  • A is the schematic which shows the toy of the resin molding which contains the RFIC device which concerns on Embodiment 1 inside
  • (b) is the bottom view seen from the sole of the toy of (a).
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure of an RFIC device according to a second embodiment.
  • FIG. 7 is a cross-sectional view showing a cross-sectional structure of an RFIC device according to a third embodiment.
  • FIG. 6 is a schematic perspective view showing a structure of an RFIC device according to a fourth embodiment.
  • FIG. 6 is a schematic perspective view showing a structure of an RFIC device according to a fifth embodiment.
  • FIG. 9 is a cross-sectional view showing a cross-sectional structure of an RFIC device according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view showing a cross-sectional structure of an RFIC device according to a seventh embodiment.
  • the manufacturing method of the resin molding containing the RFIC device which concerns on Embodiment 7 it is a schematic sectional drawing which shows the process of arrange
  • An RFIC device includes a resin block including a first surface and a second surface facing the first surface, and having a through-hole penetrating the first surface and the second surface; , An RFIC element embedded in the resin block; A coil antenna provided on the resin block, connected to the RFIC element, and having a winding axis from the first surface toward the second surface; With The through hole is provided inside the coil antenna.
  • the molding resin can flow through the through hole at the time of injection molding, and the RFIC device (RFID tag) It becomes hard to break.
  • this through hole is provided inside the antenna coil, the size of the coil antenna (especially the coil opening area) can be maintained, and the relative distance from the communication partner antenna (reader / writer antenna) can be greatly reduced. Therefore, a large communication distance can be secured and an RFIC device having excellent communication characteristics can be obtained.
  • the resin block has a polyhedral shape, and penetrates the first surface and the second surface having the largest area among the surfaces facing each other. You may have a through-hole.
  • the shape of the resin block is typically a rectangular parallelepiped shape.
  • the through hole is formed through the first surface and the second surface having the largest area among the surfaces of the resin block, the through hole can be enlarged. This makes it easier for the resin to flow through the through hole during molding. It is easy to secure the distance between the RFIC element embedded in the resin block and the through hole.
  • An RFIC device is the RFIC device according to any one of the above aspects, wherein the coil antenna includes at least a part of the first metal pin and the first metal pin that are embedded in the resin block and facing each other. Two metal pins may be included.
  • the metal pins are provided on both sides of the resin block of the RFIC device, the heat resistance and mechanical shock resistance of the coil antenna can be improved, and the robustness of the RFIC device as a whole is improved. Can be increased.
  • An RFIC device is the RFIC device according to any one of the above aspects, wherein the center of the through hole is from the central axis of the coil antenna when viewed from the normal direction of the first surface. It may be provided offset to the side on which no exists.
  • the RFIC element With respect to the dynamic or thermal load on the RFIC element when the molding resin flows inside the through-hole, the RFIC element is moved away from the through-hole through which the molding resin flows, and the dynamic or thermal Load can be reduced.
  • the coil antenna may have a spiral shape from the first surface to the second surface.
  • An RFIC device provides the RFIC device according to any one of the above aspects, wherein the coil antenna is A first pattern conductor provided on one end surface crossing the first surface and the second surface of the resin block; A connection conductor provided on the other end surface facing the one end surface; Two metal pins extending from the one end surface side to the other end surface side, connecting the first pattern conductor and the connection conductor, and facing each other; May be included.
  • the thermal shock resistance and mechanical shock resistance of the RFID device itself can be improved.
  • waste of heat in the RFIC device can be suppressed by waste heat outside the RFIC device using heat transfer via the metal pin from the upstream side to the downstream side of the resin flow.
  • the RFIC device may have a plurality of grooves extending from an end of the first surface to an end of the second surface of the resin block in any of the above aspects. It is preferable to have a plurality of grooves in the through hole from the first surface side toward the second surface side.
  • the resin flow can be adjusted by flowing the molding resin through the groove during injection molding.
  • the fluidity of the molding resin can be improved, and the occurrence of defective molding such as the generation of defects due to insufficient wraparound of the resin or the damage of the RFIC element due to heat concentration can be suppressed.
  • the end of the first surface and the end of the second surface of the resin block may be chamfered. It is preferable that the edge portion of the through hole is also chamfered.
  • the molding resin can smoothly wrap around the chamfered end portion even if the molding resin flows on the RFIC device during injection molding.
  • the fluidity of the molding resin can be improved, and the occurrence of defective molding such as the generation of defects due to insufficient wraparound of the resin or the damage of the RFIC element due to heat concentration can be suppressed.
  • the RFIC device may include a heat insulating material covering the periphery of the resin block in any of the above aspects. It is preferable that the inner wall portion of the through hole also has a heat insulating material.
  • the RFIC device is an RFIC device used for injection molding.
  • the resin block may have a plurality of through holes.
  • the resin molded body according to one embodiment of the present invention includes an RFIC device, A resin containing the RFIC device therein;
  • a resin molded body having The RFIC device is: A resin block having a first surface and a second surface facing the first surface, and having a through-hole penetrating the first surface and the second surface;
  • An RFIC element embedded in the resin block A coil antenna provided on the resin block, connected to the RFIC element, and having a winding axis from the first surface toward the second surface; With The through hole is provided inside the coil antenna.
  • the molding resin since the molding resin is in contact with the resin block not only in the outer peripheral surface but also in the through hole, the reliability of the RFIC device can be improved against a mechanical impact on the resin molded body.
  • a method of manufacturing a resin molded body including an RFIC device includes a resin block having a through hole, an RFIC element embedded in the resin block, the RFIC element provided in the resin block, An RFIC device having a coil antenna connected to the inside and having the through-hole on the inside is molded with the molding die so that the opening of the through-hole faces the upstream side of the resin flow in the molding die. Installed in the mold, The RFIC device is embedded in the resin molding by injecting the molding resin from the resin inlet into the molding die. Including that.
  • the through hole is installed in the molding die so that the opening of the through hole faces the upstream side of the resin flow in the molding die, it is used for molding through the through hole at the time of injection molding. Resin can flow, and the RFIC device is less likely to hinder the flow of molding resin.
  • FIG. 1 is a perspective view showing the structure of the RFIC device 10 according to the first embodiment.
  • 2 is a cross-sectional view showing a cross-sectional structure viewed from the CC direction with the RFIC device 10 of FIG. 1 turned upside down.
  • the RFIC device 10 includes a resin block 13, an RFIC element 11 embedded in the resin block 13, and a coil antenna 1.
  • the RFIC device 10 according to the first embodiment includes a circuit board 15 on which the RFIC element 11 is mounted, metal pins 16a and 16b provided on the circuit board 15, and a metal pin 16a and a metal pin 16b.
  • the connecting conductor 14 Embedded in the connecting conductor 14, the RFIC element 11 and the metal pins 16a and 16b, the resin block 13 having the through holes 22, the wiring patterns 17a, 17b and 17c on the circuit board 15, and the metal pins 16a. 16b and the connecting conductor 14, and the coil antenna 1 having the through hole 22 inside.
  • the resin block 13 has a rectangular parallelepiped shape, and includes a first surface A, a second surface B facing the first surface A, and upper and lower surfaces D and E connecting the first surface A and the second surface B. And both side surfaces F and G.
  • the first surface A and the second surface B have a larger area than the upper and lower surfaces D and E and the side surfaces F and G.
  • the upper and lower surfaces D and E are surfaces in the positive and negative directions of the z axis in FIG. 1 and have a larger area than the side surfaces F and G.
  • Both side surfaces F and G are surfaces in the positive and negative directions of the x-axis in FIG. Note that the first surface A is a surface in the positive direction of the y-axis in FIG.
  • the resin block 13 has a through hole 22 that penetrates the first surface A and the second surface B. That is, the through hole 22 is provided on the surface having the largest area in the rectangular parallelepiped resin block 13. The maximum area is not the actual surface area of each surface but the projected area when each surface is projected onto a plane.
  • the through hole 22 is provided substantially at the center of the first surface A and the second surface B and has a circular opening, and the opening diameter is substantially uniform from the first surface A to the second surface B. It is.
  • the opening diameter of the through hole 22 is not limited to the one that is substantially uniform from the first surface A toward the second surface B, and the opening diameter may be changed stepwise or continuously.
  • the first surface A and the second surface B may have different sizes of opening diameters.
  • the opening area of the through hole 22 in the first surface A and the second surface B is based on the balance between the strength of the resin block and the fluidity of the resin for injection molding, with respect to each of the areas of the first surface A and the second surface B. Is preferably 1/20 to 1/3.
  • the through hole 22 provided in the resin block 13 is, for example, a circular shape, but is not limited thereto, and may be an elliptical shape, a triangular shape, a quadrangular shape, a polygonal shape that is a pentagon or more. .
  • an epoxy thermosetting resin can be used for the resin block 13.
  • the thermosetting resin is not limited to an epoxy-based thermosetting resin, and may be another thermosetting resin such as a phenol resin, a melamine resin, a urea resin, a polyurethane, or a thermosetting polyimide.
  • the resin block 13 may be provided by applying and curing a liquid resin. Or you may provide by lamination
  • the resin forming the resin block 13 may include magnetic powder such as ferrite powder. When the magnetic powder is included in the resin, the overall size of the coil antenna for constituting the coil antenna of the predetermined inductor can be reduced.
  • the through hole 22 that penetrates the first surface A and the second surface B having the largest area among the surfaces of the resin block 13 is provided, the through hole 22 can be enlarged. This makes it easier for the resin to flow through the through hole 22 during molding, making it difficult to damage the RFIC element 11.
  • the coil antenna 1 is provided on the resin block 13 and connected to the RFIC element 11. More specifically, one end 35 of the coil antenna 1 is connected to the first input / output terminal 36 of the RFIC element 11, and the other end 37 is connected to the second input / output terminal 38 of the RFIC element 11.
  • the coil antenna 1 has a winding shaft 2 from the first surface A toward the second surface B.
  • the coil antenna 1 has a helical type formed by connecting and winding a conductor member in a spiral shape.
  • the winding axis 2 is at substantially the same position as an imaginary straight line connecting the center of the first surface A and the center of the second surface B.
  • the conductor member constituting the coil antenna 1 is formed along both side surfaces and the upper and lower surfaces D and E of the resin block 13. That is, the opening area of the coil antenna 1 is substantially the same as the areas of the first surface A and the second surface B.
  • the coil antenna 1 includes wiring patterns 17a, 17b, and 17c on the circuit board 15, metal pins 16a and 16b provided on the circuit board 15, and a side facing the circuit board 15, and the metal pin 16a and the metal pin It is comprised by the connection conductor pattern 14 which connects between the pins 16b.
  • the metal pins 16 a are conductor members arranged at equal intervals along the winding axis direction of the coil antenna 1 on one side surface of the resin block 13, and the metal pins 16 b On the other side, a plurality of conductor members are arranged at equal intervals along the winding axis direction of the coil antenna 1. Although these metal pins are embedded in the resin block 13, they may be partially exposed.
  • the wiring patterns 17a, 17b, and 17c on the circuit board 15 are metal thin films formed on the front and back surfaces of the circuit board 15, and the interlayer connection conductor 19 provided in the circuit board 15 is located on the inner side of the circuit board. It is a conductor member for connecting the wiring pattern provided on the main surface and the wiring pattern provided on the outer main surface.
  • the connection conductor pattern 14 is a conductor member formed along the lower surface of the resin block 13 and is formed of a metal sintered body or a conductive resin material formed on the surface of the lower surface of the resin block 13. .
  • the coil antenna 1 is constituted by these conductor members.
  • one end of the wiring pattern 14 made of a metal sintered body or a conductive resin material is connected to the lower end of the metal pin 16a, and the wiring pattern 17 made of a metal thin film is connected to the upper end.
  • One end is connected, the other end of the wiring pattern 14 made of a metal sintered body or a conductive resin material is connected to the lower end of the metal pin 16b, and the metal thin film is connected to the upper end of the metal pin 16b.
  • the other end of the wiring pattern is connected.
  • the plating film is formed in the surface of a metal thin film, a metal sintered compact, and a conductive resin material.
  • the through hole 22 is provided inside the coil antenna 1 at a position where the center of the through hole 22 and the winding shaft 2 of the coil antenna 1 substantially coincide.
  • the coil antenna 1 is not restricted to what was wound in multiple as shown in FIG.
  • the coil antenna 1 may have a single loop shape.
