WO2011111541A1 - Memsセンサ - Google Patents

Memsセンサ Download PDF

Info

Publication number
WO2011111541A1
WO2011111541A1 PCT/JP2011/054115 JP2011054115W WO2011111541A1 WO 2011111541 A1 WO2011111541 A1 WO 2011111541A1 JP 2011054115 W JP2011054115 W JP 2011054115W WO 2011111541 A1 WO2011111541 A1 WO 2011111541A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
metal layer
mems sensor
insulating layer
Prior art date
Application number
PCT/JP2011/054115
Other languages
English (en)
French (fr)
Inventor
亨 宮武
俊宏 小林
宜隆 宇都
矢澤 久幸
高橋 亨
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to CN201180013009.0A priority Critical patent/CN102792168B/zh
Priority to JP2012504402A priority patent/JP5627669B2/ja
Publication of WO2011111541A1 publication Critical patent/WO2011111541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/035Soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This invention relates to the MEMS sensor with which the 1st base material and the 2nd base material were joined via the sealing joining part.
  • FIG. 5 is a partial longitudinal sectional view of a MEMS sensor for explaining the structure of a comparative example for the present invention.
  • the first base material 2, the second base material 3, and the support base material 4 are laminated in this order, and a sealing joint is formed between the first base material 2 and the second base material 3. 5 is joined. Further, the second base material 3 and the support base material 4 are joined via an insulating layer (silicon oxide layer) 6.
  • Each of the base materials 2 to 4 is made of silicon or the like.
  • the sealing joint 5 includes an Al layer 8 formed on the first substrate 2 side and a Ge layer 9 formed on the second substrate 3 side at a predetermined heat treatment temperature and temperature. It is formed by eutectic bonding by reduction. As shown in FIG. 5, a Ti layer 7 is formed on the lower surface of the Al layer 8 as a base for improving adhesion to the first base material 2 side.
  • voids are formed inside the Al layer 8 by the eutectic bonding process. This is considered to have occurred when diffusion occurred between the Ti layer 7 and the Al layer 8 due to the heat treatment in the eutectic bonding step and the Al layer 8 was recrystallized.
  • the formation of voids in the Al layer 8 weakens the bonding strength at the interface between the Al layer 8 and the Ge layer 9, and excellent sealing and airtightness cannot be obtained.
  • the present invention solves the above-described conventional problems, and in particular, provides a MEMS sensor capable of improving the bonding strength and sealing hermeticity at the Al—Ge eutectic bonding interface of the sealing joint.
  • the purpose is that.
  • the MEMS sensor in the present invention is The 1st base material, the 2nd base material, the 1st connecting metal layer and the 2nd base material which were located between the 1st base material and the 2nd base material, and were formed in the 1st base material side
  • the sealing joint is formed from the first connecting metal layer formed of Ti layer, Ta layer, Al or Al alloy, and Ge from the first base material side to the second base material side. Further, the second connection metal layers are laminated in this order.
  • the Ta layer between the Ti layer and the first connection metal layer formed of Al or Al alloy, the first connection metal layer and the second connection metal layer formed of Ge Even if a predetermined heat treatment is performed to form eutectic bonding, it is possible to suppress the diffusion of Al and Ti as in the comparative example. Therefore, formation of voids (voids) in the first connection metal layer can be suppressed, and the bonding strength and sealing hermeticity at the eutectic bonding interface between the first connection metal layer and the second connection metal layer can be reduced. Can be improved.
  • an insulating layer is formed on the surface of the first base material facing the second base material, and a wiring layer is embedded in the insulating layer,
  • the sealing joint portion is preferably formed between the insulating layer and the second base material.
  • the wiring layer is drawn out to the outside of the sealing joint, and an electrode pad electrically connected to the wiring layer is provided at a position outside the sealing joint. It is preferable.
  • the second base material includes an anchor portion, a movable portion supported by the anchor portion so as to be displaceable in a height direction, and a frame body portion formed around the anchor portion and the movable portion.
  • a support substrate fixed to the anchor portion and the frame body portion is provided on the opposite side of the second base material facing the first base material,
  • the sealed joint portion is formed between the frame body portion and the first base material, and a joint portion having the same laminated structure as the sealed joint portion is provided between the anchor portion and the first base material. Is preferred. As a result, the bonding strength at the eutectic bonding interface of the bonding portion provided between the anchor portion and the first base material can be increased.
  • an insulating layer is formed on the surface of the first base material facing the second base material, and a wiring layer is embedded in the insulating layer.
  • the sealing joint portion is formed between the insulating layer and the second base material, and the wiring layer is a fixed portion provided at a position facing the movable portion inside the sealing joint portion.
  • the present invention can be applied to a structure that is electrically connected to the electrode layer.
  • the MEMS sensor of the present invention it is possible to improve the bonding strength and sealing hermeticity at the eutectic bonding interface between the first connection metal layer made of Al or Al alloy and the second connection metal layer made of Ge. it can.
  • the schematic diagram (longitudinal sectional view) of the MEMS sensor of the first embodiment of the present invention An enlarged vertical cross-sectional view of a sealing joint in the present embodiment
  • Schematic diagram (longitudinal sectional view) of the MEMS sensor of the second embodiment of the present invention (A) is a cross-sectional SIM photograph of the sealing joint of this example
  • (b) is a cross-sectional SIM photograph of the sealing joint of the comparative example
  • the fragmentary longitudinal cross-section of the MEMS sensor for demonstrating the structure of the comparative example with respect to this invention.
