WO2016135977A1 - 医療用処置装置、医療用処置装置の作動方法、及び治療方法 - Google Patents
医療用処置装置、医療用処置装置の作動方法、及び治療方法 Download PDFInfo
- Publication number
- WO2016135977A1 WO2016135977A1 PCT/JP2015/055978 JP2015055978W WO2016135977A1 WO 2016135977 A1 WO2016135977 A1 WO 2016135977A1 JP 2015055978 W JP2015055978 W JP 2015055978W WO 2016135977 A1 WO2016135977 A1 WO 2016135977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- energy
- holding members
- target
- pair
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
- A61B18/085—Forceps, scissors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00095—Thermal conductivity high, i.e. heat conducting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
Definitions
- the present invention relates to a medical treatment apparatus, a method for operating a medical treatment apparatus, and a treatment method.
- a target part a part to be joined in a living tissue
- a medical treatment device does not leave a physical object such as a stapler in the living body, and thus has a merit that there is less adverse effect on the human body.
- the bonding strength is weaker than that of the stapler and the like.
- the extracellular matrix (collagen, elastin, etc.) of a living tissue is composed of a fibrous tissue.
- This invention is made in view of the above, Comprising: It aims at providing the medical treatment apparatus which can improve the joint strength of an object site
- a medical treatment apparatus includes at least one of a pair of holding members that sandwich a target region to be joined in a living tissue and the pair of holding members.
- An energy applying unit that is provided on one holding member and that contacts the target site when the target site is sandwiched between the pair of holding members and applies energy to the target site; and the energy applying unit
- the high frequency energy is applied to the target part in the first period, the ultrasonic energy is applied in the second period after the first period, and the thermal energy is applied in the third period after the second period.
- an energy control unit to be applied.
- At least one of the pair of holding members in the first period after the target region to be joined in the living tissue is sandwiched between the pair of holding members.
- a first applying step of applying high-frequency energy from the holding member to the target portion, and a second period after the first period, and the target from at least one of the pair of holding members In a second application step of applying ultrasonic energy to the part and a third period after the second period, heat is applied to the target part from at least one of the pair of holding members.
- a third application step of applying energy is applied to the target part from at least one of the pair of holding members.
- the treatment method according to the present invention includes a sandwiching step of sandwiching a target region to be joined in a living tissue with a pair of holding members, and at least one of the pair of holding members in the first period.
- a first application step of applying high-frequency energy to the target part and in a second period after the first period, from at least one of the pair of holding members to the target part.
- Thermal energy is applied to the target part from at least one of the pair of holding members in a second application step of applying ultrasonic energy and a third period after the second period.
- a third granting step is applied to the target part from at least one of the pair of holding members in a second application step of applying ultrasonic energy and a third period after the second period.
- the operation method of the medical treatment device, and the treatment method according to the present invention it is possible to improve the bonding strength of the target part.
- FIG. 1 is a diagram schematically showing a medical treatment apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a configuration of the control device shown in FIG.
- FIG. 3 is a flowchart showing the joining control by the control device shown in FIG.
- FIG. 4 is a diagram showing the behavior of the impedance of the target part calculated after step S4 shown in FIG.
- FIG. 5 is a diagram showing the behavior of the impedance of the ultrasonic transducer calculated after step S7 shown in FIG.
- FIG. 6 is a time chart showing the types of energy applied in the first to third periods and the compressive load applied to the target part during the joining control shown in FIG.
- FIG. 7 is a diagram showing a modification of the first embodiment of the present invention.
- FIG. 8 is a block diagram showing the configuration of the medical treatment apparatus according to the second embodiment of the present invention.
- FIG. 9 is a diagram for explaining the function of the locking mechanism shown in FIG.
- FIG. 10 is
- FIG. 1 is a diagram schematically showing a medical treatment apparatus 1 according to Embodiment 1 of the present invention.
- the medical treatment device 1 applies energy (high-frequency energy, ultrasonic energy, and thermal energy) to a target part (hereinafter, referred to as a target part) of a treatment (joining or anastomosis) in a living tissue, and the target part To treat.
- the medical treatment device 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
- the treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment on a target site through the abdominal wall.
- the treatment tool 2 includes a handle 5, a shaft 6, and a clamping unit 7.
- the handle 5 is a portion that the operator holds.
- the handle 5 is provided with an operation knob 51 as shown in FIG.
- the shaft 6 has a substantially cylindrical shape, and one end is connected to the handle 5 (FIG. 1).
- a clamping part 7 is attached to the other end of the shaft 6.
- An opening / closing mechanism 10 (see FIG. 1) that opens and closes the first and second holding members 8 and 9 (FIG. 1) constituting the holding portion 7 according to the operation of the operation knob 51 by the operator is provided inside the shaft 6. 2).
- the handle 5 is connected to the opening / closing mechanism 10, and when the target part is held between the first and second holding members 8, 9, the opening / closing mechanism 10 is controlled under the control of the control device 3.
- a motor 11 (see FIG. 2) that increases the compressive load applied to the target part from the first and second holding members 8 and 9 by being operated is provided.
- an electric cable C (FIG. 1) connected to the control device 3 is disposed inside the shaft 6 from one end side to the other end side via the handle 5.
- the clamping unit 7 is a part that clamps the target part and performs treatment on the target part.
- the clamping unit 7 includes a first holding member 8 and a second holding member 9.
- the first and second holding members 8 and 9 are configured to be openable and closable in the direction of the arrow R1 (FIG. 1) according to the operation of the operation knob 51 by the operator (can clamp the target part).
- the first holding member 8 is rotatably supported at the other end of the shaft 6 as shown in FIG.
- the second holding member 9 is fixed to the other end of the shaft 6.
- the first holding member 8 can be opened and closed with respect to the second holding member 9 in accordance with the operation of the operation knob 51 by the operator. For example, when the operation knob 51 moves in the direction of the arrow R ⁇ b> 2 (FIG. 1), the first holding member 8 rotates in the direction approaching the second holding member 9. Further, when the operation knob 51 moves in the direction of the arrow R3 (FIG. 1) opposite to the arrow R2, the first holding member 8 rotates in a direction away from the second holding member 9.
- the first holding member 8 is disposed on the upper side in FIG. 1 with respect to the second holding member 9.
- the first holding member 8 includes a first jaw 81 and a first energy application unit 82.
- the first jaw 81 includes a shaft support portion 811 that is pivotally supported on the other end of the shaft 6 and a support plate 812 that is connected to the shaft support portion 811, so that the operator can operate the operation knob 51. Accordingly, it opens and closes in the direction of arrow R1.
- the first energy applying unit 82 applies high frequency energy and thermal energy to the target site under the control of the control device 3.
- the first energy application unit 82 includes a heat transfer plate 821 and a heat generation sheet 822, and the heat generation sheet 822 and the heat transfer surface are provided on a plate surface of the support plate 812 facing the second holding member 9.
- the heat plates 821 are stacked in this order.
- the heat transfer plate 821 is made of, for example, a copper thin plate.
- the lower plate surface in FIG. 1 functions as a treatment surface 8211 that comes into contact with the target portion when the target portion is sandwiched between the first and second holding members 8 and 9. To do.
- the heat transfer plate 821 transmits the heat from the heat generating sheet 822 to the target site from the treatment surface 8211 (gives thermal energy to the target site).
- the heat transfer plate 821 is joined to a high-frequency lead C1 (see FIG. 2) constituting the electric cable C, and will be described later by the control device 3 via the high-frequency lead C1, C1 ′ (see FIG. 2).
- a high-frequency lead C1 see FIG. 2 constituting the electric cable C, and will be described later by the control device 3 via the high-frequency lead C1, C1 ′ (see FIG. 2).
- the heat generating sheet 822 functions as a seat heater.
- the heat generating sheet 822 has a configuration in which an electric resistance pattern is formed by vapor deposition or the like on a sheet-like substrate made of an insulating material such as polyimide.
- the electric resistance pattern is formed along a U shape that follows the outer edge shape of the heat generating sheet 822, and heat generating leads C2 and C2 '(see FIG. 2) constituting the electric cable C are joined to both ends.