  • the intervals between the plurality of metal pins 16 a and the metal pins 16 b facing each other are the same, but among the plurality of metal pins 16 a and 16 b at both ends of the resin block 13, the corresponding metal pins 16 a at both ends. , 16b may be provided with a pair of metal pins having a wide interval and a pair of metal pins having a narrow interval.
  • the circuit board 15 for example, an epoxy resin FR4 board may be used.
  • the circuit board 15 is preferably a printed wiring board having high heat resistance such as epoxy resin.
  • a plurality of wiring patterns 17 a, 17 b, 17 c and land patterns 24 may be formed on the front and back of the circuit board 15.
  • the interlayer connection conductor 19 is a through-hole type.
  • the interlayer connection conductor 19 can be formed by, for example, Cu plating.
  • the wiring pattern 17 and the land pattern 24 can be typically formed by patterning a Cu foil.
  • the wiring pattern 17 and the land pattern 24 are preferably formed with a plating film such as Ni / Au.
  • the circuit board 15 may not be a resin board.
  • the interlayer connection conductor 19 can be formed by a via hole type filled with a conductive paste mainly composed of Cu, Ag, or the like.
  • metal pins 16a and 16b metal pins mainly composed of Cu can be used.
  • the material of the metal pins 16a and 16b only needs to be conductive, and the material is not limited to Cu, and may be a conductive material such as Ag or Al.
  • the outer diameter ⁇ of the metal pins 16a and 16b may be, for example, 0.2 mm or more and 1 mm or less.
  • the metal pins 16a and 16b may have a length of 3 mm to 50 mm.
  • the cross-sectional shape is preferably a circular shape, but is not limited to this, and may be a rectangular shape or the like.
  • the aspect ratio of the cross-sectional shape is preferably in the range of 5 to 30.
  • the metal pins 16a and 16b may have a surface plated with Ni / Au or the like.
  • the metal pins 16 a and 16 b are connected to the land pattern 24 on the circuit board 15 by a conductive bonding material 23 such as solder. Since the metal pins 16a and 16b are provided on both side surfaces of the resin block 13 of the RFIC device 10, it is strong against mechanical impacts and can obtain robustness as a whole. Moreover, at the time of manufacture of the resin molding containing the RFIC device 10, the heat
  • conductive bonding material 23 for connecting the metal pins 16a and 16b and the land pattern 24 of the circuit board 15 for example, Sn—Ag solder may be used.
  • the conductive bonding material 23 is not limited to the above.
  • the RFIC element 11 is mounted on the inner main surface of the circuit board 15.
  • the RFIC element 11 includes, for example, a BB (Base Band) circuit and an RF circuit. It may be a bare chip product. Alternatively, it may be a resin or ceramic package product.
  • the mounting form of the RFIC element 11 may be any mounting form such as BGA (Ball Grid Array) and LGA (Land Grid Array).
  • FIG. 3 is an example of an equivalent circuit of the RFIC device 10.
  • the RFIC device 10 has an RFIC element 11, a coil antenna 1, and a capacitor (not shown) on an equivalent circuit.
  • the capacitor may be a stray capacitance in the RFIC element 11, for example.
  • the RFIC device 10 may be provided with grooves or slits at the ends as shown in FIG. Or as shown in FIG. 17, you may provide a chamfering part in an edge part.
  • FIG. 4 is a schematic diagram showing a resin flow 34 when injection molding is performed using the RFIC device 10 according to the first embodiment.
  • the molding resin 34 flows through the through hole 22 during injection molding. And the RFIC device is less likely to be damaged. Moreover, it becomes difficult to inhibit the flow of the molding resin 34 by the RFIC device. In this case, as will be described later, the flow of the molding resin 34 easily flows into the through hole 22 by arranging the through hole 22 so as to face the upstream side of the flow of the molding resin 34.
  • the molding can be performed in a short time, and the heat from the molding resin is less likely to be concentrated on the RFIC element 11, so that the RFIC element 11 is less likely to be thermally damaged. Furthermore, since the RFIC device 10 can be accurately aligned in the resin molding, the alignment with the reader / writer can be more accurate, and high communication characteristics can be obtained even when the communication distance of the RFIC device is short. Can do.
  • the circuit board 15 and the metal pins 16a and 16b are prepared.
  • Wiring patterns 17a, 17b, and 17c are formed on the circuit board 15 by patterning a metal foil.
  • the interlayer connection conductor 19 is formed by plating or paste filling.
  • the RFIC element 11 and the metal pins 16a and 16b are mounted on one main surface of the circuit board 15 using a mounter or the like.
  • solder balls are formed on the connection portion to the circuit board 15, and solder paste is printed on the lower end portion of the metal pin.
  • a resin block (resin layer) 13 is formed so as to embed the RFIC element 11.
  • the resin block 13 may be formed, for example, by applying and curing an epoxy thermosetting resin. Alternatively, a semi-curable resin sheet may be used.
  • the top surface side is polished.
  • the polishing is performed up to the line DD in FIG.
  • the wiring pattern 14 is formed on the polished surface 25.
  • the formation of the wiring pattern 14 will be described in order. First, a conductive material mainly composed of Cu or the like is screen-printed and cured by heat treatment. As a result, a wiring pattern (printing) 14 is formed.
  • a conductive material mainly composed of Cu or the like is screen-printed and cured by heat treatment. As a result, a wiring pattern (printing) 14 is formed.
  • a plating process such as Ni / Au plating is performed to form a plating layer 18 b on the wiring pattern 14.
  • a plating film 18 a is also formed on the wiring pattern 17 on the lower surface of the circuit board 15. That is, the wiring pattern 17 is formed by the pattern layer 17 and the plating layer 18a on the outer principal surface of the circuit board 15, and the connection conductor pattern 14 is formed by the printed wiring pattern layer 14 and the plating layer 18b.
  • protective layers 20 and 21 are formed on the lower surface and the upper surface.
  • a resist material can be used as the protective layer.
  • a through hole 22 that penetrates the first surface and the second surface of the resin block 13 is formed.
  • Various processing processes such as laser processing, drilling, and punching can be used to form the through hole 22.
  • the RFIC device 10 can be obtained.
  • FIG. 13A is a schematic diagram showing a resin-molded toy 30 including therein the RFIC device 10 according to the first embodiment
  • FIG. 13B is a foot of the toy 30 in FIG. 13A
  • FIG. 14, which is a bottom view seen from the back, is a schematic diagram showing a state in which the RFIC device 10 is arranged in a molding die 31 used when the resin molded body 30 of FIG. 13A is produced by injection molding. It is.
  • the resin molded toy 30 including the RFIC device 10 therein has the RFIC device embedded in the foot.
  • the RFIC device 10 has a through hole 22 that penetrates the first surface and the second surface of the resin block 13.
  • the RFIC device is arranged so that the through hole 22 of the RFIC device 10 faces the upstream side of the resin flow in the molding die.
  • the RFIC device 10 may be disposed in the molding die 31 so as to face the pin gate 32. Accordingly, since the molding resin can flow through the through hole of the RFIC device 10 at the time of injection molding, the RFIC device is less likely to inhibit the flow of the molding resin 34.
  • FIG. 15 is a cross-sectional view showing a cross-sectional structure of the RFIC device 10a according to the second embodiment.
  • the RFIC device 10a according to the second embodiment is not provided with the metal pins 16a and 16b directly on the circuit board 15, but on the substrate (protective layer) 12.
  • the circuit board 15 and the metal pins 16a and 16b are respectively mounted. Since the metal pins 16a and 16b are not directly provided on the circuit board 15 in this way, a high degree of freedom in design can be obtained.
  • FIG. 16 is a sectional view showing a sectional structure of the RFIC device 10b according to the third embodiment.
  • the RFIC device 10b according to the third embodiment is offset from the center of the first surface and the second surface of the resin block 13 so that the through hole 22a is far from the RFIC element. It differs in that it is arranged.
  • the through hole 22 a be offset from the RFIC element 11.
  • the centers of the first and second surfaces of the resin block 13 substantially coincide with the center of the coil antenna. Therefore, the center of the through hole 22a may be further away from the RFIC element 11 than the winding axis of the coil antenna. Accordingly, since the molding resin flows in the through hole 22a, the dynamic or thermal load is large. Therefore, the molding resin is kept away from the through hole 22a through which the molding resin flows, and the dynamic or thermal due to the molding resin. Load can be reduced.
  • FIG. 17 is a schematic perspective view showing the structure of the RFIC device 10c according to the fourth embodiment.
  • the RFIC device 10c according to the fourth embodiment is different from the RFIC device according to the first embodiment in that it has a plurality of grooves 26 extending from the end of the first surface of the resin block 13 to the end of the second surface. To do.
  • the flow of the resin can be adjusted. Thereby, the fluidity of the molding resin can be improved and the occurrence of molding defects can be suppressed.
  • FIG. 18 is a schematic perspective view showing the structure of the RFIC device 10d according to the fifth embodiment.
  • the RFIC device 10d according to the fifth embodiment is different from the RFIC device according to the first embodiment in that the end portion of the first surface and the end portion 27 of the second surface of the resin block 13 are chamfered. To do. Even when the molding resin flows on the RFIC device 10d during injection molding, the molding resin can smoothly wrap around the chamfered end portion 27. Thereby, the fluidity of the molding resin can be improved and the occurrence of molding defects can be suppressed.
  • FIG. 19 is a cross-sectional view showing a cross-sectional structure of the RFIC device 10e according to the sixth embodiment.
  • the RFIC device 10e according to the sixth embodiment is different from the RFIC device according to the first embodiment in that it has a heat insulating material 28 that covers the periphery of the resin block 13. Thus, rapid temperature change can be suppressed even during injection molding, and damage to the RFIC element can be suppressed.
  • the heat insulating material 28 may be, for example, an inorganic heat insulating material such as glass fiber or ceramic, or an organic heat insulating material such as polyimide resin, polyamide resin, or liquid crystal polymer.
  • a method of coating the resin block 13 with the heat insulating material 28 for example, a liquid obtained by liquefying the heat insulating material 28 as it is, or a liquid obtained by dissolving or suspending the heat insulating material 28 in a solvent is applied to the resin block 13,
  • the heat insulating material 13 may be coated by solidifying the liquid heat insulating material or removing the solvent by drying or vaporizing the solvent.
  • the resin block 13 may be coated by immersing the resin block 13 in a liquid of a heat insulating material or a liquid obtained by dissolving or suspending the heat insulating material in a solvent.
  • FIG. 20 is a cross-sectional view showing a cross-sectional structure of the RFIC device 10f according to the seventh embodiment.
  • the RFIC device 10f according to the seventh embodiment is different from the RFIC device according to the first embodiment in that the number of through holes 22 is not one but a plurality.
  • the number of through holes 22 is not one but a plurality.
  • the through hole 22 is preferably provided on the side far from the RFIC element 11. Thereby, the influence of heat on the RFIC element 11 of the molding resin passing through the through hole 22 can be suppressed.
  • the resin molded body including the RFIC device 10f according to Embodiment 7 can be manufactured in the same manner as the method for manufacturing the resin molded body including the RFIC device 10 according to Embodiment 1 shown in FIG.
  • the pin gate 32 and the through hole 22 provided in the molding die 31 are aligned.
  • the molding resin flows from the pin gate (resin inlet) 32
  • the molding resin 34 easily passes through the through hole 22.
  • the pin gate 32 and the axis of the through hole 22 may intersect each other.
  • FIG. 21 is a schematic cross-sectional view showing a process of placing the RFIC device 10f inside the molding die 31 and injection molding the molding resin in the method for manufacturing a resin molded body including the RFIC device 10f according to the seventh embodiment.
  • FIG. A method for manufacturing a resin molded product including the RFIC device 10f according to Embodiment 7 will be described below.
  • (A) The RFIC device 11 f having the plurality of through holes 22 is prepared while the RFIC element 11 is offset in the resin block 13 and close to one end surface.
  • the RFIC device 10f is installed in the molding die 31 so that the one end surface side of the resin block 13 in which the RFIC element 11 is offset is located downstream of the resin flow 34 in the molding die 31. To do.
  • the downstream side of the resin flow 34 is a location physically far from the resin injection port 32.
  • a location on the lower temperature side may be the downstream side compared to the high temperature side in the vicinity of the resin inlet 32.
  • the one end face side of the RFIC device 10 f is the downstream side of the resin flow 34, the other end face side is placed on the upstream side of the resin flow 34.
  • the RFIC element 11 and the like are offset arranged on the one end face side in the resin block 13 and the one end face side of the resin block 13 in which the RFIC element 11 and the like are arranged offset. Is placed on the downstream side of the resin flow 34 in the molding die 31. For this reason, it is difficult for the temperature of the resin to be transmitted to the RFIC element 11 and the like, and the RFIC 11 and the like can be hardly damaged.
  • one end face side where the RFIC element 11 is arranged offset is arranged on the downstream side of the flow of the resin in the molding die 31, the pressure of the resin is also reduced as compared with the case where it is arranged on the upstream side.
  • the RFIC device to be used is not limited to the RFIC device 10f.
  • it may be any of the RFIC devices 10 to 10f mentioned in this specification and all the RFIC devices within the protection scope of the present invention.
  • the RFIC device may be used in any band such as the LF band, the HF band, the UHF band, and the SHF band when used as an RFID tag.
  • the RFIC device is typically an RFID tag, but is not limited to the one having a so-called tag function, and may have another function such as one having a reader / writer function.
  • the RFIC device Since the RFIC device according to the present invention has a through hole in the resin block, the RFIC device is useful as an RFIC device for embedding the RFIC element in the resin molded body when the RFIC device is embedded in the resin molded body by injection molding.

