WO2016129333A1 - 金属製ばねの製造方法及び製造装置 - Google Patents
金属製ばねの製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2016129333A1 WO2016129333A1 PCT/JP2016/051374 JP2016051374W WO2016129333A1 WO 2016129333 A1 WO2016129333 A1 WO 2016129333A1 JP 2016051374 W JP2016051374 W JP 2016051374W WO 2016129333 A1 WO2016129333 A1 WO 2016129333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitriding
- furnace
- temperature
- predetermined
- metal spring
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
Definitions
- the present invention relates to a manufacturing method and a manufacturing apparatus for a metal spring such as a valve spring in which a nitride layer is formed.
- nitrides and carbonitrides are generated at grain boundaries near the surface of the metal body.
- Patent Document 1 as a method of manufacturing a valve spring, nitriding is performed in a nitriding gas atmosphere in a first concentration range, and then a nitriding gas in a second concentration range having a lower concentration than that. A method of nitriding in an atmosphere is disclosed.
- Patent Document 1 when the concentration of nitriding gas is high (nitriding potential is high), the nitrogen concentration on the valve spring surface is increased, and a compound layer of iron nitride is formed on the valve spring surface. If the concentration of the nitriding gas is reduced after the iron nitride compound layer is formed on the surface in this way, the formation of a new iron nitride compound layer is suppressed on the surface of the valve spring, and the existing nitride There is an explanation that the iron compound layer dissolves and nitrogen diffuses into the valve spring.
- Patent Document 2 listed below discloses a method for preventing or reducing the formation of a compound layer during nitriding by performing fluorination on the metal object to be treated before nitriding. ing.
- the present invention has been made in view of such a conventional technique, and provides a manufacturing method and a manufacturing apparatus for manufacturing a metal spring in which a deep nitrided layer is formed while effectively preventing the generation of a compound layer. Objective.
- the present invention provides a method for manufacturing a metal spring having a nitride layer formed on the surface thereof, wherein the metal spring body formed in a predetermined spring shape is disposed in an airtight atmosphere furnace.
- a temperature raising step for raising the furnace temperature to a predetermined nitriding temperature in a state of being maintained, and maintaining the furnace temperature at the predetermined nitriding temperature, so that the nitriding potential in the furnace becomes a predetermined high level value.
- a second nitriding step for maintaining the nitriding potential in the furnace at the low level value, and the high level value of the nitriding potential in the first nitriding step continues the first nitriding step for a predetermined time or more. Then, the metal wire spring main body has a concentration that causes the formation of a compound layer, and the processing time of the first nitriding step is shorter than the predetermined time.
- the metal spring manufacturing method of the present invention since the nitriding process is performed with a high concentration of nitriding potential, a deep nitride layer can be formed as uniformly as possible on the entire surface of the metal spring body. Furthermore, since the nitriding treatment with a high concentration of nitriding potential is limited by time, it is possible to reliably prevent the formation of the compound layer on the metal spring body.
- the processing time of the first nitriding step is 80% or more of the predetermined time that causes the formation of the compound layer.
- the temperature raising step is performed while supplying ammonia gas into the furnace.
- the method for manufacturing a metal spring according to the present invention may include a pretreatment step of performing shot blasting on the metal spring body before the temperature raising step.
- the method for manufacturing a metal spring according to the present invention may include a post-processing step of performing shot blasting or shot peening on the metal spring body after the second nitriding step.
- the present invention can switch between an airtight atmosphere furnace, a heating means for heating the inside of the atmosphere furnace, and supply and stop of supply of ammonia gas to the atmosphere furnace, and the supply amount can be adjusted at the time of supply.
- Ammonia gas supply means, hydrogen gas supply means to the atmosphere furnace can be switched between supply and stop of supply, hydrogen gas supply means capable of adjusting the supply amount during supply, and supply and supply of nitrogen gas to the atmosphere furnace
- Nitrogen gas supply means that can switch the stop and further adjust the supply amount at the time of supply, a nitriding potential sensor that detects the nitriding potential in the atmosphere furnace, a temperature sensor that detects the temperature in the atmosphere furnace,
- a metal spring manufacturing apparatus including a control device is provided.
- the metal spring manufacturing apparatus of the present invention since the nitriding process is performed with a high concentration of nitriding potential, a deep nitride layer can be formed as uniformly as possible on the entire surface of the metal spring body. Furthermore, since the nitriding treatment with a high concentration of nitriding potential is limited by time, it is possible to reliably prevent the formation of the compound layer on the metal spring body.
- a control mode preset based on a preliminary test is stored in the control device.
- the furnace temperature detected by the temperature sensor rises to a predetermined nitriding temperature set in advance according to a preliminary test in a state where the metal spring body as the object to be processed is arranged in the furnace.
- the ammonia gas supply means is controlled to stop to stop the supply of ammonia gas into the furnace, and the hydrogen gas supply means and the nitrogen gas so as to decrease to a predetermined low level value set in advance according to A nitriding potential lowering step of supplying hydrogen gas and nitrogen gas into the furnace at a ratio of 3: 1 by supplying the supply means and maintaining the furnace temperature detected by the temperature sensor at the predetermined nitriding temperature.
- the ammonia gas supply means, the hydrogen gas supply means, and the nitrogen gas are controlled so that the nitriding potential in the furnace based on the nitriding potential sensor is maintained at the low level value while controlling the heating means.
- a second nitriding step for controlling the operation of the supply means.
- the high level value of the nitriding potential is a concentration that causes the formation of a compound layer in the metal wire spring body when nitriding at the predetermined nitriding temperature is continued for a predetermined time or more.
- the processing time of the process is shorter than the predetermined time, and the low level value of the nitriding potential is a concentration that does not generate a compound layer in the metal spring body even when nitriding is performed at the predetermined nitriding temperature.
- the metal spring manufacturing apparatus may further include gas discharge means for switching between discharge and stop of the gas in the atmospheric furnace, and a pressure sensor for detecting the pressure in the furnace.
- the control device controls the operation of the gas discharge means so that the pressure in the furnace does not become negative based on the detection signal of the pressure sensor.
- FIG. 1 is a schematic view of an example of a manufacturing apparatus that performs a metal spring manufacturing method according to an embodiment of the present invention.
- FIG. 2 is a table showing the relationship between the hydrogen concentration, ammonia concentration and nitrogen concentration of the furnace gas and the nitriding potential in the furnace, and shows the relationship when the hydrogen concentration is 0% to 39%.
- FIG. 3 is the same table as FIG. 2 and shows the relationship when the hydrogen concentration is 40% to 75%.
- FIG. 4 is a time chart of the furnace atmosphere control in the metal spring manufacturing method according to one embodiment of the present invention.
- FIG. 5 is an example of a Railer state diagram showing the relationship between the nitriding potential and the nitriding temperature affecting the nitriding product phase.
- FIG. 1 the schematic diagram of the said manufacturing apparatus 100 is shown.
- the manufacturing apparatus 100 switches between an airtight atmosphere furnace 10, heating means 20 such as a heater for heating the inside of the furnace 10, and supply and stop of supply of ammonia gas to the furnace 10.