  • FIG. 1 is a schematic diagram (longitudinal sectional view) of a MEMS sensor according to a first embodiment of the present invention
  • FIG. 2 is an enlarged longitudinal sectional view of a sealing joint in the present embodiment
  • FIG. 3 is a second embodiment of the present invention. It is a schematic diagram (longitudinal sectional view) of the MEMS sensor.
  • the MEMS sensor 20 includes a first base material 21 and a second base material 22. Both the first base material 21 and the second base material 22 are made of silicon.
  • the insulating base layer 29 is formed on the entire surface of the first base material 21 (the surface facing the second base material 22) 21a. As shown in FIG. 1, the first wiring layer 24 and the second wiring layer 25 are formed on the insulating base layer 29. Further, an insulating layer 23 is formed on the first wiring layer 24 and the second wiring layer 25. As described above, the wiring layers 24 and 25 are embedded in the insulating layer 23.
  • the material of the insulating base layer 29 and the insulating layer 23 is not particularly limited, but is formed of, for example, a SiO 2 layer.
  • the material of each wiring layer 24, 25 is not particularly limited, but is formed of, for example, AlCu.
  • a protrusion 23 c is formed on the surface 23 b of the insulating layer 23 to form a stopper for the movable portion 38 described later, but the shape of the surface 23 b of the insulating layer 23 is not particularly limited.
  • the protrusion 23c may be formed integrally with the insulating layer 23 or may be formed separately.
  • the second base material 22 is fixedly supported on a support substrate 36 via an oxide insulating layer (ceremonial layer) 35 on the opposite surface side of the first base material 21.
  • An SOI (Silicon on Insulator) substrate can be configured by the second base material 22, the oxide insulating layer 35, and the support substrate 36.
  • the support substrate 36 is made of silicon.
  • the second base material 22 includes an anchor portion 37, a movable portion 38, a spring portion 39, and a frame body portion 40. Each part can be configured by etching the second base material 22.
  • the movable part 38 is supported by the anchor part 37 via a spring part 39 so as to be displaceable in the height direction (Z).
  • the movable part 38 and the frame part 40 are separated.
  • the planar shape (the shape of the XY plane) of the frame body portion 40 is formed in a frame shape surrounding the periphery of the movable portion 38.
  • FIG. 1 shows a cross section of the frame body portion 40 that appears on both sides of the movable portion 38 when the MEMS sensor 20 is cut from the height direction.
  • the structure and shape of each part of the 2nd base material 22 are not limited to what is shown in FIG.
  • the oxide insulating layer 35 is not formed between the movable portion 38 and the spring portion 39 and the support substrate 36. Therefore, the movable portion 38 can be displaced in the height direction (Z).
  • the oxide insulating layer 35 is preferably formed of SiO 2 .
  • a sealing joint portion 50 formed by laminating a plurality of metal layers is formed between the insulating layer 23 formed on the surface 21 a of the first base material 21 and the frame body portion 40. Yes.
  • the upper surface of the sealing joint portion 50 is in contact with the frame body portion 40.
  • the lower surface of the sealing joint 50 is in contact with the surface 23b of the insulating layer 23 and is insulated from the wiring layer embedded in the insulating layer 23.
  • a joint portion 51 having the same stacked structure as that of the sealing joint portion 50 is also formed between the insulating layer 23 and the anchor portion 37.
  • the upper surface of the joint portion 51 is in contact with the anchor portion 37 and the lower surface is electrically connected to the second wiring layer 25.
  • the protrusion portion and the frame body portion are not provided.
  • the sealing joint 50 is formed.
  • the protrusion is made of, for example, silicon nitride.
  • the protruding portion is used for adjusting a gap between the movable portion 38 and the fixed electrode layer 26 (described later).
  • the first wiring layer 24 is drawn from the inner side of the sealing joint portion 50 (the inner side surrounded by the frame body portion 40) to the outside by intersecting the sealing joint portion 50 in a plan view. ing.
  • the electrode pad 27 is formed outside the sealing joint 50.
  • a through hole 23a is formed in the insulating layer 23 at the position of the outer end of the first wiring layer 24 for output signals, and the first wiring layer 24 and the electrode pad 27 are electrically connected through the through hole 23a. It is connected.
  • the fixed electrode layer 26 is formed on the surface of the insulating layer 23 facing the movable portion 38 in the height direction.
  • the inner end portion of the first wiring layer 24 is electrically connected to the fixed electrode layer 26 through a through hole 23 a formed in the insulating layer 23.
  • the material of the fixed electrode layer 26 and the electrode pad 27 shown in FIG. 1 is not particularly limited, but a material excellent in conductivity is preferably applied.
  • the anchor portion 37 is electrically connected to the second wiring layer 25 for input signals through the joint portion 51.
  • the second wiring layer 25 is also drawn out of the sealing joint portion 50 and connected to an electrode pad (not shown) similarly to the first wiring layer 24.
  • a predetermined gap is provided in the height direction between the movable portion 38 and the fixed electrode layer 26.
  • the distance between the fixed electrode layer 26 and the capacitance changes, and the capacitance changes.
  • the sealing joint portion 50 includes a Ti layer 52, a Ta layer 53, a first connection metal layer 54 made of Al or an Al alloy, and a second connection metal layer 55 made of Ge from the bottom. They are stacked in order.
  • the Al alloy include an aluminum copper alloy (AlCu) and an aluminum scandium copper alloy (AlScCu).
  • the Ti layer 52 which is the lowermost layer of the sealing joint 50, is formed in contact with and in close contact with the surface 23 b of the insulating layer 23.
  • the second connection metal layer 55 that is the uppermost layer of the sealing joint portion 50 is formed in contact with the lower surface of the frame body portion 40.