Abstract

RFICデバイスは、第1面と、第1面に対向する第2面とを備え、第1面と第2面とを貫通する貫通穴を有する樹脂ブロックと、樹脂ブロック内に埋設されたRFIC素子と、樹脂ブロックに設けられ、前記RFIC素子と接続され、第1面から第2面に向かう巻回軸を有するコイルアンテナと、を備え、貫通穴は、コイルアンテナの内側に設けられる。

Description

RFICデバイス及びRFICデバイスを含む樹脂成型体の製造方法
 本発明は、RFICデバイス及びRFICデバイスを含む樹脂成型体の製造方法に関する。
 物品管理や電子決済等のための情報管理システムとして、リーダライタとRFIDタグとを非接触方式で通信させて所定の情報を伝達するRFIDシステムが実用化されている。RFIDタグは、所定の情報を記憶しかつ所定の無線信号を処理するRFICチップと、高周波信号の送受信を行うアンテナとを備え、例えば物品管理においては管理対象となる物品に取り付けられる。
 物品へのRFIDタグの取り付け方法としては、物品表面への貼り付けが一般的であるが、射出成型等により物品自体にRFIDタグが埋設されることもある。図22は、従来のRFIDタグ51を用いて射出成型を行う場合の樹脂の流れ55を示す概略図である。通常、RFIDタグ51は、アンテナ基板上にRFICチップが実装された平板形状を有している。このようなRFIDタグ51を樹脂モールドする場合、射出された成型用樹脂55がタグにあたることで樹脂の流れを阻害してしまうことがある。すると、成型用金型52内での成型用樹脂55の回りこみ不足による欠損部ができてしまったり、樹脂の圧力によりRFIDタグに位置ずれが生じてしまったりすることがある。また、RFIDタグ51内のRFICチップに高温の樹脂による熱的なダメージが蓄積されると、RFICチップが損傷してしまうこともある。特に、樹脂が流れてくる方向に対してサイズの大きな面が対向するようにタグを配置せざるを得ない場合、RFICチップが損傷を受ける可能性が高くなる。
特開2007-133617号公報
 RFICチップを高温の樹脂から保護するためには、例えば特許文献1に開示されているように、RFIDタグの表面に耐熱シートを積層して射出成型時の熱からタグを保護すればよい。
 しかし、上記のように耐熱シートを用いると、成型用樹脂の回り込み性が阻害されやすくなり、欠損部が生じてしまったり、タグが所定の配置位置からずれてしまったりすることがある。また、耐熱シートの材質や厚みによっては、RFIDタグの通信特性を阻害してしまうことがある。
 そこで、本発明の目的は、通信特性に優れるとともに、成型時に欠損部や位置ずれが生じにくいRFICデバイスを提供することである。
 本発明に係るRFICデバイスは、第1面と、前記第1面に対向する第2面とを備え、前記第1面と前記第2面とを貫通する貫通穴を有する樹脂ブロックと、
 前記樹脂ブロック内に埋設されたRFIC素子と、
 前記樹脂ブロックに設けられ、前記RFIC素子と接続され、前記第1面から前記第2面に向かう巻回軸を有するコイルアンテナと、
を備え、
 前記貫通穴は、前記コイルアンテナの内側に設けられる。
 本発明に係るRFICデバイスによれば、コイルアンテナの内側に樹脂ブロックの第1面と第2面とを貫通する貫通穴を有するので、射出成型時に貫通穴を介して成型用樹脂を流すことができ、通信特性を大きく阻害せずに、RFICデバイス(RFIDタグ)が破損しにくくなる。
実施の形態1に係るRFICデバイスの構造を示す透視斜視図である。 図1のRFICデバイスの上下を逆にして、A-A方向から見た断面構造を示す断面図である。 実施の形態1に係るRFICデバイスの等価回路図である。 実施の形態1に係るRFICデバイスを用いて射出成型を行う場合の樹脂の流れを示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、回路基板の上にRFIC素子と金属ピンとを設ける工程を示す概略図である。 図5の工程で、回路基板の上にRFIC素子と金属ピンとを設けた状態を示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、樹脂ブロックを設ける工程と、上面側を研磨する工程と、を示す概略図である。 図7の工程で、上面側を研磨した状態を示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、上面側に配線パターンを印刷する工程を示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、上面側及び下面側に配線パターンをめっきする工程を示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、下面側に第1保護層、上面側に第2保護層を設ける工程を示す概略図である。 実施の形態1に係るRFICデバイスの製造方法において、上面及び下面と垂直な第1面と第2面とを貫通する貫通穴を設ける工程を示す概略図である。 (a)は、実施の形態1に係るRFICデバイスを内部に含む樹脂成型体の玩具を示す概略図であり、(b)は、(a)の玩具の足裏から見た底面図である、 図13(a)の樹脂成型体を射出成型で作製する際に用いられる金型にRFICデバイスを配置した状態を示す概略図である。 実施の形態2に係るRFICデバイスの断面構造を示す断面図である。 実施の形態3に係るRFICデバイスの断面構造を示す断面図である。 実施の形態4に係るRFICデバイスの構造を示す概略斜視図である。 実施の形態5に係るRFICデバイスの構造を示す概略斜視図である。 実施の形態6に係るRFICデバイスの断面構造を示す断面図である。 実施の形態7に係るRFICデバイスの断面構造を示す断面図である。 実施の形態7に係るRFICデバイスを含む樹脂成型体の製造方法において、RFICデバイスを成型用金型の内部に配置し、成型用樹脂を射出成型する工程を示す概略断面図である。 従来のRFICタグを用いて射出成型を行う場合の樹脂の流れを示す概略図である。
 本発明の一態様に係るRFICデバイスは、第1面と、前記第1面に対向する第2面とを備え、前記第1面と前記第2面とを貫通する貫通穴を有する樹脂ブロックと、
 前記樹脂ブロック内に埋設されたRFIC素子と、
 前記樹脂ブロックに設けられ、前記RFIC素子と接続され、前記第1面から前記第2面に向かう巻回軸を有するコイルアンテナと、
を備え、
前記貫通穴は、前記コイルアンテナの内側に設けられる。
 上記構成によれば、樹脂ブロックの第1面と第2面とを貫通する貫通穴を有するので、射出成型時に貫通穴を介して成型用樹脂を流すことができ、RFICデバイス(RFIDタグ)が破損しにくくなる。また、この貫通穴はアンテナコイルの内側に設けられるので、コイルアンテナのサイズ(特にコイル開口面積)を維持でき、さらに通信相手側アンテナ(リーダライタ側アンテナ)との相対距離が大きく減少することもないので、大きな通信距離を確保でき、通信特性に優れたRFICデバイスを得ることができる。
 本発明の別の態様に係るRFICデバイスは、上記の態様において、前記樹脂ブロックは、多面体形状であって、互いに対向する面のうち最大面積の前記第1面と前記第2面とを貫通する貫通穴を有してもよい。樹脂ブロックの形状は代表的には直方体形状である。
 上記構成によれば、樹脂ブロックの面のうち最大の面積を有する第1面と第2面とを貫通する貫通穴を有するので、貫通穴を大きくすることができる。これによって、成型時に樹脂が貫通穴を流れやすくなる。樹脂ブロックに埋設されたRFIC素子と貫通穴との距離も確保しやすい。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記コイルアンテナは、少なくともその一部が前記樹脂ブロックに埋設され、互いに対向して設けられた第1金属ピン及び第2金属ピンを含んでもよい。
 上記構成によれば、RFICデバイスの樹脂ブロックの両側面に金属ピンを設けているので、コイルアンテナの耐熱的衝撃性や耐機械的衝撃性を向上さえることができ、RFICデバイス全体としての堅牢性を高めることができる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記第1面の法線方向から見たとき、前記貫通穴の中心は、前記コイルアンテナの中心軸から前記RFIC素子の存在しない側にオフセットして設けられていてもよい。
 成型用樹脂が貫通穴内部を流動する際のRFIC素子に対する動的あるいは熱的な負荷に対して、RFIC素子を少しでも成型用樹脂が流れる貫通穴から遠ざけて、成型用樹脂による動的あるいは熱的な負荷を低減させることができる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記コイルアンテナは、前記第1面から第2面に向かうらせん状であってもよい。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記コイルアンテナは、
  前記樹脂ブロックの前記第1面及び第2面と交差する一端面側に設けられた第1パターン導体と、
  前記一端面と対向する他端面側に設けられた接続導体と、
  前記一端面側から前記他端面側に延び、前記第1パターン導体と前記接続導体とを接続し、互いに対向する2つの金属ピンと、
を含んでもよい。