- heating means 20 such as a heater for heating the inside of the furnace 10
- ammonia gas supply means 30 capable of adjusting the supply amount at the time of supply
- the hydrogen gas supply means capable of switching supply and stop of supply of hydrogen gas to the furnace 10 and further capable of adjusting the supply amount at the time of supply.
- the supply of nitrogen gas to the furnace 10 and the supply stop thereof can be switched, and the nitrogen gas supply means 50 capable of adjusting the supply amount during supply, and the nitriding potential for detecting the nitriding potential Kn in the furnace 10
- the sensor 60, the temperature sensor 61 which detects the temperature in the said furnace 10, and the control apparatus 90 are provided.
- the ammonia gas supply means 30 includes an ammonia gas supply line 31 for supplying ammonia gas to the furnace 10, and ammonia inserted in the ammonia gas supply line 31.
- Gas control means 35 As shown in FIG. 1, in the present embodiment, the ammonia gas supply means 30 includes an ammonia gas supply line 31 for supplying ammonia gas to the furnace 10, and ammonia inserted in the ammonia gas supply line 31. Gas control means 35.
- the ammonia gas supply line 31 includes a first ammonia gas supply line 31a to which a large amount of ammonia gas is supplied and a second ammonia gas to which a small amount of ammonia gas is supplied.
- An ammonia gas supply line 31b is included, and the ammonia gas control means 35 includes first and second ammonia gas electromagnetic valves 35a and 35b for turning on and off the first and second ammonia gas supply lines 31a and 31b, respectively. Contains.
- the ammonia gas supply line 31 may have three or more ammonia gas supply lines having different flow rates.
- ammonia gas control means 35 an electric valve (not shown) capable of continuously and freely adjusting the valve opening degree may be employed instead of the electromagnetic valves 35a and 35b.
- the ammonia gas supply means 30 has a single ammonia gas supply line to which a large amount of ammonia gas is supplied, and an ammonia gas motor-operated valve inserted in the ammonia gas supply line. .
- the hydrogen gas supply means 40 includes a hydrogen gas supply line 41 that supplies hydrogen gas to the furnace 10, and an electromagnetic that is interposed in the hydrogen gas supply line 41. And a hydrogen gas control means 45 such as a valve or an electric valve.
- the nitrogen gas supply means 50 includes a nitrogen gas supply line 51 that supplies nitrogen gas to the furnace 10, and an electromagnetic that is interposed in the nitrogen gas supply line 51.
- a nitrogen gas control means 55 such as a valve or an electric valve.
- the control device 90 stores a calculation unit including a control calculation unit that executes calculation processing based on signals input from the various sensors and the like, a control program and control conditions, and is generated during calculation by the calculation unit. And a storage unit for temporarily storing data to be processed.
- control device 90 is configured such that the ammonia gas supply means (the ammonia gas control means 35), the hydrogen gas supply means (the hydrogen gas) based on input signals from the various sensors and the control program. It controls the operation of the control means 45), the nitrogen gas supply means (the nitrogen gas control means 55) and the heating means 20.
- the nitriding potential Kn is an index indicating the nitriding power of the furnace atmosphere and is expressed by the following equation.
- Kn P NH3 / P H2 3/2 (In the formula, P NH3 represents the partial pressure of ammonia (NH 3 ), and P H2 represents the partial pressure of hydrogen (H 2 )).
- This nitriding potential Kn can be calculated by detecting the hydrogen concentration. That is, the ammonia gas (NH 3 ) supplied into the furnace is thermally decomposed into nitrogen (N 2 ) and hydrogen (H 2 ) based on the following formula. NH 3 ⁇ (1/2) N 2 + (3/2) H 2
- the decomposition rate of ammonia gas when the unit amount of ammonia gas is introduced into the furnace is ⁇
- the amount of undecomposed ammonia is 1- ⁇
- the amount of generated nitrogen is ⁇ / 2
- the amount of generated hydrogen is 3 ⁇ / 2
- the total amount of these gases is 1 + ⁇ .
- ammonia partial pressure P NH3 (1- ⁇ ) / (1 + ⁇ ) (1)
- P N2 ( ⁇ / 2) / (1 + ⁇ ) (2)
- P H2 (3 ⁇ / 2) / (1 + ⁇ ) (3)
- a hydrogen sensor can be preferably used as the nitriding potential sensor 60.
- a measuring tube having hydrogen molecule permeability for example, HydroNit-sonde manufactured by Ipson, Germany
- the hydrogen sensor can be directly attached to the furnace body.
- a heat conduction sensor for example, manufactured by Stange, Germany: SE-H2
- FIGS. 2 and 3 show the relationship between the nitriding potential Kn, the hydrogen concentration, the ammonia concentration, and the nitrogen concentration obtained based on the relational expression. If the nitriding potential Kn necessary for forming the desired nitrided layer is determined, the hydrogen partial pressure PH2 to be set as the control target value in the atmospheric furnace is determined from the relational expression or the tables shown in FIGS. Can be sought.
- the configuration in which ammonia gas is supplied into the furnace 10 through the ammonia gas supply line 31 includes a so-called gas soft nitriding treatment mode in addition to a mode in which only ammonia gas is supplied. It is.
- the gas soft nitriding treatment includes an aspect of supplying an ammonia / carbonic acid mixed gas obtained by adding carbon dioxide gas to ammonia gas, and an aspect of supplying an ammonia / acetylene mixed gas obtained by adding acetylene gas to ammonia gas.
- the amount of carbonic acid gas is about 3 to 5% as compared with the ammonia gas. 3 relationship table) can be used.
- the relational expression (the relational tables in FIGS. 2 and 3) can be used.
- the manufacturing apparatus 100 includes a gas discharge means 70 that switches between discharge and stop of gas in the furnace 10, and a pressure sensor 62 that detects the pressure in the furnace 10. Provided.
- control device 90 controls the operation of the gas discharge means 70 so that the pressure in the furnace 10 does not become negative based on the detection signal of the pressure sensor 62.
- the gas discharge means 70 includes a discharge line 71 for discharging the gas in the furnace 10, and a discharge electromagnetic valve 75 interposed in the discharge line 71.
- the discharge electromagnetic valve 75 is controlled by the control device 90.
- the manufacturing apparatus 100 further includes a cracking furnace 80 connected to the downstream end of the discharge line 71, and nitriding treatment in the furnace 10 is performed.
- the remaining ammonia is decomposed by the cracking furnace 80, burned in the combustion furnace 85 together with the combustible gas component in the exhaust gas, and then released to the atmosphere.
- FIG. 4 the time chart of the furnace atmosphere control in the metal spring manufacturing method which concerns on this Embodiment is shown.
- the metal spring manufacturing method according to the present embodiment includes a temperature raising step, a first nitriding step, a nitriding potential lowering step, and a second nitriding step.
- the furnace temperature is raised to a predetermined nitriding temperature (for example, 450 ° C.) while supplying small amounts of ammonia gas and nitrogen gas. Prevents oxidation of a metal spring body.
- a predetermined nitriding temperature for example, 450 ° C.
- the furnace temperature is maintained at the predetermined nitriding temperature.
- ammonia gas is supplied so that the nitriding potential Kn in the furnace 10 has a high level value that causes generation of a compound layer on the surface of the metal wire spring body.
