WO2016129230A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2016129230A1
WO2016129230A1 PCT/JP2016/000480 JP2016000480W WO2016129230A1 WO 2016129230 A1 WO2016129230 A1 WO 2016129230A1 JP 2016000480 W JP2016000480 W JP 2016000480W WO 2016129230 A1 WO2016129230 A1 WO 2016129230A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
pad
semiconductor device
pad portion
Prior art date
Application number
PCT/JP2016/000480
Other languages
English (en)
French (fr)
Inventor
利彦 高畑
英一 竹谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/549,421 priority Critical patent/US10054609B2/en
Priority to CN201680009217.6A priority patent/CN107250807B/zh
Publication of WO2016129230A1 publication Critical patent/WO2016129230A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0109Bonding an individual cap on the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the present disclosure relates to a semiconductor device in which a first substrate and a second substrate are joined, and a sensing unit is disposed between the first substrate and the second substrate, and a method for manufacturing the same.
  • a sensing unit that detects acceleration is disposed between the first substrate and the second substrate.
  • a first pad portion that is electrically connected to the sensing portion is formed on the first substrate, and a second pad portion is formed on a portion of the second substrate that faces the first pad portion.
  • the first pad portion and the second pad portion are joined and electrically connected.
  • the first pad portion and the second pad portion are made of a material mainly composed of aluminum.
  • the first and second pad portions are made of a material mainly composed of aluminum, oxide films (natural oxidation) formed on the surfaces of the first and second pad portions. Film) becomes very strong.
  • oxide films naturally oxidation
  • the oxide films formed on the first and second pad portions are removed to electrically connect the first and second pad portions.
  • the temperature must be very high before or during the bonding of the first and second pad parts, or the bonding load must be greatly increased. Have to do. For this reason, the characteristic of a sensing part may change by setting it in such a state.
  • This disclosure is intended to provide a semiconductor device and a method for manufacturing the same that can suppress changes in characteristics of a sensing unit.
  • the first substrate having one surface
  • the second substrate having the one surface and bonded to the first substrate in a state where the one surface faces the one surface of the first substrate
  • a sensing unit disposed between the first substrate and the second substrate, a first pad unit formed on one surface of the first substrate and electrically connected to the sensing unit
  • the second A method of manufacturing a semiconductor device comprising: a second pad portion formed on one surface of the substrate and electrically connected to the first pad portion; preparing the first substrate; A Ti film is formed on the outermost surface of the Ti layer, the first pad portion is formed by patterning the metal film, the second substrate is prepared, and the Ti layer is formed on the surface of the second substrate.
  • the first and second pad portions are formed so that the Ti layer becomes the outermost surface, by performing vacuum annealing, compared with an oxide film formed on the surface of Al or the like, Oxygen in the oxide film easily enters the Ti layer, and the oxide film is fragile (is easily decomposed), so that the oxide film formed on the surface of the Ti layer can be easily removed. Therefore, it can suppress that the process at the time of removing an oxide film on a sensing part affects, and can suppress that the characteristic of a sensing part changes.
  • the semiconductor device has a first substrate having one surface and one surface, and the one surface is bonded to the first substrate in a state of facing the one surface of the first substrate.
  • the first pad portion and the second pad portion have a surface containing Ti, and the layers containing Ti are bonded to each other.
  • the first and second pad portions are composed of a layer containing Ti, they are joined after the oxide film is easily removed. For this reason, it can be set as the semiconductor device which suppressed the characteristic of the sensing part changing.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a region A in FIG.
  • FIG. 3A to FIG. 3C are cross-sectional views showing a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 4A to FIG. 4C are cross-sectional views showing a method for manufacturing the semiconductor device following
  • FIG. 5 is a cross-sectional view of the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 6 is an enlarged view of region B in FIG.
  • FIG. 7 is a partially enlarged view of the semiconductor device according to the third embodiment of the present disclosure.
  • FIG. 8 is a partially enlarged view of the semiconductor device according to the fourth embodiment of the present disclosure.
  • FIG. 9 is a partially enlarged view of a semiconductor device according to the fifth embodiment of the present disclosure.
  • FIG. 10 is a partially enlarged view of the semiconductor device according to the sixth embodiment of the present disclosure.
  • FIG. 11 is a partially enlarged view of the semiconductor device according to the seventh embodiment of the present disclosure, and
  • FIG. 12 is a partially enlarged view of the semiconductor device according to the eighth embodiment of the present disclosure.
  • the semiconductor device of this embodiment is configured by stacking a first substrate 10 and a second substrate 20.
  • the first substrate 10 is an SOI (Silicon on Insulator) substrate in which a semiconductor layer 13 is disposed on a support substrate 11 with an insulating film 12 interposed therebetween. It is constituted by one surface opposite to the insulating film 12 side.
  • the support substrate 11 and the semiconductor layer 13 are composed of a silicon substrate or the like, and the insulating film 12 is composed of SiO 2 or SiN.
  • the semiconductor layer 13 is formed with a groove portion 14 by performing known micromachining, and the groove portion 14 forms a sensing portion 15.
  • the sensing unit 15 is not particularly limited, and may be a pressure sensor configured by a diffusion resistor or the like, an acceleration sensor configured by a beam structure partitioned in the semiconductor layer 13, an angular velocity sensor, or the like.
  • the support substrate 11 and the insulating film 12 have a recess 16 formed in a portion facing the sensing unit 15, and the sensing unit 15 is in a floating state on the recess 16.
  • a first pad portion 17 and a frame-shaped first sealing portion 18 are formed on one surface 10a of the first substrate 10 (the surface of the semiconductor layer 13). Specifically, the first pad portion 17 is electrically connected to the sensing portion 15, and only one is shown in FIG. 1, but a plurality of first pad portions 17 are actually formed depending on the application. .
  • the first sealing portion 18 has a frame shape surrounding the sensing portion 15, and the pad portion 17 is disposed in a region surrounded by the first sealing portion 18.
  • the first pad portion 17 of the present embodiment has a configuration in which a Ti layer 40b is laminated on an Al layer 40a.
  • the first sealing portion 18 has a configuration in which a Ti layer 40b is laminated on an Al layer 40a, similarly to the first pad portion 17.
  • the Al layer 40a in the present embodiment includes compounds such as Al—Cu, Al—Si—Cu, and Al—Si in addition to pure Al.
  • the second substrate 20 includes a bonded substrate 21 and an insulating film 22 formed on one surface 21 a of the bonded substrate 21 that faces the first substrate 10. Is formed on one surface of the insulating film 22 opposite to the bonded substrate 21 side.
  • the bonded substrate 21 is made of a silicon substrate or the like, and the insulating film 22 is made of SiO 2 or SiN.
  • the other surface 20 b of the second substrate 20 is configured by the other surface 21 b on the opposite side to the one surface 21 a of the bonded substrate 21.
  • a concave portion 23 is formed on the surface 21 a of the bonded substrate 21 at a portion facing the sensing unit 15.
  • the insulating film 22 is also formed on the wall surface of the recess 23, but may not be formed on the wall surface of the recess 23.
  • a second pad portion 24 is formed on the surface 20 a of the second substrate 20 at a portion facing the first pad portion 17, and the first sealing at a portion facing the first sealing portion 18.
  • a second sealing portion 25 having a shape (frame shape) corresponding to the portion 18 is formed.
  • the second pad portion 24 has a structure in which a Ti layer 41b is laminated on an Al layer 41a.
  • the second sealing portion 25 has a structure in which a Ti layer 41b is laminated on an Al layer 41a, as in the second pad portion 17, although not particularly shown.
  • the Al layer 41a in this embodiment includes compounds such as Al—Cu, Al—Si—Cu, and Al—Si in addition to pure Al, like the Al layer 40a.
  • a through hole 26 is formed in the second substrate 20 so as to penetrate the second substrate 20 in the stacking direction of the first and second substrates 10 and 20 and reach the second pad portion 24.
  • a through electrode 28 is formed through an insulating film 27.