 上記構成によれば、一端面側と他端面側とを接続する金属ピンを用いているので、RFIDデバイス自身の耐熱的衝撃性や耐機械的衝撃性を向上させることができる。しかも、樹脂流れの上流側から下流側へ金属ピンを介した伝熱を利用してRFICデバイス外へ廃熱することによってRFICデバイス内の熱の滞留を抑制できる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記樹脂ブロックの前記第1面の端部から前記第2面の端部にわたる複数の溝を有してもよい。貫通穴内にも第1面側から第2面側に向かって複数の溝を有していることが好ましい。
 上記構成によって、射出成型時に成型用樹脂が溝を流れることで樹脂の流れを整えることができる。これによって、成型用樹脂の流動性を改善でき、樹脂の回り込み不足による欠損部の発生や熱集中によるRFIC素子の損傷等、成型不良の発生を抑制できる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記樹脂ブロックの前記第1面の端部及び前記第2面の端部は、面取りされていてもよい。貫通穴の縁部分も面取りされていることが好ましい。
 上記構成によって、射出成型時にRFICデバイスに成型用樹脂の流れが当たっても、成型用樹脂は面取りされた端部を滑らかに回り込むことができる。これによって、成型用樹脂の流動性を改善でき、樹脂の回り込み不足による欠損部の発生や熱集中によるRFIC素子の損傷等、成型不良の発生を抑制できる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記樹脂ブロックの周囲を覆う断熱材を有してもよい。貫通穴の内壁部分にも断熱材を有していることが好ましい。
 上記構成によって、射出成型時にも樹脂ブロック内部における急速な温度変化を抑制でき、RFIC素子の損傷を抑制できる。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記RFICデバイスは、射出成型用に用いるRFICデバイスである。
 本発明のさらに別の態様に係るRFICデバイスは、上記いずれかの態様において、前記樹脂ブロックは、複数の貫通穴を有してもよい。
 本発明の一態様に係る樹脂成型体は、RFICデバイスと、
 前記RFICデバイスを内部に含む樹脂と、
を有する樹脂成型体であって、
 前記RFICデバイスは、
  第1面と、前記第1面に対向する第2面とを備え、前記第1面と前記第2面とを貫通する貫通穴を有する樹脂ブロックと、
  前記樹脂ブロック内に埋設されたRFIC素子と、
  前記樹脂ブロックに設けられ、前記RFIC素子と接続され、前記第1面から前記第2面に向かう巻回軸を有するコイルアンテナと、
を備え、
  前記貫通穴は、前記コイルアンテナの内側に設けられている。
 この樹脂成型体では、成型用樹脂が外周面だけでなく貫通穴内でも樹脂ブロックと接しているので、樹脂成型体に対する機械的衝撃に対してRFICデバイスの信頼性を向上させることができる。
 本発明の一態様に係るRFICデバイスを含む樹脂成型体の製造方法は、貫通穴を有する樹脂ブロックと、前記樹脂ブロック内に埋設されたRFIC素子と、前記樹脂ブロックに設けられ、前記RFIC素子と接続され、内側に前記貫通穴を有するコイルアンテナと、を備えたRFICデバイスを、成型用金型内の樹脂の流れの上流側に対して前記貫通穴の開口が面するように前記成型用金型内に設置し、
 前記成型用金型内に樹脂注入口から成型用樹脂を射出することによって、樹脂成型体に前記RFICデバイスを埋設する、
ことを含む。
 上記構成によれば、成型用金型内の樹脂の流れの上流側に対して貫通穴の開口が面するように成型用金型内に設置するので、射出成型時に貫通穴を介して成型用樹脂を流すことができ、RFICデバイスが成型用樹脂の流れを阻害しにくくなる。
 以下、実施の形態に係るRFICデバイスについて、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
(実施の形態1)
 図1は、実施の形態1に係るRFICデバイス10の構造を示す透視斜視図である。図2は、図1のRFICデバイス10の上下を逆にして、C-C方向から見た断面構造を示す断面図である。
 図1および図2に示すように、RFICデバイス10は、樹脂ブロック13と、樹脂ブロック13内に埋設されたRFIC素子11と、コイルアンテナ1と、を備える。
 具体的には、実施の形態1に係るRFICデバイス10は、RFIC素子11が実装された回路基板15と、回路基板15上に設けられた金属ピン16a、16bと、金属ピン16aと金属ピン16bとを接続する接続導体14と、RFIC素子11と金属ピン16a、16bとを埋設すると共に、貫通穴22を有する樹脂ブロック13と、回路基板15上の配線パターン17a、17b、17cと金属ピン16a、16bと接続導体14とで構成され、内側に貫通穴22を有するコイルアンテナ1と、を有する。
 <樹脂ブロック>
 樹脂ブロック13は、直方体形状を有しており、第1面Aと、第1面Aに対向する第2面Bと、第1面Aと第2面Bとを連接する上下面D、Eおよび両側面F、Gとを備える。第1面Aと第2面Bは、上下面D、Eや両側面F、Gよりも大面積である。上下面D、Eは、図1のz軸の正方向及び負方向の面であり、両側面F、Gよりも大面積である。両側面F、Gは、図1のx軸の正方向及び負方向の面である。なお、第1面Aは、図1のy軸の正方向の面、つまり奥側の面であり、第2面Bは、図1のy軸の負方向の面、つまり手前側の面である。
 樹脂ブロック13には第1面Aと第2面Bとを貫通する貫通穴22を有する。つまり、貫通穴22は、直方体形状の樹脂ブロック13のうち最も面積の大きな面に設けられている。なお、最大の面積とは、各面の実際の表面積ではなく各面を平面上に投影した場合の投影面積である。貫通穴22は第1面Aおよび第2面Bのほぼ中心に設けられ、円形の開口部を有しており、その開口径は、第1面Aから第2面Bに向かってほぼ一様である。貫通穴22の開口径は第1面Aから第2面Bに向かってほぼ一様であるものに限定されるものではなく、段階的あるいは連続的に開口径が異なっていてもよい。第1面Aと第2面Bとで異なるサイズの開口径を有していてもよい。第1面Aおよび第2面Bにおける貫通穴22の開口面積は、樹脂ブロックの強度と射出成型用樹脂の流動性との兼ね合いから、第1面Aおよび第2面Bの面積のそれぞれに対して1/20~1/3が好ましい。
 また、樹脂ブロック13に設ける貫通穴22は、上述のように、例えば円形形状であるが、これに限らず、楕円形状、三角形形状、四角形形状、五角形以上の多角形形状などであってもよい。
 樹脂ブロック13は、例えば、エポキシ系の熱硬化性樹脂を使用できる。なお、エポキシ系の熱硬化性樹脂に限られず、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、熱硬化性ポリイミド等の他の熱硬化性樹脂であってもよい。樹脂ブロック13は、液状樹脂の塗布及び硬化によって設けてもよい。あるいは、半硬化シート状樹脂の積層によって設けてもよい。
 なお、樹脂ブロック13を形成する樹脂には、フェライト粉等の磁性体粉を含んでもよい。樹脂中に磁性体粉を含む場合には、所定のインダクタのコイルアンテナを構成するためのコイルアンテナの全体サイズを小さくできる。
 樹脂ブロック13の面のうち最大の面積を有する第1面Aと第2面Bとを貫通する貫通穴22を有するので、貫通穴22を大きくすることができる。これによって、成型時に樹脂が貫通穴22を流れやすくなり、RFIC素子11を損傷しにくくできる。
 <コイルアンテナ>
 コイルアンテナ1は、樹脂ブロック13に設けられると共に、RFIC素子11に接続されている。より具体的には、コイルアンテナ1の一端35がRFIC素子11の第1入出力端子36に接続されており、他端37がRFIC素子11の第2入出力端子38に接続されている。コイルアンテナ1は、第1面Aから第2面Bに向かう巻回軸2を有する。
 コイルアンテナ1は、導体部材をらせん状に接続・巻回してなるヘリカル型を有している。その巻回軸2は、第1面Aの中心と第2面Bの中心とを結ぶ仮想直線とほぼ同じ位置にある。コイルアンテナ1を構成する導体部材は、樹脂ブロック13の両側面および上下面D、Eに沿って形成されている。つまり、コイルアンテナ1の開口面積は第1面Aおよび第2面Bの面積とほぼ同じである。
 コイルアンテナ1は、回路基板15上の配線パターン17a、17b、17cと、回路基板15上に設けられた金属ピン16a、16bと、回路基板15と対向する側であって、金属ピン16aと金属ピン16bとの間を接続する接続導体パターン14とによって構成される。金属ピン16aは、樹脂ブロック13の一方側面側において、コイルアンテナ1の巻回軸方向に沿って、複数本、等間隔に並べられた導体部材であって、金属ピン16bは、樹脂ブロック13の他方側面側において、コイルアンテナ1の巻回軸方向に沿って、複数本、等間隔に並べられた導体部材である。なお、これらの金属ピンは樹脂ブロック13に埋め込まれているが、一部露出していてもよい。また、回路基板15上の配線パターン17a、17b、17cは、回路基板15の表面および裏面に形成された金属薄膜であって、回路基板15中に設けられた層間接続導体19は回路基板の内側主面に設けられた配線パターンと外側主面に設けられた配線パターンとを接続するための導体部材である。接続導体パターン14は、樹脂ブロック13の下側面に沿って形成される導体部材であって、樹脂ブロック13の下側面の表面に形成された金属焼結体や導電性樹脂材によって形成されている。これらの導体部材によってコイルアンテナ1が構成されている。
