WO2016129145A1 - 導電性フィルム、タッチパネル、および導電性フィルムの製造方法 - Google Patents
導電性フィルム、タッチパネル、および導電性フィルムの製造方法 Download PDFInfo
- Publication number
- WO2016129145A1 WO2016129145A1 PCT/JP2015/078869 JP2015078869W WO2016129145A1 WO 2016129145 A1 WO2016129145 A1 WO 2016129145A1 JP 2015078869 W JP2015078869 W JP 2015078869W WO 2016129145 A1 WO2016129145 A1 WO 2016129145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- resin
- group
- mass
- base material
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/24—Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a conductive film, a touch panel, and a method for manufacturing a conductive film. More specifically, the present invention relates to a conductive film having a resin base material and a conductive film, a touch panel provided with the conductive film, and a method for manufacturing the conductive film.
- the conductive film in which a conductive film is laminated on a base material is used in a wide range of fields as a member of electronic equipment such as a display member and an electronic member.
- a method of forming a conductive film on a substrate there is a technique of forming a metal particle, metal oxide particle, or inorganic oxide particle dispersion by a vacuum process, a plating process, a wet process, an inkjet method, or the like. are known.
- the cycloolefin resin has a very low polarity, there is a problem that adhesion with the metal particles, metal oxide particles, or inorganic oxide particles used in the formation of the conductive film is low and sufficient conductive performance cannot be obtained. It was.
- Patent Document 1 discusses improving adhesion by using a crosslinked cyclic olefin resin composition obtained by polymerizing a polymerizable composition containing a cyclic olefin monomer and an inorganic filler as a base material. Has been.
- inorganic fillers are inferior in dispersibility with respect to cyclic olefin monomers, so that aggregation occurs in the polymerizable composition and stress concentrates on the aggregated particles. Has been found to be difficult to reduce, and in-plane uniform conductive performance cannot be obtained.
- the present invention has been made in view of the above-mentioned problems, and its solution is to provide a conductive film that has sufficient bending resistance and transparency in a resin base material and can obtain in-plane uniform conductive performance. Is to provide.
- the inventors of the present invention formed a resin base material with a resin composition containing a cycloolefin resin having a hydrogen bond accepting group, a solvent component having a hydrogen bond donating group and inorganic particles, and at least an alcohol
- the present inventors have found that the above problems can be solved by using the resin base material containing 10 to 1000 ppm of the solvent component containing a system solvent for a conductive film, and have completed the present invention.
- a conductive film having a resin substrate and a conductive film The resin base material is formed including a resin composition containing a cycloolefin resin having a hydrogen bond accepting group, a solvent component having a hydrogen bond donating group, and inorganic particles, The solvent component includes an alcohol solvent, The conductive film, wherein the solvent component is contained in an amount of 10 to 1000 ppm in the resin base material. 2.
- a touch panel comprising the conductive film according to claim 1 or 2. 4).
- the resin substrate including a solvent component having a hydrogen bonding donor group, a cycloolefin resin having a hydrogen bonding accepting group, and a resin composition containing inorganic particles;
- the solvent component forms a pseudo cross-linked structure between the cycloolefin resin and the inorganic particles.
- the conductive film of the present invention is a conductive film having a resin base material and a conductive film, and the resin base material includes a cycloolefin resin having a hydrogen bond accepting group and a solvent component having a hydrogen bond donor group. It is formed by including a resin composition containing inorganic particles, wherein the solvent component contains an alcohol solvent, and the solvent component is contained in 10 to 1000 ppm in the resin substrate.
- the solvent component contains water from the viewpoint of improving productivity.
- the conductive film of the present invention is suitably provided in a touch panel from the viewpoint of having sufficient bending resistance and transparency.
- the resin base material includes a solvent component having a hydrogen bond donating group, a cycloolefin resin having a hydrogen bond accepting group, and inorganic particles.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. Moreover, in this invention, unless it deviates from a claim and its equivalent range, a preferable aspect can be changed arbitrarily and implemented. Further, a “group” such as an alkyl group may have a substituent unless otherwise specified. Further, in the case of a group having a limited number of carbons, the number of carbons means a number including the number of carbons that the substituent has.
- the conductive film of the present invention is characterized by having at least a resin base material and a conductive film.