  • an insulating film 29 is formed on the other surface 20b of the second substrate 20 (other surface 21b of the bonded substrate 21), and a through electrode 28, an external circuit, and a bonding wire (not shown) are formed on the insulating film 29.
  • a terminal portion 30 that is electrically connected is formed.
  • the through electrode 28 and the terminal portion 30 are made of Al
  • the insulating film 29 is made of TEOS.
  • the second substrate 20 is joined and integrated with the first substrate 10.
  • the first and second substrates 10 and 20 are integrated by metal bonding of the first pad portion 17 and the second pad portion 24, and the first sealing portion 18 and the second sealing portion 25. It has become.
  • the Ti layer 40b of the first pad part 17 and the Ti layer 41b of the second pad part 24 are metal-bonded, and the Ti layer 40b of the first sealing part 18 and the Ti layer of the second sealing part 25 are bonded.
  • 41b is integrated by metal bonding.
  • the hermetic chamber 50 is configured in a space surrounded by the first and second substrates 10 and 20, the first and second sealing portions 18 and 25, and the sensing unit 15 is sealed in the hermetic chamber 50. It has been configured. In the present embodiment, the hermetic chamber is set to a vacuum pressure.
  • the above is the configuration of the semiconductor device in this embodiment. Next, a method for manufacturing the semiconductor device will be described.
  • the first substrate 10 on which the sensing unit 15, the first pad unit 17, and the first sealing unit 18 are formed is prepared.
  • a support substrate 11 is prepared, and an insulating film 12 is formed on the support substrate 11 by CVD (Chemical Vapor Deposition) method, thermal oxidation, or the like.
  • CVD Chemical Vapor Deposition
  • wet etching or the like is performed to form the recess 16, and then the insulating film 12 and the semiconductor layer 13 are bonded to form the first substrate 10.
  • the bonding between the insulating film 12 and the semiconductor layer 13 is not particularly limited, but bonding is performed by so-called direct bonding in which the bonding surface is irradiated with an Ar ion beam and activated after the bonding surface is activated.
  • a metal film is formed on the one surface 10a of the first substrate 10 by a CVD method or the like, and the metal film is patterned by reactive ion etching or the like, thereby forming the first pad portion 17 and the first sealing portion 18. .
  • the first pad portion 17 and the first sealing portion 18 of the present embodiment have a laminated structure in which the Ti layer 40b is laminated on the Al layer 40a as described above, the Al layer 40a is formed.
  • the Ti layer 40b is formed later to form a metal film having the Ti layer 40b as the outermost surface, and the metal film is patterned.
  • the semiconductor layer 13 is etched by reactive ion etching or the like, thereby forming the groove portion 14 and the sensing portion 15. Accordingly, the first substrate 10 on which the sensing unit 15, the first pad unit 17, and the first sealing unit 18 are formed is prepared.
  • a second substrate 20 on which the second pad portion 24 and the second sealing portion 25 are formed is prepared in a step different from that shown in FIG.
  • a bonded substrate 21 is prepared, and a recess 23 is formed on one surface 21 a of the bonded substrate 21 by dry etching or the like.
  • an insulating film 22 is formed on one surface 20a of the bonded substrate 21 by a CVD method, thermal oxidation, or the like.
  • a metal film is formed by a CVD method or the like, and the metal film is patterned by reactive ion etching or the like, whereby the second pad portion 24 and the second sealing portion 25 are formed.
  • the second pad portion 24 and the second sealing portion 25 of the present embodiment have a laminated structure in which the Ti layer 41b is laminated on the Al layer 41a as described above, the Al layer 41a is formed.
  • the Ti layer 41b is formed later to form a metal film having the Ti layer 41b as the outermost surface, and the metal film is patterned.
  • the Ti layers 40b and 41b when the Ti layers 40b and 41b are stacked on the Al layers 40a and 41a, an oxide film is not formed on the surfaces of the Al layers 40a and 41a.
  • the Ti layers 40b and 41b are preferably formed without being exposed to the atmosphere.
  • the first substrate 10 and the second substrate 20 are heat-treated at 180 ° C. or higher under vacuum (vacuum annealing), thereby being formed on the surfaces of the Ti layers 40b and 41b.
  • the removed oxide film (natural oxide film) is removed.
  • the oxide film formed on the surfaces of the Ti layers 40b and 41b is more likely to allow oxygen in the oxide film to enter the Ti layers 40b and 41b than the oxide film formed on the surface of Al or the like. Since the oxide film is brittle (easily decomposed), it can be easily removed by vacuum annealing.
  • the heat treatment may be performed at 400 ° C. or higher.
  • the first substrate 10 and the second substrate 20 are bonded. Specifically, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and the first pad portion 17 of the first substrate 10, the first pad portion 24 of the second substrate 20, and the first substrate 10.
  • the first sealing portion 18 and the second sealing portion 25 of the second substrate 20 are metal-bonded while in a solid state. More specifically, the Ti layers 40b and 41b of the first and second pad portions 17 and 24 are metal-bonded, and the Ti layers 40b and 41b of the first and second sealing portions 18 and 25 are metal-bonded.
  • the hermetic chamber 50 is configured between the first substrate 10 and the second substrate 20, and the sensing unit 15 is sealed in the hermetic chamber 50.
  • a through hole 26 that penetrates in the stacking direction of the first and second substrates 10 and 20 and reaches the second pad portion 24 is formed in the second substrate 20.
  • an insulating film 27 such as TEOS is formed on the wall surface of the through hole 26.
  • the insulating film 29 is composed of the insulating film formed on the other surface 20b of the second substrate 20 (the other surface 21b of the bonded substrate 21). That is, the insulating film 27 and the insulating film 29 are formed in the same process.
  • the insulating film 27 formed on the bottom of the through hole 26 is removed, and the second pad portion 24 is exposed in the through hole 26.
  • a metal film is disposed in the through hole 26 by sputtering or vapor deposition to form the through electrode 28, and the metal film on the insulating film 29 is patterned.
  • the semiconductor device of this embodiment is manufactured.
  • substrates 10 and 20 are prepared, and after dicing and cutting these, it divides
  • the first pad portion 17 and the first sealing portion 18 are configured by laminating the Ti layer 41b on the Al layer 40a, and the second pad portion 24 and the second sealing portion. 25 is formed by laminating a Ti layer 41b on an Al layer 41a.
  • the first pad portion 17 and the second pad portion 24 and the 1st sealing part 18 and the 2nd sealing part 25 it forms on the surface of Al etc. by performing vacuum annealing.
  • oxygen in the oxide film easily enters the Ti layers 40b and 41b, and the oxide film is fragile (is easily decomposed), so that the oxide film easily formed on the surface of the Ti layers 40b and 41b. Can be removed. Therefore, it can suppress that the process at the time of removing an oxide film on the sensing part 15 can be suppressed, and it can suppress that the characteristic of the sensing part 15 changes.
  • Ti layers 40b and 41b are formed on the surfaces of the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25, but the terminal portion 30 is made of Al as in the prior art. It is composed. For this reason, the wire bonding which connects an external circuit and the terminal part 30 can be performed similarly to the past.
  • first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are formed using Au, and the first and second pad portions 17 and 24 and the first and second sealing portions are formed.
  • the portions 18 and 25 are less likely to be oxidized, the increase in cost can be suppressed by making it easier to remove the oxide film using the Ti layers 40b and 41b as in the present embodiment.
  • the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are bonded in a solid state. Therefore, compared with the case where the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are joined in a liquid phase state, the one surface 10a of the first substrate 10 and the second substrate Therefore, it is possible to prevent the control of the distance from the one surface 20a of the 20 from becoming complicated.
  • the Ti layers 40b and 41b are formed on the Al layers 40a and 41a.
  • the metal layers disposed under the Ti layers 40b and 41b can be changed as appropriate.