- the electrical resistance pattern generates heat when voltage is applied (energized) by the control device 3 via the heating lead wires C2 and C2 ′.
- an adhesive sheet for adhering the heat transfer plate 821 and the heat generating sheet 822 is interposed between the heat transfer plate 821 and the heat generating sheet 822.
- This adhesive sheet is a sheet that has high thermal conductivity, withstands high temperatures, and has adhesiveness.
- this adhesive sheet is formed by mixing ceramics with high thermal conductivity such as alumina and aluminum nitride into epoxy resin. Has been.
- the 2nd holding member 9 is provided with the 2nd jaw 91 and the 2nd energy provision part 92, as shown in FIG.
- the second jaw 91 is fixed to the other end of the shaft 6 and has a shape extending along the axial direction of the shaft 6.
- the second energy applying unit 92 applies ultrasonic energy to the target site under the control of the control device 3.
- the second energy application unit 92 includes a probe 921 (FIG. 1) and an ultrasonic transducer 922 (see FIG. 2).
- the probe 921 is a columnar body made of a conductive material and extending along the axial direction of the shaft 6. As shown in FIG. 1, the probe 921 is inserted into the shaft 6 with one end side (right end side in FIG. 1) exposed to the outside, and an ultrasonic transducer 922 is attached to the other end. .
- the probe 921 contacts the target part when the target part is sandwiched between the first and second holding members 8 and 9, and the ultrasonic vibration generated by the ultrasonic vibrator 922 is applied to the target part. Transmit (apply ultrasonic energy to the target site).
- the ultrasonic vibrator 922 is configured by, for example, a piezoelectric vibrator that uses a piezoelectric element that expands and contracts when an AC voltage is applied.
- the ultrasonic vibrator 922 is joined with ultrasonic lead wires C3 and C3 ′ (see FIG. 2) constituting the electric cable C, and an AC voltage is applied under the control of the control device 3. Generates ultrasonic vibration.
- a vibration expanding member such as a horn for expanding the ultrasonic vibration generated by the ultrasonic vibrator 922 is interposed between the ultrasonic vibrator 922 and the probe 921.
- the configuration of the second energy applying unit 92 may be a configuration in which the probe 921 is longitudinally vibrated (vibration in the axial direction of the probe 921), or the probe 921 is laterally vibrated (in the radial direction of the probe 921). (Vibration).
- FIG. 2 is a block diagram illustrating a configuration of the control device 3.
- the main part of the present invention is mainly illustrated as the configuration of the control device 3.
- the foot switch 4 is a part operated by the operator with his / her foot, and outputs an operation signal to the control device 3 in response to the operation (ON).
- the control apparatus 3 starts the joining control mentioned later according to the said operation signal.
- the means for starting the joining control is not limited to the foot switch 4, and other switches that are operated by hand may be employed.
- the control device 3 comprehensively controls the operation of the treatment instrument 2.
- the control device 3 includes a high-frequency energy output unit 31, a first sensor 32, a thermal energy output unit 33, a vibrator drive unit 34, a second sensor 35, a control unit 36, Is provided.
- the high-frequency energy output unit 31 supplies high-frequency power between the heat transfer plate 821 and the probe 921 via the high-frequency lead wires C1 and C1 ′ under the control of the control unit 36.
- the first sensor 32 detects a voltage value and a current value supplied from the high-frequency energy output unit 31 to the heat transfer plate 821 and the probe 921. Then, the first sensor 32 outputs a signal corresponding to the detected voltage value and current value to the control unit 36.
- the thermal energy output unit 33 applies (energizes) a voltage to the heat generating sheet 822 via the heat generating lead wires C2 and C2 ′ under the control of the control unit.
- the vibrator driving unit 34 applies an AC voltage to the ultrasonic vibrator 922 via the ultrasonic lead wires C3 and C3 ′ under the control of the control unit 36.
- the second sensor 35 detects a voltage value and a current value applied to the ultrasonic transducer 922 from the transducer driving unit 34. Then, the second sensor 35 outputs a signal corresponding to the detected voltage value and current value to the control unit 36.
- the control unit 36 includes a CPU (Central Processing Unit) and the like, and executes joining control according to a predetermined control program when the foot switch 4 is turned on. As illustrated in FIG. 2, the control unit 36 includes an energy control unit 361, a first impedance calculation unit 362, a second impedance calculation unit 363, and a load control unit 364.
- the energy control unit 361 is a high-frequency energy output unit according to the operation signal from the foot switch 4, the target portion calculated by the first and second impedance calculation units 362 and 363, and the impedances of the ultrasonic transducer 922, respectively. 31, controls the operation of the thermal energy output unit 33 and the vibrator driving unit 34. That is, the energy control unit 361 controls the timing at which the first and second energy applying units 82 and 92 apply high frequency energy, ultrasonic energy, and thermal energy to the target part.
- the energy control unit 361 controls the timing at which the first and second energy applying units 82 and 92 apply high frequency energy, ultrasonic energy, and thermal energy to the target part
- the first impedance calculation unit 362 calculates the impedance of the target part when high frequency energy is applied to the target part based on the voltage value and the current value detected by the first sensor 32. Based on the voltage value and current value detected by the second sensor 35, the second impedance calculation unit 363 calculates the impedance of the ultrasonic transducer 922 when ultrasonic energy is applied to the target region. To do.
- the load control unit 364 operates the motor 11 based on the impedance of the ultrasonic transducer 922 calculated by the second impedance calculation unit 363 and compresses the target portion from the first and second holding members 8 and 9. The load (the force for clamping the target part by the first and second holding members 8 and 9) is increased.
- FIG. 3 is a flowchart showing joining control by the control device 3.
- the surgeon grasps the treatment instrument 2 and inserts the distal end portion of the treatment instrument 2 (a part of the clamping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar.
- the surgeon operates the operation knob 51 to open and close the first and second holding members 8 and 9, and pinch the target portion with the first and second holding members 8 and 9 (step S1: pinching step) ).
- the surgeon operates (ON) the foot switch 4 to start the joining control by the control device 3.
- step S2 When the operation signal from the foot switch 4 is input (when the foot switch 4 is turned ON) (step S2: Yes), the energy control unit 361 drives the high frequency energy output unit 31 and the high frequency energy output unit 31. Starts supplying high-frequency power to the heat transfer plate 821 and the probe 921 (starts applying high-frequency energy to the target part) (step S3: first application step). After step S3, the first impedance calculator 362 starts calculating the impedance of the target part based on the voltage value and the current value detected by the first sensor 32 (step S4).
- FIG. 4 is a diagram showing the behavior of the impedance of the target part calculated after step S4.
- the impedance of the target part exhibits the behavior shown in FIG.
- the initial time zone in which high-frequency energy is applied (from the start of applying high-frequency energy to time t1)
- the impedance of the target portion gradually decreases as shown in FIG. This is due to the fact that the cell membrane destruction of the target site occurs due to the application of the high frequency energy, and the extracellular matrix is extracted from the target site.
- the initial time zone is a time zone in which the extracellular matrix is extracted from the target site, and the viscosity of the target site decreases (the target site softens).
- the impedance of the target part gradually increases as shown in FIG. This is due to the fact that Joule heat acts on the target site by applying high-frequency energy, and the target site itself generates heat, thereby reducing (evaporating) moisture in the target site.
- the time t1 the extracellular matrix is no longer extracted from the target site, the moisture in the target site evaporates due to heat generation, and the viscosity of the target site increases (the target site coagulates). It is a time zone.
- step S4 the energy control unit 361 constantly monitors whether or not the impedance of the target portion calculated by the first impedance calculation unit 362 has reached the minimum value VL (step S5).
- step S5 Yes
- the energy control unit 361 drives the transducer driving unit 34, and from the transducer driving unit 34 to the ultrasonic transducer 922.
- Application of the AC voltage is started (application of ultrasonic energy to the target region is started) (step S6: second application step).
- step S6 the second impedance calculator 363 starts calculating the impedance of the ultrasonic transducer 922 based on the voltage value and the current value detected by the second sensor 35 (step S7).