  • the configuration of the lower surface side and the upper surface side of the sealing joint portion 50 is not limited to that shown in FIG. 1, and the surface in contact with the Ti layer 52 that is the lowermost layer of the sealing joint portion 50 according to the configuration of the MEMS sensor
  • the surface in contact with the second connection metal layer 55 that is the uppermost layer of the sealing joint portion 50 is appropriately changed.
  • the three layers of the Ti layer 52, the Ta layer 53, and the first connection metal layer 54 shown in FIG. 2 are initially formed on the first base material 21 side by an existing method such as sputtering.
  • the connection metal layer 55 is initially formed on the second base material 22 side by an existing method such as sputtering.
  • connection metal layer 54 and the second connection metal layer 55 are brought into contact with each other and subjected to a predetermined heat treatment while applying a predetermined pressure, so that the first connection metal layer 54 made of Al or an Al alloy and Ge
  • the second connection metal layers 55 are eutectic bonded.
  • eutectic bonding can be performed by heat treatment at a temperature lower than the melting point of each metal by a combination of materials of the first connection metal layer 54 and the second connection metal layer 55.
  • the first connection metal layer 54 made of Al or Al alloy is formed directly on the underlying Ti layer 52 (comparative example)
  • the heat treatment at the time of eutectic bonding is performed between Ti and Al. As a result, diffusion occurred and a gap was formed in the first connecting metal layer 54.
  • the Ta layer 53 is interposed between the underlying Ti layer 52 and the first connection metal layer 54 made of Al or Al alloy.
  • Ta has a higher melting point than Ti and is considered to function as a diffusion barrier layer.
  • the diffusion of Ti and Al can also be suppressed by heat treatment during eutectic bonding, and the formation of voids (voids) in the first connection metal layer 54 can be suppressed.
  • the first connection metal layer 54 made of Al or Al alloy and the second connection metal layer 55 made of Ge can be eutectic bonded with high bonding strength.
  • no voids (voids) are formed in the first connection metal layer 54, and the entire surface between the first connection metal layer 54 and the second connection metal layer 55 is in close contact with each other. It is possible to improve the property appropriately.
  • the thickness of the Ti layer 52 is about 0.01 to 0.1 ⁇ m
  • the thickness of the Ta layer 53 is about 0.01 to 0.1 ⁇ m
  • the thickness of the second connection metal layer 55 made of Ge is about 0.3 to 1.0 ⁇ m.
  • the joint portion 51 that joins between the anchor portion 37 and the second wiring layer 25 shown in FIG. 1 is also formed in the same laminated structure as the sealing joint portion 50. That is, the junction 51 is also laminated from the bottom in the order of Ti layer / Ta layer / Al or first connection metal layer made of Al alloy / second connection metal layer made of Ge. As a result, the bonding strength at the eutectic bonding interface between the first connection metal layer and the second connection metal layer in the bonding portion 51 can be appropriately improved.
  • the fixed electrode layer 26 and the electrode pad 27 formed on the insulating layer 23 shown in FIG. 1 are also preferably formed by a laminated structure of Ti layer / Ta layer / Al layer or Al alloy layer. That is, at the same time when forming the three-layer structure (Ti layer / Ta layer / Al layer or Al alloy layer laminated structure) constituting the sealing joint 50 and the joint 51 on the first substrate 21 side, The manufacturing process can be facilitated by forming the fixed electrode layer 26 and the electrode pad 27 with the three-layer structure.
  • FIG. 3 shows a partial longitudinal sectional view of a MEMS sensor showing an embodiment different from FIG.
  • the wiring layer 64 is formed on the first base material 68 via the electrically insulating insulating base layer 63.
  • an insulating layer 65 is formed on the wiring layer 64.
  • the wiring layer 64 is embedded in the insulating layer 65.
  • through holes 69 and 73 that lead to the wiring layer 64 are formed in the insulating layer 65.
  • a frame-shaped protruding layer 66 is formed on the insulating layer 65 in plan view.
  • the protruding layer 66 is made of, for example, silicon nitride.
  • it has the same laminated structure as in FIG. 2 (Ti layer 52 / Ta layer 53 / Al or first connection metal layer 54 made of Al alloy / second connection metal layer 55 made of Ge).
  • a second base material 67 is formed via the sealing joint portion 50. Thereby, an internal space S ⁇ b> 1 sealed between the first base material 68 and the second base material 67 is formed.
  • the sensor element 70 is installed in the internal space S1, and the connection terminal portion 71 of the sensor element 70 is electrically connected to the electrical connection layer 72 (in FIG. 3). The connection state of one of the connection terminals is shown).
  • FIG. 4A is a cross-sectional SIM photograph of the sealed joint portion of this example
  • FIG. 4B is a cross-sectional SIM photograph of the sealed joint portion of the comparative example.
  • the sealing joint portion is Ti (0.02) / Ta (0.02) / first connecting metal layer from the bottom toward the first base material side; Al (0. 8), the second connecting metal layer; Ge (0.5) was formed on the second base material side.
  • the numerical value in the parenthesis indicates the film thickness and the unit is ⁇ m. Then, heat treatment was performed under the condition of 430 ° C. in a state where the first connection metal layer made of Al and the second connection metal layer made of Ge were butted together. Thus, Al—Ge eutectic bonding was performed.
  • the sealing joint is laminated on the first base material in the order of Ti (0.02) / first connecting metal layer; Al (0.8) from the bottom.
  • the second connecting metal layer; Ge (0.5) was formed on the second substrate side.
  • the numerical value in the parenthesis indicates the film thickness and the unit is ⁇ m.
  • heat treatment was performed under the condition of 430 ° C. in a state where the first connection metal layer made of Al and the second connection metal layer made of Ge were butted together.
  • Al—Ge eutectic bonding was performed.
  • the interface between the Al layer (first connection metal layer) and the Ge layer (second connection metal layer) adheres cleanly, and voids (voids) are formed in the Al layer. ) was not formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