  • a gettering layer 31 that adsorbs an active gas is formed on the insulating film 22 formed on the bottom surface of the recess 23. Similar to the second pad portion 24 and the second sealing portion 25, the gettering layer 31 has a laminated structure in which a Ti layer 42b is laminated on an Al layer 42a, as shown in FIG.
  • Such a semiconductor device is manufactured by preparing the second substrate 20 having the gettering layer 31 in the step of FIG. Specifically, in the present embodiment, since the gettering layer 31 has the same configuration as the second pad portion 24 and the second sealing portion 25, the gettering layer 31 includes the second pad portion 24 and the second pad portion 24. It is formed in the same process as the process of forming the sealing portion 25. That is, after the metal film is formed in the step of FIG. 3B, the second pad portion 24 and the second sealing portion 25 are formed simultaneously with patterning. That is, the Al layer 41a and Ti layer 41b of the second pad portion 24 and the second sealing portion 25 and the Al layer 42a and Ti layer 42b of the gettering layer 31 are formed in the same process.
  • the gettering layer 31 is formed in the hermetic chamber 50, the vacuum degree of the hermetic chamber 50 can be maintained.
  • the Al layer 42a has an uneven shape whose surface is roughened.
  • the Ti layer 42b is formed on the roughened Al layer 42a.
  • 7 is an enlarged view of a portion corresponding to the region B in FIG.
  • the Al layer 42a corresponds to the underlayer of the present disclosure.
  • Al layer 42a Al layer 41a
  • reverse sputtering is performed on a portion (underlayer of the present disclosure) constituting the gettering layer 31. It is formed by depositing a Ti layer 42b (Ti layer 41b) after performing a roughening process by performing a process or a blast process.
  • the surface area of the Ti layer 42b functioning as a getter material can be increased, it is possible to increase a region exhibiting an adsorption (getter) effect. Therefore, the degree of vacuum of the hermetic chamber 50 can be further maintained.
  • FIG. 8 is an enlarged view of a portion corresponding to the region B in FIG. 5 and an enlarged view of the vicinity of the bottom surface of the recess 23.
  • the distance between the side surfaces of the trench 43 facing from the opening side to the bottom surface side is substantially constant.
  • the gettering layer 31 is formed along the wall surface of the trench 43 so that the space 43a inside the trench 43 remains. That is, the gettering layer 31 is formed so as not to fill the trench 43.
  • Such a semiconductor device is manufactured by forming the trench 43 after forming the recess 23 in the process of FIG.
  • the surface area of the Ti layer 42b functioning as a getter material can be increased, the degree of vacuum of the hermetic chamber 50 can be further maintained.
  • the trench 43 may have a tapered shape in which the interval between the side surfaces facing each other from the opening side toward the bottom side is gradually narrowed.
  • the first and second pad portions 17 and 24 are composed only of the Ti layers 40b and 41b, and the Al layers 40a and 41a are not disposed.
  • the first and second sealing portions 18 and 25 are configured by only the Ti layers 40b and 41b, but not the Al layers 40a and 41a, although not particularly illustrated.
  • 9 is an enlarged view of a portion corresponding to the region A in FIG.
  • Such a semiconductor device is configured by laminating only the Ti layers 40b and 41b in the steps of FIGS. 3A and 3B.
  • the example in which the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are configured only by the Ti layers 40b and 41b has been described.
  • the Al layers 40a and 41a are described.
  • diffusion of Al may be suppressed by disposing a TiW layer on the Al layers 40a and 41a.
  • a spacer 32 is disposed on one surface 10 a of the first substrate 10 so as to be covered with the first sealing portion 18. Further, although not particularly illustrated, a spacer 32 is disposed on the one surface 10 a of the first substrate 10 so as to be covered with the first pad portion 17. 10 is an enlarged view of a portion corresponding to the region C in FIG.
  • the spacer 32 is made of, for example, an insulating film such as an oxide film, and the spacer 32 sealed by the first sealing portion 18 has a frame-like structure corresponding to the shape of the first sealing portion 18. .
  • the spacer 32 is formed before the first pad portion 17 and the first sealing portion 18 are formed, and the first pad is covered so that the spacer 32 is covered. It is manufactured by forming the part 17 and the first sealing part 18.
  • the spacer 32 is the length of the spacer 32 in the normal direction relative to the one surface 10a of the first substrate 10.
  • the size of the second sealing portion 25 is larger than the size of the first sealing portion 18.
  • the size of the second pad portion 24 is larger than the size of the first pad portion 17.
  • the size refers to the size of the planar shape when viewed from the normal direction to the one surface 10a, 20a of the first and second substrates 10, 20.
  • the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are formed in the steps of FIGS. 3A and 3B. It is manufactured by changing the patterning shape as appropriate.
  • first pad portion 17 and the second pad portion 24 and the first sealing portion 18 and the second sealing portion 25 are different in size, the first and second pad portions 17 and 24 are different. And the robustness with respect to the alignment shift
  • the airtight chamber 50 is a nitrogen atmosphere with respect to the first embodiment, and the other aspects are the same as those in the first embodiment, and thus the description thereof is omitted here.
  • the basic configuration of this embodiment is the same as that of the first embodiment, but the inside of the hermetic chamber 50 is a nitrogen atmosphere.
  • the first pad portion 17 and the second pad portion 24 have TiN layers 40c and 41c formed on their surfaces, and the TiN layers 40c and 41c are joined to each other.
  • FIG. 12 is an enlarged view of region A in FIG. Further, since the TiN layers 40c and 41c are conductive, the first pad portion 17 and the second pad portion 24 can be electrically connected by joining the TiN layers 40c and 41c together.
  • the first and second substrates 10 and 20 are placed in an N 2 atmosphere after the process of FIG. At this time, TiN layers 40c and 41c are formed on the surfaces of the Ti layers 40b and 41b, respectively. And the semiconductor device of this embodiment is manufactured by metal joining TiN layers 40c and 41c.
  • the present disclosure can also be applied to a semiconductor device in which the hermetic chamber 50 is in a nitrogen atmosphere.
  • TiN layers 40c and 41c are formed on the surfaces of the Ti layers 40b and 41b. Since the TiN layers 40c and 41c have conductivity, the TiN layers 40c and 41c are electrically conductive. By joining the layers 40c and 41c, the manufacturing process can be simplified as compared with the case where the TiN layers 40c and 41c are removed.
  • the first substrate 10 may be made of quartz or the like instead of the SOI substrate.
  • the airtight chamber 50 may not be formed.
  • the gettering layer 31 may be formed on the first substrate 10 side.
  • the spacer 32 is the 1st pad part 17 and the 1st sealing.
  • the portion 18 may not be covered.
  • the spacer 32 may be formed outside the first sealing portion 18 so as to surround the first sealing portion 18.
  • the spacer 32 may be formed on the second substrate 20 side. That is, if the distance between the one surface 10a of the first substrate 10 and the one surface 20a of the second substrate 20 is defined to be equal to or higher than the height of the spacer 32, the formation location of the spacer 32 can be changed as appropriate.
  • the gettering layer 31 may be provided by combining the second to fourth embodiments with the fifth to eighth embodiments.
  • the fifth embodiment is combined with the sixth to eighth embodiments, and the first and second pad portions 17 and 24 and the first and second sealing portions 18 and 25 are configured by only the Ti layers 40b and 41b. You may make it do.
  • the sixth embodiment may be combined with the seventh and eighth embodiments, and a spacer 32 may be provided.
  • the seventh embodiment is combined with the eighth embodiment, and the size of the planar shape of the first pad portion 17 and the second pad portion 24 and the first sealing portion 18 and the second sealing portion 25 is determined. It may be different.
  • what combined said each embodiment can also be combined further suitably.