 さらに具体的に言うと、金属ピン16aの下側の一端には金属焼結体や導電性樹脂材による配線パターン14の一端が接続されており、上側の一端には金属薄膜による配線パターン17の一端が接続されていて、金属ピン16bの下側の一端には金属焼結体や導電性樹脂材による配線パターン14の他端が接続されていて、金属ピン16bの上側の一端には金属薄膜による配線パターンの他端が接続されている。なお、金属薄膜や金属焼結体、導電性樹脂材の表面にはめっき膜が形成されていることが好ましい。貫通穴22は、コイルアンテナ1の内側に、貫通穴22の中心とコイルアンテナ1の巻回軸2とがほぼ一致する位置に設けられている。
 また、コイルアンテナ1は、図1に示すように多重に巻回されたものに限られない。コイルアンテナ1は、例えば、一重のループ状であってもよい。
 さらに、図1では、対向する複数の金属ピン16aと金属ピン16bの間隔はいずれも同じであるが、樹脂ブロック13の両端の複数の金属ピン16a、16bのうち、対応する両端の金属ピン16a、16bの間の間隔を、広い間隔の金属ピン対と、狭い間隔の金属ピン対と、を設けてもよい。このように金属ピンの間隔に広狭を設けておくことによって、矩形ヘリカル状コイルからの磁束の漏れを抑制できる。
 <回路基板>
 回路基板15は、例えば、エポキシ樹脂系のFR4基板を用いてもよい。回路基板15としてはエポキシ樹脂等の耐熱性の高いプリント配線板であることが好ましい。回路基板15の表裏には複数の配線パターン17a、17b、17cやランドパターン24が形成されていてもよい。FR4基板の場合、層間接続導体19は、スルーホール型である。層間接続導体19は、例えばCuめっきによって形成できる。配線パターン17やランドパターン24は、代表的にはCu箔をパターニングすることによって形成できる。なお、配線パターン17やランドパターン24にはNi/Au等のめっき膜が形成してあることが好ましい。
 なお、回路基板15は、樹脂基板でなくてもよい。たとえばLTCC(Low Temperature Co-fired Ceramics:低温同時焼成セラミックス)等のセラミック基板を利用してもよい。この場合、層間接続導体19は、CuやAg等を主成分とする導電性ペーストを充填したビアホール型によって形成できる。
 <金属ピン(金属ポスト)>
 金属ピン16a、16bは、Cuを主成分とする金属ピンを用いることができる。なお、金属ピン16a、16bの材料は、導電性を有すればよく、その素材はCuに限られず、Ag、Al等の導電性材料であってもよい。金属ピン16a、16bの外径Φは、例えば0.2mm以上1mm以下のものを用いてもよい。金属ピン16a、16bの長さは、例えば3mm以上50mm以下のものを用いてもよい。また、断面形状は円形形状が好ましいが、これに限られず、矩形形状等であってもよい。断面形状のアスペクト比は、5以上30以下の範囲が好ましい。金属ピン16a、16bは、表面にNi/Au等のめっき処理が施されていてもよい。
 金属ピン16a、16bは、回路基板15上のランドパターン24にはんだ等の導電性接合材23によって接続されている。
 RFICデバイス10の樹脂ブロック13の両側面に金属ピン16a、16bを設けているので、機械的衝撃に強く全体として堅牢性を得ることができる。また、RFICデバイス10を含む樹脂成型体の製造時には金属ピン16a、16bを介した伝熱による廃熱を利用してRFICデバイス10内への熱の滞留を抑制できる。
 <導電性接合体>
 金属ピン16a、16bと回路基板15のランドパターン24とを接続する導電性接合材23としては、例えばSn-Ag系はんだを用いてもよい。なお、導電性接合材23は、上記のものに限られない。
 <RFIC素子>
 RFIC素子11は、回路基板15の内側主面上に実装されている。RFIC素子11は、例えばBB(Base Band)回路やRF回路を有する。ベアチップ品であってもよい。あるいは、樹脂やセラミックのパッケージ品であってもよい。RFIC素子11の実装形態は、BGA(Ball Grid Array)、LGA(Land Grid Array)等の任意の実装形態であってもよい。
 図3は、RFICデバイス10の等価回路の一例である。RFICデバイス10は、等価回路上は、RFIC素子11と、コイルアンテナ1と、図示していないキャパシタを有している。キャパシタは、例えば、RFIC素子11内の浮遊容量であってもよい。
 RFICデバイス10は、後述するように、図16に示すように、端部に溝又はスリットを設けてもよい。あるいは、図17に示すように、端部に面取り部を設けてもよい。
<作用効果>
 図4は、実施の形態1に係るRFICデバイス10を用いて射出成型を行う場合の樹脂流れ34を示す概略図である。実施の形態1に係るRFICデバイス10によれば、樹脂ブロック13の第1面と第2面とを貫通する貫通穴22を有するので、射出成型時に貫通穴22を介して成型用樹脂34を流すことができ、RFICデバイスが損傷しにくくなる。また、RFICデバイスによって成型用樹脂34の流れを阻害しにくくなる。この場合、後述するように、成型用樹脂34の流れの上流側に対して貫通穴22が面するように配置することによって成型用樹脂34の流れが貫通穴22に流れやすくなる。
 また、成型用金型31内で成型用樹脂34の回りこみ不足による欠損部を生じにくくすることができる。また、樹脂の圧力によるRFICデバイス10の位置ずれを生じにくくすることができる。そのため、信頼性の高いRFICデバイス10を内蔵した樹脂成型体を得ることができる。また、短時間で成型可能になるうえ、RFIC素子11に成型用樹脂による熱が集中しにくくなるので、RFIC素子11が熱的ダメージを受けにくくなる。
 さらに、樹脂成型体の中でのRFICデバイス10の位置合わせを正確にできるので、リーダ/ライタとの位置合わせをより正確にでき、RFICデバイスの通信距離が短い場合にも高い通信特性を得ることができる。
<RFICデバイスの製造方法>
 以下に、図5から図12を用いてRFICデバイス10の製造方法について説明する。
(a)まず、回路基板15および金属ピン16a、16bを準備する。回路基板15には金属箔をパターニングすることで、配線パターン17a、17b、17cを形成しておく。また、めっき処理やペースト充填処理等で層間接続導体19を形成しておく。そして、図5に示すように、回路基板15の一方主面にRFIC素子11および金属ピン16a、16bを、マウンタ等を使って搭載する。RFIC素子11には回路基板15への接続部分にはんだボールを形成しておき、金属ピンの下側端部にもはんだペーストを印刷しておく。なお、必要に応じてコンデンサチップ等の他の素子を実装してもよい(図示省略)。
(b)図6に示すように、これらを熱処理、代表的にはリフローすることで、RFIC素子11および金属ピン16a、16bが回路基板15に固定される。
(c)次いで、図7に示すように、RFIC素子11を埋設するように樹脂ブロック(樹脂層)13を形成する。樹脂ブロック13は、例えば、エポキシ系の熱硬化性樹脂の塗布及び硬化することによって形成してもよい。あるいは半硬化性樹脂シートを用いてもよい。
(d)その後、図8に示すように、天面側を研磨する。天面側の研磨は、樹脂ブロック13の形成時に表面に凹凸が生じているため、配線パターン用の平滑面を形成するためと、金属ピン16a、16bが樹脂ブロックに埋もれてしまっている場合はその頭出しのためである。研磨は、例えば図7のD-D線まで行われ、研磨面25を得る。
(e)次に、図9に示すように、研磨面25に配線パターン14を形成する。配線パターン14の形成について順を追って説明する。まず、Cu等を主成分とする導電性材料をスクリーン印刷し、これを熱処理することで硬化させる。これによって、配線パターン(印刷)14が形成される。
(f)次に、図10に示すように、Ni/Auめっき等のめっき処理を施して、配線パターン14の上にめっき層18bを形成する。めっき処理の際、回路基板15の下面の配線パターン17の上にもめっき膜18aが形成される。つまり、回路基板15の外側主面のパターン層17とめっき層18aとで配線パターン17を形成し、印刷による配線パターン層14とめっき層18bとで接続導体パターン14を形成する。
(g)次いで、図11に示すように、下面および上面に保護層20、21を形成する。保護層としてはレジスト材料を使用できる。また、保護層20、21は、下面および上面の全体に設けてもよい。あるいは、必要な部分にのみ保護層を設けてもよい。
(h)最後に、図12に示すように、樹脂ブロック13の第1面と第2面とを貫通する貫通穴22を形成する。貫通穴22の形成には、レーザー加工やドリル加工、パンチング加工などの各種加工プロセスを利用できる。
 以上によって、RFICデバイス10を得ることができる。
<RFICデバイスを内部に含む樹脂成型体の玩具>
 図13(a)は、実施の形態1に係るRFICデバイス10を内部に含む樹脂成型体の玩具30を示す概略図であり、図13(b)は、図13(a)の玩具30の足裏から見た底面図である、図14は、図13(a)の樹脂成型体30を射出成型で作製する際に用いられる成型用金型31にRFICデバイス10を配置した状態を示す概略図である。
 RFICデバイス10を内部に含む樹脂成型体の玩具30は、足部にRFICデバイスが埋設されている。RFICデバイス10は、樹脂ブロック13の第1面と第2面とを貫通する貫通穴22を有する。
