WO2016135839A1 - タイヤ検査装置、及びタイヤの姿勢検出方法 - Google Patents

タイヤ検査装置、及びタイヤの姿勢検出方法 Download PDF

Info

Publication number
WO2016135839A1
WO2016135839A1 PCT/JP2015/055117 JP2015055117W WO2016135839A1 WO 2016135839 A1 WO2016135839 A1 WO 2016135839A1 JP 2015055117 W JP2015055117 W JP 2015055117W WO 2016135839 A1 WO2016135839 A1 WO 2016135839A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
difference
posture
rim
detection unit
Prior art date
Application number
PCT/JP2015/055117
Other languages
English (en)
French (fr)
Inventor
守宏 今村
浩明 米田
邦夫 松永
誠 橘
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Priority to JP2016528917A priority Critical patent/JP6187889B2/ja
Priority to KR1020177021790A priority patent/KR101967082B1/ko
Priority to CN201580076691.6A priority patent/CN107532970B/zh
Priority to DE112015005876.1T priority patent/DE112015005876B4/de
Priority to PCT/JP2015/055117 priority patent/WO2016135839A1/ja
Priority to US15/108,576 priority patent/US10067036B2/en
Publication of WO2016135839A1 publication Critical patent/WO2016135839A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks

Definitions

  • the present invention relates to a tire inspection apparatus and a tire attitude detection method.
  • the tire When manufacturing rubber tires used for vehicles or the like, various inspections are performed in a state where the tires are artificially inflated (air inflation) by an inspection device in order to ensure quality.
  • the tire is fitted into a member called a pseudo rim and imitating a wheel so that the inside of the tire is airtight and filled with air.
  • the pseudo rim is divided into an upper rim and a lower rim.
  • the tire is transported in a posture in which the rotation axis of the tire is in the vertical direction. Therefore, the upper rim and the lower rim are respectively fitted from both sides in the vertical direction of the tire. That is, the tire is inspected with the sidewalls on both sides oriented in the vertical direction.
  • the tire inspection apparatus described in Patent Document 1 includes a belt conveyor that conveys tires, a lifter that raises and lowers the belt conveyor, an upper spindle that supports an upper rim, and a lower spindle that supports a lower rim. ing. First, the belt conveyor is lowered by the lifter so that the lower rim is fitted from below the tire. Then, the upper rim is fitted to the tire by lowering the upper spindle. That is, the upper spindle and the lower spindle are both arranged coaxially with the axial position of the tire. After the upper rim and the lower rim are fitted, the tire is filled with air.
  • the present invention has been made in view of the above circumstances, and a tire inspection device capable of suppressing inappropriate fitting between a tire and a rim by detecting a change in the posture of the tire, and a tire posture detection It aims to provide a method.
  • the tire inspection device moves the tire and the rim in the vertical direction relative to each other so that the center axis of the tire is along the vertical direction.
  • An elevator unit for fitting the rim to the tire, a position detection unit for detecting a position in the vertical direction of the surface of the tire at at least three detection points, and the position detection unit based on the position information detected by the position detection unit.
  • a posture detection unit that detects tire posture information.
  • the position detection unit detects the position information in the vertical direction at the detection point on the surface of the tire.
  • the posture detection unit can detect the posture information of the tire based on the position information.
  • running state of a tire inspection apparatus can be changed according to the change of the attitude
  • position information is detected at at least three detection points on the surface of the tire. Thereby, the inclination of the tire with respect to the support portion can be detected as a change in posture.
  • the position detection unit is provided in a region on one side of the tire in the central axis direction, so that the detection point is The position information may be detected in a non-contact state.
  • the position detection unit since the position detection unit is provided in a region on one side in the central axis direction of the tire, the position information of the tire in the vertical direction can be obtained with high accuracy when the tire and the rim are relatively moved by the lifting unit. Can be detected.
  • the position detection unit since the position detection unit detects the position information in a non-contact state with respect to the detection point of the tire, the position information is appropriately detected even while the tire and the rim are moving relative to each other. can do.
  • the position detection unit is inside the outer peripheral edge of the tire when viewed from the vertical direction, and
  • the detection point may be provided at a position corresponding to the outer side of the outer peripheral edge of the rim, and the detection point may be positioned on a sidewall that is a surface facing the central axis direction of the tire.
  • the position detection unit is provided in a region that is on the inner side of the outer peripheral edge of the tire and on the outer side of the outer peripheral edge of the rim. Further, position information on the detection points on the sidewalls of the tire is detected by the position detection unit with reference to such positions. Thereby, the position detection part can detect the change of the position of the tire in the vertical direction with higher accuracy.
  • the position detection unit is provided integrally with the support unit, and the posture detection unit includes the tire and the tire.
  • a difference calculation unit that calculates a difference of the position information for each of the detection points before and after relative movement with respect to the rim is compared with the difference for each of the detection points and a predetermined reference value, and the difference is the reference If it is smaller than the value, it is determined that the tire is in a normal posture and generates a normal signal as the posture information, and if the difference is larger than the reference value, the tire is in an abnormal posture.
  • a determination unit that determines that there is an abnormality and generates an abnormal signal as the posture information.
  • the position of the tire changes, resulting in an abnormal position.
  • a displacement occurs in the position of the tire with respect to the detection unit.
  • the difference calculation unit calculates a difference in position information at at least three detection points before and after the relative movement.
  • the determination unit compares this difference with a reference value. When the difference in position information at each detection point (ie, the tire surface) is smaller than the reference value, the determination unit determines that the tire is not tilted, and outputs a normal signal as tire posture information. Generate.
  • the determination unit determines that the tire is in an abnormal posture, and generates an abnormal signal as tire posture information.
  • the position detection unit is fixed at another position separated from the support unit
  • the posture detection unit is A difference calculation unit that calculates a difference between the position information for each detection point before and after the relative movement between the tire and the rim, and the difference for each detection point is compared with a predetermined reference value; When the difference is smaller than the reference value, it is determined that the tire is in a normal posture and a normal signal as the posture information is generated, and when the difference is larger than the reference value, the tire A determination unit that determines that is in an abnormal posture and generates an abnormal signal as the posture information.
  • the position of the tire changes, resulting in an abnormal position.
  • a displacement occurs in the position of the tire with respect to the detection unit.
  • the difference calculation unit calculates a difference in position information at at least three detection points before and after the relative movement.
  • the determination unit compares this difference with a reference value. When the difference in position information at each detection point (ie, the tire surface) is smaller than the reference value, the determination unit determines that the tire is not tilted, and outputs a normal signal as tire posture information. Generate.
  • the determination unit determines that the tire is in an abnormal posture, and generates an abnormal signal as tire posture information.
  • the tire supported by the support portion and the rim fitted to the tire are relatively moved in the vertical direction so that the central axis is along the vertical direction.
  • the separation distance between the position detection unit and the tire that is generated by the relative movement between the rim and the tire on the support unit is detected.
  • this difference is compared with a reference value.
  • each detection point that is, the surface of the tire
  • the tire supported by the support portion and the rim fitted to the tire are relatively moved in the vertical direction so that the central axis is along the vertical direction.
  • a tire attitude detection method for detecting a change in the attitude of the tire when the position is detected by a position detection unit provided at another position separated from the support unit, the tire and the position detection during the relative movement Detecting a plurality of pieces of position information by detecting a separation distance from a portion at at least three detection points on the tire, and calculating a difference between the plurality of pieces of position information before and after the relative movement at each of the detection points.
  • the separation distance between the position detection unit and the tire that is generated by the relative movement between the rim and the tire on the support unit is detected.
  • this difference is compared with a reference value.
  • each detection point that is, the surface of the tire
  • the tire inspection device and the tire attitude detection method of the present invention it is possible to suppress inappropriate fitting between the tire and the rim by detecting a change in the attitude of the tire.
  • FIG. 1 is an overall view of a tire inspection apparatus according to each embodiment of the present invention. It is a top view of a tire inspection device concerning each embodiment of the present invention. It is a figure which shows an example of operation
  • the tire inspection apparatus according to the first embodiment of the present invention it is a diagram showing a state in which the tire and the rim are misaligned.
  • the tire inspection apparatus according to the first embodiment of the present invention it is a diagram showing a state in which the tire and the rim are fitted.
  • the tire inspection apparatus In the tire inspection apparatus according to the second embodiment of the present invention, it is a diagram showing a state in which the tire and the rim are misaligned. In the tire inspection apparatus according to the second embodiment of the present invention, it is a diagram showing a state in which the tire and the rim are fitted. It is a graph which shows the change of the positional information for every detection point in the tire inspection apparatus which concerns on 2nd embodiment of this invention. It is a graph which shows the change of the positional information for every detection point in the tire inspection apparatus which concerns on 2nd embodiment of this invention. It is a graph which shows the change of the positional information for every detection point in the tire inspection apparatus which concerns on 2nd embodiment of this invention.
  • the tire inspection apparatus 10 is an apparatus for inspecting the quality and characteristics of a rubber tire T used in a vehicle or the like by simulating a situation where it is actually used.
  • the tire inspection apparatus 10 is provided adjacent to a carry-in unit 1 for carrying in a tire T to be inspected and a downstream side in the carrying direction of the carry-in unit 1.
  • the inspection unit 2 is provided, and the unloading unit 3 provided on the downstream side of the inspection unit 2.
  • the carrying-in part 1 is a belt conveyor which conveys the tire T manufactured by equipment (not shown) toward the inspection part 2.
  • the tire T conveyed from the carry-in unit 1 is mounted on the rim R.
  • the air inflator 80 injects air into the tire T with the rim R mounted the quality and characteristics of the tire T are checked by various measuring devices and the like (not shown). Inspected.
  • the inspection unit 2 includes a support unit 21, an upper spindle 31 and a lower spindle 32, a position detection unit 40, an elevating unit 50, and an attitude detection unit 60.
  • the support unit 21 is a belt conveyor that supports the tire T conveyed from the carry-in unit 1 from below. Before and after the inspection, the support portion 21 conveys the tire T in one direction (hereinafter referred to as a conveyance direction) on a generally horizontal surface. More specifically, as shown in FIG. 1 or FIG. 2, the support portion 21 includes two belt portions 23 on which the tire T is placed, and two roller portions 24 that support the belt portions 23 on both sides in the transport direction. And a support portion main body 22 that supports the roller portion 24 and is connected to an elevating portion 50 described later.
  • the two belt portions 23 are bridged between the roller portions 24 provided on both sides in the transport direction.
  • the roller portion 24 is a columnar member that extends along a rotation axis substantially orthogonal to the conveying direction of the belt portion 23. More specifically, the roller portion 24 is rotatably supported by a support portion main body 22 extending in the transport direction.
  • the roller unit 24 is rotationally driven by a drive source (not shown). As a result, the two belt portions 23 rotate in the same direction (conveyance direction).
  • the two belt portions 23 are arranged parallel to each other in the transport direction.
  • the belt portions 23 are separated from each other by a certain distance over the entire conveyance direction. More specifically, these belt portions 23 are located outside the outer diameter of the rim R described later so that the belt portion 23 and the rim R do not interfere with each other.
  • the surface on which the tire T is placed (that is, the upper surface) is a placement surface S.
  • the mounting surface S is positioned at substantially the same height as the above-described loading portion 1 and the upper surface of the unloading surface in a state where the lifting surface 50 is not lifted and lowered by the lifting portion 50 described later.
  • the tire T to be inspected is placed on the placement surface S with the sidewalls directed vertically.
  • the sidewall is a generally annular surface extending in a direction intersecting with the central axis (tire axis OT) of the tire T.
  • the tire T is supported in a state in which the central axis is along the vertical direction.
  • the rim R held by the upper spindle 31 and the lower spindle 32 is fitted to the tire T supported by the support portion 21.
  • the rim R according to the present embodiment is divided into an upper rim UR and a lower rim BR from the upper side to the lower side in the vertical direction.
  • Each of the upper rim UR and the lower rim BR is formed in a substantially cylindrical shape to imitate the wheel of the tire T.
  • the central axis of the rim R is referred to as a rim axis OR in distinction from the tire axis OT.
  • These rims R (upper rim UR and lower rim BR) are respectively fitted to the bead portion Tb of the tire T (that is, the inner edge of the central axis) from the vertical direction on the rim axis OR. .
  • the upper rim UR configured as described above is held above the support portion 21 by the upper spindle 31.
  • the lower rim BR is held below the support portion 21 by the lower spindle 32.
  • the upper spindle 31 and the lower spindle 32 are respectively arranged on the upper side and the lower side with respect to the support portion 21 on the rim axis OR.
  • the upper spindle 31 can be moved up and down in the vertical direction.
  • the upper spindle 31 and the lower spindle 32 are both driven to rotate in the same rotational direction around the rim axis OR by an external drive source (not shown). Is done.
  • the two belt portions 23 in the support portion 21 described above are set sufficiently larger than the outer diameter of the rim R so as not to interfere with the rim R. Further, although not shown in detail, the separation distance between the two belt portions 23 can be appropriately changed so as to correspond to various tires T and rims R having different dimensions. That is, when inspecting a tire T having a relatively large diameter (and a rim R corresponding to the tire T), the distance between the belt portions 23 is adjusted to be increased. On the other hand, when inspecting a tire T having a relatively small diameter (and a rim R corresponding thereto), the distance between the belt portions 23 is adjusted to be smaller.
  • the support part 21 configured as described above is provided with an elevating part 50.
  • the elevating part 50 is a device for displacing the entire support part 21 in the vertical direction.
  • a hydraulic cylinder driven by an external drive source can be considered. By operating the elevating unit 50, the support unit 21 can be moved up and down in the vertical vertical direction with the upper surface (mounting surface S) maintained substantially horizontal.
  • the tire T on the mounting surface S also moves downward.
  • the two belt portions 23 in the support portion 21 are separated from each other in a direction orthogonal to the transport direction. Therefore, as the support portion 21 is lowered, the lower rim BR held below the support portion 21 is exposed upward from the gap between the two belt portions 23. Thus, the lower rim BR is brought into contact with and fitted to the tire T on the upper side of the belt portion 23 (that is, the placement surface S).
  • the position detection unit 40 is provided integrally with the support unit 21 (support unit body 22).
  • the position detection unit 40 is a device for detecting the position of the tire T when the rim R is fitted with the operation of the lifting unit 50 described above.
  • a device capable of detecting a separation distance or position from an object in a non-contact state such as a laser range finder or an ultrasonic distance meter, is preferably used. .
  • position detectors 40 are provided in the support body 22. As shown in FIGS. 1 and 2, these position detection units 40 are provided below the placement surface S of the support unit 21 and in a region corresponding to each other between the belt units 23. In other words, any position detection unit 40 is provided in a region on one side in the tire axis OT direction.
  • these four position detection portions 40 are all regions that are inside the contour line (outer diameter) of the tire T and outside the outer diameter of the rim R. Is provided. That is, the laser light and ultrasonic waves emitted from the position detection unit 40 are irradiated only on the surface (mainly the sidewall) of the tire T without hitting the rim R.
  • each of these position detection units 40 is configured to irradiate the surface of the tire T with laser light or ultrasonic waves from substantially vertically below.
  • Each point on the surface of the tire T irradiated with the laser light or the ultrasonic wave is called a detection point P. That is, in the present embodiment, four detection points P corresponding to the four position detection units 40 are set.
  • the separation distance between the pair of belt portions 23 in the support portion 21 can be appropriately adjusted according to the dimensions of the tire T and the rim R.