- FIG. 5 is a diagram showing the behavior of the impedance of the ultrasonic transducer 922 calculated after step S7.
- the impedance of the ultrasonic vibrator 922 exhibits the behavior shown in FIG.
- the impedance of the ultrasonic transducer 922 increases in accordance with the load applied to the probe 921 when the target part is held between the first and second holding members 8 and 9.
- the load applied to the probe 921 gradually increases because the target site coagulates after time t1. That is, the impedance of the ultrasonic transducer 922 gradually increases as shown in FIG.
- step S7 the energy control unit 361 constantly monitors whether or not the impedance of the ultrasonic transducer 922 calculated by the second impedance calculation unit 363 has reached a predetermined value Th (FIG. 5) (step S8). ). If it is determined that the impedance of the ultrasonic transducer 922 has reached the predetermined value Th (step S8: Yes), the energy control unit 361 stops driving the high-frequency energy output unit 31 and the transducer drive unit 34 (target region). The application of the high-frequency energy and the ultrasonic energy is terminated) (step S9).
- the load control unit 364 operates the motor 11 to increase the compression load applied to the target part from the first and second holding members 8 and 9 (step S10).
- the energy control unit 361 drives the thermal energy output unit 33 and starts application (energization) of voltage from the thermal energy output unit 33 to the heat generating sheet 822 (starts application of thermal energy to the target part).
- Step S11 third grant step.
- the energy control unit 361 constantly monitors whether or not a predetermined time has elapsed since the application of thermal energy in step S11 (step S12).
- step S12 If it is determined that the predetermined time has elapsed (step S12: Yes), the energy control unit 361 stops driving the thermal energy output unit 33 (ends the application of thermal energy to the target part) (step S13). ). The target part is joined by the above treatment.
- FIG. 6 is a time chart showing the types of energy applied in the first to third periods and the compressive load applied to the target part during the joining control shown in FIG.
- the timing at which the high-frequency energy, the ultrasonic energy, and the thermal energy are applied and the timing at which the compression load applied to the target portion is changed are summarized as shown in FIG. That is, in the first period T1 from when the foot switch 4 is turned on to the time t1, only the high frequency energy is applied to the target part as shown in FIG. Moreover, in this 1st period T1, the compressive load given to an object site
- both high-frequency energy and ultrasonic energy are applied to the target part.
- part from the 1st, 2nd holding members 8 and 9 is the same load as 1st period T1.
- only the thermal energy is applied to the target portion in the third period T3 from the time t2 until the predetermined time determined in step S12 elapses.
- the compressive load applied to the target part from the first and second holding members 8 and 9 is higher than the compressive load in the first and second periods T1 and T2.
- the medical treatment apparatus 1 has the first and second holding members 8 when the target site is sandwiched between the first and second holding members 8 and 9. , 9 to increase the compressive load applied to the target part in the third period T3 than in the first and second periods T1, T2. That is, when the extracellular matrix is coagulated (third period T3), a strong joint can be realized by increasing the compressive load applied to the target site. In addition, when the extracellular matrix is extracted and stirred (first and second periods T1 and T2), the extracted extracellular matrix is reduced to be the first and second holding members 8 by reducing the compression load applied to the target site. , 9 can be prevented from flowing out.
- ultrasonic energy can be efficiently transmitted to the target site.
- the high-frequency energy is applied to the target part in the first period T1.
- the ultrasonic energy is applied in the second period T2 after the first period T1, and the thermal energy is applied in the third period T3 after the second period T2. That is, by applying high-frequency energy in the first period T1, the cell membrane of the target site is destroyed and the extracellular matrix is extracted, and by applying ultrasonic energy in the second period T2, the extracellular matrix is stirred and intertwined closely.
- the extracellular matrix is solidified by the application of thermal energy in the third period T3. Therefore, according to the medical treatment apparatus 1 according to the first embodiment, it is possible to appropriately execute the three processes of extraction, stirring, and coagulation of the extracellular matrix necessary for joining the target parts, There is an effect that the bonding strength can be improved.
- the medical treatment device 1 starts the second period T2 and applies ultrasonic energy to the target site when the impedance of the target site reaches the minimum value VL. For this reason, it is possible to appropriately set the first period T1 in which high-frequency energy is applied to the target site, and to extract a sufficient amount of extracellular matrix from the target site, so that the stirring process can be performed. The bonding strength can be further improved.
- the medical treatment apparatus 1 starts the third period T3 when the impedance of the ultrasonic transducer 922 reaches the predetermined value Th, and applies thermal energy to the target site. To do. For this reason, it is possible to appropriately set the second period T2 in which the ultrasonic energy is applied to the target region, and to sufficiently perform the coagulation process after the extracellular matrix is sufficiently stirred. Can be further improved.
- FIG. 7 is a diagram showing a modification of the first embodiment of the present invention. Specifically, FIG. 7 is a flowchart showing the joining control in this modification.
- the application of ultrasonic energy to the target part is started based on the impedance of the target part
- the application of thermal energy to the target part is started based on the impedance of the ultrasonic vibrator 922 (the target part).
- the present invention is not limited to this, and the application of each energy may be started when a predetermined time has elapsed as in the present modification. That is, in the present modification, the first and second sensors 32 and 35 and the first and second impedance calculation units 362 and 363 are omitted.
- the impedances of the target portion and the ultrasonic transducer 922 are calculated with respect to the joining control described in the first embodiment (FIG. 3).
- Related steps S4, S5, S7, and S8 are omitted, and steps S14 and S15 are added.
- Step S14 is executed after step S3. Specifically, in step S14, the energy control unit 361 constantly monitors whether or not a predetermined time has elapsed since the application of the high frequency energy in step S3.
- the predetermined time is a time set as follows. That is, steps S3 to S5 are respectively executed in advance for a plurality of other biological tissues. Then, the time from when the application of the high frequency energy is started until the impedance of the target part reaches the minimum value VL is acquired, and the average value of the acquired times is set as the predetermined time determined in step S14. And when it is judged that predetermined time passed since provision of high frequency energy (step S14: Yes), the control apparatus 3 transfers to step S6.
- Step S15 is executed after step S6.
- the energy control unit 361 constantly monitors whether or not a predetermined time has elapsed since the application of ultrasonic energy in step S6.
- the predetermined time is a time set as follows. That is, Steps S3 to S8 are respectively executed for a plurality of other biological tissues in advance. Then, the predetermined time in which the time from when the application of ultrasonic energy is started until the impedance of the ultrasonic transducer 922 reaches the predetermined value Th is determined, and the average value of the acquired respective times is determined in step S15. Set as. And when it is judged that predetermined time passed since provision of ultrasonic energy (step S15: Yes), the control apparatus 3 transfers to step S9.
- FIG. 8 is a block diagram showing a configuration of a medical treatment apparatus 1A according to Embodiment 2 of the present invention.
- the medical treatment apparatus 1A according to the second embodiment has a motor 11 and a load compared to the medical treatment apparatus 1 (FIGS. 1 and 2) described in the first embodiment.
- the control unit 364 is omitted.
- the medical treatment apparatus 1A has a lock mechanism 12 and a lock mechanism drive unit 13 added to the medical treatment apparatus 1 described in the first embodiment, and also has a function of the control unit 36. Department has been changed.
- FIG. 9 is a diagram illustrating the function of the lock mechanism 12. Specifically, FIG. 9 is a diagram showing a treatment instrument 2A according to the second embodiment.
- the lock mechanism 12 is provided inside the handle 5 and switches the operation knob 51 to an allowable state or a restricted state. Specifically, the lock mechanism 12 is mechanically connected (locked) to the operation knob 51 or the opening / closing mechanism 10 in the restricted state, so that the first position P1 (FIG. 9) in the operation knob 51 is changed to the second position. The movement to P2 (FIG. 9) is restricted. Further, in the permissible state, the lock mechanism 12 is released from the mechanical connection (lock) with the operation knob 51 or the opening / closing mechanism 10 and allows the operation knob 51 to move.
- the first position P1 is the following position.