 樹脂成型体の玩具30の射出成型時には、図14に示すように、成型用金型内の樹脂の流れの上流側に対してRFICデバイス10の貫通穴22が面するようにRFICデバイスが配置される。具体的には、ピンゲート32に面するようにRFICデバイス10が成型用金型31内に配置してもよい。これによって、射出成型時に成型用樹脂をRFICデバイス10の貫通穴を介して流すことができるので、RFICデバイスが成型用樹脂34の流れを阻害しにくくなる。
(実施の形態2)
 図15は、実施の形態2に係るRFICデバイス10aの断面構造を示す断面図である。実施の形態2に係るRFICデバイス10aは、実施の形態1に係るRFICデバイスと対比すると、回路基板15の上に直接に金属ピン16a、16bを設けるのではなく、基板(保護層)12上に回路基板15と金属ピン16a、16bとをそれぞれ実装している点で相違する。このように回路基板15に直接に金属ピン16a、16bを設けないようにしたので、高い設計自由度を得ることができる。
(実施の形態3)
 図16は、実施の形態3に係るRFICデバイス10bの断面構造を示す断面図である。実施の形態3に係るRFICデバイス10bは、実施の形態1に係るRFICデバイスと対比すると、貫通穴22aが樹脂ブロック13の第1面及び第2面の中心から外れてRFIC素子から遠い側にオフセット配置されている点で相違する。このように貫通穴22aは、RFIC素子11から離れた方にオフセット配置されていることが好ましい。なお、樹脂ブロック13の第1面及び第2面の中心とコイルアンテナの中心とは実質的に一致する場合が多い。そこで、貫通穴22aの中心は、コイルアンテナの巻回軸よりもRFIC素子11から離れていてもよい。これによって、成型用樹脂が貫通穴22a内部を流動するため、動的あるいは熱的な負荷が大きいため、少しでも成型用樹脂が流れる貫通穴22aから遠ざけて、成型用樹脂による動的あるいは熱的な負荷を低減させることができる。
(実施の形態4)
 図17は、実施の形態4に係るRFICデバイス10cの構造を示す概略斜視図である。実施の形態4に係るRFICデバイス10cは、実施の形態1に係るRFICデバイスと対比すると、樹脂ブロック13の第1面の端部から第2面の端部にわたる複数の溝26を有する点で相違する。射出成型時に成型用樹脂が溝26を流れることで樹脂の流れを整えることができる。これによって、成型用樹脂の流動性を改善でき、成型不良の発生を抑制できる。
(実施の形態5)
 図18は、実施の形態5に係るRFICデバイス10dの構造を示す概略斜視図である。実施の形態5に係るRFICデバイス10dは、実施の形態1に係るRFICデバイスと対比すると、樹脂ブロック13の第1面の端部及び第2面の端部27は、面取りされている点で相違する。射出成型時にRFICデバイス10dに成型用樹脂の流れが当たっても、成型用樹脂は面取りされた端部27を滑らかに回り込むことができる。これによって、成型用樹脂の流動性を改善でき、成型不良の発生を抑制できる。
(実施の形態6)
 図19は、実施の形態6に係るRFICデバイス10eの断面構造を示す断面図である。実施の形態6に係るRFICデバイス10eは、実施の形態1に係るRFICデバイスと対比すると、樹脂ブロック13の周囲を覆う断熱材28を有する点で相違する。これによって、射出成型時にも急速な温度変化を抑制でき、RFIC素子の損傷を抑制できる。
 断熱材28としては、例えば、ガラス繊維系、セラミックス系等の無機系断熱材、又は、ポリイミド系樹脂、ポリアミド系樹脂、液晶ポリマー等の有機系断熱材のいずれであってもよい。
 なお、断熱材28によって樹脂ブロック13を被覆する方法としては、例えば、断熱材28をそのまま液化した液体、又は、断熱材28を溶媒に溶解又は懸濁させた液体を樹脂ブロック13に塗布し、液体状の断熱材を固化、又は、溶媒の乾燥若しくは気化等による溶媒の除去によって断熱材13を被覆してもよい。あるいは断熱材の液体、又は、断熱材を溶媒に溶解又は懸濁させた液体に樹脂ブロック13を浸漬して樹脂ブロック13を被覆してもよい。
(実施の形態7)
<RFICデバイス>
 図20は、実施の形態7に係るRFICデバイス10fの断面構造を示す断面図である。実施の形態7に係るRFICデバイス10fは、実施の形態1に係るRFICデバイスと対比すると、貫通穴22の数が1つではなく複数である点で相違する。複数の貫通穴22を有することによって、RFICデバイス10fを含む樹脂成型体を形成した場合に、成型用樹脂とRFICデバイス10fとの接触面積が大きくなる。これによって樹脂成型体の内部におけるRFICデバイス10fの位置がより安定する。
 なお、貫通穴22は、RFIC素子11からは遠い側に設けることが好ましい。これによって、貫通穴22を通る成型用樹脂のRFIC素子11への熱の影響を抑えることができる。
<樹脂成型体の製造方法>
 実施の形態7に係るRFICデバイス10fを含む樹脂成型体は、図4に示す実施の形態1に係るRFICデバイス10を含む樹脂成型体の製造方法と同様にして製造できる。この場合、RFICデバイス10fを用いて射出成型を行う際に、成型用金型31に設けたピンゲート32と貫通穴22とを位置合わせしている。これによって、ピンゲート(樹脂注入口)32から成型用樹脂を流した際に、成型用樹脂34が貫通穴22を通りやすくなる。
 なお、RFICデバイス10~10fを含む樹脂成型体の製造にあたって、図4に示すようにピンゲート32と貫通穴22とを合わせることに限定されない。例えば、図21に示すように、ピンゲート32と貫通穴22の軸とを交差させていてもよい。
 図21は、実施の形態7に係るRFICデバイス10fを含む樹脂成型体の製造方法において、RFICデバイス10fを成型用金型31の内部に配置し、成型用樹脂を射出成型する工程を示す概略断面図である。実施の形態7に係るRFICデバイス10fを含む樹脂成型品の製造方法について、以下に説明する。
(a)RFIC素子11を樹脂ブロック13内で一端面寄りにオフセット配置させると共に、貫通穴22を複数有する上記のRFICデバイス10fを用意する。
(b)RFIC素子11をオフセット配置させた樹脂ブロック13の一端面側を成型用金型31内での樹脂流れ34の下流側となるように、RFICデバイス10fを成型用金型31内に設置する。なお、樹脂流れ34の下流側とは、樹脂注入口32から物理的に遠い箇所である。あるいは、成型用樹脂の熱勾配を計測した場合に、樹脂注入口32近傍での高温側に比べてより低温側の箇所を下流側としてもよい。ここでは、RFICデバイス10fの一端面側を樹脂流れ34の下流側とするので、他端面側は樹脂流れ34の上流側に置かれる。
(c)成型用金型31内に樹脂注入口32を介して成型用樹脂容器33から成型用樹脂を射出することによって、樹脂成型体にRFICデバイス10fを埋設することができる。
 以上によって、RFICデバイス10fを含む樹脂成型体を得る。
 実施の形態7に係る樹脂成型体の製造方法によれば、樹脂ブロック13内でRFIC素子11等を一端面側にオフセット配置すると共に、RFIC素子11等をオフセット配置した樹脂ブロック13の一端面側を成型用金型31内での樹脂流れ34の下流側となるようにRFICデバイス10fを配置している。このため、樹脂の温度がRFIC素子11等に伝わりづらく、RFIC11等も損傷しにくくすることができる。また、RFIC素子11をオフセット配置した一端面側を成型用金型31内での樹脂の流れの下流側に配置しているので、上流側に配置した場合に比べて樹脂の圧力に対しても耐えることが出来る。
 なお、図21による樹脂成型体の製造方法において、使用するRFICデバイスは、上記RFICデバイス10fに限られない。例えば、本明細書において挙げられたRFICデバイス10~10f、及び、本発明の保護範囲にある全てのRFICデバイスのいずれであってもよい。
 なお、RFICデバイスは、RFIDタグとして使用する場合には、LF帯、HF帯、UHF帯、SHF帯等のいずれの帯域において用いてもよい。また、RFICデバイスは、代表的にはRFIDタグであるが、いわゆるタグ機能を有したものに限定されるわけではなく、リーダライタ機能を有したもの等、他の機能を持っていてもよい。
 なお、本開示においては、前述した様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることを含むものであり、それぞれの実施の形態が有する効果を奏することができる。
 本発明に係るRFICデバイスは、樹脂ブロックに貫通穴を有するので、射出成型によってRFICデバイスを樹脂成型体に埋設する際に、RFIC素子を樹脂成型体に埋設するためのRFICデバイスとして有用である。
1 コイルアンテナ
2 巻回軸
10、10a、10b、10c、10d、10e RFICデバイス
11 RFIC素子
12 基板(保護層)
13 樹脂ブロック
14 接続導体(配線パターン)
15 回路基板
16、16a、16b 金属ピン
17 配線パターン(印刷)
17a 第1配線パターン
17b 第2配線パターン
17c 第3配線パターン
17d 第4配線パターン(印刷)
18、18a、18b 配線パターン(めっき)
19 層間接続導体
20 第1保護層
21 第2保護層
22、22a 貫通穴
23 導電性接合材
24 ランドパターン
25 研磨面
26 溝(スリット)
27 面取り部
28 断熱材
30 樹脂成型体
31 成型用金型
32 ピンゲート(樹脂注入口)
33 成型用樹脂
34 樹脂流れ
35 コイルアンテナの一端
36 第1入力端子
37 コイルアンテナの他端
38 第2入力端子
51 RFIDタグ
52 成型用金型
53 ピンゲート
54 成型用樹脂
55 樹脂流れ