  • the position detection unit 40 is placed on the tire T and the rim R of any size with respect to the position described above (that is, on the inner side of the outer diameter of the tire T and on the outer diameter of the rim R). Can be made to correspond to the outer side).
  • the position detection unit 40 configured as described above has a vertical separation distance L (position information L) from the position detection unit 40 itself to the surface of the tire T during the lifting operation of the support unit 21 by the lifting unit 50 described above. ) Is detected continuously or intermittently. That is, in the state where the tire T is placed on the support portion 21 (on the placement surface S), the separation distance detected by the position detection portion 40 is L1 as an initial value (see FIG. 7A and the like).
  • the separation distance L detected by the position detection unit 40 is It gradually increases from the initial value L1.
  • the position information L is input as needed to an attitude detection unit 60 (described later) as an electrical signal.
  • the posture detection unit 60 is a device that detects a change in the posture of the tire T based on a change in the separation distance L for each detection point P detected by the position detection unit 40 and determines whether the posture is normal or abnormal. is there. More specifically, the posture detection unit 60 according to the present embodiment includes a difference calculation unit 61 and a determination unit 62.
  • the difference calculation unit 61 calculates a difference (change) in the separation distance L for each detection point P before and after the relative movement between the tire T and the rim R accompanying the lowering of the support unit 21.
  • the determination unit 62 determines normality / abnormality of the posture of the tire T based on this difference.
  • FIG. 3 shows a state where the tire T is carried into the support portion 21 (mounting surface S) via the carry-in portion 1.
  • the upper spindle 31 and the lower spindle 32 are spaced from each other in the vertical direction with respect to the tire T on the support portion 21.
  • the tire axis OT and the rim axis OR are located on the same line.
  • the lower rim BR is first fitted to the tire T in the above state. Specifically, the entire support portion 21 is first lowered by the elevating portion 50. That is, the tire T on the support portion 21 starts to move relative to the lower rim BR. At this time, the position of the tire T (the position of the detection point P) detected by the position detection unit 40 shows a change as shown in FIG. 7A (corresponding to the position detection step in FIG. 8). In FIG. 3, only two position detection units are shown. Furthermore, the position detection unit 40 on the left side of the drawing is called a first position detection unit 40A, and the position detection unit 40 on the right side of the drawing is called a second position detection unit 40B.
  • the position of the detection point P in the plurality of position detection units 40 is the vertical axis, and the time from the start of fitting of the tire T and the rim R to the completion of the fitting is represented by the horizontal axis. It is a graph.
  • a time T1 on the horizontal axis represents a point in time when the tire T (support portion 21) in a normal posture and the rim R contact each other.
  • Time T2 represents a point in time when the fitting between the tire T and the rim R in a normal posture is completed (that is, the lowest limit of the position of the tire T when the support portion 21 is raised and lowered).
  • the tire T is supported on the support portion 21 in a generally stationary state.
  • the position information L at these detection points P all take substantially the same value L1.
  • the position information L at these detection points P is around the value L1 depending on the shape of the tire sidewall (curved shape, etc.). Take slightly different values from each other. (The example of FIG. 7A shows a change in the position information L in the former state.)
  • the difference (change) in the position information L at each detection point P is calculated by the difference calculation unit 61 described above (difference calculation step). More specifically, the difference calculation unit 61 calculates a difference (L2 ⁇ L1) between the position information L2 of each detection point P at time T2 and the position information L1 of each detection point P at times O to T1. That is, when there is no misalignment between the tire axis OT and the rim axis OR, at the time of completion of the fitting of the rim R and the tire T (time T2), the difference is substantially equal to each other.
  • the difference calculated by the difference calculation unit 61 is input to the determination unit 62 next.
  • the determination unit 62 compares a predetermined reference value with the difference value. When the difference amount of the position information L for each detection point P is smaller than the reference value, the determination unit 62 determines that the posture of the tire T is normal, and generates a normal signal as posture information. The operation of the tire inspection apparatus 10 is continued by this normal signal. Thus, the operation of the tire inspection apparatus 10 and the steps of the tire attitude detection method when the tire T and the rim R are on the same axis are completed.
  • the tire inspection apparatus 10 when the tire inspection apparatus 10 is operated continuously for a long time, as shown in FIG. 5, the tire T placed on the support portion 21 is caused by the rim R due to external factors such as vibration and slip. It is assumed that the center will be misaligned. More specifically, it is assumed that the tire axis OT and the rim axis OR are not on the same line. If the lower rim BR and the upper rim UR are fitted to the tire T in a state where misalignment occurs, for example, the bead portion Tb of the tire T rides on the lower rim BR. Thereby, the tire T is inclined with respect to the horizontal plane. In addition, when trying to fit the upper rim UR, the tire quality may be affected by the tire T being sandwiched between the lower rim BR and the upper rim UR.
  • the position detection unit 40 and the posture detection unit 60 allow the position of the tire T (detection point P) in the vertical direction and The presence / absence of inclination (change in posture) is detected based on.
  • the position of the detection point P detected by the position detection unit 40 shows a change as shown by a solid line graph in FIGS. 7B and 7C as an example.
  • 7B and 7C respectively show changes in the position information L in the first position detection unit 40A and the second position detection unit 40B described above. That is, in the example of FIGS. 5 and 6, the tire axis OT represents a state shifted to the first position detection unit 40 ⁇ / b> A side with respect to the rim axis OR.
  • the change of the two detection points P corresponding to these two position detection parts is demonstrated typically.
  • the bead portion Tb on the first position detection portion 40A side contacts the rim R (lower rim BR). Subsequently, as the support portion 21 is lowered, the bead portion Tb rides on the lower rim BR.
  • the position information L detected by the first position detector 40A starts to increase before reaching the time T1.
  • the position information L detected by the second position detector 40B starts to increase after the time T1 has elapsed.
  • the position information at the detection point P corresponding to the first position detection unit 40A is L3.
  • This value L3 is larger than L2 in the normal state (see FIG. 7A) (L3> L2).
  • the position information at the detection point P corresponding to the second position detection unit 40B is L4.
  • This value L4 is smaller than the value L2 (L4 ⁇ L2).
  • the difference calculation unit 61 calculates the difference based on the above-described values (values L1, L3, and L4 as the position information L). More specifically, the difference (L3-L1) in the position information L in the first position detection unit 40A and the difference (L4-L1) in the position information L in the second position detection unit 40B are calculated.
  • the above difference calculated by the difference calculation unit 61 is input to the determination unit 62 next.
  • the determination unit 62 compares a predetermined reference value with a difference value. When the difference in the position information L for each detection point P is smaller than the reference value, the determination unit 62 determines that the posture of the tire T is normal. Specifically, each of the above values L3-L1 and L4-L1 is compared with a reference value, and when any value is smaller than the reference value, the posture of the tire T is normal. It is determined to be a thing.
  • the determination unit 62 determines that the tire T It is determined that there is an inclination, and an abnormal signal is generated as posture information.
  • the abnormal signal is notified to the operator via an interface (not shown), an alarm, or the like, like the normal signal.
  • the worker who has detected the abnormal signal stops the tire inspection apparatus 10 and removes the tire T that has fallen into an abnormal posture or restores the normal posture.
  • determining the reference value a value that can be stopped at a height at which the fitting of the upper rim UR to the tire T is not completed even when the difference value exceeds the reference value. It is preferable to select appropriately. As described above, the operation of the tire inspection apparatus 10 and the steps of the tire attitude detection method when the misalignment occurs between the tire T and the rim R are completed.
  • the position detection unit 40 is provided in the region on one side in the central axis direction of the tire T.
  • the position information L of the tire T in the vertical direction can be detected with high accuracy.
  • the position detection unit 40 detects the position information L in a non-contact state with respect to the detection point P of the tire T, even while the tire T and the rim R are relatively moving, The position information L can be detected appropriately.
  • the position detection unit 40 is provided in an area that is inside the outer peripheral edge of the tire T and that is outside the outer peripheral edge of the rim R. Further, the position detection unit 40 detects the position information L of the detection point P on the sidewall of the tire T with reference to such a position. Thereby, the position detector 40 can detect a change in the position of the tire T in the vertical direction with higher accuracy.
  • the position of the tire T with respect to the position detection unit 40 is increased.
  • the difference calculation unit 61 calculates the difference of the position information L at each of at least three detection points P before and after the relative movement.
  • the determination unit 62 compares this difference with the reference value. When the difference in the position information L for each detection point P is smaller than the reference value, each detection point P (that is, the surface of the tire T) may be determined to be approximately equidistant from each position detection unit 40. it can. Accordingly, the determination unit 62 determines that the tire T is not inclined, and generates a normal signal as the posture information of the tire T.
  • the determination unit 62 determines that the tire T is in an abnormal posture, and generates an abnormal signal as the posture information of the tire T.
  • an abnormal signal is generated by detecting the inclination of the tire T caused by this deviation.
  • This abnormal signal can prompt the operator to stop the tire inspection apparatus 10, restore the posture of the tire T, remove the tire T, and the like. As a result, the possibility that the tire T and the rim R are improperly fitted can be reduced.
  • the four position detection units 40 are provided to detect changes in the positions of the four detection points P on the surface of the tire T.
  • the posture change of the tire T is detected by paying attention to the difference in the position information L of the detection point P corresponding to the position detection unit 40.
  • the posture change of the tire T may be detected based on the time change rate of the position information L (that is, the slope of the straight line in each graph of FIG. 7).
  • the difference calculation unit and the difference calculation step the change rate of the change of the position information L in each graph shown in FIG. 7 is calculated, and in the subsequent determination unit and the determination step, the change rate It is good also as a structure which detects the attitude
  • the position detection unit 40 is configured to be installed on a part of the support unit 21.
  • the mode of the position detection unit 40 is not limited to this, and for example, the position detection unit 40 may be provided on the upper spindle 31. Even with such a configuration, a change in the posture of the tire T can be detected based on the separation distance between the tire T and the position detection unit 40.
  • the tire inspection device 10 is configured such that the tire T is fitted to the lower rim BR on the lower spindle 32 when the support portion 21 is lowered.
  • the aspect of the tire inspection apparatus 10 is not limited to this.
  • the support portion 21 may be fixedly supported at a constant height, and the tire T and the rim R may be fitted by the lower spindle 32 moving up and down. Even with such a configuration, the change in the posture of the tire T can be detected based on the separation distance between the tire T and the position detection unit 40 in the same manner as described above.
  • the aspect of the support part 21 is not limited to a belt conveyor.
  • a plurality of rollers arranged in the transport direction can be applied as the support portion 21. More specifically, the plurality of rollers are supported so as to be rotatable around their respective rotation axes on a horizontal plane intersecting the transport direction. Even with such a configuration, the tire T can be conveyed on the roller.
  • any device may be used as the support portion 21 as long as the device can stably transport the tire T from below.
  • the position detection unit 40 is fixed at a position separated from the support unit 21.
  • the position detection unit 40 is arranged on a generally horizontal floor surface. Note that the position detection unit does not necessarily have to be arranged on the floor surface.
  • a base frame (not shown) of the tire inspection device 10 or the like is used. It may be arranged at any position including.
  • the distance (position information L) between the position detection unit 40 and the detection point P of the tire T gradually decreases as the support unit 21 moves up and down (lowers). That is, when both the tire axis OT and the rim axis OR are on the same line, as shown in FIG. 12A, the position of each detection point P until the tire T and the lower rim BR abut at time T1.
  • the information L (separation distance L) continues to decrease from the initial value L0. Since the tire T is held on the lower rim BR after the time T1 has elapsed, the position information L is generally a constant value L1 ′.
  • the vertical position for each detection point P shows changes as shown in FIGS. 12B and 12C as an example.
  • the bead portion Tb on the first position detection portion 40A side contacts the rim R (lower rim BR). Subsequently, as the support portion 21 is lowered, the bead portion Tb rides on the lower rim BR.
  • the position information L detected by the first position detector 40A becomes a constant value L2 ′ before reaching the time T1.
  • the position information L detected by the second position detection unit 40B becomes a constant value L3 ′ after the time T1 has elapsed.
  • the value of the position information L at the detection point P corresponding to the first position detection unit 40A is L2 ′, and the second position detection unit.
  • the value of the position information L at the detection point P corresponding to 40B is L3 ′.
  • the value L2 ′ is larger than L1 ′ (see FIG. 12A) in the normal state (L2 ′> L1 ′).
  • the value L3 ′ is smaller than the value L1 ′ (L3 ′ ⁇ L1 ′).
  • the difference calculation unit 61 calculates a difference based on the above-described values (values L0, L2 ′, L3 ′ as the position information L). More specifically, a difference (L2′ ⁇ L0) in the position information L in the first position detection unit 40A and a difference (L3′ ⁇ L0) in the position information L in the second position detection unit 40B are calculated.
  • the above difference calculated by the difference calculation unit 61 is input to the determination unit 62 next.
  • the determination unit 62 compares a predetermined reference value with a difference value. As described above, when the difference amount of the position information L for each detection point P is smaller than the reference value, the determination unit 62 determines that the posture of the tire T is normal. Specifically, each value of L2′-L0 and L3′-L0 is compared with a reference value, and when any value is smaller than the reference value, the posture of the tire T is normal. It is determined that
  • the determination unit 62 determines that the tire T It is determined that there is an inclination, and an abnormal signal is generated as posture information.
  • the abnormal signal is notified to the operator via an interface (not shown), an alarm, or the like, like the normal signal.
  • the worker who has detected the abnormal signal stops the tire inspection apparatus 10 and removes the tire T that has fallen into an abnormal posture or restores the normal posture. As described above, the operation of the tire inspection apparatus 10 and the steps of the tire attitude detection method when the misalignment occurs between the tire T and the rim R are completed.
  • the position detection unit 40 is fixed at a position separated from the support unit 21, the support unit 21 is moved up and down (that is, the tire T and the rim). (Relative movement with R), the position of the detection point P on the surface of the tire T changes at any time.
  • the difference calculation unit 62 calculates a difference (change) in the position information L.
  • the determination unit 62 can determine the posture of the tire T based on the difference before and after the relative movement between the rim R and the tire T. Specifically, when the differences in the position information L for each detection point P are all equal, the determination unit 62 determines that the tire T is in a normal posture and generates a normal signal as posture information. To do.
  • the determination unit 62 determines that the tire T is in an abnormal posture, and generates an abnormal signal as the posture information of the tire T.
  • the position detection unit 40 is fixed on the floor surface (a region below the tire T) or on a base frame (not shown)
  • the position of the position detection unit 40 is not limited to the above.
  • a configuration in which the position detection unit 40 is fixedly supported in a region above the support unit 21 may be employed.
  • each detection point P is set on the upper sidewall of the tire T. Even with such a configuration, the posture of the tire T can be determined based on the difference in position for each detection point P.
  • the apparatus and method for detecting the posture change of the tire T in the tire inspection apparatus 10 have been described.
  • an apparatus having a structure in which the rim R is fitted to the tire T from the vertical direction such as a tire vulcanizer PCI (Post Cure Inflater), or a method having a similar process. It can be applied to any target as long as it exists.
  • PCI Post Cure Inflater
  • the tire inspection device 10 and the tire attitude detection method described above can be applied to quality inspection in the manufacturing process of the tire T and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 本発明に係るタイヤ検査装置は、タイヤの中心軸線が鉛直方向に沿うように該タイヤを支持する支持部と、前記タイヤとリムとを鉛直方向に相対移動させることで、前記リムを前記タイヤに嵌合させる昇降部と、前記タイヤの表面の鉛直方向の位置を少なくとも3つの検出点で検出する位置検出部と、該位置検出部が検出した位置情報に基づいて前記タイヤの姿勢情報を検出する姿勢検出部と、を備えている。

