WO2021070938A1 - 表面硬化処理装置及び表面硬化処理方法 - Google Patents

表面硬化処理装置及び表面硬化処理方法 Download PDF

Info

Publication number
WO2021070938A1
WO2021070938A1 PCT/JP2020/038315 JP2020038315W WO2021070938A1 WO 2021070938 A1 WO2021070938 A1 WO 2021070938A1 JP 2020038315 W JP2020038315 W JP 2020038315W WO 2021070938 A1 WO2021070938 A1 WO 2021070938A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
furnace
nitriding potential
ammonia
nitriding
Prior art date
Application number
PCT/JP2020/038315
Other languages
English (en)
French (fr)
Inventor
泰 平岡
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Priority to JP2021551722A priority Critical patent/JPWO2021070938A1/ja
Priority to CN202080069395.4A priority patent/CN114829668A/zh
Priority to US17/641,165 priority patent/US20220341021A1/en
Priority to KR1020227011252A priority patent/KR20220057601A/ko
Priority to MX2022002518A priority patent/MX2022002518A/es
Priority to EP20873990.4A priority patent/EP4043606A4/en
Publication of WO2021070938A1 publication Critical patent/WO2021070938A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a surface hardening treatment apparatus and a surface hardening treatment method for performing surface hardening treatment on a metal object to be treated, such as nitriding, soft nitriding, and immersion quenching.
  • nitriding treatment which is a low strain treatment.
  • a gas method As a method of nitriding treatment, there are a gas method, a salt bath method, a plasma method and the like.
  • the gas method is comprehensively superior when quality, environmental friendliness, mass productivity, etc. are taken into consideration.
  • the strain due to carburizing, carburizing nitriding treatment or induction hardening accompanied by quenching of mechanical parts is improved by using nitriding treatment (gas nitriding treatment) by the gas method.
  • the soft nitriding treatment by the gas method accompanied by carburizing is also known as a treatment similar to the gas nitriding treatment.
  • Gas nitriding is a process in which only nitrogen is permeated and diffused into the product to be treated to harden the surface.
  • ammonia gas alone a mixed gas of ammonia gas and nitrogen gas, ammonia gas and ammonia decomposition gas (composed of 75% hydrogen and 25% nitrogen, also called AX gas), or ammonia gas and ammonia.
  • a mixed gas of decomposition gas and nitrogen gas is introduced into the processing furnace to perform surface hardening treatment.
  • the gas nitrocarburizing treatment is a process in which carbon is secondarily permeated and diffused together with nitrogen in the product to be treated to harden the surface.
  • the gas soft nitride treatment there are a plurality of gases such as a mixed gas of ammonia gas, nitrogen gas and carbon dioxide gas (CO 2 ), or a mixed gas of ammonia gas, nitrogen gas, carbon dioxide gas and carbon dioxide gas (CO).
  • a type of gas introduced into the furnace is introduced into the processing furnace to perform surface hardening treatment.
  • the basis of atmosphere control in gas nitriding treatment and gas nitrocarburizing treatment is to control the nitriding potential (K N ) in the furnace.
  • K N nitriding potential
  • the volume fraction of the ⁇ 'phase (Fe 4 N) and the ⁇ phase (Fe 2-3 N) in the compound layer formed on the surface of the steel material can be controlled. It is possible to obtain a wide range of nitriding qualities, such as realizing a process in which the compound layer is not formed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-21169
  • bending fatigue strength and wear resistance are improved by selecting the ⁇ 'phase and thickening the film thereof, and further enhancing the functionality of mechanical parts is realized. ..
  • the soft nitriding treatment is used to positively utilize the hard ⁇ phase, for example, in order to improve wear resistance (“Iron Nitriding and Soft Nitriding”, 2nd Edition (2013), 81- Page 86 (Dietary Toke et al., Agne Technology Center: Non-Patent Document 1).
  • the atmosphere gas in the furnace for measuring the hydrogen concentration in the furnace or the ammonia concentration in the furnace is measured in order to control the atmosphere in the processing furnace in which the object to be treated is arranged inside.
  • a concentration measurement sensor is installed.
  • the nitriding potential in the furnace is calculated from the measured value of the atmospheric gas concentration measurement sensor in the furnace, and the flow rate of each introduced gas is controlled by comparing with the target (set) nitriding potential ("heat treatment", Vol. 55, No. 1, pp. 7-11 (Yasu Hiraoka, Yoichi Watanabe): Non-Patent Document 2).
  • Patent Document 2 the first control is a control mode in which the total amount of gas introduced into the furnace is controlled while keeping the flow rate ratio of the gas introduced into the furnace constant, so that the flow rate ratio of the gas introduced into the furnace changes.
  • the second control is a control mode in which the amount of gas introduced into the furnace is individually controlled, and a device that enables both to be executed (at the same time, only one is selectively performed) is disclosed (Patent No. 5629436). : Patent Document 2).
  • Patent Document 2 Patent Document 2 only discloses one specific example of the nitriding treatment for which the first control is effective (described in paragraphs 096 and 0999 of Patent No.
  • the flow rate ratio of the plurality of types of gas introduced into the furnace is changed while keeping the total amount of the gas introduced into the furnace constant.
  • the amount of the plurality of types of gas introduced into the furnace is individually controlled.
  • the nitriding potential K N is defined by the following equation (2).
  • K N P NH3 / P H2 3/2 ⁇ ⁇ ⁇ (2)
  • P NH3 furnace ammonia partial pressure
  • the P H2 furnace hydrogen partial pressure.
  • the nitriding potential K N is well known as an index showing the nitriding capacity of the atmosphere in the gas nitriding furnace.
  • the reaction of formula (3) mainly occurs, and the nitriding reaction of formula (1) can be almost ignored quantitatively. Therefore, if the concentration of ammonia in the furnace consumed in the reaction of the formula (3) or the concentration of the hydrogen gas generated in the reaction of the formula (3) is known, the nitriding potential can be calculated. That is, since the generated hydrogen and nitrogen are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia, the hydrogen concentration in the furnace can be known by measuring the ammonia concentration in the furnace, and the nitriding potential can be calculated. Can be done. Alternatively, if the hydrogen concentration in the furnace is measured, the ammonia concentration in the furnace can be known, and the nitriding potential can also be calculated.
  • Ammonia gas flowing into the gas nitriding furnace is discharged to the outside of the furnace after circulating in the furnace. That is, in the gas nitriding process, fresh (new) ammonia gas is constantly flowed into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged to the outside of the furnace (extruded by the supply pressure). ..
  • the flow rate of the ammonia gas introduced into the furnace is small, the gas residence time in the furnace becomes long, so that the amount of ammonia gas decomposed increases and the nitrogen gas generated by the decomposition reaction + The amount of hydrogen gas increases.
  • the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas discharged to the outside of the furnace without being decomposed increases, and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases. To do.
  • 1.5 s / (1 + s) on the right side corresponds to the value measured by the hydrogen sensor, and the degree of decomposition s of ammonia gas introduced into the furnace from the measured value. Can be calculated.
  • the ammonia concentration in the furnace corresponding to (1-s) / (1 + s) on the right side can also be calculated. That is, the hydrogen concentration in the furnace and the ammonia concentration in the furnace can be known only from the measured values of the hydrogen sensor. Therefore, the nitriding potential can be calculated.
  • the nitriding potential K N can be controlled even when a plurality of gases introduced into the furnace are used.
  • the gas composition in the furnace on the right side is undecomposed ammonia gas, nitrogen and hydrogen generated at a ratio of 1: 3 by decomposition of ammonia gas, and nitrogen gas on the left side as it is introduced (does not decompose in the furnace). ) And.
  • the only unknown is the decomposition degree s of ammonia at the hydrogen concentration in the furnace on the right side, that is, 1.5 sx / (1 + sx). Therefore, as in the case of the equation (4), the degree of decomposition s of the ammonia gas introduced into the furnace can be calculated from the measured value of the hydrogen sensor, and thus the ammonia concentration in the furnace can also be calculated. Therefore, the nitriding potential can be calculated.
  • the hydrogen concentration in the furnace and the ammonia concentration in the furnace have two variables: the degree of decomposition s of the ammonia gas introduced into the furnace and the introduction ratio x of the ammonia gas. Include as. Generally, since a mass flow controller (MFC) is used as a device for controlling the gas flow rate, the introduction ratio x of ammonia gas can be continuously read as a digital signal based on the flow rate value. Therefore, the nitriding potential can be calculated by combining the introduction ratio x and the measured value of the hydrogen sensor based on the equation (5).
  • MFC mass flow controller
  • the carbon source is carbon monoxide gas.
  • the carbon monoxide gas may be introduced directly into the processing furnace, or may be generated from carbon dioxide gas (carbon dioxide) in the processing furnace.
  • carbon dioxide carbon dioxide
  • the equilibrium reaction represented by the following formula (8) is established.
  • the amount of hydrogen consumed by the reactions of the formulas (8) and (9) correlates with the amount of oxygen in the processing furnace. Therefore, instead of immediately applying the measured value of the hydrogen sensor to 1.5sx / (1 + sx) in the equation (5), the measured value of the hydrogen sensor is (1.5sx-w) / (1 + sx). It is preferable to calculate w based on the measured value of the oxygen sensor, and then obtain the degree of decomposition s of ammonia.
  • the present inventor has made extensive studies on the case of gas nitrocarburizing treatment in which a plurality of types of gases introduced into the furnace, including ammonia gas and ammonia decomposition gas, are introduced into the processing furnace, and the nitriding potential in the processing furnace is targeted.
  • a plurality of types of gases introduced into the furnace including ammonia gas and ammonia decomposition gas
  • the nitriding potential in the processing furnace is targeted.
  • An object of the present invention is a surface hardening treatment device and a surface capable of realizing practical nitriding potential control in gas nitrocarburizing treatment in which a plurality of types of in-furnace-introduced gases including ammonia gas and ammonia decomposition gas are introduced into a processing furnace. It is to provide a curing treatment method.
  • a plurality of types of in-combustion introduction gas including ammonia gas and ammonia decomposition gas are introduced into a processing furnace, and gas nitrocarburizing treatment is performed as a surface hardening treatment of a product to be treated arranged in the processing furnace. It is a surface hardening treatment device to be performed, and is based on an in-core atmospheric gas concentration detecting device for detecting the hydrogen concentration or the ammonia concentration in the processing furnace and the hydrogen concentration or the ammonia concentration detected by the in-core atmospheric gas concentration detecting device.
  • the ammonia decomposition gas is calculated according to the in-core nitriding potential calculation device that calculates the nitriding potential in the processing furnace and the nitriding potential and the target nitriding potential in the processing furnace that are calculated by the in-core nitriding potential calculation device.
  • the nitriding potential in the processing furnace is set to the target nitriding potential by changing the amount of each introduced gas other than the ammonia decomposition gas among the plurality of types of introduced gases in the furnace while keeping the amount of nitriding introduced constant.
  • a gas introduction amount control device that can be brought closer, It is a surface hardening treatment apparatus provided with.
  • a relatively wide nitriding potential is obtained by changing the amount of each gas introduced into the furnace other than the ammonia-decomposed gas among a plurality of types of gases introduced into the furnace while keeping the amount of the gas decomposed with ammonia constant. It was confirmed that control (particularly, relatively low nitriding potential control) can be realized.
  • the amount of ammonia decomposition gas introduced that is maintained constant is determined in advance by conducting preliminary experiments before operation. This is because, in reality, the degree of thermal decomposition of ammonia gas is also affected by the environment inside the furnace used.
  • the surface hardening treatment apparatus of the present invention preferably further includes an in-core oxygen concentration detecting apparatus for detecting the oxygen concentration in the processing furnace, and the in-core nitride potential calculation apparatus is provided by the in-core atmospheric gas concentration detecting apparatus.
  • the nitriding potential in the processing furnace is calculated based on the detected hydrogen concentration or ammonia concentration and the oxygen concentration detected by the in-core oxygen concentration detecting apparatus.
  • x does not have to be exactly 0.5, and if it is in the range of about 0.4 to 0.6, nitriding potential control sufficient for practical use can be realized.
  • the plurality of types of gas introduced into the furnace include carbon dioxide gas as a carburizing gas.
  • the plurality of types of gas introduced into the furnace include carbon monoxide gas as a carburizing gas.
  • the plurality of types of gas introduced into the furnace include carbon dioxide gas and nitrogen gas, or carbon monoxide gas and nitrogen gas.
  • the present invention can also be recognized as a surface hardening treatment method. That is, in the present invention, gas soft nitriding is performed as a surface hardening treatment of a product to be treated, which is introduced into a processing furnace by introducing a plurality of types of in-core gas including ammonia gas and ammonia decomposition gas into the processing furnace.
  • a surface hardening treatment method for performing treatment wherein the hydrogen concentration or ammonia concentration in the processing furnace is detected, and the hydrogen concentration or ammonia concentration detected by the atmosphere gas concentration detection step in the furnace.
  • the in-core nitriding potential calculation step of calculating the nitriding potential in the processing furnace based on the above, and the nitriding potential and the target nitriding potential in the processing furnace calculated by the in-core nitriding potential calculation step, the ammonia.