Claims (13)

  1.  第1面と、前記第1面に対向する第2面とを備え、前記第1面と前記第2面とを貫通する貫通穴を有する樹脂ブロックと、
     前記樹脂ブロック内に埋設されたRFIC素子と、
     前記樹脂ブロックに設けられ、前記RFIC素子と接続され、前記第1面から前記第2面に向かう巻回軸を有するコイルアンテナと、
    を備え、
     前記貫通穴は、前記コイルアンテナの内側に設けられた、RFICデバイス。
  2.  前記コイルアンテナは、少なくともその一部が前記樹脂ブロックに埋設され、互いに対向して設けられた第1金属ピン及び第2金属ピンを含む、請求項1に記載のRFICデバイス。
  3.  前記樹脂ブロックは、多面体形状であって、互いに対向する面のうち最大面積の前記第1面と前記第2面とを貫通する貫通穴を有する、請求項1又は2に記載のRFICデバイス。
  4.  前記第1面の法線方向から見たとき、前記貫通穴の巻回軸は、前記コイルアンテナの巻回軸から前記RFIC素子の存在しない側にオフセットして設けられている、請求項1から3のいずれか一項に記載のRFICデバイス。
  5.  前記コイルアンテナは、前記第1面から第2面に向かうらせん状である、請求項1から4のいずれか一項に記載のRFICデバイス。
  6.  前記コイルアンテナは、
      前記樹脂ブロックの前記第1面及び第2面と交差する一端面側に設けられた第1パターン導体と、
      前記一端面と対向する他端面側に設けられた接続導体と、
      前記一端面側から前記他端面側に延び、前記第1パターン導体と前記接続導体とを接続し、互いに対向する2つの金属ピンと、
    を含む、請求項1から5のいずれか一項に記載のRFICデバイス。
  7.  前記樹脂ブロックの前記第1面の端部から前記第2面の端部にわたる複数の溝を有する、請求項1から6のいずれか一項に記載のRFICデバイス。
  8.  前記樹脂ブロックの前記第1面の端部及び前記第2面の端部は、面取りされている、請求項1から6のいずれか一項に記載のRFICデバイス。
  9.  前記樹脂ブロックの周囲を覆う断熱材を有する、請求項1から8のいずれか一項に記載のRFICデバイス。
  10.  前記RFICデバイスは、射出成型用RFICデバイスである、請求項1から9のいずれか一項に記載のRFICデバイス。
  11.  前記樹脂ブロックは、複数の貫通穴を有する、請求項1から10のいずれか一項に記載のRFICデバイス。
  12.  RFICデバイスと、
     前記RFICデバイスを内部に含む樹脂と、
    を有する樹脂成型体であって、
     前記RFICデバイスは、
      第1面と、前記第1面に対向する第2面とを備え、前記第1面と前記第2面とを貫通する貫通穴を有する樹脂ブロックと、
      前記樹脂ブロック内に埋設されたRFIC素子と、
      前記樹脂ブロックに設けられ、前記RFIC素子と接続され、前記第1面から前記第2面に向かう巻回軸を有するコイルアンテナと、
    を備え、
      前記貫通穴は、前記コイルアンテナの内側に設けられた、樹脂成型体。
  13.  貫通穴を有する樹脂ブロックと、前記樹脂ブロック内に埋設されたRFIC素子と、前記樹脂ブロックに設けられ、前記RFIC素子と接続され、内側に前記貫通穴を有するコイルアンテナと、を備えたRFICデバイスを、成型用金型内の樹脂の流れの上流側に対して前記貫通穴の開口が面するように前記成型用金型内に設置し、
     前記成型用金型内に樹脂注入口から成型用樹脂を射出することによって、樹脂成型体に前記RFICデバイスを埋設する、RFICデバイスを含む樹脂成型体の製造方法。
PCT/JP2016/051493 2015-02-27 2016-01-20 Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法 WO2016136335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690000510.1U CN207529410U (zh) 2015-02-27 2016-01-20 Rfic设备
JP2017501980A JP6315145B2 (ja) 2015-02-27 2016-01-20 Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法
US15/676,140 US10366321B2 (en) 2015-02-27 2017-08-14 RFIC device and method for manufacturing resin molded body including RFIC device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039316 2015-02-27
JP2015-039316 2015-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/676,140 Continuation US10366321B2 (en) 2015-02-27 2017-08-14 RFIC device and method for manufacturing resin molded body including RFIC device