Description

タイヤ検査装置、及びタイヤの姿勢検出方法
 本発明は、タイヤ検査装置、及びタイヤの姿勢検出方法に関する。
 車両等に用いられるゴムタイヤを製造する場合、品質を担保するために、検査装置によってタイヤを疑似的に膨張(エアインフレート)させた状態で、各種の検査が行われる。具体的には、疑似リムと呼ばれる、ホイールを模した部材にタイヤを嵌合させることで、タイヤ内部を気密状態とした上で空気が充填される。疑似リムは上部リムと下部リムとに分割されている。複数のタイヤを連続して検査する便宜上、タイヤの回転軸を鉛直方向とした姿勢で搬送されるため、これら上部リム及び下部リムは、タイヤの上下方向における両側からそれぞれ嵌合される。すなわち、タイヤは両側のサイドウォールを鉛直方向に向けた状態で検査される。
 このような技術の一例として、特許文献1に記載された装置が開示されている。特許文献1に記載されたタイヤ検査装置は、タイヤを搬送するベルトコンベアと、このベルトコンベアを昇降させるリフターと、上部リムを支持する上部スピンドルと、下部リムを支持する下部スピンドルと、を有している。まず、リフターによってベルトコンベアが下降することで、タイヤの下方から下部リムが嵌合される。次いで、上部スピンドルが下降することで、上部リムがタイヤに嵌合される。すなわち、上部スピンドルと下部スピンドルは、ともにタイヤの軸心位置と同軸の状態で配置されている。上部リム、及び下部リムが嵌合された後、タイヤに空気が充填される。
特開2011-169768号公報
 しかしながら、上記特許文献1に記載された装置では、タイヤがベルトコンベアによって搬送される際に、タイヤの軸心位置と、下部スピンドル(又は上部スピンドル)の軸線とが互いにずれている(芯ずれが生じている)場合に、リムとタイヤとを適正に嵌合できない可能性がある。より具体的には、ベルトコンベアによる搬送中における振動やすべり等によって、タイヤがベルトコンベア上で変位した場合に、上記のような芯ずれが発生しやすい。芯ずれが生じた状態で下部リム、及び上部リムをタイヤに嵌合させようとすると、タイヤがこれらリムによって上下から潰されるため、該タイヤに劣化や損傷を生じさせる可能性がある。
 本発明は、上記事情に鑑みてなされたものであり、タイヤの姿勢変化を検知することで、タイヤとリムの不適切な嵌合を抑制することが可能なタイヤ検査装置、及びタイヤの姿勢検出方法を提供することを目的とする。
 本発明は、上記課題を解決するために以下の手段を採用する。
 本発明の第一の態様によれば、タイヤ検査装置は、タイヤの中心軸線が鉛直方向に沿うように該タイヤを支持する支持部と、前記タイヤとリムとを鉛直方向に相対移動させることで、前記リムを前記タイヤに嵌合させる昇降部と、前記タイヤの表面の鉛直方向の位置を少なくとも3つの検出点で検出する位置検出部と、該位置検出部が検出した位置情報に基づいて前記タイヤの姿勢情報を検出する姿勢検出部と、を備える。
 上記の構成によれば、タイヤに対してリムを嵌合させる際に、位置検出部がタイヤの表面の検出点における鉛直方向の位置情報を検出する。姿勢検出部は上記の位置情報に基づいてタイヤの姿勢情報を検出することができる。これにより、タイヤの姿勢の変化に応じて、タイヤ検査装置の運転状態を変えることができる。特に、上記の構成では、タイヤの表面における少なくとも3つの検出点で位置情報が検出される。これにより、支持部に対するタイヤの傾きを姿勢の変化として検出することができる。
 本発明の第二の態様によれば、上記第一の態様に係るタイヤ検査装置において、前記位置検出部は、前記タイヤの前記中心軸線方向の一方側の領域に設けられることで、前記検出点と非接触の状態で前記位置情報を検出するように構成されていてもよい。
 上記の構成によれば、位置検出部がタイヤの中心軸線方向の一方側の領域に設けられることから、昇降部によるタイヤとリムとの相対移動に際して、鉛直方向におけるタイヤの位置情報を高い精度で検出することができる。加えて、位置検出部は、タイヤの検出点に対して非接触の状態で位置情報を検出することから、タイヤとリムとが相対移動している間であっても、位置情報を適切に検出することができる。
 本発明の第三の態様によれば、上記のいずれか一の態様に係るタイヤ検査装置において、前記位置検出部は、鉛直方向から見て、前記タイヤの外周縁よりも内側であるとともに、前記リムの外周縁よりも外側に相当する位置に設けられ、前記検出点は、前記タイヤにおける前記中心軸線方向を向く面であるサイドウォール上に位置するように構成されていてもよい。
 上記の構成によれば、位置検出部が、タイヤの外周縁よりも内側であって、かつリムの外周縁よりも外側に相当する領域に設けられる。さらに、このような位置を基準として、タイヤのサイドウォール上における検出点の位置情報が位置検出部によって検出される。これにより、位置検出部は鉛直方向におけるタイヤの位置の変化をさらに高い精度で検出することができる。
 本発明の第四の態様によれば、上記のいずれか一の態様に係るタイヤ検査装置において、前記位置検出部は、前記支持部と一体に設けられ、前記姿勢検出部は、前記タイヤと前記リムとの相対移動の前後における前記検出点ごとの前記位置情報の差分を算出する差分算出部と、前記検出点ごとの前記差分と予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定して前記姿勢情報としての正常信号を生成するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定して前記姿勢情報としての異常信号を生成する判定部と、を備えてもよい。
 上記の構成によれば、リムと支持部上のタイヤとの相対移動によってリムがタイヤに嵌合されるにつれて、タイヤの姿勢に変化が生じた結果、異常な姿勢となった場合には、位置検出部に対するタイヤの位置には変位(差分)が生じる。差分算出部は、相対移動の前後における少なくとも3つの検出点における位置情報の差分をそれぞれ算出する。判定部ではこの差分と基準値とが比較される。各検出点(すなわち、タイヤの表面)における位置情報の差分がいずれも基準値よりも小さい場合には、判定部はタイヤに傾きが生じていないものと判定し、タイヤの姿勢情報として正常信号を生成する。
 一方で、少なくとも1つの検出点における位置情報の差分が基準値よりも大きい場合、リムとタイヤとの嵌合に際して、タイヤに傾き等の姿勢の変化が生じたものと判断される。これにより、判定部は、タイヤが異常な姿勢にあるものと判定し、タイヤの姿勢情報として異常信号を生成する。
 本発明の第五の態様によれば、上記のいずれか一の態様に係るタイヤ検査装置において、前記位置検出部は、前記支持部とは離間した別の位置で固定され、前記姿勢検出部は、前記タイヤと前記リムとの相対移動の前後における前記検出点ごとの前記位置情報の差分を算出する差分算出部と、前記検出点ごとの前記差分と予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定して前記姿勢情報としての正常信号を生成するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定して前記姿勢情報としての異常信号を生成する判定部と、を備えてもよい。
 上記の構成によれば、リムと支持部上のタイヤとの相対移動によってリムがタイヤに嵌合されるにつれて、タイヤの姿勢に変化が生じた結果、異常な姿勢となった場合には、位置検出部に対するタイヤの位置には変位(差分)が生じる。差分算出部は、相対移動の前後における少なくとも3つの検出点における位置情報の差分をそれぞれ算出する。判定部ではこの差分と基準値とが比較される。各検出点(すなわち、タイヤの表面)における位置情報の差分がいずれも基準値よりも小さい場合には、判定部はタイヤに傾きが生じていないものと判定し、タイヤの姿勢情報として正常信号を生成する。
 一方で、少なくとも1つの検出点における位置情報の差分が基準値よりも大きい場合、リムとタイヤとの嵌合に際して、タイヤに傾き等の姿勢の変化が生じたものと判断される。これにより、判定部は、タイヤが異常な姿勢にあるものと判定し、タイヤの姿勢情報として異常信号を生成する。
 本発明の第六の態様によれば、タイヤの姿勢検出方法は、中心軸線が鉛直方向に沿うように支持部によって支持されたタイヤ、及び該タイヤに嵌合されるリムを鉛直方向に相対移動させる際の前記タイヤの姿勢の変化を、前記支持部に一体に設けられた位置検出部によって検出するタイヤの姿勢検出方法であって、前記相対移動中における前記タイヤと前記位置検出部との離間距離を、前記タイヤ上の少なくとも3つの検出点で検出することで複数の位置情報を検出するステップと、前記相対移動の前後における前記複数の位置情報の差分をそれぞれの前記検出点ごとに算出するステップと、前記検出点ごとの前記差分と、予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定するステップと、を含む。
 このような方法によれば、まず、リムと支持部上のタイヤとの相対移動によって生じる位置検出部とタイヤとの離間距離が検出される。次に、相対移動の前後における、検出点ごとの位置情報の差分が算出された後、この差分と基準値とが比較される。差分が基準値よりも小さい場合、各検出点(すなわち、タイヤの表面)は、各位置検出部に対しておおむね等距離にあると判断することができる。これにより、タイヤには傾きが生じていないものと判定される。すなわち、タイヤは正常な姿勢にあると判定することができる。
 一方で、検出点ごとの位置情報の差分が基準値よりも大きい場合、リムとタイヤとの嵌合に際して、タイヤに傾き等の姿勢の変化が生じたものと判断される。これにより、タイヤが異常な姿勢にあるものと判定することができる。
 本発明の第七の態様によれば、タイヤの姿勢検出方法は、中心軸線が鉛直方向に沿うように支持部によって支持されたタイヤ、及び該タイヤに嵌合されるリムを鉛直方向に相対移動させる際の前記タイヤの姿勢の変化を、前記支持部と離間した別の位置に設けられた位置検出部によって検出するタイヤの姿勢検出方法であって、前記相対移動中における前記タイヤと前記位置検出部との離間距離を、前記タイヤ上の少なくとも3つの検出点で検出することで複数の位置情報を検出するステップと、前記相対移動の前後における前記複数の位置情報の差分をそれぞれの前記検出点ごとに算出するステップと、前記検出点ごとの前記差分と、予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定するステップと、を含む。