  • the target nitriding potential in the processing furnace is set by changing the introduction amount of each of the plurality of types of introduction gas into the furnace other than the ammonia decomposition gas while keeping the introduction amount of the decomposition gas constant. It is a surface hardening treatment method characterized by including a gas introduction amount control step that approaches the potential.
  • a plurality of types of in-combustor introduction gas including ammonia gas, ammonia decomposition gas and carbonitriding gas (for example, carbon dioxide gas or carbon monoxide gas) are introduced into the processing furnace and into the processing furnace.
  • a surface hardening treatment device that performs gas nitrocarburizing treatment as a surface hardening treatment of the object to be arranged, which is an in-core atmosphere gas concentration detecting device for detecting the hydrogen concentration or the ammonia concentration in the processing furnace, and the inside of the furnace.
  • An in-core nitriding potential calculation device that calculates the nitriding potential in the processing furnace based on the hydrogen concentration or ammonia concentration detected by the atmospheric gas concentration detection device, and the inside of the processing furnace that is calculated by the in-core nitriding potential calculation device.
  • the nitriding potential in the processing furnace is targeted by changing the introduction amount of the ammonia gas and the carburizing gas while keeping the introduction amount of the ammonia decomposition gas constant according to the nitriding potential and the target nitriding potential of the above. It is a surface hardening treatment device provided with a gas introduction amount control device that approaches the nitriding potential.
  • the gas introduction amount control device sets the introduction amount of ammonia gas in the furnace as A, the introduction amount of ammonia decomposition gas in the furnace as B, and x as a predetermined constant, the introduction amount of the carburizing gas.
  • C1 was assigned to the carcinogenic gas using the proportionality coefficient c1.
  • C1 c1 ⁇ (A + x ⁇ B) It is preferable to control so as to be.
  • a plurality of types of in-combustion introduction gases including ammonia gas, ammonia decomposition gas, nitriding gas and nitrogen gas are introduced into the processing furnace, and the product to be treated is arranged in the processing furnace.
  • a surface hardening treatment device that performs gas nitrocarburizing treatment as a surface hardening treatment, which is detected by an in-core atmospheric gas concentration detecting device for detecting the hydrogen concentration or ammonia concentration in the processing furnace and the in-core atmospheric gas concentration detecting device.
  • An in-core nitriding potential calculation device that calculates the nitriding potential in the processing furnace based on the hydrogen concentration or ammonia concentration to be generated, and the nitriding potential and the target nitriding potential in the processing furnace calculated by the in-core nitriding potential calculation device.
  • the nitriding potential in the processing furnace is set to the target nitriding potential by changing the introduction amounts of the ammonia gas, the carburizing gas, and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant. It is a surface hardening treatment device characterized by being provided with a gas introduction amount control device that can be brought close to each other.
  • the gas introduction amount control device introduces the carburizing gas.
  • C1 and the introduced amount C2 of the nitrogen gas are used.
  • C1 c1x (A + xxB)
  • C2 c2x (A + xxB) It is preferable to control so as to be.
  • a relatively wide nitriding potential is obtained by changing the amount of each gas introduced into the furnace other than the ammonia-decomposed gas among a plurality of types of gases introduced into the furnace while keeping the amount of the gas decomposed with ammonia constant. It was confirmed that control (particularly, relatively low nitriding potential control) can be realized.
  • Example 2-2 It is a graph which shows the nitriding potential control of Example 2-2. It is a table which compares Example 2-1 to Example 2-3 with each comparative example. It is the schematic which shows the surface hardening treatment apparatus by 3rd Embodiment of this invention. It is a graph which shows the gas introduction gas control in a furnace of Example 3-2. It is a graph which shows the nitriding potential control of Example 3-2. It is a table which contrasts Example 3-1 to Example 3-3 with each comparative example. It is the schematic which shows the surface hardening treatment apparatus by 4th Embodiment of this invention. It is a table which compares Example 4-1 to Example 4-3 with each comparative example. It is the schematic which shows the surface hardening treatment apparatus by 5th Embodiment of this invention. It is a table which compares Example 5-1 to Example 5-3 with each comparative example.
  • FIG. 1 is a schematic view showing a surface hardening treatment apparatus according to an embodiment of the present invention.
  • ammonia gas, ammonia decomposition gas, and carbon dioxide gas are introduced into the treatment furnace 2, and the product S to be treated is arranged in the treatment furnace 2.
  • It is a surface hardening treatment apparatus that performs gas soft nitriding treatment as the surface hardening treatment of.
  • Ammonia decomposition gas is a gas also called AX gas, which is a mixed gas composed of nitrogen and hydrogen in a ratio of 1: 3.
  • AX gas is a mixed gas composed of nitrogen and hydrogen in a ratio of 1: 3.
  • the product S to be processed is made of metal, and for example, a steel part, a mold, or the like is assumed.
  • the processing furnace 2 of the surface hardening processing device 1 of the present embodiment includes a stirring fan 8, a stirring fan drive motor 9, a furnace temperature measuring device 10, a furnace body heating device 11, and a furnace body heating device 11.
  • An atmosphere gas concentration detection device 3, a nitride potential controller 4, a temperature controller 5, a programmable logic controller 31, a recorder 6, and an in-firer introduction gas supply unit 20 are provided.
  • the stirring fan 8 is arranged in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2.
  • the stirring fan drive motor 9 is connected to the stirring fan 8 so as to rotate the stirring fan 8 at an arbitrary rotation speed.
  • the furnace temperature measuring device 10 is provided with a thermocouple and is configured to measure the temperature of the furnace gas existing in the processing furnace 2. Further, after measuring the temperature of the gas in the furnace, the temperature measuring device 10 in the furnace outputs an information signal (temperature signal in the furnace) including the measured temperature to the temperature controller 5 and the recorder 6. ..
  • the atmosphere gas concentration detecting device 3 includes a sensor capable of detecting the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the atmosphere gas concentration in the furnace, and an oxygen sensor capable of detecting the oxygen concentration in the processing furnace 2 as the oxygen concentration in the furnace. , Consists of.
  • the detection main body of each of the two sensors communicates with the inside of the processing furnace 2 via the atmospheric gas pipe 12.
  • the atmosphere gas pipe 12 is formed by a single wire path that directly connects the sensor main body of the atmosphere gas concentration detection device 3 and the processing furnace 2.
  • An on-off valve 17 is provided in the middle of the atmosphere gas pipe 12, and the on-off valve is controlled by the on-off valve control device 16.
  • the atmospheric gas concentration detecting device 3 detects the atmospheric gas concentration and the oxygen concentration in the furnace, and then outputs an information signal including the detected concentration to the nitride potential adjuster 4 and the recorder 6.
  • the recorder 6 includes a storage medium such as a CPU and a memory, and based on output signals from the furnace temperature measuring device 10 and the atmosphere gas concentration detecting device 3, the temperature inside the processing furnace 2 and the atmosphere gas concentration inside the furnace 2 are used. And the oxygen concentration is stored in correspondence with, for example, the date and time when the surface hardening treatment was performed.
  • the nitriding potential adjuster 4 includes an in-core nitriding potential calculation device 13 and a gas flow rate output adjusting device 30. Further, the programmable logic controller 31 has a gas introduction control device 14 and a parameter setting device 15.
  • the in-core nitriding potential calculation device 13 calculates the nitriding potential in the processing furnace 2 based on the hydrogen concentration or ammonia concentration and the oxygen concentration detected by the in-core atmospheric gas concentration detection device 3. Specifically, a nitriding potential calculation formula programmed based on the same concept as equations (5) to (9) is incorporated according to the actual gas introduced into the furnace, and the concentration of atmospheric gas in the furnace is increased. The nitriding potential is calculated from the value and the value of the oxygen concentration.
  • the gas introduced into the furnace other than ammonia gas and ammonia decomposition gas is used.
  • the proportional coefficient c1 assigned to the introduced gas in the furnace the introduced amount C1 of a certain carbon dioxide gas is used.
  • C1 c1 ⁇ (A + x ⁇ B) It is designed to be controlled so as to be.
  • the parameter setting device 15 is composed of, for example, a touch panel, and sets a target nitriding potential, a processing temperature, a processing time, an amount of ammonia decomposition gas introduced, a predetermined constant x, a proportional coefficient c1, and the like for the same object to be processed. You can enter settings. Further, it is also possible to set and input a setting parameter value for PID control for each value having a different target nitriding potential. Specifically, the "proportional gain”, the "integrated gain or the integrated time”, and the “differential gain or the differential time” of the PID control can be set and input for each different value of the target nitride potential. Each set parameter value input for setting is transmitted to the gas flow rate output adjusting means 30.
  • the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas.
  • PID control is performed with the introduced amounts of each of ammonia gas and carbon dioxide gas as input values. More specifically, in the PID control, the nitriding potential in the processing furnace 2 is brought closer to the target nitriding potential by changing the introduction amount of ammonia gas and carbon dioxide gas while keeping the introduction amount of ammonia decomposition gas constant. .. Further, in the PID control, each setting parameter value transmitted from the parameter setting device 15 is used.
  • the PID control setting parameter value candidates for the setting input work for the parameter setting device 15 are obtained in advance by performing pilot processing.
  • the state of the processing furnace state of the furnace wall and jig
  • the temperature condition of the processing furnace and (3) the state of the object to be processed (type and number) are the same.
  • a candidate for a setting parameter value can be acquired by the auto-tuning function of the nitriding potential regulator 4 itself.
  • UT75A high-performance digital indicator regulator, http://www.yokogawa.co.jp/ns/cis/) manufactured by Yokogawa Electric Co., Ltd. utup / utadvanced / ns-ut75a-01-ja.htm) etc. are available.
  • the setting parameter values (a set of "proportional gain”, “integrated gain or integrated time”, and “differential gain or differential time”) acquired as candidates are recorded in some form, and the parameter is set according to the target processing content. It can be manually input to the device 15. However, the set parameter value acquired as a candidate is stored in some storage device in a manner associated with the target nitriding potential, and is automatically read out by the parameter setting device 15 based on the set input input target nitriding potential value. It may be designed to be used.
  • the gas introduction amount control means 14 sends a control signal to the first supply amount control device 22 for ammonia gas.
  • the in-firer introduction gas supply unit 20 of the present embodiment includes a first in-firet introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-core gas supply unit 20 of the present embodiment includes a second in-core gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , A second flow meter 28. Further, the in-core gas supply unit 20 of the present embodiment includes a third in-core gas supply unit 61 for carbon dioxide gas, a third supply amount control device 62, a third supply valve 63, and a third flow meter. It has 64 and.
  • the ammonia gas, the ammonia decomposition gas, and the carbon dioxide gas are mixed in the in-core introduction gas introduction pipe 29 before entering the processing furnace 2.
  • the first furnace introduction gas supply unit 21 is formed of, for example, a tank filled with the first furnace introduction gas (ammonia gas in this example).
  • the first supply amount control device 22 is formed by a mass flow controller (the flow rate can be changed in small steps in a short time), and the first supply gas supply unit 21 and the first supply valve 23 are connected to each other. It is intervened in between.
  • the opening degree of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control means 14. Further, the first supply amount control device 22 detects the supply amount from the first furnace introduction gas supply unit 21 to the first supply valve 23, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the first supply valve 23 is formed by an electromagnetic valve that switches an open / closed state according to a control signal output by the gas introduction amount control means 14, and is formed between the first supply amount control device 22 and the first flow meter 24. It is being mediated.
  • the first flow meter 24 is formed of, for example, a mechanical flow meter such as a flow type flow meter, and is interposed between the first supply valve 23 and the in-core gas introduction pipe 29. Further, the first flow meter 24 detects the amount of supply from the first supply valve 23 to the in-core introduction gas introduction pipe 29. The supply amount detected by the first flow meter 24 can be used for the visual confirmation work of the worker.
  • the second furnace introduction gas supply unit 25 is formed of, for example, a tank filled with the second furnace introduction gas (ammonia decomposition gas in this example).
  • the second supply amount control device 26 is formed by a mass flow controller (the flow rate can be changed in small steps in a short time), and the second supply gas supply unit 25 and the second supply valve 27 are connected to each other. It is intervened in between.
  • the opening degree of the second supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14. Further, the second supply amount control device 26 detects the supply amount from the second furnace introduction gas supply unit 25 to the second supply valve 27, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the second supply valve 27 is formed by an electromagnetic valve that switches the open / closed state according to the control signal output by the gas introduction amount control means 14, and is formed between the second supply amount control device 26 and the second flow meter 28. It is being mediated.