Publications (1)

Publication Number Publication Date
WO2016136335A1 true WO2016136335A1 (ja) 2016-09-01

Family

ID=56789269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051493 WO2016136335A1 (ja) 2015-02-27 2016-01-20 Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法

Country Status (4)

Country Link
US (1) US10366321B2 (ja)
JP (1) JP6315145B2 (ja)
CN (1) CN207529410U (ja)
WO (1) WO2016136335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162119A (ja) * 2015-02-27 2016-09-05 株式会社村田製作所 Rficデバイスを含む樹脂成型体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118379A1 (ja) * 2010-03-24 2011-09-29 株式会社村田製作所 Rfidシステム
US10186492B1 (en) * 2017-07-18 2019-01-22 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and manufacturing method thereof
WO2019211941A1 (ja) * 2018-05-01 2019-11-07 株式会社村田製作所 電子デバイスおよびそれを搭載した指紋認証装置
CN109285441A (zh) * 2018-10-25 2019-01-29 惠州市浩明科技股份有限公司 防伪衣服标签结构
JP6750758B1 (ja) * 2019-03-06 2020-09-02 株式会社村田製作所 Rfidタグ及びrfidタグ付き物品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074780A (ja) * 1996-08-30 1998-03-17 Toshiba Chem Corp 非接触データキャリアの製造方法
JPH10328006A (ja) * 1997-05-30 1998-12-15 Toshiba Chem Corp 非接触データキャリア付き食器とその製造方法
JP2007295177A (ja) * 2006-04-24 2007-11-08 Dainippon Printing Co Ltd 非接触データキャリア、非接触データキャリア用配線基板
JP2008046671A (ja) * 2006-08-10 2008-02-28 Omron Corp Rfidタグ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5809099A (en) * 1998-09-11 2000-04-03 Motorola, Inc. Radio frequency identification tag apparatus and related method
US6424315B1 (en) * 2000-08-02 2002-07-23 Amkor Technology, Inc. Semiconductor chip having a radio-frequency identification transceiver
JP2002290131A (ja) * 2000-12-18 2002-10-04 Mitsubishi Materials Corp トランスポンダ用アンテナ
PL203289B1 (pl) * 2001-06-19 2009-09-30 Nippon Carbide Kogyo Kk Produkt retrorefleksyjny z wbudowanym układem scalonym
JP4944427B2 (ja) 2005-11-09 2012-05-30 大成プラス株式会社 Icタグの製造方法
WO2007114224A1 (ja) * 2006-03-29 2007-10-11 Kyocera Corporation 回路モジュール及び無線通信機器、並びに回路モジュールの製造方法
FR2962579A1 (fr) * 2010-07-12 2012-01-13 Ask Sa Dispositif d'identification radio frequence en polycarbonate et son procede de fabrication
CN103765675B (zh) * 2012-06-04 2015-06-10 株式会社村田制作所 天线装置及通信终端设备
JP5456935B1 (ja) * 2013-10-30 2014-04-02 太陽誘電株式会社 回路モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074780A (ja) * 1996-08-30 1998-03-17 Toshiba Chem Corp 非接触データキャリアの製造方法
JPH10328006A (ja) * 1997-05-30 1998-12-15 Toshiba Chem Corp 非接触データキャリア付き食器とその製造方法
JP2007295177A (ja) * 2006-04-24 2007-11-08 Dainippon Printing Co Ltd 非接触データキャリア、非接触データキャリア用配線基板
JP2008046671A (ja) * 2006-08-10 2008-02-28 Omron Corp Rfidタグ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162119A (ja) * 2015-02-27 2016-09-05 株式会社村田製作所 Rficデバイスを含む樹脂成型体の製造方法

Also Published As

Publication number Publication date
CN207529410U (zh) 2018-06-22
JPWO2016136335A1 (ja) 2017-10-26
JP6315145B2 (ja) 2018-04-25
US10366321B2 (en) 2019-07-30
US20170344872A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6315145B2 (ja) Rficデバイス及びrficデバイスを含む樹脂成型体の製造方法
US10784929B2 (en) Wireless IC device
US8362364B2 (en) Wiring board assembly and manufacturing method thereof
US10236264B2 (en) Wireless IC device, resin molded body comprising same, communication terminal apparatus comprising same, and method of manufacturing same
US11239184B2 (en) Package substrate, electronic device package and method for manufacturing the same
US10122068B2 (en) Wireless IC device, molded resin article, and method for manufacturing coil antenna
US20120112869A1 (en) Coil component and method of manufacturing the same
US9399825B2 (en) Wiring board and method of manufacturing wiring board
EP3582593B1 (en) Method of manufacturing a component carrier with a stepped cavity and a stepped component assembly being embedded within the stepped cavity
US20160150650A1 (en) Printed circuit board with electronic component embedded therein and method for manufacturing the same
JP2018078133A (ja) コイル内蔵ガラス基板およびビルドアップ基板
US20130258623A1 (en) Package structure having embedded electronic element and fabrication method thereof
US9837343B2 (en) Chip embedded substrate
JP6648830B2 (ja) コイルモジュール
KR102426202B1 (ko) 인쇄회로기판
US20210287977A1 (en) Component Carrier and Method of Manufacturing the Same
JP6477019B2 (ja) Rficデバイスを含む樹脂成型体の製造方法
US20150179596A1 (en) Semiconductor package
KR100575358B1 (ko) 고분자 필름을 사용하여 형성된 인덕터 및 그 제조방법
JP6160796B1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
WO2017141771A1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
KR20140055006A (ko) 칩 실장형 인쇄회로기판 및 그 제조방법
CN111952254A (zh) 半导体装置封装和其制造方法
JP2018180807A (ja) コイン形状のicタグとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755085

Country of ref document: EP

Kind code of ref document: A1