- the operation knob 51 When the operation knob 51 is moved from the initial position (the position of the operation knob 51 shown in FIG. 9) to the first position P1, the first holding member 8 is moved in a direction approaching the second holding member 9.
- a relatively low compressive load (first compressive load (for example, about 0.2 MPa)) is applied to the target portion that rotates and is sandwiched between the second holding member 9.
- first compressive load for example, about 0.2 MPa
- the second position P2 is the following position.
- the operation knob 51 moves from the first position P1 to the second position P2
- the first holding member 8 rotates in a direction closer to the second holding member 9, and the second holding member 9 is rotated.
- a second compressive load higher than the first compressive load is applied to the target portion sandwiched between the two. That is, the 2nd position P2 is a position which gives the 2nd compression load to an object part.
- the lock mechanism 12 is always urged so as to be mechanically connected (locked) to the operation knob 51 or the opening / closing mechanism 10 by an urging member such as a spring.
- the lock mechanism drive unit 13 is provided inside the handle 5 and operates the lock mechanism 12 against the biasing force of a biasing member such as a spring under the control of the control device 3A (control unit 36A).
- the operation knob 51 is switched from the restricted state to the permitted state.
- the control unit 36 ⁇ / b> A has a load control unit 364 omitted and a lock mechanism control unit 365 added to the control unit 36 (FIG. 2) described in the first embodiment. Has been.
- the lock mechanism control unit 365 drives the lock mechanism drive unit 13 based on the impedance of the ultrasonic transducer 922 calculated by the second impedance calculation unit 363, and switches the operation knob 51 from the restricted state to the allowed state.
- FIG. 10 is a flowchart showing joining control by the control device 3A.
- step S10 related to the operation of the motor 11 is omitted with respect to the joining control (FIG. 3) described in the first embodiment.
- Steps S16 and S17 are added.
- step S1 in the second embodiment the operator moves the operation knob 51 from the initial position to the first position P1, and sandwiches the target region with the first and second holding members 8 and 9. To do. That is, the first compressive load is applied to the target part.
- Step S16 is executed after step S9. Specifically, the lock mechanism controller 365 determines in step S16 that the impedance of the ultrasonic transducer 922 has reached the predetermined value Th in step S8 (step S8: Yes). 13 is driven to switch the operation knob 51 from the restricted state to the permitted state. After step S16, the surgeon moves the operation knob 51 from the first position P1 to the second position P2 (step S17). That is, a second compressive load higher than the first compressive load is applied to the target portion. Then, after step S17, the control device 3A proceeds to step S11.
- the following effects are obtained in addition to the same effects as those of the first embodiment.
- 1 A of medical treatment apparatuses which concern on this Embodiment 2 employ
- the notification unit examples include a configuration in which notification is performed by lighting an LED (Light Emitting Diode) or the like, a configuration in which notification is performed by displaying a message, a configuration in which notification is performed by sounding sound, and the like.
- the first energy applying unit 82 is provided on the first holding member 8 and the second energy applying unit 92 is provided on the second holding member 9. If it is the structure which can give not only the high frequency energy, the ultrasonic energy, and the heat energy to the target part, the energy applying unit that applies each energy only to one of the first and second holding members 8, 9. You may employ
- the heat generating sheet 822 and the heat transfer plate 821 may be formed on the probe 921.
- high-frequency energy is applied in the first and second periods T1 and T2, ultrasonic energy is applied in the second period T2, and thermal energy is applied in the third period T3.
- the present invention is not limited to this.
- the configuration is such that high-frequency energy is applied at least in the first period T1, ultrasonic energy is applied at least in the second period T2, and thermal energy is applied at least in the third period T3,
- two or more types of energy may be simultaneously applied at any point in time.
- the heat generating sheet 822 is employed as a configuration for applying thermal energy to the target portion, but the present invention is not limited thereto.
- a configuration is adopted in which a plurality of heat generating chips are provided on the heat transfer plate 821, and the heat of the plurality of heat generating chips is transmitted to the target site via the heat transfer plate 821 by energizing the plurality of heat generating chips. (For example, refer to JP2013-106909A for this technique).