Abstract

 半導体装置の製造方法は、第1基板(10)を用意し、前記第1基板の一面(10a)に、Ti層(40b)が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって第1パッド部(17)を形成し、第2基板(20)を用意し、前記第2基板の一面(20a)に、Ti層(41b)が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって第2パッド部(24)を形成し、前記第1基板および前記第2基板を真空アニールすることにより、前記第1パッド部および前記第2パッド部における前記Ti層上に形成された酸化膜を除去し、前記第1パッド部と前記第2パッド部とを接合すること、を備える。

Description

半導体装置およびその製造方法 関連出願の相互参照
 本出願は、2015年2月10日に出願された日本特許出願番号2015-24321号に基づくもので、ここにその記載内容を援用する。
 本開示は、第1基板と第2基板とが接合され、第1基板と第2基板との間にセンシング部が配置された半導体装置およびその製造方法に関するものである。
 従来より、この種の半導体装置として、加速度を検出するセンシング部を有するものが提案されている(例えば、特許文献1参照)。具体的には、この半導体装置では、第1基板と第2基板との間に加速度を検出するセンシング部が配置されている。また、第1基板にはセンシング部と電気的に接続される第1パッド部が形成され、第2基板には第1パッド部と対向する部分に第2パッド部が形成されている。そして、これら第1パッド部と第2パッド部とは接合されて電気的に接続されている。なお、第1パッド部および第2パッド部は、アルミニウムを主成分とする材料で構成されている。
 しかしながら、このような半導体装置では、第1、第2パッド部がアルミニウムを主成分とする材料にて構成されているため、第1、第2パッド部の表面に形成される酸化膜(自然酸化膜)が非常に強固なものとなる。そして、第1パッド部と第2パッド部とを接合する際には、第1、第2パッド部を電気的に接続するために第1、第2パッド部に形成された酸化膜を除去した状態で接合しなければならないが、当該酸化膜を除去するためには、第1、第2パッド部を接合する前や接合時に温度を非常に高くしたり、接合時の荷重を非常に大きくしたりしなければならない。このため、このような状態にすることによってセンシング部の特性が変化する可能性がある。
特開2013-50320号公報
 本開示は、センシング部の特性が変化することを抑制できる半導体装置およびその製造方法を提供することを目的とする。
 本開示の第一の態様によれば、一面を有する第1基板と、一面を有し、当該一面が前記第1基板の一面と対向する状態で前記第1基板と接合される第2基板と、前記第1基板と前記第2基板との間に配置されたセンシング部と、前記第1基板の一面に形成され、前記センシング部と電気的に接続される第1パッド部と、前記第2基板の一面に形成され、前記第1パッド部と電気的に接続される第2パッド部と、を備える半導体装置の製造方法は、前記第1基板を用意し、前記第1基板の一面に、Ti層が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって前記第1パッド部を形成し、前記第2基板を用意し、前記第2基板の一面に、Ti層が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって前記第2パッド部を形成し、前記第1、第2基板を真空アニールすることにより、前記第1パッド部および前記第2パッド部における前記Ti層上に形成された酸化膜を除去し、前記第1パッド部と前記第2パッド部とを接合すること、を備える。
 これによれば、Ti層が最表面となるように第1、第2パッド部を形成しているため、真空アニールを行うことにより、Al等の表面に形成される酸化膜と比較して、酸化膜中の酸素がTi層内に入り込み易く、また酸化膜が脆い(分解され易い)ため、容易にTi層の表面に形成された酸化膜を除去することができる。したがって、センシング部に酸化膜を除去する際の工程が影響することを抑制でき、センシング部の特性が変化することを抑制できる。
 本開示の第二の態様によれば、半導体装置は、一面を有する第1基板と、一面を有し、当該一面が前記第1基板の一面と対向する状態で前記第1基板と接合される第2基板と、前記第1基板と前記第2基板との間に配置されたセンシング部と、前記第1基板の一面に形成され、前記センシング部と電気的に接続される第1パッド部と、前記第2基板の一面に形成され、前記第1パッド部と電気的に接続される第2パッド部と、を備える。また、前記第1パッド部、前記第2パッド部は、表面がTiを含む層とされており、当該Tiを含む層同士が接合されている。
 これによれば、第1、第2パッド部は、表面がTiを含む層にて構成されているため、酸化膜を容易に除去した後に接合されて構成される。このため、センシング部の特性が変化することを抑制した半導体装置とできる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態における半導体装置の断面図であり、 図2は、図1中の領域Aの拡大図であり、 図3(a)から図3(c)は、図1に示す半導体装置の製造方法を示す断面図であり、 図4(a)から図4(c)は、図3に続く半導体装置の製造方法を示す断面図であり、 図5は、本開示の第2実施形態における半導体装置の断面図であり、 図6は、図5中の領域Bの拡大図であり、 図7は、本開示の第3実施形態における半導体装置の部分拡大図であり、 図8は、本開示の第4実施形態における半導体装置の部分拡大図であり、 図9は、本開示の第5実施形態における半導体装置の部分拡大図であり、 図10は、本開示の第6実施形態における半導体装置の部分拡大図であり、 図11は、本開示の第7実施形態における半導体装置の部分拡大図であり、及び、 図12は、本開示の第8実施形態における半導体装置の部分拡大図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について図面を参照しつつ説明する。図1に示されるように、本実施形態の半導体装置は、第1基板10と第2基板20とが積層されて構成されている。
 第1基板10は、本実施形態では、支持基板11上に絶縁膜12を介して半導体層13が配置されたSOI(Silicon on Insulator)基板とされており、一面10aが半導体層13のうちの絶縁膜12側と反対側の一面にて構成されている。なお、支持基板11および半導体層13はシリコン基板等で構成され、絶縁膜12はSiOやSiN等で構成される。
 そして、半導体層13には、周知のマイクロマシン加工が施されることによって溝部14が形成され、当該溝部14によってセンシング部15が形成されている。センシング部15は、特に限定されるものではないが、拡散抵抗等によって構成される圧力センサや、半導体層13に区画形成された梁構造体で構成される加速度センサや角速度センサ等である。
 また、支持基板11および絶縁膜12には、本実施形態では、センシング部15と対向する部分に凹部16が形成されており、センシング部15は凹部16上において浮遊した状態となっている。
 第1基板10の一面10a(半導体層13の表面)には、第1パッド部17および枠状の第1封止部18が形成されている。具体的には、第1パッド部17は、センシング部15と電気的に接続されるものであり、図1では1つのみ図示されているが、実際には用途に応じて複数形成されている。第1封止部18は、センシング部15を囲む枠状とされており、パッド部17は第1封止部18で囲まれる領域内に配置されている。
 ここで、本実施形態の第1パッド部17は、図2に示されるように、Al層40a上にTi層40bが積層された構成とされている。また、第1封止部18は、特に図示しないが、第1パッド部17と同様に、Al層40a上にTi層40bが積層された構成とされている。なお、本実施形態でのAl層40aとは、純粋なAlに加えて、Al-Cu、Al-Si-Cu、Al-Si等の化合物を含むものである。
 第2基板20は、図1に示されるように、貼り合わせ基板21と、貼り合わせ基板21のうちの第1基板10と対向する一面21aに形成された絶縁膜22とを有しおり、一面20aが絶縁膜22のうちの貼り合わせ基板21側と反対側の一面にて構成されている。なお、貼り合わせ基板21はシリコン基板等で構成され、絶縁膜22はSiOやSiN等で構成されている。また、第2基板20の他面20bは、貼り合わせ基板21のうちの一面21aと反対側の他面21bにて構成されている。
 貼り合わせ基板21の一面21aには、センシング部15と対向する部分に凹部23が形成されている。本実施形態では、絶縁膜22は、凹部23の壁面にも形成されているが、凹部23の壁面に形成されていなくてもよい。
 そして、第2基板20の一面20aには、第1パッド部17と対向する部分に第2パッド部24が形成されていると共に、第1封止部18と対向する部分に当該第1封止部18と対応する形状(枠状)の第2封止部25が形成されている。
 ここで、第2パッド部24は、図2に示されるように、Al層41a上にTi層41bが積層された構成とされている。また、第2封止部25は、特に図示しないが、第2パッド部17と同様に、Al層41a上にTi層41bが積層された構成とされている。なお、本実施形態でのAl層41aとは、上記Al層40aと同様に、純粋なAlに加えて、Al-Cu、Al-Si-Cu、Al-Si等の化合物を含むものである。
 さらに、第2基板20には、第2基板20を第1、第2基板10、20の積層方向に貫通して第2パッド部24に達する貫通孔26が形成されており、当該貫通孔26には絶縁膜27を介して貫通電極28が形成されている。また、第2基板20の他面20b(貼り合わせ基板21の他面21b)には、絶縁膜29が形成されており、絶縁膜29上に貫通電極28および外部回路と図示しないボンディングワイヤを介して電気的に接続される端子部30が形成されている。なお、本実施形態では、貫通電極28および端子部30はAlにて構成され、絶縁膜29はTEOSで構成される。