 このような方法によれば、まず、リムと支持部上のタイヤとの相対移動によって生じる位置検出部とタイヤとの離間距離が検出される。次に、相対移動の前後における、検出点ごとの位置情報の差分が算出された後、この差分と基準値とが比較される。差分が基準値よりも小さい場合、各検出点(すなわち、タイヤの表面)は、各位置検出部に対しておおむね等距離にあると判断することができる。これにより、タイヤには傾きが生じていないものと判定される。すなわち、タイヤは正常な姿勢にあると判定することができる。
 一方で、検出点ごとの位置情報の差分が基準値よりも大きい場合、リムとタイヤとの嵌合に際して、タイヤに傾き等の姿勢の変化が生じたものと判断される。これにより、タイヤが異常な姿勢にあるものと判定することができる。
 本発明のタイヤ検査装置、及びタイヤの姿勢検出方法によれば、タイヤの姿勢変化を検知することで、タイヤとリムとの不適切な嵌合を抑制することができる。
本発明の各実施形態に係るタイヤ検査装置の全体図である。 本発明の各実施形態に係るタイヤ検査装置の平面図である。 本発明の第一実施形態に係るタイヤ検査装置の動作の一例を示す図である。 本発明の第一実施形態に係るタイヤ検査装置の動作の一例を示す図である。 本発明の第一実施形態に係るタイヤ検査装置において、タイヤとリムとに芯ずれを生じている状態を示す図である。 本発明の第一実施形態に係るタイヤ検査装置において、タイヤとリムとの嵌合する状態を示す図である。 本発明の第一実施形態に係るタイヤ検査装置における検出点ごとの位置情報の時間変化を示すグラフである。 本発明の第一実施形態に係るタイヤ検査装置における検出点ごとの位置情報の時間変化を示すグラフである。 本発明の第一実施形態に係るタイヤ検査装置における検出点ごとの位置情報の時間変化を示すグラフである。 本発明の第一実施形態に係るタイヤの姿勢検出方法の各ステップを示すフローチャートである。 本発明の第二実施形態に係るタイヤ検査装置を示す図である。 本発明の第二実施形態に係るタイヤ検査装置において、タイヤとリムとに芯ずれを生じている状態を示す図である。 本発明の第二実施形態に係るタイヤ検査装置において、タイヤとリムとの嵌合する状態を示す図である。 本発明の第二実施形態に係るタイヤ検査装置における検出点ごとの位置情報の変化を示すグラフである。 本発明の第二実施形態に係るタイヤ検査装置における検出点ごとの位置情報の変化を示すグラフである。 本発明の第二実施形態に係るタイヤ検査装置における検出点ごとの位置情報の変化を示すグラフである。
[第一実施形態]
 本発明の第一実施形態に係るタイヤ検査装置10、及びタイヤの姿勢検出方法について、図面を参照して説明する。このタイヤ検査装置10は、車両等に用いられるゴム製のタイヤTの品質や特性を、実際に使用される状況を模擬して検査するための装置である。
 具体的には図1に示すように、本実施形態に係るタイヤ検査装置10は、検査対象のタイヤTを搬入する搬入部1と、この搬入部1の搬送方向の下流側に隣接して設けられる検査部2と、検査部2の下流側に設けられる搬出部3と、を有している。
 搬入部1は、不図示の設備で製造されたタイヤTを検査部2に向かって搬送するベルトコンベアである。検査部2では、搬入部1から搬送されたタイヤTがリムRに装着される。続いて、検査部2では、リムRが装着された状態のタイヤTに対して、エアインフレータ80によって空気が注入された後、各種の計測装置等(不図示)によってタイヤTの品質や特性が検査される。
 以下、検査部2の構成について、図1から図8を参照して説明する。
 図1に示すように、検査部2は、支持部21と、上部スピンドル31、及び下部スピンドル32と、位置検出部40と、昇降部50と、姿勢検出部60と、を有している。
(支持部21)
 支持部21は、上記の搬入部1から搬送されたタイヤTを下方から支持するベルトコンベアである。検査の前後で、この支持部21は、おおむね水平な面上で一方向(以下、搬送方向と呼ぶ)にタイヤTを搬送する。より詳細には図1又は図2に示すように、この支持部21は、タイヤTが載置される2つのベルト部23と、これらベルト部23を搬送方向両側で支持する2つのローラ部24と、ローラ部24を支持するとともに後述の昇降部50と接続される支持部本体22と、を有している。
 2つのベルト部23は、搬送方向の両側に設けられたローラ部24の間に架け渡されている。ローラ部24はベルト部23の搬送方向に略直交する回転軸線に沿って延びる円柱状の部材である。より詳しくは、ローラ部24は、搬送方向に延びる支持部本体22によって回転可能に支持されている。ローラ部24は、不図示の駆動源によって回転駆動される。これにより、上記2つのベルト部23は、互いに同一の方向(搬送方向)に回動する。
 さらに、2つのベルト部23は搬送方向に互いに平行をなして配置されている。これらベルト部23同士は、搬送方向全体にわたって、互いに一定の距離だけ離間している。より具体的には、ベルト部23とリムRとが干渉しないように、これらベルト部23は、後述するリムRの外径よりも外側に位置している。
 支持部21の鉛直方向両側の面のうち、タイヤTが載置される側の面(すなわち、上側の面)は載置面Sとされている。この載置面Sは、後述する昇降部50による昇降を伴わない状態では、上記の搬入部1、及び搬出面の上側の面とおおむね同一の高さに位置している。
 検査対象のタイヤTは、サイドウォールを上下方向に向けた状態で載置面S上に載置される。ここで、サイドウォールとは、タイヤTの中心軸線(タイヤ軸線OT)と交差する方向に延びる、おおむね円環状の面である。言い換えると、タイヤTは、その中心軸線が鉛直方向に沿った状態で支持されている。
(上部スピンドル31、下部スピンドル32)
 さらに、上記の支持部21によって支持されたタイヤTに対して、上部スピンドル31、及び下部スピンドル32に保持されたリムRが嵌合される。ここで、本実施形態に係るリムRは、鉛直方向の上方から下方に向かって、それぞれ上部リムURと、下部リムBRとに分割されている。上部リムUR、及び下部リムBRは、いずれも略円筒状に形成されることで、タイヤTのホイールを模している。以下の説明では、このリムRの中心軸線を、上記タイヤ軸線OTとは区別して、リム軸線ORと呼ぶ。これらリムR(上部リムUR、下部リムBR)は、リム軸線OR上における上下方向から、タイヤTのビード部Tb(すなわち、中心軸線の内径側の端縁)に対して、それぞれ嵌合される。
 上記のように構成された上部リムURは、上部スピンドル31によって支持部21の上方で保持されている。一方で、下部リムBRは、下部スピンドル32によって支持部21の下方で保持されている。より具体的には、上部スピンドル31、及び下部スピンドル32は、上記のリム軸線OR上において支持部21に対して上側、及び下側にそれぞれ配置されている。詳しくは後述するが、上部スピンドル31は鉛直方向に昇降することが可能とされている。なお、リムRが嵌合された後の検査時には、上部スピンドル31、及び下部スピンドル32は、外部の駆動源(不図示)によって、いずれも上記のリム軸線OR回りに同一の回転方向に回転駆動される。
 なお、上述した支持部21における2つのベルト部23は、リムRに対して干渉しないように、リムRの外径よりも十分に大きく設定されている。さらに、詳しくは図示しないが、異なる寸法を有する種々のタイヤT、及びリムRに対応できるように、これら2つのベルト部23同士の離間距離は、適宜変更できるように構成されている。すなわち、比較的に大径のタイヤT(及び、これに対応するリムR)を検査する場合には、これらベルト部23同士の離間寸法は大きくなる方向に調節される。一方で、比較的に小径のタイヤT(及び、これに対応するリムR)を検査する場合には、ベルト部23同士の離間寸法は小さくなる方向に調節される。
(昇降部50)
 上記のように構成された支持部21には、昇降部50が設けられている。昇降部50は、支持部21の全体を鉛直方向に変位させるための装置である。昇降部50の具体的な例としては、外部の駆動源によって駆動される油圧シリンダなどが考えられる。この昇降部50が動作することによって、支持部21は、その上側の面(載置面S)を略水平に維持した状態で、鉛直上下方向に昇降することができる。
 支持部21が下方に移動(下降)した場合、これに伴って載置面S上のタイヤTも下方に移動する。ここで、上記したように、支持部21における2つのベルト部23同士は、搬送方向に直交する方向に互いに離間している。したがって、支持部21が下降するに伴って、支持部21の下方で保持された下部リムBRは、2つのベルト部23同士の間の間隙から上方に露出する。これにより、下部リムBRは、ベルト部23の上側(すなわち、載置面S)でタイヤTに当接、嵌合される。
(位置検出部40)
 位置検出部40は、本実施形態では支持部21(支持部本体22)に一体に設けられている。位置検出部40は、上記の昇降部50の動作に伴ってリムRが嵌合される際におけるタイヤTの位置を検出するための装置である。位置検出部40としては、例えばレーザ測距計や、超音波距離計などのように、対象物との離間距離、又は位置を非接触の状態で検出することが可能な装置が好適に用いられる。
 本実施形態では、支持部本体22に4つの位置検出部40が設けられている。図1と図2に示すように、これら位置検出部40は支持部21における載置面Sよりも下側であって、それぞれのベルト部23同士の間に相当する領域に設けられている。言い換えると、いずれの位置検出部40も、タイヤ軸線OT方向の一方側の領域に設けられている。
 さらに、タイヤ軸線OT方向から見た場合、これら4つの位置検出部40は、いずれもタイヤTの輪郭線(外径)よりも内側であって、リムRの外径よりも外側に相当する領域に設けられている。すなわち、位置検出部40から発せられるレーザ光や超音波は、リムRに当たることなく、タイヤTの表面(主にサイドウォール)のみに照射される。特に、これら位置検出部40は、いずれもタイヤTの表面に対しておおむね鉛直下方からレーザ光や超音波を照射するように構成されている。これらレーザ光や超音波が照射されるタイヤTの表面上の点は、それぞれ検出点Pと呼ばれる。すなわち、本実施形態では、4つの位置検出部40に対応する4つの検出点Pが設定される。
 なお、上記したように、支持部21における一対のベルト部23同士の間の離間距離はタイヤT、及びリムRの寸法に応じて適宜に調整可能である。このような構成によれば、いかなる寸法のタイヤT、リムRに対しても、位置検出部40を上述の位置(すなわち、タイヤTの外径よりも内側であって、リムRの外径よりも外側に相当する位置)に対応させることができる。
 以上のように構成された位置検出部40は、上記した昇降部50による支持部21の昇降動作中にわたって、位置検出部40自体からタイヤTの表面までの鉛直方向における離間距離L(位置情報L)を連続的、又は断続的に検出する。すなわち、支持部21上(載置面S上)にタイヤTが載置されている状態では、位置検出部40によって検出される離間距離は初期値としてのL1となる(図7A等参照)。