- the resin substrate according to the present invention is formed by including a cycloolefin resin having a hydrogen bond accepting group, a solvent component having a hydrogen bond donor group, and a resin composition containing inorganic particles, and the solvent component is at least an alcohol. It is characterized in that it contains a system solvent and is contained in the resin substrate in an amount of 10 to 1000 ppm.
- the resin composition according to the present invention is characterized in that a cycloolefin resin is contained as a main component, that is, the highest proportion as a resin component, and 70% by mass or more of the resin component is a cycloolefin resin. It is more preferable that the content is 90% by mass or more from the viewpoint of excellent haze and surface hardness of the resin base material and durability at high temperature and high humidity. Further, the resin component may be a single type of cycloolefin resin or a combination of a plurality of resin components.
- the resin component that can be used by mixing with cycloolefin resin is not particularly limited.
- polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose acetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate.
- Cellulose esters such as propionate, cellulose triacetate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene resin, polycarbonate, norbornene resin (for example, ARTON (JSR Corporation) ), ZEONEX, ZEONOR (manufactured by ZEON CORPORATION)), polymethylpentene, polyate Ketone, polyether sulfone, polysulfone resin, polyether ketone imide, polyamide, mention may be made of acrylic or polyacrylate resins.
- examples of the present invention include cellulose esters such as cellulose triacetate (TAC), polycarbonates, polyesters, norbornene resins, and polyacryl.
- the structure of the resin base material according to the present invention is a single layer composed of a layer formed from a cycloolefin resin having a hydrogen bond accepting group, a solvent component having a hydrogen bond donating group, and a resin composition containing inorganic particles.
- it may have a laminated structure in which a plurality of layers are laminated, or it has a laminated structure in which a resin layer whose main component is other than cycloolefin resin, or other functional layers, etc., are used alone or in combination. Also good.
- the resin substrate used in the present invention preferably has excellent surface smoothness.
- the smoothness of the surface is preferably an arithmetic average roughness Ra of 5 nm or less and a maximum height Rz of 50 nm or less, more preferably Ra of 2 nm or less and Rz of 30 nm or less, and still more preferably Ra of 1 nm or less. Rz is 20 nm or less.
- the surface of the substrate may be smoothed by applying an undercoat layer such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or a radiation curable resin, or may be smoothed by mechanical processing such as polishing. You can also.
- the smoothness of the surface can be determined according to a surface roughness standard (JIS B 0601-2001) from measurement using an atomic force microscope (AFM) or the like.
- the resin substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
- a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
- the surface treatment include surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
- the easy adhesion layer include polyesters, polyamides, polyurethanes, vinyl copolymers, butadiene copolymers, acrylic copolymers, vinylidene copolymers, epoxy copolymers, and the like. it can.
- the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
- the cycloolefin resin according to the present invention is formed from a resin composition containing at least one hydrogen bonding accepting group.
- “Hydrogen bond accepting group” means a functional group that accepts a hydrogen atom when forming a hydrogen bond
- “hydrogen bond donating group” means donating a hydrogen atom when forming a hydrogen bond. Refers to the functional group.
- Examples of the hydrogen bond accepting group include an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an allyloxycarbonyl group, a cyano group, and an amide.
- these alkoxy groups include, for example, methoxy groups, ethoxy groups, etc .
- examples of acyloxy groups include, for example, alkylcarbonyloxy groups such as acetoxy group, propionyloxy group, and benzoyl
- An arylcarbonyloxy group such as an oxy group
- examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group
- examples of the allyloxycarbonyl group include, for example, a phenoxycarbonyl group, a naphthyloxycarbonyl group, and a fluorene group.
- examples of the triorganosiloxy group include trimethylsiloxy group and triethylsiloxy group
- examples of the triorganosilyl group include trimethyl Silyl group, triethylsilyl group and the like
- the alkoxysilyl group for example a trimethoxysilyl group, triethoxysilyl group, and the like.
- the amount of the cycloolefin resin containing the hydrogen bonding accepting group contained in the resin component is not particularly limited, but the content is preferably 10 to 100% by mass.
- the content is 10% by mass or more, the obtained ring-opening copolymer is preferable because it easily exhibits solubility in a solvent such as toluene or dichloromethane. From the viewpoint of solubility, film strength, and transparency, 30 to 100% is preferable. More preferably in the range of mass%.