  • the second flow meter 28 is formed of, for example, a mechanical flow meter such as a flow type flow meter, and is interposed between the second supply valve 27 and the in-core gas introduction pipe 29. Further, the second flow meter 28 detects the amount of supply from the second supply valve 27 to the in-core introduction gas introduction pipe 29. The supply amount detected by the second flow meter 28 can be used for the visual confirmation work of the worker.
  • the second supply amount control device 26 since the introduction amount of the ammonia decomposition gas does not fluctuate little by little, the second supply amount control device 26 is omitted, and the flow rate (opening degree) of the second flow meter 28 is the gas introduction amount control means. It may be manually adjusted to correspond to the control signal output from 14.
  • the third furnace introduction gas supply unit 61 is formed of, for example, a tank filled with the third furnace introduction gas (carbon dioxide gas in this example).
  • the third supply amount control device 62 is formed by a mass flow controller (the flow rate can be changed in small steps in a short time), and the third supply gas supply unit 61 and the third supply valve 63 are connected to each other. It is intervened in between.
  • the opening degree of the third supply amount control device 62 changes according to the control signal output from the gas introduction amount control means 14. Further, the third supply amount control device 62 detects the supply amount from the third furnace introduction gas supply unit 61 to the third supply valve 63, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the third supply valve 63 is formed by an electromagnetic valve that switches an open / closed state according to a control signal output by the gas introduction amount control means 14, and is formed between the third supply amount control device 62 and the third flow meter 64. It is being mediated.
  • the third flowmeter 64 is formed of, for example, a mechanical flowmeter such as a flow type flowmeter, and is interposed between the third supply valve 63 and the in-core gas introduction pipe 29. Further, the third flow meter 64 detects the amount of supply from the third supply valve 63 to the in-core introduction gas introduction pipe 29. The supply amount detected by the third flow meter 64 can be used for the visual confirmation work of the worker.
  • FIGS. 2 and 3 the operation of the surface hardening treatment apparatus 1 of the present embodiment will be described with reference to FIGS. 2 and 3.
  • the product S to be processed is put into the processing furnace 2, and heating of the processing furnace 2 is started.
  • a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2
  • the heating temperature is 570 ° C.
  • a steel material having a surface area of 4 m 2 is used as the object to be treated S. Was done.
  • ammonia gas, ammonia decomposition gas, and carbon dioxide gas are introduced into the processing furnace 2 from the furnace introduction gas supply unit 20 at a set initial flow rate.
  • the set initial flow rate of the ammonia gas is 13 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 19 [l / min]
  • the set initial flow rate of the carbon dioxide gas is It was 1.03 [l / min]
  • x 0.5
  • c1 0.053.
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • a treatment for activating the surface of a steel material to facilitate nitrogen entry may be performed.
  • hydrogen chloride gas, hydrogen cyanide gas, etc. are generated in the furnace. Since these gases can deteriorate the atmosphere gas concentration detecting device (sensor) 3 in the furnace, it is effective to keep the on-off valve 17 in the closed state.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 3) and the reference deviation value is less than the sum of the target nitriding potential (0.6 in this example: see FIG. 3). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon dioxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon dioxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas.
  • the in-core nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and after the start of processing.
  • the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from the time point of about 30 minutes. (In the example shown in FIG. 2, the recording of each gas flow rate and nitriding potential is stopped about 190 minutes after the start of the treatment.)
  • Example 1-2 a case where the target nitriding potential is set to 0.4 by using the surface hardening treatment apparatus 1 of the present embodiment will be described as Example 1-2. Also in Example 1-2, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, and carbon dioxide gas are introduced into the processing furnace 2 from the furnace introduction gas supply unit 20 at a set initial flow rate.
  • the set initial flow rate of ammonia gas is 5.5 [l / min]
  • the set initial flow rate of ammonia decomposition gas is 25 [l / min]
  • the set initial flow rate of carbon dioxide gas is 0.95 [l].
  • c1 0.053.
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (0.4 in this example) and the reference deviation value is less than the sum of the target nitriding potential (0.4 in this example).
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon dioxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon dioxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 30 minutes after the start of processing.
  • the target nitriding potential (0.4) with extremely high accuracy.
  • Example 1-3 a case where the target nitriding potential is set to 0.2 by using the surface hardening treatment apparatus 1 of the present embodiment will be described as Example 1-3. Also in Example 1-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, and carbon dioxide gas are introduced into the processing furnace 2 from the furnace introduction gas supply unit 20 at a set initial flow rate.
  • the set initial flow rate of the ammonia gas is set to 2 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is set to 29 [l / min]
  • the set initial flow rate of the carbon dioxide gas is set. It was 0.87 [l / min]
  • x 0.5
  • c1 0.053.
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (0.2 in this example: see FIG. 5) and the reference deviation value is less than the sum of the target nitriding potential (0.2 in this example: see FIG. 5). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon dioxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon dioxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas.
  • the in-core nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and after the start of processing.
  • the nitriding potential can be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of about 30 minutes. (In the example shown in FIG. 4, recording of each gas flow rate and nitriding potential is stopped about 160 minutes after the start of processing.)
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculated the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and uses each of ammonia gas and carbon dioxide gas. PID control was carried out with the introduction amount of the above as an input value.
  • the nitriding potential in the processing furnace 2 is targeted nitriding by changing the total amount of ammonia gas and carbon dioxide gas introduced while keeping the flow rate ratio of ammonia gas and carbon dioxide gas constant. Control was carried out to approach the potential.
  • the nitriding potential could not be controlled stably by the control of the comparative example as described above.
  • the gas supply unit 61'introduced into the third furnace is formed of a tank filled with carbon monoxide gas instead of carbon dioxide gas.
  • Example 2-1 a case where the target nitriding potential is set to 0.6 by using the surface hardening treatment apparatus of the second embodiment will be described as Example 2-1.
  • a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, and carbon monoxide gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20 in the furnace.
  • the set initial flow rate of the ammonia gas is 5.5 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 19 [l / min]
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). (Occurrence) decreases as it progresses), and it is determined whether or not the sum of the target nitriding potential (0.6 in this example) and the reference deviation value is less than.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon monoxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon monoxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon monoxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 20 minutes after the start of processing.
  • the target nitriding potential 0.6
  • Example 2-2 a case where the target nitriding potential is set to 0.4 by using the surface hardening treatment apparatus of the second embodiment will be described as Example 2-2. Also in the second embodiment, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, and carbon monoxide gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20 in the furnace.
  • the set initial flow rate of the ammonia gas is set to 3 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is set to 25 [l / min]
  • the set initial flow rate of the carbon monoxide gas is set.
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (0.4 in this example) and the reference deviation value is less than the sum of the target nitriding potential (0.4 in this example).
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon monoxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon monoxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon monoxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas.
  • the in-core nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 20 minutes after the start of processing.
  • the target nitriding potential (0.4) with extremely high accuracy.
  • Example 2-3 a case where the target nitriding potential is set to 0.2 by using the surface hardening treatment apparatus of the second embodiment will be described as Example 2-3. Also in the second embodiment, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, and carbon monoxide gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20 in the furnace.
  • the set initial flow rate of the ammonia gas is 1 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 29 [l / min]
  • the set initial flow rate of the carbon monoxide gas is 0.15 [l].
  • x 0.5
  • c1 0.01.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). (Occurrence) decreases as it progresses), and it is determined whether or not the sum of the target nitriding potential (0.3 in this example) and the reference deviation value is less than.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets three types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas and carbon monoxide gas as input values.
  • the nitriding potential in the processing furnace 2 approaches the target nitriding potential by changing the introduction amount of ammonia gas and carbon monoxide gas while keeping the introduction amount of ammonia decomposition gas constant.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of carbon monoxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 30 minutes after the start of processing.
  • the target nitriding potential 0.2
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculated the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets ammonia gas and carbon monoxide gas. PID control was carried out using each of the introduced amounts of the above as an input value.
  • the nitriding potential in the processing furnace 2 is increased by changing the total amount of ammonia gas and carbon monoxide gas introduced while keeping the flow rate ratio of ammonia gas and carbon dioxide gas constant. Control was carried out to approach the target nitriding potential.
  • the nitriding potential could not be controlled stably by the control of the comparative example as described above.
  • the in-core introduction gas supply unit 20'of the third embodiment further includes a fourth in-core introduction gas supply unit 71 for nitrogen gas, a fourth supply amount control device 72, and a fourth. It has a supply valve 73 and a fourth flow meter 74.
  • the fourth furnace introduction gas supply unit 71 is formed of, for example, a tank filled with the fourth furnace introduction gas (nitrogen gas).
  • the fourth supply amount control device 72 is formed by a mass flow controller (the flow rate can be changed in small steps in a short time), and the fourth supply gas supply unit 71 and the fourth supply valve 73 are connected to each other. It is intervened in between.
  • the opening degree of the fourth supply amount control device 72 changes according to the control signal output from the gas introduction amount control means 14. Further, the fourth supply amount control device 72 detects the supply amount from the fourth furnace introduction gas supply unit 71 to the fourth supply valve 73, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the fourth supply valve 73 is formed by an electromagnetic valve that switches the open / closed state according to the control signal output by the gas introduction amount control means 14, and is formed between the fourth supply amount control device 72 and the fourth flow meter 74. It is being mediated.
  • the fourth flowmeter 74 is formed of, for example, a mechanical flowmeter such as a flow type flowmeter, and is interposed between the fourth supply valve 73 and the in-core gas introduction pipe 29. Further, the fourth flow meter 74 detects the amount of supply from the fourth supply valve 73 to the in-core introduction gas introduction pipe 29. The supply amount detected by the fourth flow meter 74 can be used for the visual confirmation work of the worker.
  • Example 3-1 a case where the target nitriding potential is set to 1.0 by using the surface hardening treatment apparatus of the third embodiment will be described as Example 3-1.
  • a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon dioxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is 13 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 19 [l / min]
  • the set initial flow rate of the carbon dioxide gas is 2.2 [l / min].
  • the set initial flow rate of nitrogen gas was 20 [l / min]
  • c2 0.9.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the reference deviation value is less than the sum of the target nitriding potential (1.0 in this example). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon dioxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon dioxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 20 minutes after the start of processing.
  • the target nitriding potential (1.0) with extremely high accuracy.
  • Example 3-2 a case where the target nitriding potential is set to 0.6 by using the surface hardening treatment apparatus of the third embodiment will be described as Example 3-2. Also in the third embodiment, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon dioxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is set to 8 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is set to 25 [l / min]
  • the set initial flow rate of the carbon dioxide gas is set.
  • the set initial flow rate of nitrogen gas is 18.5 [l / min]