 一方で、外力等によってタイヤTに鉛直方向の変位が生じた場合、すなわち、載置面S上からタイヤTが上方に離れる等した場合には、位置検出部40によって検出される離間距離Lは、上記の初期値L1から次第に増加する。この位置情報Lは、電気信号として姿勢検出部60(後述)に随時入力される。
(姿勢検出部60)
 姿勢検出部60は、位置検出部40によって検出された検出点Pごとの離間距離Lの変化に基づいて、タイヤTの姿勢の変化を検出するとともに、姿勢の正常と異常とを判定する装置である。より詳細には、本実施形態に係る姿勢検出部60は、差分算出部61と、判定部62と、を有している。
 差分算出部61は、支持部21の下降に伴うタイヤTとリムRとの相対移動の前後で、各検出点Pごとの離間距離Lの差分(変化)を算出する。判定部62は、この差分に基づいて、タイヤTの姿勢の正常/異常を判定する。
 姿勢検出部60の詳細な動作、及びタイヤ検査装置10の動作について説明する。まず、タイヤTが正常な姿勢にある場合について、図3、図4、及び図7Aを参照して説明する。
 図3は、搬入部1を経て支持部21(載置面S)にタイヤTが搬入された状態を示している。この状態では、上部スピンドル31、及び下部スピンドル32は、支持部21上のタイヤTに対してそれぞれ鉛直方向に間隔を空けた状態となっている。さらに、タイヤ軸線OTと、リム軸線ORとが互いに同一線上に位置している。
 上記の状態におけるタイヤTに対して、最初に下部リムBRが嵌合される。具体的には、まず昇降部50によって支持部21全体が下降する。すなわち、支持部21上のタイヤTは、下部リムBRに対して相対移動を始める。この時、位置検出部40によって検出されるタイヤTの位置(検出点Pの位置)は、図7Aに示すような変化を示す(図8における位置検出ステップに相当)。なお、図3中では、2つの位置検出部のみ図示している。さらに、図示左方の位置検出部40を第一位置検出部40Aと呼び、図示右方の位置検出部40を第二位置検出部40Bと呼ぶ。
 図7(図7A~図7C)は、これら複数の位置検出部40における検出点Pの位置を縦軸とし、タイヤTとリムRとの嵌合開始から嵌合完了までの時間を横軸としたグラフである。横軸における時刻T1は、正常な姿勢にあるタイヤT(支持部21)とリムRとが当接した時点を表している。時刻T2は、正常な姿勢のタイヤTとリムRとの嵌合が完了した時点(すなわち、支持部21の昇降におけるタイヤT位置の最下限)を表している。
 支持部21の下降開始から、時刻T1までの間は、タイヤTは支持部21上でおおむね静止状態で支持されている。ここで、複数の検出点PがタイヤT上でタイヤ軸線OTに対して同芯状に配置されている場合には、これら検出点Pにおける位置情報Lはいずれも互いにほぼ同一の値L1を取る。一方で、タイヤ軸線OTに対して同芯状に配置されていない場合には、これら検出点Pにおける位置情報Lは、タイヤのサイドウォールの形状(湾曲形状等)に応じて、値L1の前後で互いにわずかに異なる値を取る。(図7Aの例では、前者の状態における位置情報Lの変化を示している。)
 続いて、時刻T1に達した時に、下部リムBRとタイヤTとが当接する。図3における例のように、タイヤ軸線OTとリム軸線ORとがともに同一線上にある場合(すなわち、タイヤTとリムRとの芯ずれが生じていないか、又は無視できるほどに小さい場合)には、検出点Pの位置は、図7Aにおける時刻T1からT2までの実線グラフに示すような推移を示す。すなわち、第一位置検出部40Aと第二位置検出部40Bとにおける位置情報Lはともに同等の傾きをもって単調増加する。
 すなわち、タイヤTとリムR(下部リムBR)との間に芯ずれが生じていない場合、下部リムBRはタイヤTに当接した後、ビード部Tbに対して円滑に嵌合される。下部リムBRがタイヤTに当接してから嵌合が完了するまでの間、タイヤTは支持部21上(載置面S上)でおおむね水平を維持する。したがって、タイヤTの各検出点Pにおける位置情報Lの変化は、互いにおおむね同等となる。
 これら各検出点Pにおける位置情報Lの差分(変化)は、上記した差分算出部61によって算出される(差分算出ステップ)。より詳細には、差分算出部61は、時刻T2における各検出点Pの位置情報L2と、時刻O~T1における各検出点Pの位置情報L1との差分(L2-L1)を算出する。すなわち、タイヤ軸線OTとリム軸線ORとの間に芯ずれが生じていない場合には、リムRとタイヤTの嵌合完了の時点(時刻T2)において、この差分は互いにおおむね等しい値を取る。
 差分算出部61によって算出された上記の差分は、次に判定部62に入力される。判定部62では、予め定められた基準値と、上記の差分の値との比較が行われる。検出点Pごとの位置情報Lの差分量が基準値よりも小さい場合には、判定部62ではタイヤTの姿勢が正常であるものと判定し、姿勢情報としての正常信号を生成する。この正常信号によって、タイヤ検査装置10の運転が継続される。
 以上により、タイヤTとリムRとが同軸上にある場合におけるタイヤ検査装置10の動作、及びタイヤの姿勢検出方法の各工程が完了する。
 その一方で、タイヤ検査装置10を長期継続して運用する場合には、図5に示すように、支持部21上に載置されたタイヤTが、振動やすべり等の外部要因によって、リムRに対して芯ずれを起こす状況が想定される。より詳細には、タイヤ軸線OTとリム軸線ORとが互いに同一の線上にない状況が想定される。芯ずれを生じた状態で下部リムBR、及び上部リムURとをタイヤTに嵌合させると、例えばタイヤTのビード部Tbが下部リムBRに乗り上げてしまう。これにより、タイヤTには水平面に対する傾きが生じる。なおも上部リムURを嵌合させようとした場合、下部リムBRと上部リムURとの間にタイヤTが挟まれることで、タイヤ品質に影響を及ぼす可能性がある。
 上記のような事象の発生を回避するため、本実施形態に係るタイヤ検査装置10では、位置検出部40と姿勢検出部60とによって、タイヤT(検出点P)の鉛直方向における位置、及びこれに基づく傾きの有無(姿勢の変化)が検出される。
 より具体的には、図6に示すように、タイヤTが下部リムBRに乗り上げている状態では、一方の検出点Pの鉛直方向における位置は、他方の検出点Pよりも上方に位置している。(図6中には2つの検出点Pのみ図示するが、実際には4つの検出点Pが互いに異なる位置に変位する。)
 上記の状態では、位置検出部40によって検出される検出点Pの位置は、一例として図7B,図7Cの実線グラフで示すような変化を示す。なお、これら図7B,図7Cの各グラフは、上述した第一位置検出部40A、及び第二位置検出部40Bにおける位置情報Lの変化をそれぞれ示す。すなわち、図5と図6の例では、タイヤ軸線OTは、リム軸線ORに対して、第一位置検出部40A側にずれている状態を表している。以下では、これら2つの位置検出部に対応する2つの検出点Pの変化について代表的に説明する。
 上記の状態において、まず、第一位置検出部40A側のビード部TbがリムR(下部リムBR)に当接する。続いて、支持部21の下降に伴ってこのビード部Tbが下部リムBRに乗り上げる。
 このとき、図7Bに示すように、第一位置検出部40Aで検出される位置情報Lは、時刻T1に到達する前に増加に転じる。一方で、図7Cに示すように、第二位置検出部40Bで検出される位置情報Lは、時刻T1を経過した後で増加に転じる。
 したがって、時刻T2に達した時点では、第一位置検出部40Aに対応する検出点Pにおける位置情報は、L3となる。この値L3は、上述の正常状態におけるL2(図7A参照)よりも大きな値となる(L3>L2)。一方で、第二位置検出部40Bに対応する検出点Pにおける位置情報は、L4となる。この値L4は、値L2よりも小さな値となる(L4<L2)。
 差分算出部61では、上述した各値(位置情報Lとしての値L1,L3,L4)に基づいて、差分が算出される。より詳細には、第一位置検出部40Aにおける位置情報Lの差分(L3-L1)と、第二位置検出部40Bにおける位置情報Lの差分(L4-L1)とがそれぞれ算出される。
 差分算出部61によって算出された上記の差分は、次に判定部62に入力される。判定部62では、予め定められた基準値と、差分の値との比較が行われる。検出点Pごとの位置情報Lの差分が上記の基準値よりも小さい場合には、判定部62ではタイヤTの姿勢が正常であるものと判定される。具体的には、上記のL3-L1、及びL4-L1の各値と、基準値との比較が行われ、いずれの値も基準値よりも小さい場合には、タイヤTの姿勢が正常であるものと判定される。
 一方で、これら差分のうち、少なくとも一方の差分(4つの位置検出部40を設けた場合にあっては、少なくとも1つの差分)が基準値よりも大きい場合には、判定部62では、タイヤTに傾きが生じていると判定し、姿勢情報としての異常信号を生成する。異常信号は、上記の正常信号と同様に、不図示のインターフェースや、アラーム等を介して作業者に通知される。異常信号を察知した作業者は、タイヤ検査装置10を停止するとともに、異常な姿勢に陥ったタイヤTを除去するか、又は正常な姿勢に復旧する。なお、上記の基準値を決定するに当たっては、差分値が基準値を超過した場合であっても、上部リムURのタイヤTへの嵌合が完了しない高さで停止させることが可能な値を適宜選択することが好ましい。
 以上により、タイヤTとリムRとの間に芯ずれが生じた場合におけるタイヤ検査装置10の動作、及びタイヤの姿勢検出方法の各工程が完了する。
 以上説明したように、本実施形態に係るタイヤ検査装置10、及びタイヤの姿勢検出方法によれば、位置検出部40がタイヤTの中心軸線方向の一方側の領域に設けられることから、昇降部50によるタイヤTとリムRとの相対移動に際して、鉛直方向におけるタイヤTの位置情報Lを高い精度で検出することができる。加えて、位置検出部40は、タイヤTの検出点Pに対して非接触の状態で位置情報Lを検出することから、タイヤTとリムRとが相対移動している間であっても、位置情報Lを適切に検出することができる。
 さらに、上記の構成によれば、位置検出部40が、タイヤTの外周縁よりも内側であって、かつリムRの外周縁よりも外側に相当する領域に設けられる。さらに、このような位置を基準として、タイヤTのサイドウォール上における検出点Pの位置情報Lが位置検出部40によって検出される。これにより、位置検出部40は鉛直方向におけるタイヤTの位置の変化をさらに高い精度で検出することができる。