 そして、このような第2基板20が第1基板10と接合されて一体化されている。具体的には、第1、第2基板10、20は、第1パッド部17と第2パッド部24、第1封止部18と第2封止部25とが金属接合されることにより一体化されている。さらに詳述すると、第1パッド部17のTi層40bと第2パッド部24のTi層41bとが金属接合され、第1封止部18のTi層40bと第2封止部25のTi層41bとが金属接合されることによって一体化されている。そして、第1、第2基板10、20、第1、第2封止部18、25の間で囲まれる空間にて気密室50が構成され、センシング部15が当該気密室50に封止された構成とされている。なお、本実施形態では、気密室は真空圧とされている。
 以上が本実施形態における半導体装置の構成である。次に、上記半導体装置の製造方法について説明する。
 まず、図3(a)に示されるように、上記センシング部15、第1パッド部17、第1封止部18が形成された第1基板10を用意する。このような第1基板10は、例えば、まず、支持基板11を用意し、支持基板11上にCVD(Chemical Vapor Deposition)法や熱酸化等によって絶縁膜12を形成する。次に、ウェットエッチング等を行って上記凹部16を形成した後、絶縁膜12と半導体層13とを接合して第1基板10を形成する。なお、絶縁膜12と半導体層13との接合は、特に限定されるものではないが、接合面にArイオンビームを照射し、当該接合面を活性化させた後に接合するいわゆる直接接合によって接合される。
 その後、第1基板10の一面10aにCVD法等によって金属膜を形成し、反応性イオンエッチング等で当該金属膜をパターニングすることにより、第1パッド部17および第1封止部18を形成する。本実施形態の第1パッド部17および第1封止部18は、上記のように、Al層40a上にTi層40bが積層された積層構造とされているため、Al層40aを成膜した後にTi層40bを成膜してTi層40bが最表面となる金属膜を構成し、当該金属膜をパターニングすることによって形成される。その後、半導体層13を反応性イオンエッチング等でエッチングすることにより、溝部14を形成してセンシング部15を形成する。これにより、上記センシング部15、第1パッド部17、第1封止部18が形成された第1基板10が用意される。
 次に、図3(b)に示されるように、上記図3(a)とは別工程において、第2パッド部24および第2封止部25が形成された第2基板20を用意する。例えば、このような第2基板20は、まず、貼り合わせ基板21を用意し、貼り合わせ基板21の一面21aにドライエッチング等で凹部23を形成する。次に、貼り合わせ基板21の一面20aにCVD法や熱酸化等によって絶縁膜22を形成する。その後、CVD法等によって金属膜を形成し、反応性イオンエッチング等で当該金属膜をパターニングすることにより、第2パッド部24および第2封止部25を形成する。本実施形態の第2パッド部24および第2封止部25は、上記のように、Al層41a上にTi層41bが積層された積層構造とされているため、Al層41aを成膜した後にTi層41bを成膜してTi層41bが最表面となる金属膜を構成し、当該金属膜をパターニングすることによって形成される。
 なお、図3(a)および図3(b)の工程において、Al層40a、41a上にTi層40b、41bを積層する場合、Al層40a、41aの表面に酸化膜が形成されないように、Al層40a、41aを成膜した後、大気に曝すことなくTi層40b、41bを成膜することが好ましい。
 その後、図3(c)に示されるように、第1基板10および第2基板20を真空下で180℃以上に加熱処理(真空アニール)することにより、Ti層40b、41bの表面に形成された酸化膜(自然酸化膜)を除去する。このとき、Ti層40b、41bの表面に形成された酸化膜は、Al等の表面に形成される酸化膜と比較して、酸化膜中の酸素がTi層40b、41b内に入り込み易く、また酸化膜が脆い(分解され易い)ため、真空アニールで容易に除去することができる。なお、センシング部15の構成によっては、400℃以上に加熱処理するようにしてもよい。
 その後、図4(a)に示されるように、第1基板10と第2基板20とを接合する。具体的には、適宜形成されたアライメントマークを用いて赤外顕微鏡等によるアライメントを行い、第1基板10の第1パッド部17と第2基板20の第1パッド部24、第1基板10の第1封止部18と第2基板20の第2封止部25とを固相状態のまま金属接合する。詳述すると、第1、第2パッド部17、24のTi層40b、41b同士を金属接合し、第1、第2封止部18、25のTi層40b、41b同士を金属接合する。これにより、第1基板10と第2基板20との間に気密室50が構成されると共に、センシング部15が気密室50に封止される。
 なお、この工程では、図3(c)の工程においてTi層40b、41bの表面に形成された酸化膜を既に除去しているため、接合時に第1、第2基板10、20に多大な荷重を印加する必要はない。
 続いて、図4(b)に示されるように、第2基板20に、第1、第2基板10、20の積層方向に貫通して第2パッド部24に達する貫通孔26を形成する。そして、この貫通孔26の壁面にTEOS等の絶縁膜27を成膜する。このとき、第2基板20の他面20b(貼り合わせ基板21の他面21b)に形成された絶縁膜にて絶縁膜29が構成される。つまり、絶縁膜27と絶縁膜29とは同じ工程で形成される。その後、貫通孔26の底部に形成された絶縁膜27を除去し、貫通孔26内において第2パッド部24を露出させる。
 次に、図4(c)に示されるように、貫通孔26にスパッタ法や蒸着法等によって金属膜を配置して貫通電極28を形成すると共に、絶縁膜29上の金属膜をパターニングして端子部30を形成することにより、本実施形態の半導体装置が製造される。
 なお、上記では、1つの半導体装置の製造方法について説明したが、ウェハ状の第1、第2基板10、20を用意し、これらを接合した後にダイシングカットしてチップ単位に分割するようにしてもよい。
 以上説明したように、本実施形態では、第1パッド部17および第1封止部18をAl層40a上にTi層41bを積層して構成し、第2パッド部24および第2封止部25をAl層41a上にTi層41bを積層して構成している。このため、第1パッド部17と第2パッド部24、第1封止部18と第2封止部25とを接合する前に、真空アニールを行うことにより、Al等の表面に形成される酸化膜と比較して、酸化膜中の酸素がTi層40b、41b内に入り込み易く、また酸化膜が脆い(分解され易い)ため、容易にTi層40b、41bの表面に形成された酸化膜を除去することができる。したがって、センシング部15に酸化膜を除去する際の工程が影響することを抑制でき、センシング部15の特性が変化することを抑制できる。
 また、第1、第2パッド部17、24および第1、第2封止部18、25の表面にTi層40b、41bを形成しているが、端子部30は従来と同様にAlにて構成している。このため、外部回路と端子部30とを接続するワイヤボンディングは、従来と同様に行うことができる。
 さらに、Auを用いて第1、第2パッド部17、24および第1、第2封止部18、25を構成し、第1、第2パッド部17、24および第1、第2封止部18、25を酸化し難くすることも考えられるが、本実施形態のようにTi層40b、41bを用いて酸化膜を除去し易くする方がコストの増加を抑制できる。
 また、本実施形態では、第1、第2基板10、20を接合する際、第1、第2パッド部17、24および第1、第2封止部18、25を固相状態のまま接合するため、第1、第2パッド部17、24および第1、第2封止部18、25を液相状態にして接合する場合と比較して、第1基板10の一面10aと第2基板20の一面20aとの間隔の制御が複雑になることを抑制できる。
 なお、上記では、Ti層40b、41bがAl層40a、41a上に形成されている例について説明したが、Ti層40b、41b下に配置される金属層は適宜変更可能である。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して気密室50にゲッタリング層を形成したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図5に示されるように、凹部23の底面に形成された絶縁膜22上に、活性ガスを吸着するゲッタリング層31が形成されている。ゲッタリング層31は、第2パッド部24および第2封止部25と同様に、図6に示されるように、Al層42a上にTi層42bが積層された積層構造とされている。
 このような半導体装置は、図3(b)の工程にておいてゲッタリング層31を有する第2基板20を用意することによって製造される。具体的には、本実施形態では、ゲッタリング層31が第2パッド部24および第2封止部25と同様の構成とされているため、ゲッタリング層31は第2パッド部24および第2封止部25を形成する工程と同一の工程にて形成される。つまり、図3(b)の工程において金属膜を成膜した後、第2パッド部24および第2封止部25をパターニングする際に同時に形成される。すなわち、第2パッド部24および第2封止部25のAl層41aおよびTi層41bと、ゲッタリング層31のAl層42aおよびTi層42bとは同一の工程にて形成されるものである。
 これによれば、気密室50内にゲッタリング層31が形成されているため、気密室50の真空度を維持することができる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第2実施形態に対してゲッタリング層31の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図7に示されるように、Al層42aは表面が粗化処理された凹凸形状とされている。そして、Ti層42bは、粗化処理されたAl層42a上に形成されている。なお、図7は、図5中の領域Bに相当する部分の拡大図である。また、本実施形態では、Al層42aが本開示の下地層に相当している。