- the application of ultrasonic energy is started when the impedance of the target portion reaches the minimum value VL, but the present invention is not limited to this.
- the time t1 when the impedance of the target region becomes the minimum value VL for example, from the time t1 to the time t1 ′ (FIG. 4) when returning to the initial value VI (FIG. 4) when the application of high-frequency energy is started. If so, the application of ultrasonic energy may be started at any timing.
- the flow of bonding control is not limited to the processing order in the flowcharts (FIGS. 3, 7, and 10) described in the first and second embodiments and the modifications described above, and can be changed within a consistent range. It doesn't matter.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
Description
ところで、生体組織の細胞外基質(コラーゲンやエラスチン等)は、繊維状組織で構成されている。このため、対象部位を接合する際に、対象部位から細胞外基質を抽出し、当該細胞外基質を密接に絡ませ合うことで、接合強度が向上すると考えられる。
そして、当該細胞外基質に着目し、接合強度を向上させることを目的とした医療用処置装置が提案されている(例えば、特許文献1参照)。
特許文献1に記載の医療用処置装置は、一対のジョーにて対象部位を挟持し、一対のジョーを介して対象部位に機械的振動を与える(対象部位に超音波エネルギを付与する)ことにより、細胞外基質の抽出や混合を強化している。
しかしながら、特許文献1に記載の医療用処置装置では、対象部位に対してエネルギを付与することにより対象部位の接合を行うことが開示されているが、上記適切なプロセス順序に従った制御を行っていないと所望の接合力を達成することができない場合がある。したがって、特許文献1に記載の医療用処置装置では、接合強度を向上させることが難しい、という問題がある。
また、本発明に係る医療用処置装置の作動方法は、一対の保持部材にて生体組織における接合の対象部位が挟持された後、第1期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して高周波エネルギを付与する第1付与ステップと、前記第1期間の後の第2期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して超音波エネルギを付与する第2付与ステップと、前記第2期間の後の第3期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して熱エネルギを付与する第3付与ステップと、を備えることを特徴とする。
また、本発明に係る治療方法は、一対の保持部材にて生体組織における接合の対象部位を挟持する挟持ステップと、第1期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して高周波エネルギを付与する第1付与ステップと、前記第1期間の後の第2期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して超音波エネルギを付与する第2付与ステップと、前記第2期間の後の第3期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して熱エネルギを付与する第3付与ステップと、を備えることを特徴とする。
〔医療用処置装置の概略構成〕
図1は、本発明の実施の形態1に係る医療用処置装置1を模式的に示す図である。
医療用処置装置1は、生体組織における処置(接合若しくは吻合)の対象となる部位(以下、対象部位と記載)にエネルギ(高周波エネルギ、超音波エネルギ、及び熱エネルギ)を付与し、当該対象部位を処置する。この医療用処置装置1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
処置具2は、例えば、腹壁を通して対象部位に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、挟持部7とを備える。
ハンドル5は、術者が把持する部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
シャフト6は、略円筒形状を有し、一端がハンドル5に接続されている(図1)。また、シャフト6の他端には、挟持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、挟持部7を構成する第1,第2保持部材8,9(図1)を開閉させる開閉機構10(図2参照)が設けられている。また、ハンドル5の内部には、開閉機構10に接続し、第1,第2保持部材8,9にて対象部位が挟持されている際に、制御装置3による制御の下、開閉機構10を動作させることにより、第1,第2保持部材8,9から対象部位に与える圧縮荷重を増加させるモータ11(図2参照)が設けられている。さらに、シャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側から他端側まで配設されている。
挟持部7は、対象部位を挟持して、当該対象部位に処置を行う部分である。この挟持部7は、図1に示すように、第1保持部材8と、第2保持部材9とを備える。
第1,第2保持部材8,9は、術者による操作ノブ51の操作に応じて、矢印R1(図1)方向に開閉可能(対象部位を挟持可能)に構成されている。
具体的に、第1保持部材8は、図1に示すように、シャフト6の他端に回転可能に軸支されている。一方、第2保持部材9は、シャフト6の他端に固定されている。すなわち、本実施の形態1では、術者による操作ノブ51の操作に応じて、第1保持部材8が第2保持部材9に対して開閉可能となるように構成されている。例えば、操作ノブ51が矢印R2(図1)方向に移動した場合には、第1保持部材8は、第2保持部材9に近接する方向に回転する。また、操作ノブ51が矢印R2とは逆方向の矢印R3(図1)方向に移動した場合には、第1保持部材8は、第2保持部材9から離間する方向に回転する。
第1ジョー81は、図1に示すように、シャフト6の他端に軸支される軸支部811と、軸支部811に接続する支持板812とを備え、術者による操作ノブ51の操作に応じて、矢印R1方向に開閉する。
伝熱板821は、例えば、銅の薄板で構成されている。
この伝熱板821において、図1中、下方側の板面は、第1,第2保持部材8,9にて対象部位が挟持された際に、当該対象部位に接触する処置面8211として機能する。
そして、伝熱板821は、発熱シート822からの熱を処置面8211から対象部位に伝達する(当該対象部位に対して熱エネルギを付与する)。また、伝熱板821は、電気ケーブルCを構成する高周波用リード線C1(図2参照)が接合され、高周波用リード線C1,C1´(図2参照)を介して制御装置3により後述するプローブ921との間に高周波電力が供給されることで、対象部位に対して高周波エネルギを付与する。
電気抵抗パターンは、発熱シート822の外縁形状に倣うU字形状に沿って形成され、両端に電気ケーブルCを構成する発熱用リード線C2,C2´(図2参照)が接合される。そして、電気抵抗パターンは、発熱用リード線C2,C2´を介して制御装置3により電圧が印加(通電)されることにより、発熱する。
第2ジョー91は、シャフト6の他端に固定され、シャフト6の軸方向に沿って延びる形状を有する。
第2エネルギ付与部92は、制御装置3による制御の下、対象部位に対して超音波エネルギを付与する。この第2エネルギ付与部92は、プローブ921(図1)と、超音波振動子922(図2参照)とを備える。
超音波振動子922は、例えば、交流電圧の印加により伸縮する圧電素子を用いた圧電型振動子で構成されている。そして、超音波振動子922は、電気ケーブルCを構成する超音波用リード線C3,C3´(図2参照)が接合され、制御装置3による制御の下、交流電圧が印加されることで、超音波振動を発生する。
なお、具体的な図示は省略したが、超音波振動子922及びプローブ921間には、当該超音波振動子922が発生した超音波振動を拡大するホーン等の振動拡大部材が介在されている。
ここで、第2エネルギ付与部92の構成としては、プローブ921を縦振動(当該プローブ921における軸方向の振動)させる構成としてもよく、あるいは、プローブ921を横振動(当該プローブ921における径方向の振動)させる構成としてもよい。
図2は、制御装置3の構成を示すブロック図である。
なお、図2では、制御装置3の構成として、本発明の要部を主に図示している。
フットスイッチ4は、術者が足で操作する部分であり、当該操作(ON)に応じて、制御装置3に操作信号を出力する。そして、制御装置3は、当該操作信号に応じて、後述する接合制御を開始する。
なお、当該接合制御を開始させる手段としては、フットスイッチ4に限られず、その他、手で操作するスイッチ等を採用しても構わない。
高周波エネルギ出力部31は、制御部36による制御の下、高周波用リード線C1,C1´を介して伝熱板821及びプローブ921間に高周波電力を供給する。
第1センサ32は、高周波エネルギ出力部31から伝熱板821及びプローブ921に供給されている電圧値及び電流値を検出する。そして、第1センサ32は、検出した電圧値及び電流値に応じた信号を制御部36に出力する。
振動子駆動部34は、制御部36による制御の下、超音波用リード線C3,C3´を介して超音波振動子922に交流電圧を印加する。
第2センサ35は、振動子駆動部34から超音波振動子922に印加されている電圧値及び電流値を検出する。そして、第2センサ35は、検出した電圧値及び電流値に応じた信号を制御部36に出力する。
エネルギ制御部361は、フットスイッチ4からの操作信号、第1,第2インピーダンス算出部362,363にてそれぞれ算出された対象部位及び超音波振動子922の各インピーダンスに応じて、高周波エネルギ出力部31、熱エネルギ出力部33、及び振動子駆動部34の動作を制御する。すなわち、エネルギ制御部361は、第1,第2エネルギ付与部82,92から対象部位に対して高周波エネルギ、超音波エネルギ、及び熱エネルギを付与するタイミングを制御する。
第2インピーダンス算出部363は、第2センサ35にて検出された電圧値及び電流値に基づいて、対象部位に対して超音波エネルギが付与されている際の超音波振動子922のインピーダンスを算出する。
荷重制御部364は、第2インピーダンス算出部363にて算出された超音波振動子922のインピーダンスに基づいて、モータ11を動作させ、第1,第2保持部材8,9から対象部位に与える圧縮荷重(第1,第2保持部材8,9にて対象部位を挟持する力)を増加させる。