 加えて、上述の装置、及び方法によれば、リムRと支持部21上のタイヤTとの相対移動によってリムRがタイヤTに嵌合されるにつれて、位置検出部40に対するタイヤTの位置には変位(差分)が生じる。差分算出部61は、相対移動の前後における少なくとも3つの検出点Pそれぞれにおいて、位置情報Lの差分を算出する。判定部62ではこの差分と基準値とが比較される。検出点Pごとの位置情報Lの差分が基準値よりも小さい場合、各検出点P(すなわち、タイヤTの表面)は、各位置検出部40に対しておおむね等距離にあると判断することができる。これにより、判定部62は、タイヤTには傾きが生じていないものと判定し、タイヤTの姿勢情報として正常信号を生成する。
 一方で、上記の差分が基準値よりも大きい場合、リムRとタイヤTとの嵌合に際して、タイヤTに傾き等の姿勢の変化が生じたものと判断される。これにより、判定部62は、タイヤTが異常な姿勢にあるものと判定し、タイヤTの姿勢情報として異常信号を生成する。
 したがって、支持部21上においてタイヤ軸線OTとリム軸線ORとにずれを生じている場合、このずれに起因して発生するタイヤTの傾きを検出することで異常信号が生成される。この異常信号により、タイヤ検査装置10の停止、及びタイヤTの姿勢の復旧や、タイヤTの除去等の対処を作業者に促すことができる。これにより、タイヤTとリムRとが不適切に嵌合される可能性を低減することができる。
 以上、本発明の第一実施形態について図面を参照して説明した。しかしながら、本発明の要旨を逸脱しない限りにおいて、上記の構成、又は方法に対する種々の変更を加えることが可能である。
 例えば、上記の実施形態では、4つの位置検出部40を設けることで、タイヤTの表面における4つの検出点Pの位置の変化を検出する構成とした。しかしながら、支持部21(載置面S)に対するタイヤTの傾きを検出するためには、少なくとも3つの検出点Pにおける位置の検出が行えれば十分である。すなわち、位置検出部40を3つのみ設ける構成とすることも可能である。
 さらに、上記の実施形態では、位置検出部40に対応する検出点Pの位置情報Lの差分に着目してタイヤTの姿勢変化を検出する構成とした。しかしながら、位置情報Lの時間変化率(すなわち、図7の各グラフにおける直線の傾き)に基づいてタイヤTの姿勢変化を検出する構成としてもよい。言い換えると、上記の差分算出部、及び差分算出ステップにおいては、図7に示す各グラフにおける位置情報Lの変化の変化率を算出し、後続の判定部、及び判定ステップでは、この変化率と、予め定められた基準値との比較を行うことによってタイヤTの姿勢変化を検出する構成としてもよい。このような構成を採った場合、少なくとも1つの検出点Pにおける位置情報Lの変化率が基準値を超過したことが検出できれば、タイヤTが異常な姿勢にあると判定することができる。
 加えて、上記の実施形態では、位置検出部40はいずれも支持部21の一部に設置される構成とした。しかしながら、位置検出部40の態様はこれに限定されず、例えば上部スピンドル31にこれら位置検出部40を設ける構成としてもよい。このような構成であっても、タイヤTと位置検出部40との離間距離に基づいて、タイヤTの姿勢の変化を検出することができる。
 さらに加えて、上記の実施形態では、タイヤ検査装置10として、支持部21が下降することによって、下部スピンドル32上の下部リムBRにタイヤTが嵌合される構成とした。しかしながら、タイヤ検査装置10の態様はこれに限定されない。例えば、支持部21は一定の高さで固定支持されるとともに、下部スピンドル32が昇降することによってタイヤTとリムRとが嵌合される構成としてもよい。このような構成であっても、上記と同様にタイヤTと位置検出部40との離間距離に基づいて、タイヤTの姿勢の変化を検出することができる。
 また、上記の実施形態では、支持部21としてベルトコンベアを採用した例について説明した。しかしながら、支持部21の態様はベルトコンベアに限定されない。例えば、支持部21として、搬送方向に配列された複数のローラを適用することも可能である。より具体的には、これら複数のローラは、搬送方向に交差する水平面上で、それぞれの回転軸回りに回転可能に支持される。このような構成であっても、タイヤTをローラ上で搬送されることができる。要は、タイヤTを下方から支持しながら安定して搬送することが可能な装置であれば如何なる装置を支持部21として用いてもよい。
[第二実施形態]
 次に、本発明の第二実施形態に係るタイヤ検査装置10、及びタイヤの姿勢検出方法について、図9から図13を参照して説明する。なお、上記の第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。
 図9に示すように、本実施形態に係るタイヤ検査装置10では、位置検出部40が支持部21から離間した位置に固定されている。具体的には、図9の例では、位置検出部40はおおむね水平な床面上に配置されている。なお、この位置検出部は必ずしも床面上に配置されている必要はなく、要は支持部21とは独立した位置に固定されていれば、タイヤ検査装置10のベースフレーム(不図示)等を含めて、如何なる位置に配置されてもよい。
 上記のような構成を採る場合、支持部21の昇降(下降)に伴って、位置検出部40とタイヤTの検出点Pとの間の距離(位置情報L)は、徐々に減少する。すなわち、タイヤ軸線OTとリム軸線ORとがともに同一の線上にある場合には、図12Aに示すように、時刻T1にてタイヤTと下部リムBRとが当接するまで、各検出点Pの位置情報L(離間距離L)は、初期値L0から減少し続ける。時刻T1を経過した後は、タイヤTは下部リムBR上で保持されるため、この位置情報Lはおおむね一定の値L1´となる。
 一方で、タイヤ軸線OTとリム軸線ORとが同一の直線上にない場合(タイヤTと下部リムBRとが芯ずれを生じている場合)、図10と図11とに示すように、タイヤTが下部リムBRに乗り上げる。
 このとき、検出点Pごとの鉛直方向位置は、一例として図12B,図12Cに示すような変化を示す。まず、第一位置検出部40A側のビード部TbがリムR(下部リムBR)に当接する。続いて、支持部21の下降に伴ってこのビード部Tbが下部リムBRに乗り上げる。このとき、図12Bに示すように、第一位置検出部40Aで検出される位置情報Lは、時刻T1に到達する前に、一定の値L2´となる。一方で、図7Cに示すように、第二位置検出部40Bで検出される位置情報Lは、時刻T1を経過した後で、一定の値L3´となる。
 したがって、時刻T2に達した時点(支持部21が最下限まで下降した時点)では、第一位置検出部40Aに対応する検出点Pにおける位置情報Lの値はL2´となり、第二位置検出部40Bに対応する検出点Pにおける位置情報Lの値はL3´となる。値L2´は、上述の正常状態におけるL1´(図12A参照)よりも大きな値となる(L2´>L1´)。一方で、値L3´は、値L1´よりも小さな値となる(L3´<L1´)。
 差分算出部61では、上述した各値(位置情報Lとしての値L0,L2´,L3´)に基づいて、差分が算出される。より詳細には、第一位置検出部40Aにおける位置情報Lの差分(L2´-L0)と、第二位置検出部40Bにおける位置情報Lの差分(L3´-L0)とがそれぞれ算出される。
 差分算出部61によって算出された上記の差分は、次に判定部62に入力される。判定部62では、予め定められた基準値と、差分の値との比較が行われる。上述したように、検出点Pごと位置情報Lの差分量が基準値よりも小さい場合には、判定部62ではタイヤTの姿勢が正常であるものと判定される。具体的には、上記のL2´-L0、及びL3´-L0の各値と、基準値との比較が行われ、いずれの値も基準値よりも小さい場合には、タイヤTの姿勢が正常であるものと判定される。
 一方で、これら差分のうち、少なくとも一方の差分(4つの位置検出部40を設けた場合にあっては、少なくとも1つの差分)が基準値よりも大きい場合には、判定部62では、タイヤTに傾きが生じていると判定し、姿勢情報としての異常信号を生成する。異常信号は、上記の正常信号と同様に、不図示のインターフェースや、アラーム等を介して作業者に通知される。異常信号を察知した作業者は、タイヤ検査装置10を停止するとともに、異常な姿勢に陥ったタイヤTを除去するか、又は正常な姿勢に復旧する。
 以上により、タイヤTとリムRとの間に芯ずれが生じた場合におけるタイヤ検査装置10の動作、及びタイヤの姿勢検出方法の各工程が完了する。
 以上説明したように、本実施形態に係るタイヤ検査装置10では、位置検出部40が支持部21とは離間した位置で固定されていることから、支持部21の昇降(すなわち、タイヤTとリムRとの相対移動)に際して、タイヤT表面における検出点Pの位置は随時変化する。差分算出部62は、この位置情報Lの差分(変化)を算出する。判定部62では、リムRとタイヤTとの相対移動の前後における上記差分に基づいてタイヤTの姿勢を判定することができる。具体的には、検出点Pごとの位置情報Lの差分がいずれも互いに同等である場合、判定部62はタイヤTが正常な姿勢にあるものと判定して、姿勢情報としての正常信号を生成する。
 一方で、検出点Pごとの位置情報Lの差分が互いに同等ではない場合、リムRとタイヤTとの嵌合に際して、タイヤTに傾き等の姿勢の変化が生じたものと判断される。これにより、判定部62は、タイヤTが異常な姿勢にあるものと判定し、タイヤTの姿勢情報として異常信号を生成する。これにより、上記の第一実施形態と同様に、タイヤTとリムRとが不適切に嵌合される可能性を低減することができる。
 なお、上記の実施形態では、位置検出部40がいずれも床面上(タイヤTから見て下方の領域)、又は不図示のベースフレーム上に固定された例について説明した。しかしながら、位置検出部40の位置は上記に限定されず、例えば支持部21の上方の領域に位置検出部40を固定支持する構成を採ることも可能である。この場合、タイヤTの上側のサイドウォール上に各検出点Pが設定される。このような構成であっても、各検出点Pごとの位置の差分に基づいてタイヤTの姿勢を判定することが可能である。
 さらに、上記の実施形態では、一例としてタイヤ検査装置10におけるタイヤTの姿勢変化を検出する装置と方法について説明した。しかしながら、タイヤ検査装置10に替えて、タイヤ加硫機のPCI(Post Cure Inflator)など、タイヤTに対して上下方向からリムRを嵌合させる構造を有する装置、又は同様の工程を有する方法であれば、いかなる対象にも適用することが可能である。
 上述したタイヤ検査装置10、及びタイヤの姿勢検出方法は、タイヤTの製造工程等における品質検査に適用することができる。
1…搬入部 2…検査部 3…搬出部 10…タイヤ検査装置 21…支持部 22…支持部本体 23…ベルト部 24…ローラ部 31…上部スピンドル 32…下部スピンドル 40…位置検出部 50…昇降部 60…姿勢検出部 61…差分算出部 62…判定部 80…エアインフレータ BR…下部リム L…位置情報 OR…リム軸線 OT…タイヤ軸線 P…検出点 R…リム S…載置面 T…タイヤ Tb…ビード部 UR…上部リム