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). (Occurrence) decreases as it progresses), and it is determined whether or not the sum of the target nitriding potential (0.6 in this example) and the reference deviation value is less than.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon dioxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon dioxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the in-core nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 30 minutes after the start of processing.
  • the target nitriding potential (0.6) with extremely high accuracy.
  • Example 3-3 a case where the target nitriding potential is set to 0.2 by using the surface hardening treatment apparatus of the third embodiment will be described as Example 3-3. Also in Example 3-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon dioxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is 3 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 29 [l / min]
  • the set initial flow rate of the carbon dioxide gas is 1.8 [l / min].
  • the set initial flow rate of nitrogen gas was 15.8 [l / min]
  • c2 0.9.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). (Occurrence) decreases as it progresses), and it is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is less than.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon dioxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon dioxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon dioxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 40 minutes after the start of processing.
  • the target nitriding potential 0.2
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculated the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets ammonia gas, nitrogen gas, and carbon dioxide. PID control was carried out with each introduced amount of gas as an input value.
  • the processing furnace 2 is changed by changing the total amount of ammonia gas, nitrogen gas, and carbon dioxide gas introduced while keeping the flow rate ratio of ammonia gas, nitrogen gas, and carbon dioxide gas constant. Control was carried out so that the inner nitriding potential approaches the target nitriding potential.
  • the nitriding potential could not be controlled stably by the control of the comparative example as described above.
  • the gas supply unit 61'introduced into the third furnace is formed by a tank filled with carbon monoxide gas instead of carbon dioxide gas.
  • Example 4-1 a case where the target nitriding potential is set to 1.0 by using the surface hardening treatment apparatus of the fourth embodiment will be described as Example 4-1.
  • a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is 13 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 19 [l / min]
  • the set initial flow rate of the carbon monoxide gas is 0.9 [l].
  • / Min] the set initial flow rate of the nitrogen gas was 20 [l / min]
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not it is less than the sum of the target nitriding potential (1.0 in this example) and the reference deviation value (which decreases as the generation) progresses.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 30 minutes after the start of processing.
  • the target nitriding potential (1.0) with extremely high accuracy.
  • Example 4-2 a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is set to 8 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is set to 25 [l / min]
  • the set initial flow rate of the carbon monoxide gas is set.
  • the flow rate is 0.8 [l / min]
  • the initial set initial flow rate of nitrogen gas is 19.7 [l / min]
  • These set initial flow rates can be set and input in the parameter setting device 15.
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8, and the atmosphere in the processing furnace 2 is stirred.
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). (Occurrence) decreases as it progresses), and it is determined whether or not the sum of the target nitriding potential (0.6 in this example) and the reference deviation value is less than.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the in-core nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 40 minutes after the start of processing.
  • the target nitriding potential (0.6) with extremely high accuracy.
  • Example 4-3 a case where the target nitriding potential is set to 0.2 by using the surface hardening treatment apparatus of the fourth embodiment will be described as Example 4-3. Also in Example 4-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, and nitrogen gas are introduced into the processing furnace 2 at a set initial flow rate from the introduction gas supply unit 20'in the furnace.
  • the set initial flow rate of the ammonia gas is 3 [l / min]
  • the set initial flow rate of the ammonia decomposition gas is 29 [l / min]
  • the set initial flow rate of the carbon monoxide gas is 0.7 [l].
  • / Min] the set initial flow rate of the nitrogen gas was 16 [l / min]
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is less than the sum of the target nitriding potential (0.2 in this example). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets four types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ depending on the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to the third supply amount control device 62 for carbon monoxide gas and the fourth supply amount control device 72 for nitrogen gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 40 minutes after the start of processing.
  • the target nitriding potential 0.2
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculated the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets ammonia gas, nitrogen gas, and carbon monoxide. PID control was carried out with each introduced amount of carbon oxide gas as an input value.
  • the nitriding potential could not be controlled stably by the control of the comparative example as described above.
  • the in-core introduction gas supply unit 20 ”of the fifth embodiment is introduced in the fifth furnace for carbon dioxide gas in addition to the in-core introduction gas supply unit 20 ′ of the fourth embodiment. It has a gas supply unit 81, a fifth supply amount control device 82, a fifth supply valve 83, and a fifth flow meter 84.
  • the fifth furnace introduction gas supply unit 81 is formed of, for example, a tank filled with the fifth furnace introduction gas (carbon dioxide gas).
  • the fifth supply amount control device 82 is formed by a mass flow controller (the flow rate can be changed in small steps in a short time), and includes the fifth furnace introduction gas supply unit 81 and the fifth supply valve 83. It is intervened in between.
  • the opening degree of the fifth supply amount control device 82 changes according to the control signal output from the gas introduction amount control means 14. Further, the fifth supply amount control device 82 detects the supply amount from the fifth furnace introduction gas supply unit 81 to the fifth supply valve 83, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the fifth supply valve 83 is formed by an electromagnetic valve that switches an open / closed state according to a control signal output by the gas introduction amount control means 14, and is formed between the fifth supply amount control device 82 and the fifth flow meter 84. It is being mediated.
  • the fifth flow meter 84 is formed of, for example, a mechanical flow meter such as a flow type flow meter, and is interposed between the fifth supply valve 83 and the in-core gas introduction pipe 29. Further, the fifth flow meter 84 detects the amount of supply from the fifth supply valve 83 to the in-core introduction gas introduction pipe 29. The supply amount detected by the fifth flow meter 84 can be used for the visual confirmation work of the worker.
  • the inside of the furnace other than ammonia gas and ammonia decomposition gas is used.
  • C2 c2 ⁇ (A + x ⁇ B)
  • C3 c3 ⁇ (A + x ⁇ B) It is designed to be controlled so as to be.
  • Example 5-1 a case where the target nitriding potential is set to 1.0 by using the surface hardening treatment apparatus of the fifth embodiment will be described as Example 5-1.
  • a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas are introduced into the processing furnace 2 at a set initial flow rate from the in-core introduction gas supply unit 20 ”.
  • the set initial flow rate of ammonia gas is 13 [l / min]
  • the set initial flow rate of ammonia decomposition gas is 19 [l / min]
  • the set initial flow rate of carbon monoxide gas is 0.45 [l / min].
  • the set initial flow rate of nitrogen gas is 21 [l / min]
  • the set initial flow rate of carbon dioxide gas is 0.9 [l / min]
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not it is less than the sum of the target nitriding potential (1.0 in this example) and the reference deviation value (which decreases as the generation) progresses.
  • This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets five types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas as input values.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, the introduction amount of nitrogen gas, and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to a third supply amount control device 62 for carbon monoxide gas, a fourth supply amount control device 72 for nitrogen gas, and a fifth supply amount control device 82 for carbon dioxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 30 minutes after the start of processing.
  • the target nitriding potential (1.0) with extremely high accuracy.
  • Example 5-2 a case where the target nitriding potential is set to 0.6 by using the surface hardening treatment apparatus of the fifth embodiment will be described as Example 5-2. Also in Example 5-2, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas are introduced into the processing furnace 2 at a set initial flow rate from the in-core introduction gas supply unit 20 ”.
  • the set initial flow rate of ammonia gas is 12 [l / min]
  • the set initial flow rate of ammonia decomposition gas is 25 [l / min]
  • the set initial flow rate of carbon monoxide gas is 0.5 [l / min].
  • the set initial flow rate of nitrogen gas is 23 [l / min]
  • the set initial flow rate of carbon dioxide gas is 1.0 [l / min]
  • x 0.5
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the reference deviation value is less than the sum of the target nitriding potential (1.0 in this example). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets five types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas as input values.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, the introduction amount of nitrogen gas, and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to a third supply amount control device 62 for carbon monoxide gas, a fourth supply amount control device 72 for nitrogen gas, and a fifth supply amount control device 82 for carbon dioxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 40 minutes after the start of processing.
  • the target nitriding potential 0.6
  • Example 5-3 a case where the target nitriding potential is set to 0.2 by using the surface hardening treatment apparatus of the fifth embodiment will be described as Example 5-3. Also in Example 5-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570 ° C., and a steel material having a surface area of 4 m 2 is used as the object to be treated S. It was.
  • ammonia gas, ammonia decomposition gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas are introduced into the processing furnace 2 at a set initial flow rate from the in-core introduction gas supply unit 20 ”.
  • the set initial flow rate of ammonia gas is 3 [l / min]
  • the set initial flow rate of ammonia decomposition gas is 29 [l / min]
  • the set initial flow rate of carbon monoxide gas is 0.3 [l / min].
  • the set initial flow rate of nitrogen gas is 16 [l / min]
  • the set initial flow rate of carbon dioxide gas is 0.6 [l / min]
  • x 0.5
  • the on-off valve control device 16 closes the on-off valve 17.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas, and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6.
  • the nitriding potential regulator 4 determines whether the state in the processing furnace 2 is in the process of raising the temperature or is in the state where the temperature rise is completed (stable state).
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the nitriding potential in the furnace (at first, the value is extremely high (because there is no hydrogen in the furnace), but the decomposition of ammonia gas (hydrogen). It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the reference deviation value is less than the sum of the target nitriding potential (1.0 in this example). This reference deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the amount of gas introduced into the furnace via the gas introduction amount control means 14.
  • the on-off control device 16 switches the on-off valve 17 to the open state.
  • the processing furnace 2 and the atmosphere gas concentration detection device 3 communicate with each other, and the furnace atmosphere gas concentration detection device 3 detects the hydrogen concentration or the ammonia concentration in the furnace and the oxygen concentration. Is detected.
  • the detected hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal are output to the nitriding potential regulator 4 and the recorder 6.
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculates the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and sets five types of in-core nitriding gas. Of these, PID control is performed with the introduced amounts of each of ammonia gas, carbon monoxide gas, nitrogen gas, and carbon dioxide gas as input values.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas, the introduction amount of carbon monoxide gas, the introduction amount of nitrogen gas, and the introduction amount of carbon dioxide gas as a result of PID control.
  • the gas introduction amount control means 14 has a first supply amount control device 22 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • a control signal is sent to a third supply amount control device 62 for carbon monoxide gas, a fourth supply amount control device 72 for nitrogen gas, and a fifth supply amount control device 82 for carbon dioxide gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the product S to be treated can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3 ml ( ⁇ 1.5 ml) by feedback control with a sampling time of about several hundred milliseconds, and the nitriding potential starts about 40 minutes after the start of processing.
  • the target nitriding potential 0.2
  • the in-core nitriding potential calculation device 13 of the nitriding potential regulator 4 calculated the in-core nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal and oxygen concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-core nitriding potential calculation device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and uses ammonia gas, nitrogen gas, and one. PID control was carried out with the introduced amounts of carbon oxide gas and carbon dioxide gas as input values.
  • the PID control the total introduction of ammonia gas, nitrogen gas, carbon monoxide gas and carbon dioxide gas while keeping the flow rate ratio of ammonia gas, nitrogen gas, carbon monoxide gas and carbon dioxide gas constant.
  • control was carried out so that the nitriding potential in the processing furnace 2 approached the target nitriding potential.
  • the nitriding potential could not be controlled stably by the control of the comparative example as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本発明は、処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、演算された処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、アンモニア分解ガスの導入量を一定に保ちながら複数種類の炉内導入ガスのうちアンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、を備える。