 このような半導体装置は、図3(b)の工程において、Al層42a(Al層41a)を成膜した後、ゲッタリング層31を構成する部分(本開示の下地層)に対して逆スパッタ処理を行ったり、ブラスト処理を行って粗化処理した後、Ti層42b(Ti層41b)を成膜することによって形成される。
 これによれば、ゲッタ材として機能するTi層42bの表面積を増加することができるため、吸着(ゲッタ)効果を発揮する領域を増加することができる。したがって、さらに気密室50の真空度を維持することができる。
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態は、第2実施形態に対してゲッタリング層31の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図8に示されるように、凹部23の底面に複数のトレンチ43が形成されており、絶縁膜22はトレンチ43の壁面にも形成されている。なお、図8は、図5中の領域Bに相当する部分の拡大図であり、凹部23の底面近傍の拡大図である。トレンチ43は、本実施形態では、開口部側から底面側に向かって対向する側面の間隔(トレンチ43の幅)がほぼ一定とされている。そして、ゲッタリング層31は、トレンチ43の内部の空間43aが残存するように、トレンチ43の壁面に沿って形成されている。つまり、ゲッタリング層31は、トレンチ43を埋め込まないように形成されている。
 このような半導体装置は、図3(b)の工程において、凹部23を形成した後にトレンチ43を形成することによって製造される。
 これによれば、上記第3実施形態と同様に、ゲッタ材として機能するTi層42bの表面積を増加することができるため、さらに気密室50の真空度を維持することができる。
 なお、本実施形態において、トレンチ43は、開口部側から底部側に向かって対向する側面の間隔が次第に狭くなるテーパ形状とされていてもよい。
 (第5実施形態)
 本開示の第5実施形態について説明する。本実施形態は、第1実施形態に対して第1、第2パッド部17、24および第1、第2封止部18、25の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図9に示されるように、第1、第2パッド部17、24は、Ti層40b、41bのみで構成されており、Al層40a、41aが配置されていない。同様に、第1、第2封止部18、25は、特に図示しないが、Ti層40b、41bのみで構成されており、Al層40a、41aが配置されていない。なお、図9は、図1中の領域Aに相当する部分の拡大図である。
 このような半導体装置は、図3(a)および図3(b)の工程において、Ti層40b、41bのみを積層することによって構成される。
 これによれば、第1パッド部17と第2パッド部24、第1封止部18と第2封止部25とを接合する際、第1、第2パッド部17、24および第1、第2封止部18、25がTi層40b、41bのみで構成されているため、AlがTi層40b、41bに拡散してボイドが発生することがない。このため、接合強度が低下することを抑制できる。
 なお、本実施形態では、第1、第2パッド部17、24および第1、第2封止部18、25をTi層40b、41bのみで構成する例について説明したが、Al層40a、41aを配置する場合には、当該Al層40a、41a上にTiW層を配置することによってAlが拡散することを抑制するようにしてもよい。
 (第6実施形態)
 本開示の第6実施形態について説明する。本実施形態は、第1実施形態に対してスペーサを配置したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図10に示されるように、第1基板10の一面10aには、第1封止部18に覆われるようにスペーサ32が配置されている。また、特に図示しないが、第1基板10の一面10aには、第1パッド部17に覆われるようにスペーサ32が配置されている。なお、図10は、図1中の領域Cに相当する部分の拡大図である。また、スペーサ32は、例えば、酸化膜等の絶縁膜で構成され、第1封止部18に封止されるスペーサ32は第1封止部18の形状に対応した枠状構造とされている。
 このような半導体装置は、図3(a)の工程において、第1パッド部17および第1封止部18を形成する前にスペーサ32を形成し、当該スペーサ32が覆われるように第1パッド部17および第1封止部18を形成することによって製造される。
 これによれば、スペーサ32によって第1基板10の一面10aと第2基板20の一面20aとの間隔をスペーサ32の高さ以上に保持することができるため、接合時の製造条件の自由度を向上できる。なお、スペーサ32の高さとは、スペーサ32における第1基板10の一面10aに対する法線方向の長さのことである。
 (第7実施形態)
 本開示の第7実施形態について説明する。本実施形態は、第1実施形態に対して第1、第2パッド部17、24および第1、第2封止部18、25の大きさを変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図11に示されるように、第2封止部25の大きさが第1封止部18の大きさより大きくされている。また、特に図示していないが、第2パッド部24の大きさが第1パッド部17の大きさより大きくされている。なお、ここでの大きさとは、第1、第2基板10、20の一面10a、20aに対する法線方向から視たときの平面形状の大きさのことである。
 このような半導体装置は、上記図3(a)および図3(b)の工程において、第1、第2パッド部17、24および第1、第2封止部18、25を形成する際のパターニング形状を適宜変更することによって製造される。
 これによれば、第1パッド部17と第2パッド部24、第1封止部18と第2封止部25との大きさが異なっているため、第1、第2パッド部17、24および第1、第2封止部18、25を接合する際のアライメントずれに対するロバスト性を向上できる。
 (第8実施形態)
 本開示の第8実施形態について説明する。本実施形態は、第1実施形態に対して気密室50を窒素雰囲気としたものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態は、基本的な構成は上記第1実施形態と同様であるが、気密室50内が窒素雰囲気とされている。そして、第1パッド部17および第2パッド部24は、図12に示されるように、表面にTiN層40c、41cが形成されており、当該TiN層40c、41c同士が接合されている。
 なお、第1、第2封止部18、25に関しては特に図示しないが、第1、第2パッド部17、24と同様に、表面にTiN層40c、41cが形成され、当該TiN層40c、41c同士が接合されている。そして、図12は、図1中の領域Aの拡大図である。また、TiN層40c、41cは導電性を有しているため、TiN層40c、41c同士を接合することにより、第1パッド部17と第2パッド部24との電気的な接続は図られる。
 このような半導体装置は、上記図3(c)の工程を行った後、第1、第2基板10、20をN雰囲気下に配置する。この際、Ti層40b、41bの表面にそれぞれTiN層40c、41cが形成される。そして、TiN層40c、41c同士を金属接合することによって本実施形態の半導体装置が製造される。
 このように、気密室50が窒素雰囲気とされた半導体装置に本開示を適用することもできる。また、気密室50を窒素雰囲気とする場合には、Ti層40b、41bの表面にTiN層40c、41cが形成されるが、TiN層40c、41cは導電性を有しているため、当該TiN層40c、41c同士を接合することにより、TiN層40c、41cを除去する場合と比較して、製造工程の簡略化を図ることができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、本開示の技術的範囲内において適宜変更が可能である。
 例えば、上記第1実施形態において、第1基板10はSOI基板ではなく、水晶等で構成されていてもよい。
 また、上記第1、第5、第6、第7実施形態において、気密室50が形成されていなくてもよい。
 そして、上記第2~第4実施形態において、ゲッタリング層31は、第1基板10側に形成されていてもよい。
 また、上記第6実施形態では、第1パッド部17および第1封止部18に覆われるようにスペーサ32を配置する例について説明したが、スペーサ32は第1パッド部17および第1封止部18に覆われていなくてもよい。例えば、スペーサ32は、第1封止部18よりも外側に第1封止部18を囲むように形成されていてもよい。また、スペーサ32は、第2基板20側に形成されていてもよい。つまり、第1基板10の一面10aと第2基板20の一面20aとの間隔がスペーサ32の高さ以上に規定されるのであれば、スペーサ32の形成場所は適宜変更可能である。
 さらに、上記各実施形態を組み合わせることもできる。例えば、上記第2~第4実施形態を上記第5~第8実施形態に組み合わせ、ゲッタリング層31を備えるようにしてもよい。また、上記第5実施形態を上記第6~第8実施形態に組み合わせ、第1、第2パッド部17、24および第1、第2封止部18、25をTi層40b、41bのみで構成するようにしてもよい。そして、上記第6実施形態を上記第7、第8実施形態に組み合わせ、スペーサ32を備えるようにしてもよい。また、上記第7実施形態を上記第8実施形態に組み合わせ、第1パッド部17と第2パッド部24、および第1封止部18と第2封止部25との平面形状の大きさが異なるようにしてもよい。さらに、上記各実施形態を組み合わせたもの同士をさらに適宜組み合わせることもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (16)