Claims (7)

  1.  タイヤの中心軸線が鉛直方向に沿うように該タイヤを支持する支持部と、
     前記タイヤとリムとを鉛直方向に相対移動させることで、前記リムを前記タイヤに嵌合させる昇降部と、
     前記タイヤの表面の鉛直方向の位置を少なくとも3つの検出点で検出する位置検出部と、
     該位置検出部が検出した位置情報に基づいて前記タイヤの姿勢情報を検出する姿勢検出部と、
    を備えるタイヤ検査装置。
  2.  前記位置検出部は、前記タイヤの前記中心軸線方向の一方側の領域に設けられることで、前記検出点と非接触の状態で前記位置情報を検出する請求項1に記載のタイヤ検査装置。
  3.  前記位置検出部は、鉛直方向から見て、前記タイヤの外周縁よりも内側であるとともに、前記リムの外周縁よりも外側に相当する位置に設けられ、
     前記検出点は、前記タイヤにおける前記中心軸線方向を向く面であるサイドウォール上に位置する請求項1又は2に記載のタイヤ検査装置。
  4.  前記位置検出部は、前記支持部と一体に設けられ、
     前記姿勢検出部は、
     前記タイヤと前記リムとの相対移動の前後における前記検出点ごとの前記位置情報の差分を算出する差分算出部と、
     前記検出点ごとの前記差分と予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定して前記姿勢情報としての正常信号を生成するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定して前記姿勢情報としての異常信号を生成する判定部と、
    を備える請求項1から3のいずれか一項に記載のタイヤ検査装置。
  5.  前記位置検出部は、前記支持部とは離間した別の位置で固定され、
     前記姿勢検出部は、
     前記タイヤと前記リムとの相対移動の前後における前記検出点ごとの前記位置情報の差分を算出する差分算出部と、
     前記検出点ごとの前記差分と予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定して前記姿勢情報としての正常信号を生成するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定して前記姿勢情報としての異常信号を生成する判定部と、
    を備える請求項1から3のいずれか一項に記載のタイヤ検査装置。
  6.  中心軸線が鉛直方向に沿うように支持部によって支持されたタイヤ、及び該タイヤに嵌合されるリムを鉛直方向に相対移動させる際の前記タイヤの姿勢の変化を、前記支持部に一体に設けられた位置検出部によって検出するタイヤの姿勢検出方法であって、
     前記相対移動中における前記タイヤと前記位置検出部との離間距離を、前記タイヤ上の少なくとも3つの検出点で検出することで複数の位置情報を検出するステップと、
     前記相対移動の前後における前記複数の位置情報の差分をそれぞれの前記検出点ごとに算出するステップと、
     前記検出点ごとの前記差分と、予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定するステップと、
    を含むタイヤの姿勢検出方法。
  7.  中心軸線が鉛直方向に沿うように支持部によって支持されたタイヤ、及び該タイヤに嵌合されるリムを鉛直方向に相対移動させる際の前記タイヤの姿勢の変化を、前記支持部と離間した別の位置に設けられた位置検出部によって検出するタイヤの姿勢検出方法であって、
     前記相対移動中における前記タイヤと前記位置検出部との離間距離を、前記タイヤ上の少なくとも3つの検出点で検出することで複数の位置情報を検出するステップと、
     前記相対移動の前後における前記複数の位置情報の差分をそれぞれの前記検出点ごとに算出するステップと、
     前記検出点ごとの前記差分と、予め定められた基準値とを比較し、前記差分が前記基準値よりも小さい場合には前記タイヤが正常な姿勢にあると判定するとともに、前記差分が前記基準値よりも大きい場合には前記タイヤが異常な姿勢にあると判定するステップと、
    を含むタイヤの姿勢検出方法。
PCT/JP2015/055117 2015-02-24 2015-02-24 タイヤ検査装置、及びタイヤの姿勢検出方法 WO2016135839A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016528917A JP6187889B2 (ja) 2015-02-24 2015-02-24 タイヤ検査装置、及びタイヤの姿勢検出方法
KR1020177021790A KR101967082B1 (ko) 2015-02-24 2015-02-24 타이어 검사 장치, 및 타이어의 자세 검출 방법
CN201580076691.6A CN107532970B (zh) 2015-02-24 2015-02-24 轮胎检查装置及轮胎的姿势检测方法
DE112015005876.1T DE112015005876B4 (de) 2015-02-24 2015-02-24 Reifenprüfvorrichtung und reifenstellungs-erfassungsverfahren
PCT/JP2015/055117 WO2016135839A1 (ja) 2015-02-24 2015-02-24 タイヤ検査装置、及びタイヤの姿勢検出方法
US15/108,576 US10067036B2 (en) 2015-02-24 2015-02-24 Tire inspection device and tire posture detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055117 WO2016135839A1 (ja) 2015-02-24 2015-02-24 タイヤ検査装置、及びタイヤの姿勢検出方法