- the predetermined nitriding temperature and the high level value of the nitriding potential are set in advance using a railer state diagram shown in FIG. 5, and are stored in the control device 90 as control conditions.
- the Railer phase diagram shown in FIG. 5 shows the relationship between the nitriding potential Kn and the treatment temperature on the nitriding phase, and the target phase when the gas nitriding treatment (or soft nitriding treatment) is performed on the steel part. It can be used to obtain a nitriding potential Kn necessary for forming a nitride layer having a composition.
- the processing time of the first nitriding step is set in advance as follows based on data obtained by a preliminary test, and is stored in the control device 90 as a control condition. That is, in the nitriding condition in the first nitriding step, that is, in the nitriding condition in which the nitriding potential Kn is the high level value and the furnace temperature is the nitriding temperature, the surface of the metal spring body is formed. The predetermined time at which the compound layer begins to occur is confirmed in advance by a preliminary test.
- the processing time of the first nitriding step is set to a time shorter than the predetermined time, and is stored in the control device 90.
- the processing time of the first nitriding step is 60% or more of the predetermined time, more preferably 80% or more of the predetermined time.
- the nitriding potential lowering step stops the supply of ammonia gas into the furnace 10 while maintaining the furnace temperature at the predetermined nitriding temperature, and hydrogen gas and nitrogen gas into the furnace 10 at 3: 1.
- the nitriding potential Kn in the furnace 10 is lowered to a low level value at which no compound layer is formed in the metal spring body.
- the low level value of the nitriding potential Kn is set in advance based on the railer state diagram and / or a preliminary test, and is stored in the control device 90 as a control condition.
- the controller 90 operates the heating means 20 so that the furnace temperature obtained based on the temperature sensor 61 is maintained at the predetermined nitriding temperature, and based on a signal from the nitriding potential sensor 60. Operation control of the hydrogen gas solenoid valve 45 and the nitrogen gas solenoid valve 55 is performed so that the obtained nitriding potential Kn in the furnace 10 is lowered to the low level value.
- the furnace temperature is maintained at the predetermined nitriding temperature and the nitriding potential Kn in the furnace 10 is maintained at the low level value for a predetermined time.
- control device 90 operates the heating means 20 so as to maintain the furnace temperature obtained based on the temperature sensor 61 at the predetermined nitriding temperature, and outputs a signal from the nitriding potential sensor 60.
- the ammonia gas control means 35, the hydrogen gas control means 45, and the nitrogen gas control means 55 are controlled so that the nitriding potential Kn in the furnace 10 obtained based on the above is maintained at the low level value.
- the low level value of the nitriding potential Kn in the furnace 10 can be maintained by ON / OFF control of the ammonia gas control means 35, or the control of increasing the nitriding potential by supplying ammonia gas and the nitrogen gas. It is also possible to perform the combination with a decrease control of the nitriding potential by supplying hydrogen gas (supplying hydrogen gas and nitrogen gas at a ratio of 3: 1).
- the processing time of the second nitriding step is also set in advance, and the control device 90 executes the second nitriding step over the processing time stored as the control condition.
- the following effects can be obtained. That is, the surface of the metal spring body before nitriding is not uniform with respect to the dirt state and the oxidized state. Therefore, when nitriding is performed on the object to be processed (metal spring body) in such a state with a low nitriding potential, nitriding variation occurs on the surface of the metal spring body, and as a result, the metal spring Durability cannot be improved sufficiently.
- the first nitriding treatment (the first nitriding step) on the metal spring body causes the formation of a compound layer on the surface of the metal spring body. This is done with a high level of nitriding potential.
- the metal spring main body can be nitrided as uniformly and deeply as possible.
- the formation of the compound layer on the surface of the metal spring body that is the object to be processed is prevented by controlling the treatment time. Therefore, by performing nitriding with a high level nitriding potential, a deep nitride layer is effectively formed on the metal spring body, and the formation of the compound layer on the metal spring body can be easily and reliably controlled. Can be prevented.
- the nitriding potential Kn and the furnace temperature in the first nitriding step are constant, and the nitriding treatment is performed with a high concentration nitriding potential by controlling the nitriding treatment time. While performing, the formation of the compound layer is prevented. Therefore, the formation of the compound layer can be surely prevented by simple control while forming a deep nitride layer by performing nitriding with a high level nitriding potential.
- supply control of ammonia gas into the furnace 10 can be performed with the high level value as a target value.
- the processing time of the first nitriding step can be shortened as much as possible.
- the manufacturing method according to the present embodiment includes an idling process (standby process) before the temperature raising process.
- the idling process is a process for acclimatizing the metal spring body to the atmosphere in the furnace.
- the metal spring manufacturing method may preferably include a pretreatment step of performing shot blasting on the metal spring main body before the temperature raising step.
- a pretreatment step of performing shot blasting on the metal spring main body before the temperature raising step By providing the pretreatment process, it is possible to stabilize the nitriding process in the subsequent first and second nitriding processes.
- the metal spring manufacturing method may preferably include a post-processing step of performing shot blasting or shot peening on the metal spring body after the second nitriding step.