【課題】 特に、封止接合部のAl-Ge共晶接合界面での接合強度及び封止気密性を向上させることが可能なMEMSセンサを提供することを目的としている。 【解決手段】 第1基材と、第2基材と、前記第1基材と前記第2基材間に位置し、前記第1基材側に形成された第1の接続金属層と前記第2基材側に形成された第2の接続金属層とを共晶接合してなる封止接合部と、を有して構成され、前記封止接合部50は、前記第1基材側から前記第2基材側にかけて、Ti層52、Ta層53、AlあるいはAl合金で形成された前記第1の接続金属層54、及び、Geで形成された前記第2の接続金属層55の順に積層されている。

Description

MEMSセンサ
 本発明は、第1基材と、第2基材とが封止接合部を介して接合されたMEMSセンサに関する。
 図5は本発明に対する比較例の構造を説明するためのMEMSセンサの部分縦断面図である。
 図5に示すMEMSセンサ1では、第1基材2、第2基材3、及び支持基材4がこの順に積層され、第1基材2と第2基材3の間が封止接合部5により接合されている。また第2基材3と支持基材4との間が絶縁層(シリコン酸化層)6を介して接合されている。各基材2~4はシリコン等で形成されている。
 図5に示すように、封止接合部5は、第1基材2側に形成されたAl層8と、第2基材3側に形成されたGe層9とを所定の熱処理温度及び加圧下により共晶接合させて成る。図5に示すように、Al層8の下面には第1基材2側との密着性を向上させるための下地としてTi層7が形成されている。
 しかしながら、上記した共晶接合工程により、特にAl層8の内部に空隙部(ボイド)が形成されることが後述する実験により確認された。これは、共晶接合工程での熱処理により、Ti層7とAl層8との間で拡散が生じ、Al層8が再結晶化した際に生じたものと考えられる。
 上記のようにAl層8に空隙部が形成されることでAl層8とGe層9との界面での接合強度が弱くなり、また優れた封止気密性を得ることができなかった。
 以下に示す特許文献に記載された発明は、いずれにもAl層8の下地としてTi層7を用い、Al層8とGe層9とを共晶接合させた構成において、Ti層7とAl層8間の拡散を抑制して、Al層8とGe層9の共晶接合面での接合強度を高めるものではない。
特開平10-256503号公報 特開2000-21914号公報 特開平9-64185号公報 特開2000-208518号公報
 本発明は、上記従来の課題を解決するものであり、特に、封止接合部のAl-Ge共晶接合界面での接合強度及び封止気密性を向上させることが可能なMEMSセンサを提供することを目的としている。
 本発明におけるMEMSセンサは、
 第1基材と、第2基材と、前記第1基材と前記第2基材間に位置し、前記第1基材側に形成された第1の接続金属層と前記第2基材側に形成された第2の接続金属層とを共晶接合してなる封止接合部と、を有して構成され、
 前記封止接合部は、前記第1基材側から前記第2基材側にかけて、Ti層、Ta層、AlあるいはAl合金で形成された前記第1の接続金属層、及び、Geで形成された前記第2の接続金属層の順に積層されていることを特徴とするものである。
 このように、Ti層とAlあるいはAl合金で形成された第1の接続金属層間にTa層を介在させることで、前記第1の接続金属層とGeで形成された第2の接続金属層とを共晶接合させるべく所定の熱処理を施しても、比較例のように、AlとTiとが拡散するのを抑制できる。よって第1の接続金属層に空隙部(ボイド)が形成されるのを抑制でき、第1の接続金属層と第2の接続金属層間の共晶接合界面での接合強度及び封止気密性を向上させることができる。
 本発明では、前記第1基材の前記第2基材との対向面側に絶縁層が形成され、前記絶縁層内に配線層が埋設されており、
 前記封止接合部は、絶縁層と前記第2の基材間に形成されていることが好ましい。
 また本発明では、前記配線層は前記封止接合部の外側にまで引き出されており、前記封止接合部の外側の位置に前記配線層と電気的に接続される電極パッドが設けられていることが好ましい。
 また本発明では、前記第2基材は、アンカ部と、前記アンカ部に高さ方向へ変位可能に支持される可動部と、前記アンカ部及び前記可動部の周囲に形成された枠体部とを有して構成され、前記第2基材の前記第1基材と対向する反対側には前記アンカ部及び前記枠体部に固定される支持基板が設けられており、
 前記枠体部と前記第1基材間に前記封止接合部が形成されており、前記封止接合部と同じ積層構造の接合部が前記アンカ部と前記第1基材間に設けられることが好ましい。これにより、アンカ部と第1基材間に設けられた接合部の共晶接合界面での接合強度を高めることができる。
 また本発明では、前記第1基材の前記第2基材との対向面側に絶縁層が形成され、前記絶縁層内に配線層が埋設されており、
 前記封止接合部は、前記絶縁層と前記第2の基材間に形成されており、前記配線層は、前記封止接合部の内側にて前記可動部と対向する位置に設けられた固定電極層に電気的に接続されている構成に適用できる。
 本発明のMEMSセンサによれば、AlあるいはAl合金からなる第1の接続金属層とGeからなる第2の接続金属層間の共晶接合界面での接合強度及び封止気密性を向上させることができる。
本発明の第1実施形態のMEMSセンサの模式図(縦断面図)、 本実施形態における封止接合部の拡大縦断面図、 本発明の第2実施形態のMEMSセンサの模式図(縦断面図)、 (a)は、本実施例の封止接合部の断面SIM写真、(b)は比較例の封止接合部の断面SIM写真、 本発明に対する比較例の構造を説明するためのMEMSセンサの部分縦断面図。
 図1は本発明の第1実施形態のMEMSセンサの模式図(縦断面図)、図2は本実施形態における封止接合部の拡大縦断面図、図3は、本発明の第2実施形態のMEMSセンサの模式図(縦断面図)である。