次に、上述した医療用処置装置1の動作について説明する。
なお、以下では、医療用処置装置1の動作として、制御装置3による接合制御を主に説明する。
図3は、制御装置3による接合制御を示すフローチャートである。
術者は、処置具2を把持し、当該処置具2の先端部分(挟持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、第1,第2保持部材8,9を開閉し、第1,第2保持部材8,9にて対象部位を挟持する(ステップS1:挟持ステップ)。
そして、術者は、フットスイッチ4を操作(ON)し、制御装置3による接合制御を開始させる。
ステップS3の後、第1インピーダンス算出部362は、第1センサ32にて検出された電圧値及び電流値に基づいて、対象部位のインピーダンスの算出を開始する(ステップS4)。
対象部位に対して高周波エネルギを付与すると、対象部位のインピーダンスは、図4に示す挙動を示す。
高周波エネルギを印加した初期の時間帯(高周波エネルギの付与開始~時間t1)では、対象部位のインピーダンスは、図4に示すように、徐々に減少していく。これは、高周波エネルギの付与によって、対象部位の細胞膜破壊が生じ、対象部位から細胞外基質が抽出されていることに起因する。言い換えれば、当該初期の時間帯は、対象部位から細胞外基質が抽出され、対象部位の粘度が低くなっていく(対象部位が軟化していく)時間帯である。
対象部位のインピーダンスが最低値VLになったと判断した場合(ステップS5:Yes)には、エネルギ制御部361は、振動子駆動部34を駆動し、振動子駆動部34から超音波振動子922への交流電圧の印加を開始(対象部位に対する超音波エネルギの付与を開始)する(ステップS6:第2付与ステップ)。
ステップS6の後、第2インピーダンス算出部363は、第2センサ35にて検出された電圧値及び電流値に基づいて、超音波振動子922のインピーダンスの算出を開始する(ステップS7)。
対象部位に対して超音波エネルギを付与すると、超音波振動子922のインピーダンスは、図5に示す挙動を示す。
ところで、超音波振動子922のインピーダンスは、第1,第2保持部材8,9にて対象部位を挟持している際に、プローブ921に掛かる負荷に応じて上昇するものである。
上述したように、対象部位は、高周波エネルギや超音波エネルギが付与されることにより、内部の水分が蒸発し、粘度が高くなっていく。このため、プローブ921に掛かる負荷は、時間t1以降、対象部位が凝固していくため、徐々に増加していく。すなわち、超音波振動子922のインピーダンスは、図5に示すように、徐々に増加していく。
超音波振動子922のインピーダンスが所定値Thになったと判断した場合(ステップS8:Yes)には、エネルギ制御部361は、高周波エネルギ出力部31及び振動子駆動部34の駆動を停止(対象部位に対する高周波エネルギ及び超音波エネルギの付与を終了)する(ステップS9)。
ステップS10の後、エネルギ制御部361は、熱エネルギ出力部33を駆動し、熱エネルギ出力部33から発熱シート822への電圧の印加(通電)を開始(対象部位に対する熱エネルギの付与を開始)する(ステップS11:第3付与ステップ)。
ステップS11の後、エネルギ制御部361は、ステップS11における熱エネルギの付与から所定時間が経過したか否かを常時、監視する(ステップS12)。
そして、所定時間が経過したと判断した場合(ステップS12:Yes)には、エネルギ制御部361は、熱エネルギ出力部33の駆動を停止(対象部位に対する熱エネルギの付与を終了)する(ステップS13)。
以上の処置により、対象部位は、接合される。
以上、高周波エネルギ、超音波エネルギ、及び熱エネルギが付与されるタイミング、並びに、対象部位に与える圧縮荷重を変更するタイミングを纏めると、図6に示す通りである。
すなわち、フットスイッチ4がONされてから時間t1までの第1期間T1には、図6に示すように、対象部位に対して高周波エネルギのみが付与される。また、この第1期間T1では、第1,第2保持部材8,9から対象部位に与える圧縮荷重は、比較的に低い荷重(例えば、0.2MPa程度)である。
また、時間t1から時間t2までの第2期間T2には、図6に示すように、対象部位に対して高周波エネルギ及び超音波エネルギの双方が付与される。また、この第2期間T2では、第1,第2保持部材8,9から対象部位に与える圧縮荷重は、第1期間T1と同じ荷重である。
そして、時間t2からステップS12で判断される所定時間が経過するまでの第3期間T3には、対象部位に対して熱エネルギのみが付与される。また、この第3期間T3では、第1,第2保持部材8,9から対象部位に与える圧縮荷重は、第1,第2期間T1,T2での圧縮荷重に対して高い荷重である。
すなわち、細胞外基質の凝固時(第3期間T3)に、対象部位に与える圧縮荷重を高くすることで、強固な接合を実現することができる。また、細胞外基質の抽出及び撹拌時(第1,第2期間T1,T2)に、対象部位に与える圧縮荷重を低くすることで、抽出された細胞外基質が第1,第2保持部材8,9間から流出することを防止することができる。また、細胞外基質の撹拌時に対象部位に与える圧縮荷重が高いほど超音波エネルギ(超音波振動)は対象部位には伝達されず第1ジョー81に伝達されてしまうところ、本実施の形態1のように圧縮荷重を低くすることで、対象部位に対して超音波エネルギ(超音波振動)を効率的に伝達することができる。
したがって、本実施の形態1に係る医療用処置装置1によれば、対象部位の接合に必要な細胞外基質の抽出、撹拌、及び凝固の3つのプロセスを適切に実行することができ、対象部位の接合強度を向上させることができる、という効果を奏する。
このため、対象部位に対して高周波エネルギを付与する第1期間T1を適切に設定し、対象部位から十分な量の細胞外基質を抽出した後に撹拌のプロセスを実行することができ、対象部位の接合強度をさらに向上させることができる。
このため、対象部位に対して超音波エネルギを付与する第2期間T2を適切に設定し、細胞外基質の撹拌を十分に行った後に凝固のプロセスを実行することができ、対象部位の接合強度をさらに向上させることができる。
図7は、本発明の実施の形態1の変形例を示す図である。具体的に、図7は、本変形例における接合制御を示すフローチャートである。
上述した実施の形態1では、対象部位のインピーダンスに基づいて対象部位に対する超音波エネルギの付与を開始するとともに、超音波振動子922のインピーダンスに基づいて対象部位に対する熱エネルギの付与を開始(対象部位に与える圧縮荷重の増加)していたが、これに限られず、本変形例のように所定時間が経過した場合に上記各エネルギの付与を開始するように構成しても構わない。
すなわち、本変形例では、第1,第2センサ32,35及び第1,第2インピーダンス算出部362,363が省略されている。そして、本変形例における接合制御では、図7に示すように、上述した実施の形態1で説明した接合制御(図3)に対して、対象部位及び超音波振動子922の各インピーダンスの算出に関連するステップS4,S5,S7,S8が省略されているとともに、ステップS14,S15が追加されている。
具体的に、エネルギ制御部361は、ステップS14において、ステップS3における高周波エネルギの付与から所定時間が経過したか否かを常時、監視する。
ここで、当該所定時間とは、以下のように設定された時間である。
すなわち、予め他の複数の生体組織について、ステップS3~S5をそれぞれ実行する。そして、高周波エネルギの付与を開始してから対象部位のインピーダンスが最低値VLになるまでの時間をそれぞれ取得し、当該取得した各時間の平均値をステップS14で判断する上記所定時間として設定する。
そして、高周波エネルギの付与から所定時間が経過したと判断された場合(ステップS14:Yes)には、制御装置3は、ステップS6に移行する。
具体的に、エネルギ制御部361は、ステップS15において、ステップS6における超音波エネルギの付与から所定時間が経過したか否かを常時、監視する。
ここで、当該所定時間とは、以下のように設定された時間である。
すなわち、予め他の複数の生体組織について、ステップS3~S8をそれぞれ実行する。そして、超音波エネルギの付与を開始してから超音波振動子922のインピーダンスが所定値Thになるまでの時間をそれぞれ取得し、当該取得した各時間の平均値をステップS15で判断する上記所定時間として設定する。
そして、超音波エネルギの付与から所定時間が経過したと判断された場合(ステップS15:Yes)には、制御装置3は、ステップS9に移行する。
次に、本発明の実施の形態2について説明する。
以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
上述した実施の形態1に係る医療用処置装置1では、熱エネルギの付与を開始する際に対象部位に与える圧縮荷重を増加させる構成として、モータ11及び荷重制御部364を採用し、自動的に当該圧縮荷重を増加させていた。
これに対して、本実施の形態2に係る医療用処置装置では、熱エネルギの付与を開始する際に対象部位に与える圧縮荷重を術者に手動で増加させる構成としている。
以下、本実施の形態2に係る医療用処置装置の構成、及び接合制御を説明する。
図8は、本発明の実施の形態2に係る医療用処置装置1Aの構成を示すブロック図である。
本実施の形態2に係る医療用処置装置1Aは、図8に示すように、上述した実施の形態1で説明した医療用処置装置1(図1,図2)に対して、モータ11及び荷重制御部364が省略されている。また、医療用処置装置1Aは、上述した実施の形態1で説明した医療用処置装置1に対して、ロック機構12及びロック機構駆動部13が追加されているとともに、制御部36の機能の一部が変更されている。
ロック機構12は、ハンドル5の内部に設けられ、操作ノブ51を許容状態または規制状態に切り替える。
具体的に、ロック機構12は、規制状態において、操作ノブ51または開閉機構10に機械的に接続(ロック)することで、操作ノブ51における第1の位置P1(図9)から第2の位置P2(図9)への移動を規制する。また、ロック機構12は、許容状態において、操作ノブ51または開閉機構10との機械的な接続(ロック)が解除され、操作ノブ51における移動を許容する。
操作ノブ51が初期位置(図9で示した操作ノブ51の位置)から第1の位置P1に移動した場合には、第1保持部材8は、第2保持部材9に対して近接する方向に回転し、第2保持部材9との間で挟持した対象部位に比較的に低い圧縮荷重(第1の圧縮荷重(例えば、0.2MPa程度))を与える。すなわち、第1の位置P1は、対象部位に第1の圧縮荷重を与える位置である。
また、第2の位置P2は、以下の位置である。
操作ノブ51が第1の位置P1から第2の位置P2に移動した場合には、第1保持部材8は、第2保持部材9に対してさらに近接する方向に回転し、第2保持部材9との間で挟持した対象部位に第1の圧縮荷重よりも高い第2の圧縮荷重を与える。すなわち、第2の位置P2は、対象部位に第2の圧縮荷重を与える位置である。
そして、ロック機構駆動部13は、ハンドル5の内部に設けられ、制御装置3A(制御部36A)による制御の下、バネ等の付勢部材による付勢力に抗してロック機構12を動作させることで、操作ノブ51を規制状態から許容状態に切り替える。
ロック機構制御部365は、第2インピーダンス算出部363にて算出された超音波振動子922のインピーダンスに基づいて、ロック機構駆動部13を駆動し、操作ノブ51を規制状態から許容状態に切り替える。
次に、本実施の形態2に係る接合制御について説明する。