Description

表面硬化処理装置及び表面硬化処理方法
 本発明は、例えば、窒化、軟窒化、浸窒焼入れ等、金属製の被処理品に対する表面硬化処理を行う表面硬化処理装置及び表面硬化処理方法に関する。
 鋼等の金属製の被処理品の表面硬化処理の中で、低ひずみ処理である窒化処理のニーズは多い。窒化処理の方法として、ガス法、塩浴法、プラズマ法等がある。
 これらの方法の中で、ガス法が、品質、環境性、量産性等を考慮した場合に、総合的に優れている。機械部品に対する焼入れを伴う浸炭や浸炭窒化処理または高周波焼入れによるひずみは、ガス法による窒化処理(ガス窒化処理)を用いることで改善される。浸炭を伴うガス法による軟窒化処理(ガス軟窒化処理)も、ガス窒化処理と同種の処理として知られている。
 ガス窒化処理は、被処理品に対して窒素のみを浸透拡散させて、表面を硬化させるプロセスである。ガス窒化処理では、アンモニアガス単独、アンモニアガスと窒素ガスとの混合ガス、アンモニアガスとアンモニア分解ガス(75%の水素と25%の窒素からなり、AXガスとも呼ばれる)、または、アンモニアガスとアンモニア分解ガスと窒素ガスとの混合ガス、を処理炉内へ導入して、表面硬化処理を行う。
 一方、ガス軟窒化処理は、被処理品に対して窒素とともに炭素を副次的に浸透拡散させて、表面を硬化させるプロセスである。例えば、ガス軟窒化処理では、アンモニアガスと窒素ガスと炭酸ガス(CO2)との混合ガス、あるいは、アンモニアガスと窒素ガスと炭酸ガスと一酸化炭素ガス(CO)との混合ガス等、複数種類の炉内導入ガスを処理炉内へ導入して、表面硬化処理を行う。
 ガス窒化処理及びガス軟窒化処理における雰囲気制御の基本は、炉内の窒化ポテンシャル(KN)を制御することにある。窒化ポテンシャル(KN)を制御することによって、鋼材表面に生成される化合物層中のγ’相(Fe4N)とε相(Fe2-3N)との体積分率を制御したり、当該化合物層が生成されない処理を実現したり等、幅広い窒化品質を得ることが可能である。例えば、特開2016―211069(特許文献1)によれば、γ’相の選択とその厚膜化によって、曲げ疲労強度や耐摩耗性が改善され、機械部品のさらなる高機能化が実現される。
 一方,軟窒化処理は、例えば耐摩耗性を向上させるべく、硬いε相を積極的に活用するために用いられている(「鉄の窒化と軟窒化」、第2版(2013)、81~86頁(ディータリートケほか、アグネ技術センター:非特許文献1)。
 以上のようなガス窒化処理及びガス軟窒化処理では、被処理品が内部に配置された処理炉内の雰囲気を管理するために、炉内水素濃度あるいは炉内アンモニア濃度を測定する炉内雰囲気ガス濃度測定センサが設置される。そして、当該炉内雰囲気ガス濃度測定センサの測定値から炉内窒化ポテンシャルが演算され、目標(設定)窒化ポテンシャルと比較されて、各導入ガスの流量制御が行われる(「熱処理」、55巻、1号、7~11頁(平岡泰、渡邊陽一):非特許文献2)。各導入ガスの制御方法については、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する方法が周知である(「鉄の窒化と軟窒化」、第2版(2013)、158~163頁(ディータリートケほか、アグネ技術センター):非特許文献3)。
 特許第5629436号(特許文献2)は、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する制御態様を第一の制御とし、炉内導入ガスの流量比率が変化するように炉内導入ガスの導入量を個別に制御する制御態様を第二の制御として、両方を実行可能にした(同時には一方のみが選択的に行われる)装置を開示している(特許第5629436号:特許文献2)。しかしながら、特許第5629436号(特許文献2)は、第一の制御が有効な窒化処理の具体例を1つ開示するのみで(特許第5629436号(特許文献2)の段落0096及び0099の記載:「NH3(アンモニアガス):N2(窒素ガス)=80:20を保持した状態で、アンモニアガス及び窒素ガスの処理炉内への合計導入量を制御することにより」窒化ポテンシャル3,3を精度良く制御)、どういう窒化処理ないし軟窒化処理の場合に第二の制御を採用することが有効であるのか何ら開示がなく、また、有効な第二の制御の具体例についても何ら開示がない。
 また、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する方法では、ガスの総使用量の抑制が期待できるという利点がある一方で、窒化ポテンシャルの制御範囲が狭いことも分かっている。この問題に対処する方策として、本件発明者は、低窒化ポテンシャル側において広い窒化ポテンシャル制御範囲(例えば、580℃で約0.05~1.3)を実現するための制御方法を開発し、特許第6345320号(特許文献3)を取得している。特許第6345320号(特許文献3)の制御方法では、複数種類の炉内導入ガスの合計導入量を一定に保ちながら当該複数種類の炉内導入ガスの流量比率を変化させることによって、処理炉内の窒化ポテンシャルを目標窒化ポテンシャルに近づけるべく、当該複数種類の炉内導入ガスの導入量が個別に制御される。
(ガス窒化処理の基本的事項)
 ガス窒化処理の基本的事項について化学的に説明すれば、ガス窒化処理では、被処理品が配置される処理炉(ガス窒化炉)内において、以下の式(1)で表される窒化反応が発生する。
         NH3→[N]+3/2H2   ・・・(1)
 このとき、窒化ポテンシャルKNは、以下の式(2)で定義される。
         KN=PNH3/PH2 3/2    ・・・(2)
ここで、PNH3は炉内アンモニア分圧であり、PH2は炉内水素分圧である。窒化ポテンシャルKNは、ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周知である。
 一方、ガス窒化処理中の炉内では、当該炉内へ導入されたアンモニアガスの一部が、式(3)の反応にしたがって水素ガスと窒素ガスとに熱分解する。
         NH3→1/2N2+3/2H2   ・・・(3)
 炉内では、主に式(3)の反応が生じており、式(1)の窒化反応は量的にはほとんど無視できる。したがって、式(3)の反応で消費された炉内アンモニア濃度または式(3)の反応で発生された水素ガス濃度が分かれば、窒化ポテンシャルを演算することができる。すなわち、発生される水素及び窒素は、アンモニア1モルから、それぞれ1.5モルと0.5モルであるから、炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、窒化ポテンシャルを演算することができる。あるいは、炉内水素濃度を測定すれば、炉内アンモニア濃度が分かり、やはり窒化ポテンシャルを演算することができる。
 なお、ガス窒化炉内に流されたアンモニアガスは、炉内を循環した後、炉外へ排出される。すなわち、ガス窒化処理では、炉内の既存ガスに対して、フレッシュ(新た)なアンモニアガスを炉内へ絶えず流入させることにより、当該既存ガスが炉外へ排出され続ける(供給圧で押し出される)。
 ここで、炉内へ導入されるアンモニアガスの流量が少なければ、炉内でのガス滞留時間が長くなるため、分解されるアンモニアガスの量が増加して、当該分解反応によって発生される窒素ガス+水素ガスの量は増加する。一方、炉内へ導入されるアンモニアガスの流量が多ければ、分解されずに炉外へ排出されるアンモニアガスの量が増加して、炉内で発生される窒素ガス+水素ガスの量は減少する。
(流量制御の基本的事項)
 次に、流量制御の基本的事項について、まずは炉内導入ガスをアンモニアガスのみとする場合について説明する。炉内に導入されるアンモニアガスの分解度をs(0<s<1)とした場合、炉内におけるガス反応は、以下の式(4)で表される。
    NH3→(1-s)/(1+s)NH3+0.5s/(1+s)N2+1.5s/(1+s)H2  ・・・(4)
ここで、左辺は炉内導入ガス(アンモニアガスのみ)、右辺は炉内ガス組成であり、未分解のアンモニアガスと、アンモニアガスの分解によって1:3の比率で発生した窒素及び水素と、が存在する。したがって、炉内水素濃度を水素センサで測定する場合、右辺の1.5s/(1+s) が水素センサによる測定値に対応し、当該測定値から炉内に導入されたアンモニアガスの分解度sが演算できる。これにより、右辺の (1-s)/(1+s) に相当する炉内アンモニア濃度も演算できる。つまり、水素センサの測定値のみから炉内水素濃度と炉内アンモニア濃度とを知ることができる。このため、窒化ポテンシャルを演算できる。
 複数の炉内導入ガスを用いる場合でも、窒化ポテンシャルKNの制御が可能である。例えば、アンモニアと窒素との2種類のガスを炉内導入ガスとし、その導入比率をx:y (x、yは既知でx+y=1とする。例えば、x=0.5、y=1-0.5=0.5(NH3:N2=1:1))とした場合の炉内におけるガス反応は、以下の式(5)で表される。
 xNH3+(1-x)N2→x(1-s)/(1+sx)NH3+(0.5sx+1-x)/(1+sx)N2+1.5sx/(1+sx)H2・・・(5)
 ここで、右辺の炉内ガス組成は、未分解のアンモニアガスと、アンモニアガスの分解によって1:3の比率で発生した窒素及び水素と、導入したままの左辺の窒素ガス(炉内で分解しない)と、である。このとき、xは既知なので(例えばx=0.5)、右辺の炉内水素濃度、つまり1.5sx/(1+sx) において、未知数はアンモニアの分解度sのみである。従って、式(4)の場合と同様に、水素センサの測定値から炉内へ導入されたアンモニアガスの分解度sが演算でき、これにより炉内アンモニア濃度も演算できる。このため、窒化ポテンシャルを演算できる。
 炉内導入ガスの流量比率を固定しない場合には、炉内水素濃度と炉内アンモニア濃度とは、炉内に導入されたアンモニアガスの分解度sとアンモニアガスの導入比率xの2つを変数として含む。一般的に、ガス流量を制御する機器としてはマスフローコントローラ(MFC)が用いられるため、その流量値に基づいて、アンモニアガスの導入比率xはデジタル信号として連続的に読み取ることができる。従って、式(5)に基づいて、当該導入比率xと水素センサの測定値とを組み合わせることで、窒化ポテンシャルを演算できる。
 一方、ガス軟窒化処理の基本的事項について化学的に説明すれば、ガス軟窒化処理では、被処理品が配置される処理炉(ガス軟窒化炉)内において、以下の式(6)、式(7)で表される炭素供給反応が発生する(鋼表面に炭素が供給される)。
         2CO →[C]+CO2   ・・・(6)
         CO+H2→[C]+H2O   ・・・(7)
 炭素供給源は、(6)式と(7)式から明らかなように、一酸化炭素ガスである。一酸化炭素ガスは、直接的に処理炉内に導入されてもよいし、炭酸ガス(二酸化炭素)から処理炉内で生成されてもよい。一方、処理炉内において、以下の式(8)で表される平衡反応が成り立っている。
Figure JPOXMLDOC01-appb-I000001
 更に、処理炉内では、H2Oに関して、以下の式(9)で表される平衡反応が成り立っている。
Figure JPOXMLDOC01-appb-I000002
 以上から、式(8)及び式(9)の反応によって消費される水素の量(モル比wとする)は、処理炉内の酸素の量と相関する。従って、水素センサの測定値を、式(5)における 1.5sx/(1+sx)に直ちに当て嵌めるのではなく、水素センサの測定値は、(1.5sx-w)/(1+sx)に相当するものとした上で、酸素センサの測定値に基づいてw を計算してから、アンモニアの分解度sを求めることが好ましい。
 式(9)の平衡定数は、K=pH2O/(pH2・pO2 1.5)であり、pH2O, pH2, pO2は、それぞれ、炉内におけるH2O, H2, O2の分圧である。従って、炉内温度条件に対応して既知の平衡定数Kと、酸素センサ及び水素センサの双方の値(= pH2, pO2)とから、pH2Oの値を計算することができる。そして、式(8)及び式(9)から明らかなように、それらの反応によって消費される水素の量w は、pH2O の値に等しい。従って、w を得ることができるため、アンモニアの分解度sを求めることができる。
特開2016―211069 特許第5629436号 特許第6345320号
「鉄の窒化と軟窒化」、第2版(2013)、81~86頁(ディータリートケほか、アグネ技術センター) 「熱処理」、55巻、1号、7~11頁(平岡泰、渡邊陽一) 「鉄の窒化と軟窒化」、第2版(2013)、158~163頁(ディータリートケほか、アグネ技術センター) 「Effect of Compound Layer Thickness Composed of γ’-Fe4N on Rotated-Bending Fatigue Strength in Gas-Nitrided JIS-SCM435 Steel」、 Materials Transactions、Vol.58、 No.7(2017)、993~999頁(Y.Hiraoka and A.Ishida) 「特殊鋼」、61巻、3号、17~19頁(椛澤均)
 本件発明者は、アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入するガス軟窒化処理の場合について鋭意検討を重ね、処理炉内の窒化ポテンシャルを目標窒化ポテンシャルに近づける制御の際において、アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、実用に足る窒化ポテンシャル制御を実現できることを知見した。
 本発明は、以上の知見に基づいて創案されたものである。本発明の目的は、アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入するガス軟窒化処理において、実用に足る窒化ポテンシャル制御を実現できる表面硬化処装置及び表面硬化処理方法を提供することである。
 本発明は、アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
を備えたことを特徴とする表面硬化処理装置である。
 本発明によれば、アンモニア分解ガスの導入量を一定に保ちながら複数種類の炉内導入ガスのうちアンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できることが確認された。
 一定に維持されるアンモニア分解ガスの導入量は、操業前に予備実験を行って事前決定されることが望ましい。これは、実際には、アンモニアガスの熱分解度は使用する炉の炉内環境等にも影響されるためである。
 本発明の表面硬化処理装置は、好ましくは、前記処理炉内の酸素濃度を検出する炉内酸素濃度検出装置を更に備え、前記炉内窒化ポテンシャル演算装置は、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度と前記炉内酸素濃度検出装置によって検出される酸素濃度とに基づいて、前記処理炉内の窒化ポテンシャルを演算するようになっている。
 前述のように、軟窒化処理においては、炭素供給反応において水素が消費されて水(H2O)となり、当該水(H2O)の量は炉内の酸素量に対して平衡状態となるため、炉内酸素濃度検出装置によって炉内の酸素濃度を検出して、当該酸素濃度を窒化ポテンシャルの演算に利用することで、より精度の高い窒化ポテンシャルを実現することができる。
 また、前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記複数種類の炉内導入ガスのうちアンモニアガス及びアンモニア分解ガス以外の各炉内導入ガスの導入量C1、・・・、CN(Nは1以上の整数)を、当該各炉内導入ガスに割り当てた比例係数c1、・・・、cNを用いて、
 C1=c1×(A+x×B)、・・・、CN=cN×(A+x×B)
となるように制御することが好ましい。
 本件発明者による実際の実験により、このような制御条件が採用される場合に、比較的広い窒化ポテンシャルの制御(特に、比較的低い窒化ポテンシャルの制御)を実現できることが確認された。
 xの値は、例えば0.5である。これは、1モルのアンモニアガスが熱分解して炉内で発生する水素の量が1.5モルであるのに対し、1モルのアンモニア分解ガスが炉内に供給する水素の量が0.75モル(3/4モル)であるから、1.5:0.75=1:0.5なる比を用いて、水素の量に関してアンモニア分解ガスの炉内導入量Bをアンモニアガスの炉内導入量Aに換算する係数であると説明できる。
 もっとも、xの値は、厳密に0.5でなくてもよく、概ね0.4~0.6の範囲内であれば、実用に足る窒化ポテンシャル制御を実現できる。
 前記複数種類の炉内導入ガスは、浸炭性のガスとして、炭酸ガスを含む。あるいは、前記複数種類の炉内導入ガスは、浸炭性のガスとして、一酸化炭素ガスを含む。
 あるいは、前記複数種類の炉内導入ガスは、炭酸ガス及び窒素ガスを含むか、または、一酸化炭素ガス及び窒素ガスを含む。
 また、本発明は、表面硬化処理方法として認識することも可能である。すなわち、本発明は、アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理方法であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、前記炉内雰囲気ガス濃度検出工程によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、前記炉内窒化ポテンシャル演算工程によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、を備えたことを特徴とする表面硬化処理方法である。
 また、本発明は、アンモニアガスとアンモニア分解ガスと浸炭性ガス(例えば炭酸ガスまたは一酸化炭素ガス)とを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記浸炭性ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、を備えたことを特徴とする表面硬化処理装置である。
 これは、アンモニア分解ガスの導入量を一定に保ちながら、アンモニアガス及び浸炭性ガスの導入量を変化させることのみを特徴とし、その他のガスの導入量制御については不問とするものである。これによれば、反応に実質的に関与しない程度の微量なガス(流量比で1%程度以下)を一定量導入する態様を、権利範囲内に明確に含めることができる。例えば、浸炭性ガスを2種類以上導入する場合に本発明を適用し、主たる浸炭性ガスのみ導入量を変化させ、微量に導入される他の浸炭性ガスを一定量導入する態様でも、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できる。
 この場合、前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記浸炭性ガスの導入量C1を、当該浸炭性ガスに割り当てた比例係数c1を用いて、
 C1=c1×(A+x×B)
となるように制御することが好ましい。
 また、本発明は、アンモニアガスとアンモニア分解ガスと浸炭性ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガスと前記浸炭性ガスと前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、を備えたことを特徴とする表面硬化処理装置である。
 これは、アンモニア分解ガスの導入量を一定に保ちながら、アンモニアガス及び浸炭性ガスと窒素ガスの導入量を変化させることのみを特徴とし、その他のガスの導入量制御については不問とするものである。これによれば、反応に実質的に関与しない程度の微量なガス(流量比で1%程度以下)を一定量導入する態様を、権利範囲内に明確に含めることができる。例えば、浸炭性ガスを2種類以上導入する場合に本発明を適用し、主たる浸炭性ガスのみ導入量を変化させ、微量に導入される他の浸炭性ガスを一定量導入する態様でも、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できる。
 この場合、前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記浸炭性ガスの導入量C1及び前記窒素ガスの導入量C2を、当該浸炭性ガスに割り当てた比例係数c1及び当該窒素ガスに割り当てた比例係数c2を用いて、
 C1=c1×(A+x×B)、C2=c2×(A+x×B)
となるように制御することが好ましい。
 本発明によれば、アンモニア分解ガスの導入量を一定に保ちながら複数種類の炉内導入ガスのうちアンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できることが確認された。
本発明の第1実施形態による表面硬化処理装置を示す概略図である。 実施例1-1の炉内導入ガス制御を示すグラフである。 実施例1-1の窒化ポテンシャル制御を示すグラフである。 実施例1-3の炉内導入ガス制御を示すグラフである。 実施例1-3の窒化ポテンシャル制御を示すグラフである。 実施例1-1~実施例1-3と各比較例とを対比する表である。 本発明の第2実施形態による表面硬化処理装置を示す概略図である。 実施例2-2の炉内導入ガス制御を示すグラフである。 実施例2-2の窒化ポテンシャル制御を示すグラフである。 実施例2-1~実施例2-3と各比較例とを対比する表である。 本発明の第3実施形態による表面硬化処理装置を示す概略図である。 実施例3-2の炉内導入ガス制御を示すグラフである。 実施例3-2の窒化ポテンシャル制御を示すグラフである。 実施例3-1~実施例3-3と各比較例とを対比する表である。 本発明の第4実施形態による表面硬化処理装置を示す概略図である。 実施例4-1~実施例4-3と各比較例とを対比する表である。 本発明の第5実施形態による表面硬化処理装置を示す概略図である。 実施例5-1~実施例5-3と各比較例とを対比する表である。
 以下、本発明の好ましい実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
(構成)
 図1は、本発明の一実施形態による表面硬化処理装置を示す概略図である。図1に示すように、本実施形態の表面硬化処理装置1は、アンモニアガスとアンモニア分解ガスと炭酸ガスとを処理炉2内へ導入して、処理炉2内に配置される被処理品Sの表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置である。
 アンモニア分解ガスとは、AXガスとも呼ばれるガスで、1:3の比率の窒素と水素とからなる混合ガスである。被処理品Sは、金属製であって、例えば鋼部品や金型等が想定される。