 図1に示すようにMEMSセンサ20は、第1基材21と第2基材22とを備える。第1基材21及び第2基材22はともにシリコンで構成される。
 図1に示すように絶縁下地層29が第1基材21の表面(第2基材22との対向面)21aの全面に形成される。図1に示すように第1配線層24及び第2配線層25が絶縁下地層29上に形成される。更に絶縁層23が第1配線層24及び第2配線層25上に形成される。このように各配線層24,25は絶縁層23に埋設されている。絶縁下地層29及び絶縁層23の材質は特に限定されないが例えば、SiO2層で形成される。また、各配線層24,25の材質は特に限定されるものでないが例えばAlCuで形成される。
 また図1では、絶縁層23の表面23bには突起部23cが形成されて後述する可動部38に対するストッパを構成しているが、絶縁層23の表面23bの形状は特に限定されない。また突起部23cは絶縁層23と一体に形成されてもよいし別体で形成されてもよい。
 図1に示すように、第2基材22は、第1基材21の反対面側に酸化絶縁層(儀性層)35を介して支持基板36に固定支持される。第2基材22、酸化絶縁層35及び支持基板36によりSOI(Silicon on Insulator)基板を構成することが出来る。支持基板36はシリコンで形成される。
 図1に示すように第2基材22は、アンカ部37、可動部38、ばね部39及び枠体部40とを有して構成される。第2基材22をエッチング加工することで各パーツを構成できる。可動部38はアンカ部37にばね部39を介して高さ方向(Z)に変位可能に支持される。可動部38と枠体部40は分離されている。枠体部40の平面形状(X-Y平面の形状)は、可動部38の周囲を囲む枠形状で形成されている。図1にはMEMSセンサ20を高さ方向から切断したときに可動部38の両側に現れる枠体部40の断面が示されている。なお第2基材22の各パーツの構成や形状は図1に示すものに限定されない。
 図1に示すように、可動部38及びばね部39と支持基板36との間には酸化絶縁層35が形成されていない。このため可動部38は高さ方向(Z)への変位を可能としている。酸化絶縁層35はSiO2で形成されることが好適である。
 図1に示すように、第1基材21の表面21aに形成された絶縁層23と枠体部40との間には複数の金属層を積層して成る封止接合部50が形成されている。封止接合部50の上面は枠体部40に当接している。また封止接合部50の下面は、絶縁層23の表面23bに当接し、絶縁層23内に埋設された配線層とは絶縁された状態となっている。また、絶縁層23とアンカ部37との間にも前記封止接合部50と同じ積層構成の接合部51が形成されている。図1に示すように、接合部51の上面はアンカ部37に当接し、下面は第2配線層25と電気的に接続された状態となっている。
 なお図1に示す形態と異なって、例えば枠体部40と対向する絶縁層23上に絶縁層23とは別体の突出部が形成される形態では、前記突出部と枠体部との間に封止接合部50が形成されることになる。突出部は、例えば窒化シリコンで形成される。突出部は、可動部38と固定電極層26(後記)との間のギャップ調整用等として用いられる。
 図1に示すように、第1配線層24は、封止接合部50の内側(枠体部40により囲まれた内側)から封止接合部50を平面視で交差して外側にまで引き出されている。
 図1に示すように、電極パッド27が封止接合部50の外側に形成されている。出力信号用である第1配線層24の外側端部の位置には絶縁層23に貫通孔23aが形成され、第1配線層24と電極パッド27とが前記貫通孔23aを介して電気的に接続されている。
 また図1に示すように、固定電極層26が、可動部38と高さ方向にて対向する絶縁層23の表面に形成されている。そして、第1配線層24の内側端部が絶縁層23に形成された貫通孔23aを介して固定電極層26と電気的に接続されている。
 図1に示す固定電極層26及び電極パッド27の材質は特に限定されないが導電性に優れた材質が好ましく適用される。
 また図1に示すように、アンカ部37は、接合部51を介して入力信号用の第2配線層25と電気的に接続されている。図示していないが第2配線層25も第1配線層24と同様に封止接合部50の外側に引き出され、図示しない電極パッドに接続されている。
 図1に示すように可動部38と固定電極層26との間には高さ方向に所定の間隔(ギャップ)が設けられている。そして図1に示すMEMSセンサ20は、可動部38が高さ方向(Z)に変位すると固定電極層26との間の距離が変化して静電容量が変化し、静電容量変化を、電極パッド27を通じて電気回路にて検出することで例えば加速度の変化や加速度の大きさを検知することができる。
 図2に示すように、封止接合部50は下からTi層52、Ta層53、AlあるいはAl合金から成る第1の接続金属層54、及び、Geからなる第2の接続金属層55の順に積層されている。Al合金としては、アルミ銅合金(AlCu)やアルミスカンジウム銅合金(AlScCu)等を例示できる。
 封止接合部50の最下層であるTi層52は絶縁層23の表面23bに当接し密着して形成されている。また封止接合部50の最上層である第2の接続金属層55は、枠体部40の下面に当接して形成されている。なお封止接合部50の下面側や上面側の構成は図1に示すものに限定されず、MEMSセンサの構成に合わせて、封止接合部50の最下層であるTi層52と接する面、及び封止接合部50の最上層である第2の接続金属層55と接する面が適宜変更される。
 図2に示すTi層52、Ta層53、及び第1の接続金属層54の3層は、最初、第1基材21側にスパッタ等の既存の方法で形成されたものであり、第2の接続金属層55は最初、第2基材22側にスパッタ等の既存の方法で形成されたものである。
 そして第1の接続金属層54と第2の接続金属層55間を突き合わせて、所定の圧力を加えながら所定の熱処理を施すことでAlあるいはAl合金からなる第1の接続金属層54とGeからなる第2の接続金属層55間を共晶接合させる。