- a post-processing step of performing shot blasting or shot peening on the metal spring body after the second nitriding step.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Springs (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
本発明は、所定窒化処理温度まで上昇させる昇温工程と、窒化処理温度を維持しつつ窒化ポテンシャルが高レベル値となるようにアンモニアガスを供給する第1窒化工程と、窒化処理温度を維持しつつ、アンモニアガスの供給を停止し且つ水素ガス及び窒素ガスを3:1の割合で供給して、窒化ポテンシャルを金属製ばね本体に化合物層が生成しない低レベル値まで低下させる窒化ポテンシャル低下工程と、窒化処理温度に維持し且つ窒化ポテンシャルを低レベル値に維持する第2窒化工程とを含む。窒化ポテンシャルの前記高レベル値は、第1窒化工程を所定時間以上に亘って継続すると金属線ばね本体に化合物層の生成を招くものとされ、第1窒化工程の処理時間は前記所定時間より短い時間とされる。
Description
本発明は、窒化層が形成された弁ばね等の金属製ばねの製造方法及び製造装置に関する。
鋼材等の金属体の機械的強度を向上させる方法として、処理対象金属体に対して窒化処理を行うことが広く利用されている。
この窒化処理においては、処理対象金属体の表面に窒化層を形成しつつ化合物層の発生を防止乃至は低減することが重要となる。
即ち、処理対象金属体の表面に化合物層が生成されてしまうと、前記金属体表面近傍の粒界に窒化物や炭窒化物が生じことになる。
従って、一旦、窒化処理によって化合物層が生成されると、たとえ化合物層を除去したとしても、粒界に生じた窒化物や炭窒化物は残ったままとなり、処理対象金属体の機械的強度を十分には向上できない。
特に、弁ばね等の繰り返し荷重を受ける部材が処理対象金属体とされる場合には、耐久性の観点で問題となる。
特に、弁ばね等の繰り返し荷重を受ける部材が処理対象金属体とされる場合には、耐久性の観点で問題となる。
この点に関し、下記特許文献1には、弁ばねの製造方法として、第1の濃度範囲の窒化ガス雰囲気で窒化処理を施し、その後、それよりも低濃度である第2の濃度範囲の窒化ガス雰囲気で窒化処理を施す方法が開示されている。
詳しくは、前記特許文献1には、窒化ガスの濃度が高い(窒化ポテンシャルが高い)場合には、弁ばね表面の窒素濃度が高まり、弁ばね表面に窒化鉄の化合物層が形成され、一旦、このように表面に窒化鉄の化合物層が形成された後に、窒化ガスの濃度を低濃度とすると、弁ばねの表面においては新規な窒化鉄の化合物層の形成が抑制されると共に、既存の窒化鉄の化合物層が溶解して窒素が弁ばねの内部に拡散する旨の説明がなされている。
しかしながら、実際の窒化処理において、一旦、弁ばね表面に窒化鉄の化合物層が形成された後に、この化合物層を低濃度の窒化ガス雰囲気での窒化処理によって溶解させることは困難である。
また、下記特許文献2には、窒化処理の前に、処理対象金属体に対してフッ化処理を行うことにより、窒化処理時に化合物層が生成されることを防止乃至は低減する方法が開示されている。
しかしながら、この方法では、窒化処理とは別にフッ化処理が必要であり、処理コストの高騰を招くと共に、処理に相当な時間を要するという問題がある。
本発明は、斯かる従来技術に鑑みなされたものであり、化合物層の発生を有効に防止しつつ、深い窒化層が形成された金属製ばねを製造する為の製造方法及び製造装置の提供を目的とする。
本発明は、前記目的を達成するために、表面に窒化層が形成された金属製ばねの製造方法であって、所定のばね形状に形成された金属製ばね本体を気密性雰囲気炉内に配置させた状態で炉内温度を所定窒化処理温度まで上昇させる昇温工程と、炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内の窒化ポテンシャルが所定の高レベル値となるようにアンモニアガスを供給する第1窒化工程と、炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内へのアンモニアガスの供給を停止し且つ前記炉内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉内の窒化ポテンシャルを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる窒化ポテンシャル低下工程と、炉内温度を前記所定窒化処理温度に保持し且つ前記炉内の窒化ポテンシャルを前記低レベル値に保持する第2窒化工程とを含み、前記第1窒化工程における窒化ポテンシャルの前記高レベル値は、当該第1窒化工程を所定時間以上に亘って継続すると前記金属線ばね本体に化合物層の生成を招く濃度とされており、前記第1窒化工程の処理時間は前記所定時間より短い時間とされている金属製ばねの製造方法を提供する。
本発明に係る金属製ばねの製造方法によれば、高濃度の窒化ポテンシャルで窒化処理を行っているので深い窒化層を金属製ばね本体の表面全体に可及的に均一に形成することができ、さらに、高濃度の窒化ポテンシャルでの窒化処理を時間によって制限しているので金属製ばね本体に化合物層が生成することを確実に防止することができる。
好ましくは、前記第1窒化工程の処理時間は、化合物層の生成を招く前記所定時間の80%以上とされる。
好ましくは、前記昇温工程は、前記炉内にアンモニアガスを供給しつつ行われる。
好ましくは、本発明に係る前記金属製ばねの製造方法は、前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含み得る。
好ましくは、本発明に係る前記金属製ばねの製造方法は、前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含み得る。
また、本発明は、気密性雰囲気炉と、前記雰囲気炉内を加熱する加熱手段と、前記雰囲気炉へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段と、前記雰囲気炉への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段と、前記雰囲気炉への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段と、前記雰囲気炉内の窒化ポテンシャルを検出する窒化ポテンシャルセンサと、前記雰囲気炉内の温度を検出する温度センサと、制御装置とを備えた金属製ばねの製造装置を提供する。
本発明に係る金属製ばねの製造装置によれば、高濃度の窒化ポテンシャルで窒化処理を行っているので深い窒化層を金属製ばね本体の表面全体に可及的に均一に形成することができ、さらに、高濃度の窒化ポテンシャルでの窒化処理を時間によって制限しているので金属製ばね本体に化合物層が生成することを確実に防止することができる。
本発明に係る前記製造装置において、前記制御装置には、事前試験に基づき予め設定された制御モードが記憶される。
前記制御モードは、被処理体である金属製ばね本体が前記炉内に配置された状態で前記温度センサによって検出される炉内温度が事前試験に応じて予め設定された所定窒化処理温度まで上昇するように前記加熱手段を制御する昇温工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の高レベル値となるように前記アンモニアガス供給手段を制御する第1窒化工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の低レベル値まで低下するように、前記アンモニアガス供給手段を停止制御させて前記炉内へのアンモニアガスの供給を停止させ且つ前記水素ガス供給手段及び前記窒素ガス供給手段を供給制御させて前記炉内に水素ガス及び窒素ガスを3:1の割合で供給させる窒化ポテンシャル低下工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが前記低レベル値に保持されるように、前記アンモニアガス供給手段、前記水素ガス供給手段及び前記窒素ガス供給手段の作動制御を行う第2窒化工程とを含むものとされる。
前記制御モードは、被処理体である金属製ばね本体が前記炉内に配置された状態で前記温度センサによって検出される炉内温度が事前試験に応じて予め設定された所定窒化処理温度まで上昇するように前記加熱手段を制御する昇温工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の高レベル値となるように前記アンモニアガス供給手段を制御する第1窒化工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の低レベル値まで低下するように、前記アンモニアガス供給手段を停止制御させて前記炉内へのアンモニアガスの供給を停止させ且つ前記水素ガス供給手段及び前記窒素ガス供給手段を供給制御させて前記炉内に水素ガス及び窒素ガスを3:1の割合で供給させる窒化ポテンシャル低下工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが前記低レベル値に保持されるように、前記アンモニアガス供給手段、前記水素ガス供給手段及び前記窒素ガス供給手段の作動制御を行う第2窒化工程とを含むものとされる。