  1.  一面(10a)を有する第1基板(10)と、
     一面(20a)を有し、当該一面が前記第1基板の一面と対向する状態で前記第1基板と接合される第2基板(20)と、
     前記第1基板と前記第2基板との間に配置されたセンシング部(15)と、
     前記第1基板の一面に形成され、前記センシング部と電気的に接続される第1パッド部(17)と、
     前記第2基板の一面に形成され、前記第1パッド部と電気的に接続される第2パッド部(24)と、を備える半導体装置の製造方法において、
     前記第1基板を用意し、
     前記第1基板の一面に、Ti層(40b)が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって前記第1パッド部を形成し、
     前記第2基板を用意し、
     前記第2基板の一面に、Ti層(41b)が最表面となる金属膜を形成し、当該金属膜をパターニングすることによって前記第2パッド部を形成し、
     前記第1基板および前記第2基板を真空アニールすることにより、前記第1パッド部および前記第2パッド部における前記Ti層上に形成された酸化膜を除去し、
     前記第1パッド部と前記第2パッド部とを接合すること、を備える半導体装置の製造方法。
  2.  前記第1パッド部の形成においては、前記第1基板の一面に形成された金属膜をパターニングすることにより、前記第1パッド部と共に、前記第1パッド部を囲む枠状の第1封止部(18)を形成し、
     前記第2パッド部の形成においては、前記第2基板の一面に形成された金属膜をパターニングすることにより、前記第2パッド部と共に、前記第2パッドを囲み、前記第1封止部と対応する形状の第2封止部(25)を形成し、
     前記酸化膜の除去においては、前記第1、第2パッド部における前記Ti層上に形成された酸化膜と共に、前記第1、第2封止部における前記Ti層上に形成された酸化膜を除去し、
     前記接合においては、前記第1パッド部と前記第2パッド部とを接合すると共に、前記第1封止部と前記第2封止部とを接合することによって前記第1基板と前記第2基板との間に気密室(50)を構成し、前記気密室内に前記センシング部を封止すること、を備える請求項1に記載の半導体装置の製造方法。
  3.  前記酸化膜を除去した前に、前記第1基板および前記第2基板における前記気密室内に配置される部分の少なくとも一方に活性ガスを吸着するゲッタリング層(31)を形成すること、をさらに備える請求項2に記載の半導体装置の製造方法。
  4.  前記ゲッタリング層の形成においては、下地層(42a)を形成することと、当該下地層を粗化処理することと、粗化処理した前記下地層上にTi層(42b)を形成することと、を備える請求項3に記載の半導体装置の製造方法。
  5.  前記ゲッタリング層を形成した前に、前記ゲッタリング層が形成される部分にトレンチ(43)を形成することをさらに備え、
     前記ゲッタリング層の形成においては、前記トレンチ内の空間(43a)が残存するように、前記トレンチの壁面に沿って前記ゲッタリング層を形成することをさらに備える請求項3に記載の半導体装置の製造方法。
  6.  前記第1パッド部の形成、前記第2パッド部の形成、前記第1封止部の形成、前記第2封止部の形成の各々においては、前記金属膜として前記Ti層のみを形成すること、をさらに備える請求項2ないし5のいずれか1つに記載の半導体装置の製造方法。
  7.  前記第1パッド部の形成および前記第2パッド部の形成においては、前記第1パッド部および前記第2パッド部の平面形状を異なる大きさを設定し、
     前記第1封止部の形成および前記第2封止部の形成においては、前記第1封止部および前記第2封止部の平面形状を異なる大きさを設定すること、を備える請求項2ないし6のいずれか1つに記載の半導体装置の製造方法。
  8.  前記酸化膜を除去した後、前記第1基板および前記第2基板を窒素雰囲気下に配置することによって前記第1パッド部と前記第2パッド部、および、前記第1封止部と前記第2封止部の接合面にTiN層(40c、41c)を形成することをさらに備え、
     前記接合においては、前記窒素雰囲気下のまま前記TiN層同士を接合することにより、前記気密室を窒素雰囲気とすることをさらに備える請求項2ないし7のいずれか1つに記載の半導体装置の製造方法。
  9.  前記接合の前に、前記第1基板の一面および前記第2基板の一面のうちの少なくともいずれか一方にスペーサ(32)を配置することをさらに備え、
     前記接合においては、前記第1基板の一面と前記第2基板の一面との間隔を前記スペーサの高さ以上とすることをさらに備える請求項1ないし8のいずれか1つに記載の半導体装置の製造方法。
  10.  一面(10a)を有する第1基板(10)と、
     一面(20a)を有し、当該一面が前記第1基板の一面と対向する状態で前記第1基板と接合される第2基板(20)と、
     前記第1基板と前記第2基板との間に配置されたセンシング部(15)と、
     前記第1基板の一面に形成され、前記センシング部と電気的に接続される第1パッド部(17)と、
     前記第2基板の一面に形成され、前記第1パッド部と電気的に接続される第2パッド部(24)と、を備え、
     前記第1パッド部と前記第2パッド部とは、表面がTiを含む層(40b、40c、41b、41c)とされており、当該Tiを含む層同士が接合されている半導体装置。
  11.  前記第1基板の一面には、前記第1パッド部を囲む枠状とされ、表面がTiを含む層とされた第1封止部(18)と、
     前記第2基板の一面には、前記第2パッドを囲むと共に前記第1封止部と対応する形状とされ、表面がTiを含む層とされた第2封止部(25)と、を備え、
     前記第1封止部と前記第2封止部とは、前記Tiを含む層同士が接合され、
     前記センシング部は、前記第1封止部と前記第2封止部とが接合されることによって前記第1基板と前記第2基板との間に構成される気密室(50)内に封止されている請求項10に記載の半導体装置。
  12.  前記第1基板および前記第2基板のうちの前記気密室内に配置されている部分の少なくとも一方には、活性ガスを吸着するゲッタリング層(31)が形成されている請求項11に記載の半導体装置。
  13.  前記ゲッタリング層は、表面が粗化処理された下地層(42a)と、粗化処理された前記下地層上に積層されたTi層(42b)とを有する積層構造とされている請求項12に記載の半導体装置。
  14.  前記ゲッタリング層が形成される部分にはトレンチ(43)が形成されており、
     前記ゲッタリング層は、前記トレンチ内の空間(43a)が残存するように、前記トレンチの壁面に沿って形成されている請求項12に記載の半導体装置。
  15.  前記第1パッド部と前記第2パッド部、および、前記第1封止部と前記第2封止部の各々は、表面がTiN層(40c、41c)とされ、当該TiN層同士が接合されており、
     前記気密室は、窒素雰囲気とされている請求項11ないし14のいずれか1つに記載の半導体装置。
  16.  前記第1基板と前記第2基板の間にはスペーサ(32)が配置されており、
     前記第1基板の一面と前記第2基板の一面との間隔は、前記スペーサの高さ以上とされている請求項10ないし15のいずれか1つに記載の半導体装置。
     
     
PCT/JP2016/000480 2015-02-10 2016-02-01 半導体装置およびその製造方法 WO2016129230A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/549,421 US10054609B2 (en) 2015-02-10 2016-02-01 Semiconductor device and method for manufacturing same
CN201680009217.6A CN107250807B (zh) 2015-02-10 2016-02-01 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-024321 2015-02-10
JP2015024321A JP6387850B2 (ja) 2015-02-10 2015-02-10 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2016129230A1 true WO2016129230A1 (ja) 2016-08-18

Family

ID=56615126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000480 WO2016129230A1 (ja) 2015-02-10 2016-02-01 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US10054609B2 (ja)
JP (1) JP6387850B2 (ja)
CN (1) CN107250807B (ja)
WO (1) WO2016129230A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021044663A1 (ja) * 2019-09-05 2021-03-11
WO2021172202A1 (ja) * 2020-02-28 2021-09-02 国立研究開発法人産業技術総合研究所 封止構造体およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167191B2 (en) * 2017-04-04 2019-01-01 Kionix, Inc. Method for manufacturing a micro electro-mechanical system