 本実施形態では、第1の接続金属層54と第2の接続金属層55との材質の組み合わせにより、各金属の融点以下の温度で熱処理を行い共晶接合させることができる。しかしながら、下地であるTi層52上に直接、AlあるいはAl合金からなる第1の接続金属層54を形成した形態(比較例)では、共晶接合の際の熱処理により、TiとAlとの間で拡散が生じ、第1の接続金属層54に空隙部が形成される不具合が生じた。
 そこで、本実施形態では、下地であるTi層52とAlあるいはAl合金からなる第1の接続金属層54との間にTa層53を介在させた。TaはTiよりも高融点で拡散バリア層として機能すると考えられる。このため、共晶接合の際の熱処理によっても、TiとAlとの拡散を抑制でき、第1の接続金属層54に空隙部(ボイド)が形成されるのを抑制できる。したがってAlあるいはAl合金からなる第1の接続金属層54とGeからなる第2の接続金属層55間を高い接合強度にて共晶接合できる。更に第1の接続金属層54に空隙部(ボイド)が形成されず、第1の接続金属層54と第2の接続金属層55間の全面が適切に密着していることで、封止気密性を適切に向上させることが可能である。
 Ti層52の膜厚は、0.01~0.1μm程度、Ta層53の膜厚は、0.01~0.1μm程度、AlあるいはAl合金からなる第1の接続金属層54の膜厚は、0.5~1.5μm程度、Geからなる第2の接続金属層55の膜厚は、0.3~1.0μm程度である。
 本実施形態では、図1に示すアンカ部37と第2配線層25間を接合する接合部51も封止接合部50と同じ積層構造で形成されている。すなわち接合部51も下からTi層/Ta層/AlあるいはAl合金からなる第1の接続金属層/Geからなる第2の接続金属層の順に積層されている。これにより接合部51における第1の接続金属層と第2の接続金属層間の共晶接合界面での接合強度を適切に向上させることができる。
 また図1に示す絶縁層23上に形成された固定電極層26及び電極パッド27も、Ti層/Ta層/Al層あるいはAl合金層の積層構造で形成されることが好適である。すなわち、第1基材21側に、封止接合部50及び接合部51を構成する3層構造(Ti層/Ta層/Al層あるいはAl合金層の積層構造)を形成する際に、同時に、固定電極層26及び電極パッド27も前記3層構造で形成することで製造工程を容易化できる。
 図3は、図1とは別の実施形態を示すMEMSセンサの部分縦断面図を示す。図3では、第1基材68上に電気的絶縁性の絶縁下地層63を介して配線層64が形成されている。図3に示すように、配線層64上には絶縁層65が形成されている。これにより配線層64は絶縁層65内に埋設された状態になる。図3に示すように絶縁層65には配線層64に通じる貫通孔69,73が形成されている。
 図3に示す実施形態では、絶縁層65上に平面視にて枠形状の突出層66が形成されている。突出層66は例えば、窒化シリコンで形成される。そして、突出層66上に図2と同様の積層構造(Ti層52/Ta層53/AlあるいはAl合金からなる第1の接続金属層54/Geからなる第2の接続金属層55)からなる封止接合部50を介して第2基材67が形成されている。これにより第1基材68と第2基材67間に密閉された内部空間S1が形成される。
 図3に示す実施形態では、内部空間S1内に、センサ素子70が設置され、センサ素子70の接続端子部71が電気接続層72と電気的に接続された状態となっている(図3では一方の接続端子部の接続状態を示す)。
 図4(a)は本実施例の封止接合部の断面SIM写真、図4(b)は比較例の封止接合部の断面SIM写真である。
 図4(a)に示す本実施例では、封止接合部を第1基材側に下からTi(0.02)/Ta(0.02)/第1の接続金属層;Al(0.8)の順に積層し、第2基材側に第2の接続金属層;Ge(0.5)を形成した。括弧内の数値は膜厚を示し単位はμmである。そして、Alから成る第1の接続金属層とGeから成る第2の接続金属層とを突き合わせた状態で、430℃の条件下で熱処理を施した。これによりAl-Ge共晶接合を行った。
 一方、図4(b)に示す比較例では、封止接合部を第1基材側に下からTi(0.02)/第1の接続金属層;Al(0.8)の順に積層し、第2基材側に第2の接続金属層;Ge(0.5)を形成した。括弧内の数値は膜厚を示し単位はμmである。そして、Alから成る第1の接続金属層とGeから成る第2の接続金属層とを突き合わせた状態で、430℃の条件下で熱処理を施した。これによりAl-Ge共晶接合を行った。
 図4(a)の実施例に示すように、Al層(第1の接続金属層)と、Ge層(第2の接続金属層)との界面はきれいに密着し、Al層に空隙部(ボイド)が形成されていないことがわかった。
 これに対して図4(b)の比較例では、Al層(第1の接続金属層)と、Ge層(第2の接続金属層)との界面付近のAl層に空隙部(ボイド)が形成されていることがわかった。
 続いて、図4(a)に示す本実施例のMEMSセンサ及び図4(b)に示す比較例のMEMSセンサに対して、引張試験を行い封止接合部の接合強度を測定した。
 図4(b)に示す比較例では、1kgf程度の荷重でAl層とGe層との界面より剥離することがわかった。一方、図4(a)に示す実施例では、1.5kgf程度の荷重で、Al層とGe層との界面以外の箇所(Al層内部や基材との間の界面等)で破壊が生じることがわかった。したがって実施例では比較例に比べてAl層とGe層とのAl-Ge共晶接合界面での接合強度が高いことがわかった。
20 MEMSセンサ
21、68 第1基材
22、67 第2基材
23,65 絶縁層
24、25、64 配線層
26 固定電極層
27 電極パッド
36 支持基板
37 アンカ部
38 可動部
40 枠体部
50 封止接合部
51 接合部
52 Ti層
53 Ta層
54 第1の接続金属層
55 第2の接続金属層
70 センサ素子