ここで、窒化ポテンシャルの前記高レベル値は、前記所定窒化処理温度での窒化処理を所定時間以上に亘って継続すると前記金属線ばね本体に化合物層の生成を招く濃度とされ、前記第1窒化工程の処理時間は前記所定時間より短い時間とされ、窒化ポテンシャルの前記低レベル値は、前記所定窒化処理温度での窒化処理を行っても前記金属製ばね本体に化合物層を生成させない濃度とされる。
好ましくは、本発明に係る金属製ばねの製造装置は、さらに、前記雰囲気炉のガスの排出及び排出停止を切り換えるガス排出手段と、前記炉内の圧力を検出する圧力センサとを備え得る。
この場合、前記制御装置は、前記圧力センサの検出信号に基づき前記炉内の圧力が負圧とならないように前記ガス排出手段の作動制御を行うものとされる。
この場合、前記制御装置は、前記圧力センサの検出信号に基づき前記炉内の圧力が負圧とならないように前記ガス排出手段の作動制御を行うものとされる。
以下、本発明に係る金属製ばねの製造方法の一実施の形態について、添付図面を参照しつつ説明する。
まず、本実施の形態に係る金属製ばねの製造方法を実施する際に用いられる製造装置の一例100について説明する。
図1に、前記製造装置100の模式図を示す。
図1に、前記製造装置100の模式図を示す。
図1に示すように、前記製造装置100は、気密性雰囲気炉10と、前記炉10内を加熱するヒーター等の加熱手段20と、前記炉10へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段30と、前記炉10への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段40と、前記炉10への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段50と、前記炉10内の窒化ポテンシャルKnを検出する窒化ポテンシャルセンサ60と、前記炉10内の温度を検出する温度センサ61と、制御装置90とを備えている。
図1に示すように、本実施の形態においては、前記アンモニアガス供給手段30は、前記炉10にアンモニアガスを供給するアンモニアガス供給ライン31と、前記アンモニアガス供給ライン31に介挿されたアンモニアガス制御手段35とを有している。
本実施の形態においては、図1に示すように、前記アンモニアガス供給ライン31は、大流量のアンモニアガスが供給される第1アンモニアガス供給ライン31a及び小流量のアンモニアガスが供給される第2アンモニアガス供給ライン31bを含んでおり、前記アンモニアガス制御手段35は、前記第1及び第2アンモニアガス供給ライン31a、31bをそれぞれON/OFFする第1及び第2アンモニアガス電磁弁35a、35bを含んでいる。
当然ながら、前記アンモニアガス供給ライン31が流量の異なる3本以上のアンモニアガス供給ラインを有するように構成することも可能である。
当然ながら、前記アンモニアガス供給ライン31が流量の異なる3本以上のアンモニアガス供給ラインを有するように構成することも可能である。
また、前記アンモニアガス制御手段35として、前記電磁弁35a、35bに代えて、弁開度を連続的に且つ自由に調整可能な電動弁(図示せず)を採用することも可能である。
この場合には、前記アンモニアガス供給手段30は、大流量のアンモニアガスが供給される単一のアンモニアガス供給ラインと、前記アンモニアガス供給ラインに介挿されるアンモニアガス電動弁とを有するものとなる。
この場合には、前記アンモニアガス供給手段30は、大流量のアンモニアガスが供給される単一のアンモニアガス供給ラインと、前記アンモニアガス供給ラインに介挿されるアンモニアガス電動弁とを有するものとなる。
図1に示すように、本実施の形態においては、前記水素ガス供給手段40は、前記炉10に水素ガスを供給する水素ガス供給ライン41と、前記水素ガス供給ライン41に介挿された電磁弁又は電動弁等の水素ガス制御手段45とを有している。
図1に示すように、本実施の形態においては、前記窒素ガス供給手段50は、前記炉10に窒素ガスを供給する窒素ガス供給ライン51と、前記窒素ガス供給ライン51に介挿された電磁弁又は電動弁等の窒素ガス制御手段55とを有している。
前記制御装置90は、前記各種センサ等から入力される信号に基づいて演算処理を実行する制御演算手段を含む演算部と、制御プログラム及び制御条件を記憶すると共に、前記演算部による演算中に生成されるデータを一時的に保持する記憶部とを備えている。
本実施の形態においては、前記制御装置90は、前記各種センサからの入力信号及び前記制御プログラムに基づき、前記アンモニアガス供給手段(前記アンモニアガス制御手段35)、前記水素ガス供給手段(前記水素ガス制御手段45)、前記窒素ガス供給手段(前記窒素ガス制御手段55)及び前記加熱手段20の作動制御を司る。
ここで、窒化ポテンシャルKnについて説明する。
窒化ポテンシャルKnとは、炉内雰囲気の窒化力を示す指標であって、次式によって表される。
Kn=PNH3/PH2 3/2
(式中のPNH3 はアンモニア(NH3)の分圧、PH2は水素(H2)の分圧を示す)
窒化ポテンシャルKnとは、炉内雰囲気の窒化力を示す指標であって、次式によって表される。
Kn=PNH3/PH2 3/2
(式中のPNH3 はアンモニア(NH3)の分圧、PH2は水素(H2)の分圧を示す)
この窒化ポテンシャルKnは水素濃度を検出することによって算出され得る。
即ち、炉内に供給されたアンモニアガス(NH3)は次式に基づいて、窒素(N2)と水素(H2)とに熱分解する。
NH3 → (1/2)N2 + (3/2)H2
即ち、炉内に供給されたアンモニアガス(NH3)は次式に基づいて、窒素(N2)と水素(H2)とに熱分解する。
NH3 → (1/2)N2 + (3/2)H2
ここで、アンモニアガスの単位量が炉内に導入された際の当該アンモニアガスの分解率をαとすれば、未分解アンモニア量は1-α、発生窒素量はα/2、発生水素量は3α/2となり、これらガスの総量は1+αとなる。
従って、アンモニア分圧PNH3、窒素分圧PN2、水素分圧PH2は、次式によって表される。
PNH3=(1-α)/(1+α) ・・・ (1)
PN2 =(α/2)/(1+α) ・・・ (2)
PH2 =(3α/2)/(1+α) ・・・ (3)
PNH3=(1-α)/(1+α) ・・・ (1)
PN2 =(α/2)/(1+α) ・・・ (2)
PH2 =(3α/2)/(1+α) ・・・ (3)
前記式(1)~(3)から、PNH3及びPN2は、それぞれ、
PNH3=(3-4PH2)/3
PN2 =PH2/3
となり、前述の窒化ポテンシャルKnは、
Kn=PNH3/PH2 3/2
=(3-4PH2)/3PH2 3/2
=(1-4PH2/3)/PH2 3/2
となる。
PNH3=(3-4PH2)/3
PN2 =PH2/3
となり、前述の窒化ポテンシャルKnは、
Kn=PNH3/PH2 3/2
=(3-4PH2)/3PH2 3/2
=(1-4PH2/3)/PH2 3/2
となる。
従って、前記雰囲気炉内の水素分圧PH2を検出すれば、炉内雰囲気の窒化ポテンシャルKnを求めることができる。
この点から、前記窒化ポテンシャルセンサ60として、水素センサを好適に用いることができる。
前記水素センサとしては、例えば、水素分子透過性を備えた測定管によるもの(例えば、独Ipson社製:HydroNit-sonde)を用いることができるが、炉体に直接装着することができ、炉内の水素濃度を連続的に測定できる点から、熱伝導式センサー(例えば、独Stange社製:SE-H2)が好適に利用され得る。
前記水素センサとしては、例えば、水素分子透過性を備えた測定管によるもの(例えば、独Ipson社製:HydroNit-sonde)を用いることができるが、炉体に直接装着することができ、炉内の水素濃度を連続的に測定できる点から、熱伝導式センサー(例えば、独Stange社製:SE-H2)が好適に利用され得る。
参考として、図2及び図3に、前記関係式に基づき得られる、窒化ポテンシャルKnと水素濃度、アンモニア濃度及び窒素濃度との関係を示す。
所望の窒化層を形成するために必要な窒化ポテンシャルKnが定まれば、前記関係式又は図2及び図3に示す表から、前記雰囲気炉内において制御目標値とすべき水素分圧PH2を求めることができる。
所望の窒化層を形成するために必要な窒化ポテンシャルKnが定まれば、前記関係式又は図2及び図3に示す表から、前記雰囲気炉内において制御目標値とすべき水素分圧PH2を求めることができる。