 図1に示すように、本実施形態の表面硬化処理装置1の処理炉2には、攪拌ファン8と、攪拌ファン駆動モータ9と、炉内温度計測装置10と、炉体加熱装置11と、雰囲気ガス濃度検出装置3と、窒化ポテンシャル調節計4と、温度調節計5と、プログラマブルロジックコントローラ31と、記録計6と、炉内導入ガス供給部20と、が設けられている。
 攪拌ファン8は、処理炉2内に配置されており、処理炉2内で回転して、処理炉2内の雰囲気を攪拌するようになっている。攪拌ファン駆動モータ9は、攪拌ファン8に連結されており、攪拌ファン8を任意の回転速度で回転させるようになっている。
 炉内温度計測装置10は、熱電対を備えており、処理炉2内に存在している炉内ガスの温度を計測するように構成されている。また、炉内温度計測装置10は、炉内ガスの温度を計測した後、当該計測温度を含む情報信号(炉内温度信号)を温度調節計5及び記録計6へ出力するようになっている。
 雰囲気ガス濃度検出装置3は、処理炉2内の水素濃度またはアンモニア濃度を炉内雰囲気ガス濃度として検出可能なセンサと、処理炉2内の酸素濃度を炉内酸素濃度として検出可能な酸素センサと、により構成されている。当該2つのセンサの各々の検出本体部は、雰囲気ガス配管12を介して処理炉2の内部と連通している。雰囲気ガス配管12は、本実施形態においては、雰囲気ガス濃度検出装置3のセンサ本体部と処理炉2とを直接連通させる単線の経路で形成されている。雰囲気ガス配管12の途中には、開閉弁17が設けられており、当該開閉弁は開閉弁制御装置16によって制御されるようになっている。
 また、雰囲気ガス濃度検出装置3は、炉内雰囲気ガス濃度及び酸素濃度を検出した後、当該検出濃度を含む情報信号を、窒化ポテンシャル調節計4及び記録計6へ出力するようになっている。
 記録計6は、CPUやメモリ等の記憶媒体を含んでおり、炉内温度計測装置10や雰囲気ガス濃度検出装置3からの出力信号に基いて、処理炉2内の温度や炉内雰囲気ガス濃度及び酸素濃度を、例えば表面硬化処理を行った日時と対応させて、記憶するようになっている。
 窒化ポテンシャル調節計4は、炉内窒化ポテンシャル演算装置13と、ガス流量出力調整装置30と、を有している。また、プログラマブルロジックコントローラ31は、ガス導入制御装置14と、パラメータ設定装置15と、を有している。
 炉内窒化ポテンシャル演算装置13は、炉内雰囲気ガス濃度検出装置3によって検出される水素濃度またはアンモニア濃度と酸素濃度とに基づいて、処理炉2内の窒化ポテンシャルを演算するようになっている。具体的には、実際の炉内導入ガスに応じて式(5)~式(9)と同様の考え方に基づいてプログラムされた窒化ポテンシャルの演算式が組み込まれており、炉内雰囲気ガス濃度の値と酸素濃度の値とから窒化ポテンシャルを演算するようになっている。
 本実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである炭酸ガスの導入量C1を、当該炉内導入ガスに割り当てた比例係数c1を用いて、
 C1=c1×(A+x×B)
となるように制御するようになっている。
 そして、パラメータ設定装置15は、例えばタッチパネルからなり、同一の被処理品に対して、目標窒化ポテンシャル、処理温度、処理時間、アンモニア分解ガスの導入量、所定の定数x、比例係数c1、などを設定入力できるようになっている。また、目標窒化ポテンシャルの異なる値毎にPID制御の設定パラメータ値を設定入力することもできるようになっている。具体的には、PID制御の「比例ゲイン」と「積分ゲインまたは積分時間」と「微分ゲインまたは微分時間」とを目標窒化ポテンシャルの異なる値毎に設定入力できるようになっている。設定入力された各設定パラメータ値は、ガス流量出力調整手段30へ伝送されるようになっている。
 そして、ガス流量出力調整手段30が、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施するようになっている。より具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づけられる。また、当該PID制御において、パラメータ設定装置15から伝送された各設定パラメータ値が用いられるようになっている。
 パラメータ設定装置15に対する設定入力作業のためのPID制御の設定パラメータ値の候補は、パイロット処理を実施して予め入手しておくことが好ましい。本実施形態では、(1)処理炉の状態(炉壁や治具の状態)、(2)処理炉の温度条件及び(3)被処理品の状態(タイプ及び個数)が同一であっても、(4)目標窒化ポテンシャルの異なる値毎に、設定パラメータ値の候補を窒化ポテンシャル調節計4自体のオートチューニング機能によって取得しておくことができる。オートチューニング機能を有する窒化ポテンシャル調節計4を構成するためには、横河電気株式会社製のUT75A(高機能形デジタル指示調整計、http://www.yokogawa.co.jp/ns/cis/utup/utadvanced/ns-ut75a-01-ja.htm)等が利用可能である。
 候補として取得された設定パラメータ値(「比例ゲイン」と「積分ゲインまたは積分時間」と「微分ゲインまたは微分時間」の組)は、何らかの形態で記録されて、目的の処理内容に応じてパラメータ設定装置15に手入力され得る。もっとも、候補として取得された設定パラメータ値が目標窒化ポテンシャルと紐付けされた態様で何らかの記憶装置に記憶されて、設定入力された目標窒化ポテンシャルの値に基づいてパラメータ設定装置15によって自動的に読み出されるようになっていてもよい。
 ガス流量出力調整手段30は、PID制御に先立って、目標窒化ポテンシャルの値に基づいて、一定に維持されるアンモニア分解ガスの導入量と変動されるアンモニアガス及び炭酸ガスの導入量の初期値とを決定するようになっている。これらの値の候補は、パイロット処理を実施して予め入手しておくことが好ましく、パラメータ設定装置15によって記憶装置等から自動的に読み出されるか、あるいは、パラメータ設定装置15から手動で入力される。その後、PID制御に従って、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくように、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるように、アンモニアガス及び炭酸ガスの導入量(変動する)を決定するようになっている(アンモニア分解ガスの導入量は一定に維持される)。ガス流量出力調整手段30の出力値は、ガス導入量制御手段14へ伝達されるようになっている。
 ガス導入量制御手段14は、アンモニアガス用の第1供給量制御装置22に制御信号を送るようになっている。
 本実施形態の炉内導入ガス供給部20は、アンモニアガス用の第1炉内導入ガス供給部21と、第1供給量制御装置22と、第1供給弁23と、第1流量計24と、を有している。また、本実施形態の炉内導入ガス供給部20は、アンモニア分解ガス(AXガス)用の第2炉内導入ガス供給部25と、第2供給量制御装置26と、第2供給弁27と、第2流量計28と、を有している。更に、本実施形態の炉内導入ガス供給部20は、炭酸ガス用の第3炉内導入ガス供給部61と、第3供給量制御装置62と、第3供給弁63と、第3流量計64と、を有している。
 本実施形態では、アンモニアガスとアンモニア分解ガスと炭酸ガスとは、処理炉2内に入る前の炉内導入ガス導入配管29内で混合されるようになっている。
 第1炉内導入ガス供給部21は、例えば、第1炉内導入ガス(本例ではアンモニアガス)を充填したタンクにより形成されている。
 第1供給量制御装置22は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第1炉内導入ガス供給部21と第1供給弁23との間に介装されている。第1供給量制御装置22の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第1供給量制御装置22は、第1炉内導入ガス供給部21から第1供給弁23への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。
 第1供給弁23は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第1供給量制御装置22と第1流量計24との間に介装されている。
 第1流量計24は、例えば、フロー式流量計等の機械的な流量計で形成されており、第1供給弁23と炉内導入ガス導入配管29との間に介装されている。また、第1流量計24は、第1供給弁23から炉内導入ガス導入配管29への供給量を検出する。第1流量計24が検出する供給量は、作業員の目視による確認作業に用いられ得る。
 第2炉内導入ガス供給部25は、例えば、第2炉内導入ガス(本例ではアンモニア分解ガス)を充填したタンクにより形成されている。
 第2供給量制御装置26は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第2炉内導入ガス供給部25と第2供給弁27との間に介装されている。第2供給量制御装置26の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第2供給量制御装置26は、第2炉内導入ガス供給部25から第2供給弁27への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。
 第2供給弁27は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第2供給量制御装置26と第2流量計28との間に介装されている。
 第2流量計28は、例えば、フロー式流量計等の機械的な流量計で形成されており、第2供給弁27と炉内導入ガス導入配管29との間に介装されている。また、第2流量計28は、第2供給弁27から炉内導入ガス導入配管29への供給量を検出する。第2流量計28が検出する供給量は、作業員の目視による確認作業に用いられ得る。
 もっとも、本発明においては、アンモニア分解ガスの導入量は小刻みに変動されないため、第2供給量制御装置26が省略されて、第2流量計28の流量(開度)が、ガス導入量制御手段14から出力される制御信号に対応するように、手動で調整されてもよい。
 第3炉内導入ガス供給部61は、例えば、第3炉内導入ガス(本例では炭酸ガス)を充填したタンクにより形成されている。
 第3供給量制御装置62は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第3炉内導入ガス供給部61と第3供給弁63との間に介装されている。第3供給量制御装置62の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第3供給量制御装置62は、第3炉内導入ガス供給部61から第3供給弁63への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。
 第3供給弁63は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第3供給量制御装置62と第3流量計64との間に介装されている。
 第3流量計64は、例えば、フロー式流量計等の機械的な流量計で形成されており、第3供給弁63と炉内導入ガス導入配管29との間に介装されている。また、第3流量計64は、第3供給弁63から炉内導入ガス導入配管29への供給量を検出する。第3流量計64が検出する供給量は、作業員の目視による確認作業に用いられ得る。
(作用:実施例1)
 次に、図2及び図3を参照して、本実施形態の表面硬化処理装置1の作用について説明する。まず、処理炉2内に被処理品Sが投入され、処理炉2の加熱が開始される。図2及び図3に示す例では、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図2に示すように、アンモニアガスの設定初期流量が13[l/min]とされ、アンモニア分解ガスの設定初期流量が19[l/min]とされ、炭酸ガスの設定初期流量が1.03[l/min]とされ、x=0.5とされ、c1=0.053とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。一般的に、ガス窒化処理の前処理として、鋼材表面を活性化して窒素を入りやすくする処理が行われることがある。この場合、炉内に塩化水素ガスやシアン化水素ガスなどが発生する。これらのガスは、炉内雰囲気ガス濃度検出装置(センサ)3を劣化させ得るため、開閉弁17を閉鎖状態としておくことが有効である。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6:図3参照)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、炭酸ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、図3に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体例として、図3に示す例によれば、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できることが分かる。(図2に示す例では、処理開始後約190分の時点で、各ガス流量及び窒化ポテンシャルの記録が停止されている。)
(作用:実施例1-2)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを0.4とする場合について、実施例1-2として説明する。当該実施例1-2においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が5.5[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、炭酸ガスの設定初期流量が0.95[l/min]とされ、x=0.5とされ、c1=0.053とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.4)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.5)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、炭酸ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.4)に制御できた。
(作用:実施例1-3)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを0.2とする場合について、実施例1-3として説明する。当該実施例1-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図4に示すように、アンモニアガスの設定初期流量が2[l/min]とされ、アンモニア分解ガスの設定初期流量が29[l/min]とされ、炭酸ガスの設定初期流量が0.87[l/min]とされ、x=0.5とされ、c1=0.053とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2:図5参照)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、炭酸ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、図5に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体例として、図5に示す例によれば、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できることが分かる。(図4に示す例では、処理開始後約160分の時点で、各ガス流量及び窒化ポテンシャルの記録が停止されている。)
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと炭酸ガスとの流量比を常に95:5に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと炭酸ガスとの流量比を一定に保ちながらアンモニアガス及び炭酸ガスの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。
(実施例1-1~実施例1-3と比較例との比較)
 以上の結果を纏めた表を、図6として示す。
(第2実施形態の構成)
 図7に示すように、第2実施形態では、第3炉内導入ガス供給部61’が、炭酸ガスではなく、一酸化炭素ガスを充填したタンクにより形成されている。
 そして、第2実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである一酸化炭素ガスの導入量C1を、当該炉内導入ガスに割り当てた比例係数c1を用いて、
 C1=c1×(A+x×B)
となるように制御するようになっている。
 本実施形態のその他の構成については、図1を用いて説明した第1実施形態と略同様である。図7において、第1実施形態と同様の部分については、同様の符号を付している。また、本実施形態の第1実施形態と同様の部分については、詳しい説明を省略する。
(作用:実施例2-1)
 次に、第2実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.6とする場合について、実施例2-1として説明する。当該実施例2-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が5.5[l/min]とされ、アンモニア分解ガスの設定初期流量が19[l/min]とされ、一酸化炭素ガスの設定初期流量が0.2[l/min]とされ、x=0.5とされ、c1=0.01とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び一酸化炭素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び一酸化炭素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び一酸化炭素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、一酸化炭素ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約20分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。
(作用:実施例2-2)
 次に、第2実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.4とする場合について、実施例2-2として説明する。当該実施例2-2においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図8に示すように、アンモニアガスの設定初期流量が3[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、一酸化炭素ガスの設定初期流量が0.15[l/min]とされ、x=0.5とされ、c1=0.01とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.4)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.5)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び一酸化炭素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び一酸化炭素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び一酸化炭素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、一酸化炭素ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、図9に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約20分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.4)に制御できた。
(作用:実施例2-3)
 次に、第2実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.2とする場合について、実施例2-3として説明する。当該実施例2-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が1[l/min]とされ、アンモニア分解ガスの設定初期流量が29[l/min]とされ、一酸化炭素ガスの設定初期流量が0.15[l/min]とされ、x=0.5とされ、c1=0.01とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.3)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.4)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び一酸化炭素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び一酸化炭素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び一酸化炭素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、一酸化炭素ガス用の第3供給量制御装置62、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと一酸化炭素ガスとの流量比を常に99:1に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス及び一酸化炭素ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと炭酸ガスとの流量比を一定に保ちながらアンモニアガス及び一酸化炭素ガスの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。
(実施例2-1~実施例2-3と比較例との比較)
 以上の結果を纏めた表を、図10として示す。
(第3実施形態の構成)