Claims (5)

  1.  第1基材と、第2基材と、前記第1基材と前記第2基材間に位置し、前記第1基材側に形成された第1の接続金属層と前記第2基材側に形成された第2の接続金属層とを共晶接合してなる封止接合部と、を有して構成され、
     前記封止接合部は、前記第1基材側から前記第2基材側にかけて、Ti層、Ta層、AlあるいはAl合金で形成された前記第1の接続金属層、及び、Geで形成された前記第2の接続金属層の順に積層されていることを特徴とするMEMSセンサ。
  2.  前記第1基材の前記第2基材との対向面側に絶縁層が形成され、前記絶縁層内に配線層が埋設されており、
     前記封止接合部は、前記絶縁層と前記第2の基材間に形成されている請求項1記載のMEMSセンサ。
  3.  前記配線層は前記封止接合部の外側にまで引き出されており、前記封止接合部の外側の位置に前記配線層と電気的に接続される電極パッドが設けられている請求項2記載のMEMSセンサ。
  4.  前記第2基材は、アンカ部と、前記アンカ部に高さ方向へ変位可能に支持される可動部と、前記アンカ部及び前記可動部の周囲に形成された枠体部とを有して構成され、前記第2基材の前記第1基材と対向する反対側には前記アンカ部及び前記枠体部に固定される支持基板が設けられており、
     前記枠体部と前記第1基材間に前記封止接合部が形成されており、前記封止接合部と同じ積層構造の接合部が前記アンカ部と前記第1基材間に設けられる請求項1ないし3のいずれか1項に記載のMEMSセンサ。
  5.  前記第1基材の前記第2基材との対向面側に絶縁層が形成され、前記絶縁層内に配線層が埋設されており、
     前記封止接合部は、前記絶縁層と前記第2の基材間に形成されており、前記配線層は、前記封止接合部の内側にて前記可動部と対向する位置に設けられた固定電極層に電気的に接続されている請求項4記載のMEMSセンサ。
PCT/JP2011/054115 2010-03-09 2011-02-24 Memsセンサ WO2011111541A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180013009.0A CN102792168B (zh) 2010-03-09 2011-02-24 Mems传感器
JP2012504402A JP5627669B2 (ja) 2010-03-09 2011-02-24 Memsセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010051528 2010-03-09
JP2010-051528 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111541A1 true WO2011111541A1 (ja) 2011-09-15