なお、本発明において、前記アンモニアガス供給ライン31を介して前記炉10内にアンモニアガスを供給する構成には、アンモニアガスだけを供給する態様に加えて、所謂、ガス軟窒化処理の態様も含まれる。前記ガス軟窒化処理には、アンモニアガスに炭酸ガスを加えたアンモニア・炭酸混合ガスを供給する態様や、アンモニアガスにアセチレンガスを加えたアンモニア・アセチレン混合ガスを供給する態様が含まれる。
アンモニア・炭酸混合ガスを供給する態様においても、炭酸ガスの量はアンモニアガスに比して3~5%程度であるため、前記炭酸ガスの存在を無視して、前記関係式(図2及び図3の関係表)を利用することができる。同様に、アンモニア・アセチレン混合ガスを供給する態様においても、前記関係式(図2及び図3の関係表)を利用することができる。
好ましくは、図1に示すように、前記製造装置100には、前記炉10内のガスの排出及び排出停止を切り換えるガス排出手段70と、前記炉10内の圧力を検出する圧力センサ62とが備えられる。
この場合、前記制御装置90は、前記圧力センサ62の検出信号に基づき前記炉10内の圧力が負圧とならないように前記ガス排出手段70の作動制御を行う。
本実施の形態においては、図1に示すように、前記ガス排出手段70は、前記炉10内のガスを排出させる排出ライン71と、前記排出ライン71に介挿された排出電磁弁75とを有しており、前記排出電磁弁75が前記制御装置90によって作動制御される。
本実施の形態においては、図1に示すように、前記製造装置100は、さらに、前記排出ライン71の下流端に接続された分解炉80を有しており、前記炉10内での窒化処理での残余のアンモニアが前記分解炉80によって分解され、排出ガス中の可燃性ガス成分と共に燃焼炉85で燃焼された上で、大気に放出される。
ここで、本実施の形態に係る金属製ばね製造方法について説明する。
図4に、本実施の形態に係る金属製ばね製造方法における炉内雰囲気制御のタイムチャートを示す。
図4に、本実施の形態に係る金属製ばね製造方法における炉内雰囲気制御のタイムチャートを示す。
図1に示すように、本実施の形態に係る金属製ばね製造方法は、昇温工程と、第1窒化工程と、窒化ポテンシャル低下工程と、第2窒化工程とを含んでいる。
前記昇温工程は、小量のアンモニアガス及び窒素ガスを供給しつつ、炉内温度を所定の窒化処理温度(例えば450℃)まで上昇させるものであり、これにより、炉内及び被処理体である金属製ばね本体の酸化を防止する。
なお、後続する前記第1窒化工程、前記窒化ポテンシャル低下工程及び前記第2窒化工程では炉内温度は前記所定窒化処理温度に維持される。
なお、後続する前記第1窒化工程、前記窒化ポテンシャル低下工程及び前記第2窒化工程では炉内温度は前記所定窒化処理温度に維持される。
前記第1窒化工程は、前記炉10内の窒化ポテンシャルKnが前記金属線ばね本体の表面に化合物層の生成を招く高レベル値となるように、アンモニアガスを供給する。
ここで、所定窒化処理温度及び窒化ポテンシャルの高レベル値は、図5に示すレーラー状態図を利用して予め設定され、前記制御装置90に制御条件として記憶される。
即ち、図5に示すレーラー状態図は、窒化生成相に及ぼす窒化ポテンシャルKnと処理温度の関係を示しており、鋼部品にガス窒化処理(あるいは軟窒化処理)を施す際に、目的とする相組成の窒化層を形成するために必要な窒化ポテンシャルKnを求めるのに利用することができる。
なお、図5に示すレーラー状態図は、純鉄から成るワーク表面の窒化ポテンシャルKnと炉内雰囲気の窒化ポテンシャルKnとが一致する平衡状態をベースに作成されているので、現実の処理状況の非平衡状態、及び/又は、被処理体である金属製ばね本体の材質(鋼種)によっては、多少の誤差が生じることが考えられる。
したがって、現実の処理状態、金属製ばね本体の材質、及び/又は、軟窒化処理時における炭酸ガス又はアセチレンガスの添加量が比較的多い場合などには、必要に応じて、事前試験によって補正し、予め必要な窒化ポテンシャルKn及び窒化処理温度を求めておくことが望ましい。
前記第1窒化工程の処理時間は、事前試験によって得られるデータに基づいて予め以下のように設定され、前記制御装置90に制御条件として記憶される。
即ち、前記第1窒化工程における窒化条件、つまり、窒化ポテンシャルKnが前記高レベル値で且つ炉内温度が前記窒化処理温度とされた窒化条件での窒化処理において、前記金属製ばね本体の表面に化合物層が生じ始める所定時間を、予め、事前試験によって確認する。
即ち、前記第1窒化工程における窒化条件、つまり、窒化ポテンシャルKnが前記高レベル値で且つ炉内温度が前記窒化処理温度とされた窒化条件での窒化処理において、前記金属製ばね本体の表面に化合物層が生じ始める所定時間を、予め、事前試験によって確認する。
その上で、前記第1窒化工程の処理時間を前記所定時間より短い時間に設定し、前記制御装置90に記憶する。
好ましくは、前記第1窒化工程の処理時間は、前記所定時間の60%以上、より好ましくは前記所定時間の80%以上とされる。
好ましくは、前記第1窒化工程の処理時間は、前記所定時間の60%以上、より好ましくは前記所定時間の80%以上とされる。
前記窒化ポテンシャル低下工程は、炉内温度を前記所定窒化処理温度に維持しつつ、前記炉10内へのアンモニアガスの供給を停止し且つ前記炉10内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉10内の窒化ポテンシャルKnを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる。
詳しくは、前記窒化ポテンシャルKnの前記低レベル値は、前記レーラー状態図、及び/又は、事前試験に基づいて、予め設定され、前記制御装置90に制御条件として記憶される。
前記制御装置90は、前記温度センサ61に基づいて得られる炉内温度が前記所定窒化処理温度に維持されるように前記加熱手段20を作動させつつ、前記窒化ポテンシャルセンサ60からの信号に基づいて得られる前記炉10内の窒化ポテンシャルKnが前記低レベル値まで低下するように前記水素ガス電磁弁45及び前記窒素ガス電磁弁55の作動制御を行う。
前記第2窒化工程は、炉内温度を前記所定窒化処理温度に保持し且つ前記炉10内の窒化ポテンシャルKnを前記低レベル値に保持した状態を所定時間維持する。
即ち、前記制御装置90は、前記温度センサ61に基づいて得られる炉内温度が前記所定窒化処理温度に維持されるように前記加熱手段20を作動させつつ、前記窒化ポテンシャルセンサ60からの信号に基づいて得られる前記炉10内の窒化ポテンシャルKnが前記低レベル値に維持されるように前記アンモニアガス制御手段35、前記水素ガス制御手段45及び前記窒素ガス制御手段55の作動制御を行う。
なお、前記炉10内の窒化ポテンシャルKnの前記低レベル値の維持は、前記アンモニアガス制御手段35のON/OFF制御によって行うこともできるし、アンモニアガスの供給による窒化ポテンシャルの上昇制御と窒素ガス及び水素ガスの供給(水素ガス及び窒素ガスの3:1の割合での供給)による窒化ポテンシャルの下降制御との組み合わせによって行うことも可能である。
前記第2窒化工程の処理時間も予め設定されており、前記制御装置90は、制御条件として記憶されている処理時間に亘って前記第2窒化工程を実行する。
かかる構成の金属製ばね製造方法によれば、以下の効果を得ることができる。
即ち、窒化処理前の金属製ばね本体の表面は、汚れ状態や酸化状態に関し均一とは言えない。
従って、このような状態の処理対象物(金属製ばね本体)に対して低濃度の窒化ポテンシャルで窒化処理を行うと、金属製ばね本体の表面に窒化のばらつきが生じ、結果として、金属製ばねの耐久性を十分には向上できない。
即ち、窒化処理前の金属製ばね本体の表面は、汚れ状態や酸化状態に関し均一とは言えない。
従って、このような状態の処理対象物(金属製ばね本体)に対して低濃度の窒化ポテンシャルで窒化処理を行うと、金属製ばね本体の表面に窒化のばらつきが生じ、結果として、金属製ばねの耐久性を十分には向上できない。
これに対し、本実施の形態に係る前記製造方法によれば、金属製ばね本体に対する最初の窒化処理(前記第1窒化工程)は、前記金属製ばね本体の表面に化合物層の生成を招くような高レベル値の窒化ポテンシャルで行われている。
従って、窒化処理前の状態において金属製ばね本体の表面が汚れ状態や酸化状態に関し均一では無かったとしても、金属製ばね本体への窒化を可及的に均一且つ深く行うことができる。
さらに、前記第1窒化工程においては、処理時間を制御することによって、処理対象物である金属製ばね本体の表面に化合物層が生成することを防止している。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって金属製ばね本体に深い窒化層を有効に形成しつつ、金属製ばね本体に化合物層が生成することを、簡単な制御で且つ確実に防止することができる。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって金属製ばね本体に深い窒化層を有効に形成しつつ、金属製ばね本体に化合物層が生成することを、簡単な制御で且つ確実に防止することができる。