 図11に示すように、第3実施形態の炉内導入ガス供給部20’は、更に、窒素ガス用の第4炉内導入ガス供給部71と、第4供給量制御装置72と、第4供給弁73と、第4流量計74と、を有している。
 第4炉内導入ガス供給部71は、例えば、第4炉内導入ガス(窒素ガス)を充填したタンクにより形成されている。
 第4供給量制御装置72は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第4炉内導入ガス供給部71と第4供給弁73との間に介装されている。第4供給量制御装置72の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第4供給量制御装置72は、第4炉内導入ガス供給部71から第4供給弁73への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。
 第4供給弁73は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第4供給量制御装置72と第4流量計74との間に介装されている。
 第4流量計74は、例えば、フロー式流量計等の機械的な流量計で形成されており、第4供給弁73と炉内導入ガス導入配管29との間に介装されている。また、第4流量計74は、第4供給弁73から炉内導入ガス導入配管29への供給量を検出する。第4流量計74が検出する供給量は、作業員の目視による確認作業に用いられ得る。
 そして、第3実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである炭酸ガスの導入量C1及び窒素ガスの導入量C2を、それぞれに割り当てた比例係数c1、c2を用いて、
 C1=c1×(A+x×B)
 C2=c2×(A+x×B)
となるように制御するようになっている。
 本実施形態のその他の構成については、図1を用いて説明した第1実施形態と略同様である。図11において、第1実施形態と同様の部分については、同様の符号を付している。また、本実施形態の第1実施形態と同様の部分については、詳しい説明を省略する。
(作用:実施例3-1)
 次に、第3実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを1.0とする場合について、実施例3-1として説明する。当該実施例3-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと炭酸ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が13[l/min]とされ、アンモニア分解ガスの設定初期流量が19[l/min]とされ、炭酸ガスの設定初期流量が2.2[l/min]とされ、窒素ガスの設定初期流量が20[l/min]とされ、x=0.5とされ、c1=0.1とされ、c2=0.9とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、炭酸ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、炭酸ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、炭酸ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、炭酸ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約20分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。
(作用:実施例3-2)
 次に、第3実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.6とする場合について、実施例3-2として説明する。当該実施例3-2においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと炭酸ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図12に示すように、アンモニアガスの設定初期流量が8[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、炭酸ガスの設定初期流量が2[l/min]とされ、窒素ガスの設定初期流量が18.5[l/min]とされ、x=0.5とされ、c1=0.1とされ、c2=0.9とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、炭酸ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、炭酸ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、炭酸ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、炭酸ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、図13に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。
(作用:実施例3-3)
 次に、第3実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.2とする場合について、実施例3-3として説明する。当該実施例3-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと炭酸ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が3[l/min]とされ、アンモニア分解ガスの設定初期流量が29[l/min]とされ、炭酸ガスの設定初期流量が1.8[l/min]とされ、窒素ガスの設定初期流量が15.8[l/min]とされ、x=0.5とされ、c1=0.1とされ、c2=0.9とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、炭酸ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、炭酸ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、炭酸ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、炭酸ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約40分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスと炭酸ガスとの流量比を常に50:45:5に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス、窒素ガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスと炭酸ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスと炭酸ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。
(実施例3-1~実施例3-3と比較例との比較)
 以上の結果を纏めた表を、図14として示す。
(第4実施形態の構成)
 図15に示すように、第4実施形態では、第3炉内導入ガス供給部61’が、炭酸ガスではなく、一酸化炭素ガスを充填したタンクにより形成されている。
 そして、第4実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである一酸化炭素ガスの導入量C1及び窒素ガスの導入量C2を、それぞれに割り当てた比例係数c1、c2を用いて、
 C1=c1×(A+x×B)
 C2=c2×(A+x×B)
となるように制御するようになっている。
 本実施形態のその他の構成については、図1を用いて説明した第1実施形態と略同様である。図15において、第3実施形態と同様の部分については、同様の符号を付している。また、本実施形態の第3実施形態と同様の部分については、詳しい説明を省略する。
(作用:実施例4-1)
 次に、第4実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを1.0とする場合について、実施例4-1として説明する。当該実施例4-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が13[l/min]とされ、アンモニア分解ガスの設定初期流量が19[l/min]とされ、一酸化炭素ガスの設定初期流量が0.9[l/min]とされ、窒素ガスの設定初期流量が20[l/min]とされ、x=0.5とされ、c1=0.04とされ、c2=0.96とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。
(作用:実施例4-2)
 次に、第4実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.6とする場合について、実施例4-2として説明する。当該実施例4-2においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図12に示すように、アンモニアガスの設定初期流量が8[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、一酸化炭素ガスの設定初期流量が0.8[l/min]とされ、窒素ガスの設定初期流量が19.7[l/min]とされ、x=0.5とされ、c1=0.04とされ、c2=0.96とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、図13に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約40分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。
(作用:実施例4-3)
 次に、第4実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.2とする場合について、実施例4-3として説明する。当該実施例4-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20’からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が3[l/min]とされ、アンモニア分解ガスの設定初期流量が29[l/min]とされ、一酸化炭素ガスの設定初期流量が0.7[l/min]とされ、窒素ガスの設定初期流量が16[l/min]とされ、x=0.5とされ、c1=0.04とされ、c2=0.96とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、4種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)及びC2=c2×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、及び、窒素ガス用の第4供給量制御装置72、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約40分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスと一酸化炭素ガスとの流量比を常に50:48:2に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス、窒素ガス及び一酸化炭素ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスと一酸化炭素ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスと一酸化炭素ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。
(実施例4-1~実施例4-3と比較例との比較)
 以上の結果を纏めた表を、図16として示す。
(第5実施形態の構成)
 図17に示すように、第5実施形態の炉内導入ガス供給部20”は、第4実施形態の炉内導入ガス供給部20’に加えて、更に、炭酸ガス用の第5炉内導入ガス供給部81と、第5供給量制御装置82と、第5供給弁83と、第5流量計84と、を有している。
 第5炉内導入ガス供給部81は、例えば、第5炉内導入ガス(炭酸ガス)を充填したタンクにより形成されている。
 第5供給量制御装置82は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第5炉内導入ガス供給部81と第5供給弁83との間に介装されている。第5供給量制御装置82の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第5供給量制御装置82は、第5炉内導入ガス供給部81から第5供給弁83への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。
 第5供給弁83は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第5供給量制御装置82と第5流量計84との間に介装されている。
 第5流量計84は、例えば、フロー式流量計等の機械的な流量計で形成されており、第5供給弁83と炉内導入ガス導入配管29との間に介装されている。また、第5流量計84は、第5供給弁83から炉内導入ガス導入配管29への供給量を検出する。第5流量計84が検出する供給量は、作業員の目視による確認作業に用いられ得る。
 そして、第5実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである一酸化炭素ガスの導入量C1、窒素ガスの導入量C2及び炭酸ガスの導入量C3を、それぞれに割り当てた比例係数c1、c2、c3を用いて、
 C1=c1×(A+x×B)
 C2=c2×(A+x×B)
 C3=c3×(A+x×B)
となるように制御するようになっている。
 本実施形態のその他の構成については、図15を用いて説明した第4実施形態と略同様である。図17において、第4実施形態と同様の部分については、同様の符号を付している。また、本実施形態の第4実施形態と同様の部分については、詳しい説明を省略する。
(作用:実施例5-1)
 次に、第5実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを1.0とする場合について、実施例5-1として説明する。当該実施例5-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20”からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が13[l/min]とされ、アンモニア分解ガスの設定初期流量が19[l/min]とされ、一酸化炭素ガスの設定初期流量が0.45[l/min]とされ、窒素ガスの設定初期流量が21[l/min]とされ、炭酸ガスの設定初期流量が0.9[l/min]とされ、x=0.5とされ、c1=0.02とされ、c2=0.94とされ、c3=0.04とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、5種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)、C2=c2×(A+x×B)及びC3=c3×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量、窒素ガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、窒素ガス用の第4供給量制御装置72、及び、炭酸ガス用の第5供給量制御装置82、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約30分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。
(作用:実施例5-2)
 次に、第5実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.6とする場合について、実施例5-2として説明する。当該実施例5-2においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20”からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が12[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、一酸化炭素ガスの設定初期流量が0.5[l/min]とされ、窒素ガスの設定初期流量が23[l/min]とされ、炭酸ガスの設定初期流量が1.0[l/min]とされ、x=0.5とされ、c1=0.02とされ、c2=0.94とされ、c3=0.04とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、5種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)、C2=c2×(A+x×B)及びC3=c3×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量、窒素ガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、窒素ガス用の第4供給量制御装置72、及び、炭酸ガス用の第5供給量制御装置82、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約40分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。
(作用:実施例5-3)
 次に、第5実施形態の表面硬化処理装置を用いて、目標窒化ポテンシャルを0.2とする場合について、実施例5-3として説明する。当該実施例5-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、4m2の表面積を有する鋼材が用いられた。
 処理炉2の加熱中、炉内導入ガス供給部20”からアンモニアガスとアンモニア分解ガスと一酸化炭素ガスと窒素ガスと炭酸ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が3[l/min]とされ、アンモニア分解ガスの設定初期流量が29[l/min]とされ、一酸化炭素ガスの設定初期流量が0.3[l/min]とされ、窒素ガスの設定初期流量が16[l/min]とされ、炭酸ガスの設定初期流量が0.6[l/min]とされ、x=0.5とされ、c1=0.02とされ、c2=0.94とされ、c3=0.04とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出すると共に酸素濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号と酸素濃度信号とが、窒化ポテンシャル調節計4及び記録計6へ出力される。
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、5種類の炉内導入ガスのうちアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、一酸化炭素ガス、窒素ガス及び炭酸ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)、C2=c2×(A+x×B)及びC3=c3×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量、一酸化炭素ガスの導入量、窒素ガスの導入量及び炭酸ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、一酸化炭素ガス用の第3供給量制御装置62、窒素ガス用の第4供給量制御装置72、及び、炭酸ガス用の第5供給量制御装置82、に制御信号を送る。
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3ml(±1.5ml)程度の変動幅内で増減され、処理開始後約40分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスと一酸化炭素ガスと炭酸ガスとの流量比を常に50:47:1:2に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号と酸素濃度信号とに基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス、窒素ガス、一酸化炭素ガス及び炭酸ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスと一酸化炭素ガスと炭酸ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスと一酸化炭素ガスと炭酸ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。
(実施例5-1~実施例5-3と比較例との比較)
 以上の結果を纏めた表を、図18として示す。
1 表面硬化処理装置
2 処理炉
3 雰囲気ガス濃度検出装置
4 窒化ポテンシャル調節計
5 温度調節計
6 記録計
8 攪拌ファン
9 攪拌ファン駆動モータ
10 炉内温度計測装置
11 炉内加熱装置
13 窒化ポテンシャル演算装置
14 ガス導入量制御装置
15 パラメータ設定装置(タッチパネル)
16 開閉弁制御装置
17 開閉弁
20、20’ 炉内ガス供給部
21 第1炉内導入ガス供給部
22 第1炉内ガス供給制御装置
23 第1供給弁
24 第1流量計
25 第2炉内導入ガス供給部
27 第2供給弁
28 第2流量計
29 炉内導入ガス導入配管
30 ガス流量出力調整装置
31 プログラマブルロジックコントローラ
40 炉内ガス廃棄配管
41 排ガス燃焼分解装置
61、61’ 第3炉内導入ガス供給部
62 第3炉内ガス供給制御装置
63 第3供給弁
64 第3流量計
71 第4炉内導入ガス供給部
72 第4炉内ガス供給制御装置
73 第4供給弁
74 第4流量計
81 第5炉内導入ガス供給部
82 第5炉内ガス供給制御装置
83 第5供給弁
84 第5流量計