JP2019198913A (ja) * 2018-05-15 2019-11-21 株式会社デンソー 半導体装置の製造方法
JP2019201072A (ja) * 2018-05-15 2019-11-21 株式会社デンソー 半導体装置の製造方法
US11174157B2 (en) * 2018-06-27 2021-11-16 Advanced Semiconductor Engineering Inc. Semiconductor device packages and methods of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359313A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 半導体装置
JP2006242898A (ja) * 2005-03-07 2006-09-14 Nissan Motor Co Ltd 変位センサデバイス
US20090321867A1 (en) * 2005-04-11 2009-12-31 Schott Ag Method for production of packaged electronic components, and a packaged electronic component
JP2010127710A (ja) * 2008-11-26 2010-06-10 Panasonic Electric Works Co Ltd 半導体素子
US20100258950A1 (en) * 2009-04-14 2010-10-14 Gang Li Package with semiconductor device and integrated circuit mounted therein and method for manufacturing such package
JP2013228256A (ja) * 2012-04-25 2013-11-07 Alps Electric Co Ltd Memsセンサ及びその製造方法
JP2014060699A (ja) * 2012-08-20 2014-04-03 Seiko Instruments Inc 電子デバイス及び電子デバイスの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243656A (ja) 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd 電子部品およびその実装方法
JP2002242898A (ja) * 2001-02-14 2002-08-28 Sony Corp 圧電ファン
US7033001B2 (en) * 2001-12-18 2006-04-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
SG134187A1 (en) * 2006-01-13 2007-08-29 Tezzaron Semiconductor S Pte L Stacked wafer for 3d integration
CN101663558B (zh) * 2007-04-05 2011-06-22 富士通半导体股份有限公司 表面形状传感器及其制造方法
JP4462332B2 (ja) * 2007-11-05 2010-05-12 セイコーエプソン株式会社 電子部品
WO2009117062A2 (en) * 2008-03-19 2009-09-24 Sheetak, Inc. Metal-core thermoelectric cooling and power generation device
JP5452064B2 (ja) * 2009-04-16 2014-03-26 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP5581642B2 (ja) * 2009-10-05 2014-09-03 住友電気工業株式会社 半導体装置の製造方法
WO2011111541A1 (ja) * 2010-03-09 2011-09-15 アルプス電気株式会社 Memsセンサ
JP5273073B2 (ja) * 2010-03-15 2013-08-28 オムロン株式会社 電極構造及び当該電極構造を備えたマイクロデバイス用パッケージ
JP2013055632A (ja) 2011-08-11 2013-03-21 Nippon Dempa Kogyo Co Ltd 気密封止パッケージ及びこの気密封止パッケージの製造方法
JP2013050320A (ja) 2011-08-30 2013-03-14 Alps Electric Co Ltd 物理量センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359313A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 半導体装置
JP2006242898A (ja) * 2005-03-07 2006-09-14 Nissan Motor Co Ltd 変位センサデバイス
US20090321867A1 (en) * 2005-04-11 2009-12-31 Schott Ag Method for production of packaged electronic components, and a packaged electronic component
JP2010127710A (ja) * 2008-11-26 2010-06-10 Panasonic Electric Works Co Ltd 半導体素子
US20100258950A1 (en) * 2009-04-14 2010-10-14 Gang Li Package with semiconductor device and integrated circuit mounted therein and method for manufacturing such package
JP2013228256A (ja) * 2012-04-25 2013-11-07 Alps Electric Co Ltd Memsセンサ及びその製造方法
JP2014060699A (ja) * 2012-08-20 2014-04-03 Seiko Instruments Inc 電子デバイス及び電子デバイスの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021044663A1 (ja) * 2019-09-05 2021-03-11
WO2021044663A1 (ja) * 2019-09-05 2021-03-11 株式会社村田製作所 パッケージ構造及びその製造方法
JP7154487B2 (ja) 2019-09-05 2022-10-18 株式会社村田製作所 パッケージ構造及びその製造方法
WO2021172202A1 (ja) * 2020-02-28 2021-09-02 国立研究開発法人産業技術総合研究所 封止構造体およびその製造方法

Also Published As

Publication number Publication date
CN107250807A (zh) 2017-10-13
JP6387850B2 (ja) 2018-09-12
JP2016148546A (ja) 2016-08-18
CN107250807B (zh) 2019-11-29
US20180024159A1 (en) 2018-01-25
US10054609B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2016129230A1 (ja) 半導体装置およびその製造方法
US8497557B2 (en) Semiconductor device
US8748998B2 (en) Sensor module
US8679886B2 (en) Microelectronic device and MEMS package structure and fabricating method thereof
JP5783297B2 (ja) 力学量センサ
TWI634069B (zh) 混合整合構件及其製造方法
CN102209683A (zh) 具有侧壁泄露保护的mems器件封装
JP4883077B2 (ja) 半導体装置およびその製造方法
US11027968B2 (en) Semiconductor device with discharge path, and method for producing the same
JP5999027B2 (ja) 物理量センサ
JP5939168B2 (ja) 半導体装置
JP5392296B2 (ja) 半導体装置およびその製造方法
JP5617801B2 (ja) 半導体装置およびその製造方法
CN112041688B (zh) 半导体装置的制造方法
JP6897703B2 (ja) 半導体装置の製造方法
JP6142736B2 (ja) 半導体圧力センサ
JP2016066648A (ja) 半導体装置およびその製造方法
JP2016072336A (ja) Memsデバイス及びmemsデバイスの製造方法
JP2008159882A (ja) センサ装置の製造方法
JP2015056580A (ja) Memsデバイス及びmemsデバイスの製造方法
JP2016022550A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748878

Country of ref document: EP

Kind code of ref document: A1