図10は、制御装置3Aによる接合制御を示すフローチャートである。
本実施の形態2に係る接合制御では、図10に示すように、上述した実施の形態1で説明した接合制御(図3)に対して、モータ11の動作に関連するステップS10が省略されているとともに、ステップS16,S17が追加されている。
具体的に、ロック機構制御部365は、ステップS16において、ステップS8で超音波振動子922のインピーダンスが所定値Thになったと判断された(ステップS8:Yes)ことを条件として、ロック機構駆動部13を駆動し、操作ノブ51を規制状態から許容状態に切り替える。
ステップS16の後、術者は、操作ノブ51を第1の位置P1から第2の位置P2まで移動させる(ステップS17)。すなわち、対象部位には、第1の圧縮荷重よりも高い第2の圧縮荷重が与えられることとなる。
そして、ステップS17の後、制御装置3Aは、ステップS11に移行する。
本実施の形態2に係る医療用処置装置1Aは、熱エネルギの付与を開始する際に対象部位に与える圧縮荷重を増加させる構成として、ロック機構12を採用し、術者に手動で増加させる構成としている。
このため、上述した実施の形態1で説明したモータ11を用いた医療用処置装置1と比較して、安価に医療用処置装置1Aを製造することができる。
上述した実施の形態2において、上述した実施の形態1の変形例(図7)のように、所定時間が経過した場合に超音波エネルギや熱エネルギの付与を開始する(操作ノブ51を規制状態から許容状態に切り替える)構成を採用しても構わない。
当該報知部としては、LED(Light Emitting Diode)等の点灯により報知する構成、メッセージ等の表示により報知する構成、音等を鳴らすことにより報知する構成等を例示することができる。
ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1,2やこれらの変形例によってのみ限定されるべきものではない。
上述した実施の形態1,2やこれらの変形例では、第1保持部材8に第1エネルギ付与部82を設け、第2保持部材9に第2エネルギ付与部92を設けていたが、これに限られず、高周波エネルギ、超音波エネルギ、熱エネルギを対象部位に付与することができる構成であれば、第1,第2保持部材8,9のいずれか一方にのみ各エネルギを付与するエネルギ付与部を設けた構成を採用しても構わない。または、第1,第2保持部材8,9の両方に各エネルギ付与部を設けた構成であっても構わない。例えば、プローブ921上に発熱シート822及び伝熱板821を形成しても構わない。
2,2A 処置具
3,3A 制御装置
4 フットスイッチ
5 ハンドル
6 シャフト
7 挟持部
8 第1保持部材
9 第2保持部材
10 開閉機構
11 モータ
12 ロック機構
13 ロック機構駆動部
31 高周波エネルギ出力部
32 第1センサ
33 熱エネルギ出力部
34 振動子駆動部
35 第2センサ
36,36A 制御部
51 操作ノブ
81 第1ジョー
82 第1エネルギ付与部
91 第2ジョー
92 第2エネルギ付与部
361 エネルギ制御部
362 第1インピーダンス算出部
363 第2インピーダンス算出部
364 荷重制御部
365 ロック機構制御部
811 軸支部
812 支持板
821 伝熱板
822 発熱シート
921 プローブ
922 超音波振動子
8211 処置面
C 電気ケーブル
C1,C1´ 高周波用リード線
C2,C2´ 発熱用リード線
C3,C3´ 超音波用リード線
P1 第1の位置
P2 第2の位置
R1~R3 矢印
t1,t2,t1´ 時間
T1 第1期間
T2 第2期間
T3 第3期間
Th 所定値
VI 初期値
VL 最低値
Claims (8)
- 生体組織における接合の対象部位を挟持する一対の保持部材と、
前記一対の保持部材のうち少なくともいずれか一方の保持部材に設けられ、前記一対の保持部材にて前記対象部位が挟持された際に当該対象部位に接触し、当該対象部位に対してエネルギを付与するエネルギ付与部と、
前記エネルギ付与部から前記対象部位に対して、第1期間で高周波エネルギを付与させ、前記第1期間の後の第2期間で超音波エネルギを付与させ、前記第2期間の後の第3期間で熱エネルギを付与させるエネルギ制御部と、
を備えることを特徴とする医療用処置装置。 - 前記対象部位に対して高周波エネルギが付与されている際の前記対象部位のインピーダンスを算出する第1インピーダンス算出部をさらに備え、
前記エネルギ制御部は、前記第1インピーダンス算出部にて算出された前記対象部位のインピーダンスが最低値となった後に、前記第2期間を開始し、前記エネルギ付与部から前記対象部位に対して超音波エネルギを付与させる
ことを特徴とする請求項1に記載の医療用処置装置。 - 前記エネルギ付与部は、前記対象部位に対して超音波エネルギを付与する超音波振動子を備え、
当該医療用処置装置は、前記対象部位に対して超音波エネルギが付与されている際の前記超音波振動子のインピーダンスを算出する第2インピーダンス算出部をさらに備え、
前記エネルギ制御部は、前記第2インピーダンス算出部にて算出された前記超音波振動子のインピーダンスが所定の値になった場合に、前記第3期間を開始し、前記エネルギ付与部から前記対象部位に対して熱エネルギを付与させる
ことを特徴とする請求項1または2に記載の医療用処置装置。 - 前記一対の保持部材にて前記対象部位が挟持された際に、当該一対の保持部材から前記対象部位に与えられる圧縮荷重を切り替える荷重制御部をさらに備え、
前記荷重制御部は、前記第1期間及び前記第2期間と前記第3期間とで前記圧縮荷重を異なる荷重に設定する
ことを特徴とする請求項1~3のいずれか一つに記載の医療用処置装置。 - 前記荷重制御部は、前記第3期間での前記圧縮荷重を前記第1期間及び前記第2期間での前記圧縮荷重よりも高い荷重に設定する
ことを特徴とする請求項4に記載の医療用処置装置。 - 前記一対の保持部材は、前記対象部位に第1の圧縮荷重を与える第1の位置、及び前記対象部位に前記第1の圧縮荷重よりも高い第2の圧縮荷重を与える第2の位置に相対的に移動可能に構成され、
当該医療用処置装置は、前記一対の保持部材による前記第1の位置から前記第2の位置への相対的な移動を許容する許容状態、または、前記第1の位置から前記第2の位置への相対的な移動を規制する規制状態に切り替えるロック機構と、前記ロック機構を動作させるロック機構制御部と、をさらに備え、
前記ロック機構制御部は、前記第1期間及び前記第2期間で前記規制状態に設定し、前記第3期間で前記許容状態に設定する
ことを特徴とする請求項1~3のいずれか一つに記載の医療用処置装置。 - 一対の保持部材にて生体組織における接合の対象部位が挟持された後、第1期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して高周波エネルギを付与する第1付与ステップと、
前記第1期間の後の第2期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して超音波エネルギを付与する第2付与ステップと、
前記第2期間の後の第3期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して熱エネルギを付与する第3付与ステップと、
を備えることを特徴とする医療用処置装置の作動方法。 - 一対の保持部材にて生体組織における接合の対象部位を挟持する挟持ステップと、
第1期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して高周波エネルギを付与する第1付与ステップと、
前記第1期間の後の第2期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して超音波エネルギを付与する第2付与ステップと、
前記第2期間の後の第3期間で、前記一対の保持部材のうち少なくともいずれか一方の保持部材から前記対象部位に対して熱エネルギを付与する第3付与ステップと、
を備えることを特徴とする治療方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017501815A JP6440816B2 (ja) | 2015-02-27 | 2015-02-27 | 医療用処置装置、及び医療用処置装置の作動方法 |
PCT/JP2015/055978 WO2016135977A1 (ja) | 2015-02-27 | 2015-02-27 | 医療用処置装置、医療用処置装置の作動方法、及び治療方法 |
CN201580076785.3A CN107405167B (zh) | 2015-02-27 | 2015-02-27 | 医疗用处置装置和医疗用处置装置的工作方法 |
DE112015006004.9T DE112015006004T5 (de) | 2015-02-27 | 2015-02-27 | Medizinische Behandlungsvorrichtung, Verfahren zum Bedienen einer medizinischen Behandlungsvorrichtung und Behandlungsverfahren |
US15/683,084 US20170367754A1 (en) | 2015-02-27 | 2017-08-22 | Medical treatment device, method for operating medical treatment device, and treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/055978 WO2016135977A1 (ja) | 2015-02-27 | 2015-02-27 | 医療用処置装置、医療用処置装置の作動方法、及び治療方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/683,084 Continuation US20170367754A1 (en) | 2015-02-27 | 2017-08-22 | Medical treatment device, method for operating medical treatment device, and treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016135977A1 true WO2016135977A1 (ja) | 2016-09-01 |
Family
ID=56788033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055978 WO2016135977A1 (ja) | 2015-02-27 | 2015-02-27 | 医療用処置装置、医療用処置装置の作動方法、及び治療方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170367754A1 (ja) |
JP (1) | JP6440816B2 (ja) |
CN (1) | CN107405167B (ja) |
DE (1) | DE112015006004T5 (ja) |
WO (1) | WO2016135977A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3505124A1 (en) * | 2017-12-28 | 2019-07-03 | Ethicon LLC | Bipolar combination device that automatically adjusts pressure based on energy modality |