Claims (14)

  1.  アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
    を備えたことを特徴とする表面硬化処理装置。
  2.  前記処理炉内の酸素濃度を検出する炉内酸素濃度検出装置
    を更に備え、
     前記炉内窒化ポテンシャル演算装置は、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度と前記炉内酸素濃度検出装置によって検出される酸素濃度とに基づいて、前記処理炉内の窒化ポテンシャルを演算するようになっている
    ことを特徴とする請求項1に記載の表面硬化処理装置。
  3.  前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記複数種類の炉内導入ガスのうちアンモニアガス及びアンモニア分解ガス以外の各炉内導入ガスの導入量C1、・・・、CN(Nは1以上の整数)を、当該各炉内導入ガスに割り当てた比例係数c1、・・・、cNを用いて、
     C1=c1×(A+x×B)、・・・、CN=cN×(A+x×B)
    となるように制御する
    ことを特徴とする請求項1または2に記載の表面硬化処理装置。
  4.  前記所定の定数xは、0.4~0.6である
    ことを特徴とする請求項3に記載の表面硬化装置。
  5.  前記所定の定数xは、0.5である
    ことを特徴とする請求項4に記載の表面硬化装置。
  6.  前記複数種類の炉内導入ガスは、炭酸ガスを含む
    ことを特徴とする請求項1乃至5のいずれかに記載の表面硬化装置。
  7.  前記複数種類の炉内導入ガスは、一酸化炭素ガスを含む
    ことを特徴とする請求項1乃至5のいずれかに記載の表面硬化装置。
  8.  前記複数種類の炉内導入ガスは、炭酸ガス及び窒素ガスを含む
    ことを特徴とする請求項1乃至5のいずれかに記載の表面硬化装置。
  9.  前記複数種類の炉内導入ガスは、一酸化炭素ガス及び窒素ガスを含む
    ことを特徴とする請求項1乃至5のいずれかに記載の表面硬化装置。
  10.  アンモニアガスとアンモニア分解ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理方法であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、
    を備えたことを特徴とする表面硬化処理方法。
  11.  アンモニアガスとアンモニア分解ガスと浸炭性ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記浸炭性ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
    を備えたことを特徴とする表面硬化処理装置。
  12.  前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記浸炭性ガスの導入量C1を、当該浸炭性ガスに割り当てた比例係数c1を用いて、
     C1=c1×(A+x×B)
    となるように制御する
    ことを特徴とする請求項11に記載の表面硬化処理装置。
  13.  アンモニアガスとアンモニア分解ガスと浸炭性ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス軟窒化処理を行う表面硬化処理装置であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガスと前記浸炭性ガスと前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
    を備えたことを特徴とする表面硬化処理装置。
  14.  前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記浸炭性ガスの導入量C1及び前記窒素ガスの導入量C2を、当該浸炭性ガスに割り当てた比例係数c1及び当該窒素ガスに割り当てた比例係数c2を用いて、
     C1=c1×(A+x×B)、C2=c2×(A+x×B)
    となるように制御する
    ことを特徴とする請求項13に記載の表面硬化処理装置。
PCT/JP2020/038315 2019-10-11 2020-10-09 表面硬化処理装置及び表面硬化処理方法 WO2021070938A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021551722A JPWO2021070938A1 (ja) 2019-10-11 2020-10-09
CN202080069395.4A CN114829668A (zh) 2019-10-11 2020-10-09 表面硬化处理装置和表面硬化处理方法
US17/641,165 US20220341021A1 (en) 2019-10-11 2020-10-09 Surface hardening treatment device and surface hardening treatment method
KR1020227011252A KR20220057601A (ko) 2019-10-11 2020-10-09 표면 경화 처리 장치 및 표면 경화 처리 방법
MX2022002518A MX2022002518A (es) 2019-10-11 2020-10-09 Dispositivo de tratamiento de endurecimiento de superficie y metodo de tratamiento de endurecimiento de superficie.
EP20873990.4A EP4043606A4 (en) 2019-10-11 2020-10-09 SURFACE HARDENING APPARATUS AND SURFACE HARDENING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019187310 2019-10-11
JP2019-187310 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021070938A1 true WO2021070938A1 (ja) 2021-04-15

Family

ID=75438231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038315 WO2021070938A1 (ja) 2019-10-11 2020-10-09 表面硬化処理装置及び表面硬化処理方法

Country Status (8)

Country Link
US (1) US20220341021A1 (ja)
EP (1) EP4043606A4 (ja)
JP (1) JPWO2021070938A1 (ja)
KR (1) KR20220057601A (ja)
CN (1) CN114829668A (ja)
MX (1) MX2022002518A (ja)
TW (1) TW202124731A (ja)
WO (1) WO2021070938A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629436B2 (ja) 1977-03-18 1981-07-08
JPS6345320B2 (ja) 1981-05-25 1988-09-08 Pentel Kk
JP2013249524A (ja) * 2012-06-01 2013-12-12 Nippon Techno:Kk ガス窒化及びガス軟窒化方法
WO2016129333A1 (ja) * 2015-02-10 2016-08-18 サンコール株式会社 金属製ばねの製造方法及び製造装置
JP2016211069A (ja) 2015-05-12 2016-12-15 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
JP6345320B1 (ja) * 2017-07-07 2018-06-20 パーカー熱処理工業株式会社 表面硬化処理装置及び表面硬化処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9300901A (nl) * 1993-05-26 1994-12-16 Skf Ind Trading & Dev Werkwijze voor het carbonitreren van staal.
JP2021042398A (ja) * 2017-12-27 2021-03-18 パーカー熱処理工業株式会社 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JP7094540B2 (ja) * 2018-04-26 2022-07-04 パーカー熱処理工業株式会社 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JP6503122B1 (ja) * 2018-08-17 2019-04-17 パーカー熱処理工業株式会社 表面硬化処理装置及び表面硬化処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629436B2 (ja) 1977-03-18 1981-07-08
JPS6345320B2 (ja) 1981-05-25 1988-09-08 Pentel Kk
JP2013249524A (ja) * 2012-06-01 2013-12-12 Nippon Techno:Kk ガス窒化及びガス軟窒化方法
WO2016129333A1 (ja) * 2015-02-10 2016-08-18 サンコール株式会社 金属製ばねの製造方法及び製造装置
JP2016211069A (ja) 2015-05-12 2016-12-15 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
JP6345320B1 (ja) * 2017-07-07 2018-06-20 パーカー熱処理工業株式会社 表面硬化処理装置及び表面硬化処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIETER LIEDTKE ET AL.: "Nitriding and Nitrocarburizing on Iron Materials", 2013, AGUNE TECHNICAL CENTER, pages: 158 - 163
HITOSHI KABASAWA, THE SPECIAL STEEL, vol. 61, no. 3, pages 17 - 19
Y. HIRAOKA, A. ISHIDA: "Effect of Compound Layer Thickness Composed of y'-Fe N on Rotated-Bending Fatigue Strength in Gas-Nitrided JIS-SCM435 Steel", MATERIALS TRANSACTIONS, vol. 58, 2017, pages 993 - 999, XP055562768, DOI: 10.2320/matertrans.M2017098
YASUSHI HIRAOKAYOICHI WATANABE, HEAT TREATMENT, vol. 55, no. 1, pages 7 - 11

Also Published As

Publication number Publication date
EP4043606A4 (en) 2023-06-14
TW202124731A (zh) 2021-07-01
EP4043606A1 (en) 2022-08-17
JPWO2021070938A1 (ja) 2021-04-15
US20220341021A1 (en) 2022-10-27
CN114829668A (zh) 2022-07-29
KR20220057601A (ko) 2022-05-09
MX2022002518A (es) 2022-04-01

Similar Documents

Publication Publication Date Title
US11155891B2 (en) Surface hardening treatment device and surface hardening treatment method
JP5883727B2 (ja) ガス窒化及びガス軟窒化方法
JP5167553B2 (ja) 浸窒処理方法及び浸窒処理装置
US11781209B2 (en) Surface hardening treatment device and surface hardening treatment method
US4175986A (en) Inert carrier gas heat treating control process
WO2021070938A1 (ja) 表面硬化処理装置及び表面硬化処理方法
JPH10226871A (ja) 熱処理炉の雰囲気制御方法及び装置
WO2022215526A1 (ja) 表面硬化処理装置及び表面硬化処理方法
JP6576209B2 (ja) 窒化処理装置、および、窒化処理方法
JPS63199859A (ja) 鋼の自動熱処理装置
CA2763219C (en) Method and apparatus for heat treating a metal
WO2020175453A1 (ja) 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
EP0024106A1 (en) Method of heat treating ferrous workpieces
Winter et al. Controlled nitriding and nitrocarburizing–state of the art
EP0859067B1 (en) Method and apparatus for controlling the atmosphere in a heat treatment furnace
US2980415A (en) Apparatus for controlling case hardening action
JP4443667B2 (ja) 連続式焼結炉およびその運転方法
CN107783559A (zh) 一种新的可控氧化工艺控制方法
JP2019116687A (ja) 窒化処理装置、および、窒化処理方法
JP2021080487A (ja) 金属材の表面処理方法
JP2543512B2 (ja) 熱処理雰囲気の制御方法
JP2007302945A (ja) 浸炭装置
JPS5896866A (ja) 真空浸炭処理における浸炭量の制御方法
JPS648073B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227011252

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021551722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020873990

Country of ref document: EP

Effective date: 20220511