Family

ID=44563349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054115 WO2011111541A1 (ja) 2010-03-09 2011-02-24 Memsセンサ

Country Status (3)

Country Link
JP (1) JP5627669B2 (ja)
CN (1) CN102792168B (ja)
WO (1) WO2011111541A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449354A (zh) * 2012-04-25 2013-12-18 阿尔卑斯电气株式会社 Mems传感器及其制造方法
WO2022097328A1 (ja) * 2020-11-06 2022-05-12 株式会社村田製作所 共振装置及び共振装置製造方法
EP4353674A1 (en) * 2022-10-11 2024-04-17 Murata Manufacturing Co., Ltd. Method for sealing a mems device and a sealed mems device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387850B2 (ja) * 2015-02-10 2018-09-12 株式会社デンソー 半導体装置およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328137A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd 加速度センサ及びその製造方法
JP2005249454A (ja) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp 容量型加速度センサ
WO2006101769A2 (en) * 2005-03-18 2006-09-28 Invesense Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
JP2006344573A (ja) * 2005-05-13 2006-12-21 Gunma Prefecture 加速度スイッチ及び電子装置
US7276789B1 (en) * 1999-10-12 2007-10-02 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
JP2010171368A (ja) * 2008-12-25 2010-08-05 Denso Corp 半導体装置およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7458263B2 (en) * 2003-10-20 2008-12-02 Invensense Inc. Method of making an X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
JP4404143B2 (ja) * 2007-07-02 2010-01-27 株式会社デンソー 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276789B1 (en) * 1999-10-12 2007-10-02 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
JP2002328137A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd 加速度センサ及びその製造方法
JP2005249454A (ja) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp 容量型加速度センサ
WO2006101769A2 (en) * 2005-03-18 2006-09-28 Invesense Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
JP2006344573A (ja) * 2005-05-13 2006-12-21 Gunma Prefecture 加速度スイッチ及び電子装置
JP2010171368A (ja) * 2008-12-25 2010-08-05 Denso Corp 半導体装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449354A (zh) * 2012-04-25 2013-12-18 阿尔卑斯电气株式会社 Mems传感器及其制造方法
WO2022097328A1 (ja) * 2020-11-06 2022-05-12 株式会社村田製作所 共振装置及び共振装置製造方法
JP7493709B2 (ja) 2020-11-06 2024-06-03 株式会社村田製作所 共振装置及び共振装置製造方法
EP4353674A1 (en) * 2022-10-11 2024-04-17 Murata Manufacturing Co., Ltd. Method for sealing a mems device and a sealed mems device

Also Published As

Publication number Publication date
CN102792168B (zh) 2014-04-30
CN102792168A (zh) 2012-11-21
JPWO2011111541A1 (ja) 2013-06-27
JP5627669B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP4495711B2 (ja) 機能素子及びその製造方法
JP4793496B2 (ja) 半導体装置およびその製造方法
TWI486303B (zh) 由至少兩種半導體基材構成的複合物及其製造方法(二)
US9422152B2 (en) Hybridly integrated module having a sealing structure
WO2017047663A1 (ja) Memsデバイス、及びその製造方法
JP5627669B2 (ja) Memsセンサ
US20080105935A1 (en) Micromachine Device
KR101158240B1 (ko) 전극 구조 및 상기 전극 구조를 구비한 마이크로디바이스용 패키지
JP2010238921A (ja) Memsセンサ
TW201027685A (en) Contact arrangement for establishing a spaced, electrically conducting connection between microstructured components
JP2013052449A (ja) Memsセンサ
US6483160B2 (en) Micromechanical enclosure
US20070034676A1 (en) Electric field assisted solder bonding
JP2006186357A (ja) センサ装置及びその製造方法
JP2012040677A (ja) Memsセンサ
JP5392296B2 (ja) 半導体装置およびその製造方法
JP2007057455A (ja) 圧力センサ及び圧力センサの製造方法
JP2006250778A (ja) 半導体微小電子機械デバイスの信号取り出し構造
JP6002372B2 (ja) 貫通配線付き接合基板
JP5912798B2 (ja) Memsセンサ及びその製造方法
WO2013176203A1 (ja) 半導体装置
US8896132B2 (en) Electronic device and fabrication method thereof
JP7180623B2 (ja) 半導体装置
WO2016125264A1 (ja) 半導体装置
JP6747786B2 (ja) Memsデバイス、memsスイッチ及びmemsスイッチの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013009.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753201

Country of ref document: EP

Kind code of ref document: A1