WO2019186662A1 (ja) * | 2018-03-26 | 2019-10-03 | オリンパス株式会社 | コードレス手術機器、制御方法、及び制御プログラム |
WO2020059046A1 (ja) * | 2018-09-19 | 2020-03-26 | オリンパス株式会社 | 医療装置、制御方法、及びコンピュータ可読記憶媒体 |
JP2021510555A (ja) * | 2018-03-30 | 2021-04-30 | エシコン エルエルシーEthicon LLC | エネルギーモダリティに基づいて圧力を自動的に調節する双極組み合わせ装置 |
Families Citing this family (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
JP6909930B2 (ja) * | 2018-07-09 | 2021-07-28 | オリンパス株式会社 | 医療機器の再製造方法 |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003135481A (ja) * | 2001-11-08 | 2003-05-13 | Olympus Optical Co Ltd | 外科用手術具 |
WO2013088892A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
WO2013115036A1 (ja) * | 2012-02-01 | 2013-08-08 | オリンパスメディカルシステムズ株式会社 | 把持処置装置 |
WO2013157571A1 (ja) * | 2012-04-20 | 2013-10-24 | オリンパスメディカルシステムズ株式会社 | 手術装置 |
WO2013180294A1 (ja) * | 2012-06-01 | 2013-12-05 | オリンパスメディカルシステムズ株式会社 | エネルギを用いた処置具 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030073987A1 (en) * | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
JP4624697B2 (ja) * | 2004-03-12 | 2011-02-02 | オリンパス株式会社 | 手術用処置具 |
US20100185196A1 (en) * | 2009-01-21 | 2010-07-22 | Satomi Sakao | Medical treatment apparatus, treatment instrument and treatment method for living tissue using energy |
US20100185197A1 (en) * | 2009-01-21 | 2010-07-22 | Satomi Sakao | Medical treatment apparatus, treatment instrument and treatment method for living tissue using energy |
DE102009041329A1 (de) * | 2009-09-15 | 2011-03-24 | Celon Ag Medical Instruments | Kombiniertes Ultraschall- und HF Chirurgisches System |
US10441345B2 (en) * | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
WO2013088893A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
US10201365B2 (en) * | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
WO2015016346A1 (ja) * | 2013-08-02 | 2015-02-05 | オリンパスメディカルシステムズ株式会社 | 処置システム、処置具制御装置、および、処置システムの作動方法 |
CN105338917B (zh) * | 2013-08-02 | 2018-02-06 | 奥林巴斯株式会社 | 生物体组织接合系统、处置器具控制装置 |
-
2015
- 2015-02-27 WO PCT/JP2015/055978 patent/WO2016135977A1/ja active Application Filing
- 2015-02-27 CN CN201580076785.3A patent/CN107405167B/zh active Active
- 2015-02-27 JP JP2017501815A patent/JP6440816B2/ja active Active
- 2015-02-27 DE DE112015006004.9T patent/DE112015006004T5/de not_active Withdrawn
-
2017
- 2017-08-22 US US15/683,084 patent/US20170367754A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003135481A (ja) * | 2001-11-08 | 2003-05-13 | Olympus Optical Co Ltd | 外科用手術具 |
WO2013088892A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
WO2013115036A1 (ja) * | 2012-02-01 | 2013-08-08 | オリンパスメディカルシステムズ株式会社 | 把持処置装置 |
WO2013157571A1 (ja) * | 2012-04-20 | 2013-10-24 | オリンパスメディカルシステムズ株式会社 | 手術装置 |
WO2013180294A1 (ja) * | 2012-06-01 | 2013-12-05 | オリンパスメディカルシステムズ株式会社 | エネルギを用いた処置具 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3505124A1 (en) * | 2017-12-28 | 2019-07-03 | Ethicon LLC | Bipolar combination device that automatically adjusts pressure based on energy modality |
WO2019134009A1 (en) * | 2017-12-28 | 2019-07-04 | Ethicon Llc | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11147607B2 (en) * | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
WO2019186662A1 (ja) * | 2018-03-26 | 2019-10-03 | オリンパス株式会社 | コードレス手術機器、制御方法、及び制御プログラム |
JP2021510555A (ja) * | 2018-03-30 | 2021-04-30 | エシコン エルエルシーEthicon LLC | エネルギーモダリティに基づいて圧力を自動的に調節する双極組み合わせ装置 |
WO2020059046A1 (ja) * | 2018-09-19 | 2020-03-26 | オリンパス株式会社 | 医療装置、制御方法、及びコンピュータ可読記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
CN107405167A (zh) | 2017-11-28 |
DE112015006004T5 (de) | 2017-10-26 |
US20170367754A1 (en) | 2017-12-28 |
JP6440816B2 (ja) | 2018-12-19 |
CN107405167B (zh) | 2020-06-16 |
JPWO2016135977A1 (ja) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6440816B2 (ja) | 医療用処置装置、及び医療用処置装置の作動方法 | |
WO2018008097A1 (ja) | 医療用処置装置、医療用処置装置の作動方法、及び治療方法 | |
JP6374979B2 (ja) | 医療用処置装置 | |
JP5931604B2 (ja) | 治療用処置装置 | |
WO2016076100A1 (ja) | 処置具及び処置システム | |
CN107072709B (zh) | 处置器具及处置系统 | |
WO2012081515A1 (ja) | 治療用処置装置 | |
JP4679416B2 (ja) | 手術装置 | |
WO2015159607A1 (ja) | 治療用処置装置 | |
JP6401853B2 (ja) | 治療用エネルギ付与構造及び医療用処置装置 | |
JP6833849B2 (ja) | 処置具 | |
JP6458127B2 (ja) | 治療用エネルギ付与構造及び医療用処置装置 | |
WO2016063360A1 (ja) | 医療用処置装置 | |
WO2018078797A1 (ja) | 医療用処置装置、及び医療用処置装置の作動方法 | |
JP6454361B2 (ja) | 医療用処置装置 | |
WO2017037907A1 (ja) | 医療用処置装置、医療用処置装置の作動方法、及び治療方法 | |
JP6000717B2 (ja) | 治療用処置装置及びその制御方法 | |
WO2017094193A1 (ja) | 熱エネルギ処置装置、及び熱エネルギ処置装置の作動方法 | |
WO2023153363A1 (ja) | 超音波処置具 | |
WO2017072924A1 (ja) | エネルギ処置具、医療用処置装置、医療用処置装置の作動方法、及び治療方法 | |
JP3679747B2 (ja) | 超音波処置装置 | |
WO2019163137A1 (ja) | 処置装置、及び処置装置の作動方法 | |
WO2019224924A1 (ja) | 処置システム、制御方法、及び制御プログラム | |
JP2003111771A (ja) | 熱凝固処置装置 | |
WO2019186662A1 (ja) | コードレス手術機器、制御方法、及び制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883268 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017501815 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015006004 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883268 Country of ref document: EP Kind code of ref document: A1 |