即ち、理論上においては、窒化ポテンシャルKnの濃度の増減制御を繰り返し行うことによっても、金属製ばね本体の表面に深い窒化層を得ることが可能である。
しかしながら、窒化ポテンシャルKnの濃度の増減制御を応答性良く且つ正確に行うことは、現実的には非常に困難である。
これに対し、本実施の形態においては、前記第1窒化工程における窒化ポテンシャルKn及び炉内温度は一定とされており、窒化処理処理時間を制御することによって、高濃度の窒化ポテンシャルで窒化処理を行いつつ化合物層の生成を防止している。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって深い窒化層を形成しつつ、化合物層の生成を簡単な制御で確実に防止することができる。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって深い窒化層を形成しつつ、化合物層の生成を簡単な制御で確実に防止することができる。
好ましくは、前記昇温工程においても、前記高レベル値を目標値として前記炉10内に対するアンモニアガスの供給制御を行うことができる。
斯かる構成によれば、第1窒化工程の処理時間を可及的に短縮化させることができる。
斯かる構成によれば、第1窒化工程の処理時間を可及的に短縮化させることができる。
本実施の形態に係る製造方法は、図4に示すように、前記昇温工程の前に、アイドリング工程(待機工程)を有している。
アイドリング工程は、前記金属製ばね本体を炉内の雰囲気に慣らす為の処理である。
アイドリング工程は、前記金属製ばね本体を炉内の雰囲気に慣らす為の処理である。
前記金属製ばね製造方法は、好ましくは、前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含むことができる。
前記前処理工程を備えることにより、後続する前記第1及び第2窒化工程での窒化処理の安定化を図ることができる。
前記前処理工程を備えることにより、後続する前記第1及び第2窒化工程での窒化処理の安定化を図ることができる。
また、前記金属製ばね製造方法は、好ましくは、前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含むことができる。
前記後処理工程を備えることにより、金属製ばねの耐久性を向上させることができる。
前記後処理工程を備えることにより、金属製ばねの耐久性を向上させることができる。
10 気密性雰囲気炉
20 加熱手段
30 アンモニアガス供給手段
40 水素ガス供給手段
50 窒素ガス供給手段
60 窒化ポテンシャルセンサ
61 温度センサ
62 圧力センサ
70 ガス排出手段
90 制御装置
100 金属製ばね製造装置
20 加熱手段
30 アンモニアガス供給手段
40 水素ガス供給手段
50 窒素ガス供給手段
60 窒化ポテンシャルセンサ
61 温度センサ
62 圧力センサ
70 ガス排出手段
90 制御装置
100 金属製ばね製造装置
Claims (7)
- 表面に窒化層が形成された金属製ばねの製造方法であって、
所定のばね形状に形成された金属製ばね本体を気密性雰囲気炉内に配置させた状態で炉内温度を所定窒化処理温度まで上昇させる昇温工程と、
炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内の窒化ポテンシャルが所定の高レベル値となるようにアンモニアガスを供給する第1窒化工程と、
炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内へのアンモニアガスの供給を停止し且つ前記炉内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉内の窒化ポテンシャルを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる窒化ポテンシャル低下工程と、
炉内温度を前記所定窒化処理温度に保持し且つ前記炉内の窒化ポテンシャルを前記低レベル値に保持する第2窒化工程とを含み、
前記第1窒化工程における窒化ポテンシャルの前記高レベル値は、当該第1窒化工程を所定時間以上に亘って継続すると前記金属線ばね本体に化合物層の生成を招く濃度とされており、前記第1窒化工程の処理時間は前記所定時間より短い時間とされていることを特徴とする金属製ばねの製造方法。 - 前記第1窒化工程の処理時間は、化合物層の生成を招く前記所定時間の80%以上とされていることを特徴とする請求項1に記載の金属製ばねの製造方法。
- 前記昇温工程は、前記炉内にアンモニアガスを供給しつつ行われることを特徴とする請求項1又は2に記載の金属製ばねの製造方法。
- 前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含むことを特徴とする請求項1から3の何れかに記載の金属製ばねの製造方法。
- 前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含むことを特徴とする請求項1から4の何れかに記載の金属製ばねの製造方法。
- 気密性雰囲気炉と、前記雰囲気炉内を加熱する加熱手段と、前記雰囲気炉へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段と、前記雰囲気炉への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段と、前記雰囲気炉への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段と、前記雰囲気炉内の窒化ポテンシャルを検出する窒化ポテンシャルセンサと、前記雰囲気炉内の温度を検出する温度センサと、制御装置とを備え、
前記制御装置には、事前試験に基づき予め設定された制御モードが記憶されており、
前記制御モードは、被処理体である金属製ばね本体が前記炉内に配置された状態で前記温度センサによって検出される炉内温度が事前試験に応じて予め設定された所定窒化処理温度まで上昇するように前記加熱手段を制御する昇温工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の高レベル値となるように前記アンモニアガス供給手段を制御する第1窒化工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の低レベル値まで低下するように、前記アンモニアガス供給手段を停止制御させて前記炉内へのアンモニアガスの供給を停止させ且つ前記水素ガス供給手段及び前記窒素ガス供給手段を供給制御させて前記炉内に水素ガス及び窒素ガスを3:1の割合で供給させる窒化ポテンシャル低下工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが前記低レベル値に保持されるように、前記アンモニアガス供給手段、前記水素ガス供給手段及び前記窒素ガス供給手段の作動制御を行う第2窒化工程とを含み、
窒化ポテンシャルの前記高レベル値は、前記所定窒化処理温度での窒化処理を所定時間以上に亘って継続すると前記金属線ばね本体に化合物層の生成を招くものとされており、
前記第1窒化工程の処理時間は前記所定時間より短い時間とされ、
窒化ポテンシャルの前記低レベル値は、前記所定窒化処理温度での窒化処理を行っても前記金属製ばね本体に化合物層を生成させないものとされていることを特徴とする金属製ばねの製造装置。 - 前記雰囲気炉のガスの排出及び排出停止を切り換えるガス排出手段と、
前記炉内の圧力を検出する圧力センサとを備え、
前記制御装置は、前記圧力センサの検出信号に基づき前記炉内の圧力が負圧とならないように前記ガス排出手段の作動制御を行うことを特徴とする請求項6に記載の金属製ばねの製造装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-024398 | 2015-02-10 | ||
JP2015024398A JP6552209B2 (ja) | 2015-02-10 | 2015-02-10 | 金属製ばねの製造方法及び製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129333A1 true WO2016129333A1 (ja) | 2016-08-18 |
Family
ID=56614536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051374 WO2016129333A1 (ja) | 2015-02-10 | 2016-01-19 | 金属製ばねの製造方法及び製造装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6552209B2 (ja) |