Publications (1)

Publication Number Publication Date
WO2016135839A1 true WO2016135839A1 (ja) 2016-09-01

Family

ID=56788305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055117 WO2016135839A1 (ja) 2015-02-24 2015-02-24 タイヤ検査装置、及びタイヤの姿勢検出方法

Country Status (6)

Country Link
US (1) US10067036B2 (ja)
JP (1) JP6187889B2 (ja)
KR (1) KR101967082B1 (ja)
CN (1) CN107532970B (ja)
DE (1) DE112015005876B4 (ja)
WO (1) WO2016135839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007612T5 (de) 2017-06-06 2020-05-07 Mitsubishi Heavy Industries Machinery Systems, Ltd. Reifenfördervorrichtung, damit ausgestattetes Reifeninspektionssystem sowie Reifenförderverfahren

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009335A1 (de) * 2015-07-23 2017-01-26 Inmess Gmbh Verfahren zur Montage eines Kraftfahrzeugreifens auf eine Felge eines Rades
ITUA20163534A1 (it) * 2016-05-18 2017-11-18 Pirelli Metodo e linea di controllo di pneumatici per ruote di veicoli
CN110231183A (zh) * 2019-07-18 2019-09-13 软控股份有限公司 一种轮胎定位检测机构及轮胎定位检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211300A (ja) * 1986-03-10 1987-09-17 株式会社小松製作所 無人フオ−クリフトにおける荷取り制御装置
JPH07122895A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd 部品接合方法
JPH09297086A (ja) * 1996-05-02 1997-11-18 Kobe Steel Ltd タイヤ測定装置のタイヤ嵌込み異常防止方法およびそのタイヤ嵌込み異常防止装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534598A (en) * 1966-02-16 1970-10-20 Goodrich Co B F Uniformity machine
US6016695A (en) * 1997-01-24 2000-01-25 Illinois Tool Works Inc. Tire uniformity testing system
WO2004114209A2 (en) 2003-06-19 2004-12-29 Sarnoff Corporation Method and apparatus for providing reduced reference techniques for low frequency watermarking
US7240543B2 (en) * 2004-02-27 2007-07-10 Illinois Tool Works, Inc. Tire positioning sensor
KR100915492B1 (ko) 2004-05-14 2009-09-03 가부시키가이샤 고베 세이코쇼 타이어 시험기
JP5357081B2 (ja) * 2010-02-19 2013-12-04 三菱重工マシナリーテクノロジー株式会社 タイヤ試験機のタイヤインフレート方法
KR101977406B1 (ko) * 2010-03-10 2019-05-13 마이크로-포이즈 메져먼트 시스템스, 엘엘씨 비드폭의 조절이 가능한 타이어 테스팅 장치
JP5851848B2 (ja) 2012-01-12 2016-02-03 三菱重工マシナリーテクノロジー株式会社 タイヤ試験装置
JP5752068B2 (ja) * 2012-02-17 2015-07-22 三菱重工マシナリーテクノロジー株式会社 タイヤ試験装置
KR101542058B1 (ko) * 2012-06-01 2015-08-12 브리지스톤 반닥, 엘엘씨 시어로그래픽 이미징 기계 및 방법
JP5999809B2 (ja) * 2012-07-20 2016-09-28 富士機械製造株式会社 部品実装機
JP5783585B2 (ja) * 2012-08-06 2015-09-24 三菱重工マシナリーテクノロジー株式会社 タイヤ保持装置
JP5946424B2 (ja) * 2013-05-01 2016-07-06 株式会社神戸製鋼所 タイヤ試験機
JP6034759B2 (ja) * 2013-06-27 2016-11-30 株式会社神戸製鋼所 マーキング装置
CN104142211B (zh) * 2014-04-17 2016-07-06 浙江吉利控股集团有限公司 智能检测子午线轮胎动平衡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211300A (ja) * 1986-03-10 1987-09-17 株式会社小松製作所 無人フオ−クリフトにおける荷取り制御装置
JPH07122895A (ja) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd 部品接合方法
JPH09297086A (ja) * 1996-05-02 1997-11-18 Kobe Steel Ltd タイヤ測定装置のタイヤ嵌込み異常防止方法およびそのタイヤ嵌込み異常防止装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007612T5 (de) 2017-06-06 2020-05-07 Mitsubishi Heavy Industries Machinery Systems, Ltd. Reifenfördervorrichtung, damit ausgestattetes Reifeninspektionssystem sowie Reifenförderverfahren
US11485584B2 (en) 2017-06-06 2022-11-01 Mitsubishi Heavy Industries Machinery Systems, Ltd. Tire conveying apparatus, tire inspection system provided with same, and tire conveying method
DE112017007612B4 (de) 2017-06-06 2024-04-11 Mitsubishi Heavy Industries Machinery Systems, Ltd. Reifenfördervorrichtung, damit ausgestattetes Reifeninspektionssystem sowie Reifenförderverfahren

Also Published As

Publication number Publication date
KR20170102943A (ko) 2017-09-12
KR101967082B1 (ko) 2019-04-08
US10067036B2 (en) 2018-09-04
US20170003198A1 (en) 2017-01-05
DE112015005876T5 (de) 2017-09-28
JP6187889B2 (ja) 2017-08-30
DE112015005876B4 (de) 2021-09-02
CN107532970B (zh) 2019-09-06
JPWO2016135839A1 (ja) 2017-04-27
CN107532970A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6005276B2 (ja) タイヤ搬送方法、タイヤ搬送固定装置、および、タイヤ検査システム
JP6187889B2 (ja) タイヤ検査装置、及びタイヤの姿勢検出方法
US7240543B2 (en) Tire positioning sensor
KR101176308B1 (ko) 타이어 시험기용 타이어 팽창 방법
JP4242846B2 (ja) タイヤの搬送・保持装置
CN107532971B (zh) 用于在制造车辆车轮的轮胎的工艺和装备中控制轮胎的工艺和设备
EP2856075B1 (en) Shearographic imaging machine and method
JP5916954B2 (ja) タイヤ保持装置、タイヤ試験システム
JP5955476B1 (ja) タイヤ検査システム
JPWO2018225150A1 (ja) タイヤ搬送装置、これを備えるタイヤ試験システム、及びタイヤ搬送方法
TWI699518B (zh) 輪胎試驗機
CN111902708A (zh) 轮胎试验机中的轮辋尺寸的管理方法
EP2030811A1 (en) Method and device for aligning tire with supporting rims
TWI555653B (zh) 輪胎檢查裝置及輪胎姿勢偵測方法
TWI692626B (zh) 輪胎試驗機
TWI660163B (zh) 輪胎搬運裝置、具備其的輪胎試驗系統及輪胎搬運方法
JP2007320216A (ja) 支持リムとタイヤとの芯ずれ検出方法および装置
KR101824141B1 (ko) 그린타이어 검사장치
JP6834496B2 (ja) センタリング機構およびタイヤ運搬装置
CN111376507A (zh) 轮胎检查方法及轮胎检查装置
JP2000346756A (ja) タイヤのビード幅測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016528917

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108576

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005876

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177021790

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15883137

Country of ref document: EP

Kind code of ref document: A1