WO (1) | WO2016129333A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019039049A (ja) * | 2017-08-28 | 2019-03-14 | エア・ウォーターNv株式会社 | 耐疲労性に優れたばね、その製造方法 |
WO2020036233A1 (ja) * | 2018-08-17 | 2020-02-20 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
WO2021070938A1 (ja) * | 2019-10-11 | 2021-04-15 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
JPWO2020090999A1 (ja) * | 2018-11-02 | 2021-12-02 | パーカー熱処理工業株式会社 | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019157163A (ja) * | 2018-03-08 | 2019-09-19 | Ntn株式会社 | ワークの熱処理方法及び熱処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028588A (ja) * | 2004-07-16 | 2006-02-02 | Toyota Motor Corp | 窒化処理方法 |
JP2007031770A (ja) * | 2005-07-26 | 2007-02-08 | Honda Motor Co Ltd | 鋼製ばね部材 |
JP2013249524A (ja) * | 2012-06-01 | 2013-12-12 | Nippon Techno:Kk | ガス窒化及びガス軟窒化方法 |
JP2014001459A (ja) * | 2013-08-27 | 2014-01-09 | Oriental Engineering Co Ltd | 表面硬化処理装置及び表面硬化処理方法 |
-
2015
- 2015-02-10 JP JP2015024398A patent/JP6552209B2/ja active Active
-
2016
- 2016-01-19 WO PCT/JP2016/051374 patent/WO2016129333A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028588A (ja) * | 2004-07-16 | 2006-02-02 | Toyota Motor Corp | 窒化処理方法 |
JP2007031770A (ja) * | 2005-07-26 | 2007-02-08 | Honda Motor Co Ltd | 鋼製ばね部材 |
JP2013249524A (ja) * | 2012-06-01 | 2013-12-12 | Nippon Techno:Kk | ガス窒化及びガス軟窒化方法 |
JP2014001459A (ja) * | 2013-08-27 | 2014-01-09 | Oriental Engineering Co Ltd | 表面硬化処理装置及び表面硬化処理方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019039049A (ja) * | 2017-08-28 | 2019-03-14 | エア・ウォーターNv株式会社 | 耐疲労性に優れたばね、その製造方法 |
WO2020036233A1 (ja) * | 2018-08-17 | 2020-02-20 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
JP2020026569A (ja) * | 2018-08-17 | 2020-02-20 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
EP3839089A4 (en) * | 2018-08-17 | 2021-12-08 | Parker Netsushori Kogyo Co., Ltd. | SURFACE HARDENING TREATMENT DEVICE AND SURFACE HARDENING TREATMENT METHOD |
US11781209B2 (en) | 2018-08-17 | 2023-10-10 | Parker Netsushori Kogyo Co., Ltd. | Surface hardening treatment device and surface hardening treatment method |
JPWO2020090999A1 (ja) * | 2018-11-02 | 2021-12-02 | パーカー熱処理工業株式会社 | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 |
WO2021070938A1 (ja) * | 2019-10-11 | 2021-04-15 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
EP4043606A4 (en) * | 2019-10-11 | 2023-06-14 | Parker Netsushori Kogyo Co., Ltd. | SURFACE HARDENING APPARATUS AND SURFACE HARDENING METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP6552209B2 (ja) | 2019-07-31 |
JP2016148068A (ja) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016129333A1 (ja) | 金属製ばねの製造方法及び製造装置 | |
JP5883727B2 (ja) | ガス窒化及びガス軟窒化方法 | |
CN114127325B (zh) | 氮化设备及氮化方法 | |
US20080149226A1 (en) | Method of optimizing an oxygen free heat treating process | |
JP6812494B2 (ja) | 金属製ばねの製造方法及び製造装置 | |
CN114150258A (zh) | 一种碳钢氮碳共渗表面疏松改善方法 | |
US20080149225A1 (en) | Method for oxygen free carburization in atmospheric pressure furnaces | |
JP2017082275A (ja) | 窒化処理装置、および、窒化処理方法 | |
KR102255936B1 (ko) | 질화 처리 방법 | |
JP2017197822A (ja) | 表面硬化処理方法および表面硬化処理装置 | |
JP5233258B2 (ja) | 炭素濃度制御された鋼表面を有する鋼材の製造方法及び製造装置 | |
CN109923219B (zh) | 用于对由高合金钢制成的工件进行热处理的方法 | |
US20080149227A1 (en) | Method for oxygen free carburization in atmospheric pressure furnaces | |
JP2008260994A (ja) | 浸炭製品の製造方法 | |
JP5683416B2 (ja) | 真空加熱炉の絶縁抵抗改善方法 | |
JP2009299122A (ja) | 浸窒焼入れ方法、浸窒焼入れ用ヒーター、および浸窒焼入れ装置 | |
JP6935326B2 (ja) | ガス浸炭方法 | |
JP6357042B2 (ja) | ガス軟窒化方法およびガス軟窒化装置 | |
JP2000303160A (ja) | 浸炭処理方法 | |
JP2016148091A (ja) | 真空浸炭方法及び真空浸炭装置 | |
JP2010024535A (ja) | 鋼の浸炭処理方法 | |
JP6724201B2 (ja) | 窒化処理装置、および、窒化処理方法 | |
JP2018028113A (ja) | 鋼材の製造方法 | |
EP1966396A2 (en) | Method for oxygen free carburization in atmospheric pressure furnaces | |
KR102495177B1 (ko) | 연질화 처리 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748978 Country of ref document: EP Kind code of ref document: A1 |