- Examples of the cycloolefin resin according to the present invention include (co) polymers represented by the following general formula (1).
- R 1 to R 4 each independently represents a hydrogen atom, a hydrocarbon group, a halogen atom, or a hydrogen bonding accepting group.
- two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, a monocycle or a polycycle, and this monocycle or polycycle has a double bond.
- an aromatic ring may be formed.
- the preferred proportion of hydrogen-bonding accepting groups in the cycloolefin resin is preferably 1 to 2 of R 1 to R 4 having a hydrogen-bonding accepting group in the general formula (1).
- the holding ratio of the hydrogen bonding acceptor group cycloolefin resins can be identified using the carbon-13 nuclear magnetic resonance (13 CNMR) spectroscopy.
- R 1 and R 3 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and at least R 2 and R 4
- halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
- hydrocarbon group having 1 to 30 carbon atoms examples include alkyl groups such as methyl group, ethyl group and propyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group and propenyl group.
- Aromade groups such as phenyl, biphenyl, naphthyl, and anthracenyl groups; These hydrocarbon groups may be substituted, and examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom, phenylsulfonyl group and the like.
- the glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C.
- a Tg of 110 ° C. or higher is preferable because deformation under secondary processing such as use under high temperature conditions, coating, printing, or the like is suppressed.
- Tg is 350 degrees C or less, since resin deterioration by the heat
- solvent component The solvent component according to the present invention is characterized in that it contains at least one solvent having a hydrogen bonding donor group.
- the hydrogen bonding donor group for example, an amino group, an acylamino group, an alkoxycarbonylamino group, an allyloxycarbonylamino group, a sulfonylamino group, a hydroxy group, a mercapto group, and a carboxy group are preferable, and a sulfonylamino group, an acylamino group, A CH group in which an amino group, a hydroxy group, or an electron-withdrawing group is substituted with a carbon atom is more preferable, and the solvent component according to the present invention may have one or more of these hydrogen-bonding donor groups. .
- water Since water has a plurality of hydrogen-bonding donor groups in one molecule, it can be preferably used to increase the strength of the film. Water is preferably contained in an amount of 0.1 to 1% by mass based on the total amount of solvent. If it is 0.1% by mass or more, it is preferable because it easily interacts with other alcohol solvents, cycloolefin-based resins containing hydrogen bonding accepting groups, and inorganic particles. The cycloolefin resin is gelled, and foreign matter is likely to be generated.
- alcohol solvent methanol, ethanol, isopropanol, n-butanol, 2-butanol and the like are preferably used.
- the solvent having a hydrogen bonding donor group is preferably contained in an amount of 0.5 to 15% by mass with respect to the solvent component. From the viewpoint of peelability of the film from the metal support, it is preferably 0.5% by mass or more, and from the viewpoint of transparency of the film, it is preferably 15% by mass or less.
- a content of 0.7 to 6.5% by mass with respect to the total amount of solvent is preferable.
- a content of 1.0 to 9% by mass with respect to the total amount of solvent is preferable.
- n-butanol a content of 1.5 to 15% by mass with respect to the total amount of solvent is preferable.
- the content of the solvent component contained in the resin composition is preferably 1 to 50% by mass.
- the content ratio of the solvent component can be appropriately adjusted from the production conditions of the film, the film thickness of the film to be prepared, and the like.
- the resin base material formed from the resin composition according to the present invention has a residual solvent amount of 10 to 1000 ppm through a step of removing the solvent such as a drying step.
- the residual solvent amount of the resin base material is 10 ppm or less, the brittleness as a film is deteriorated, which causes a ductile fracture of the film.
- the amount of residual solvent is 1000 ppm or more, the solvent is volatilized with time, and the resin base material expands and contracts, causing deformation such as wrinkles and warpage, or variations in electrode performance.
- the amount of residual solvent can be appropriately adjusted depending on the content ratio of the solvent component contained in the resin composition, the drying conditions during film production, or the film thickness of the film to be produced.
- the residual solvent component contained in the resin composition preferably further contains water, and the content is preferably 10 to 200 ppm. If it is 10 ppm or more, the mechanical strength and brittleness of the resulting film are improved, but it is preferably 200 ppm or less from the viewpoint of transparency of the film.
- the resin base material according to the present invention is characterized by containing inorganic particles.
- Silica fine particles are preferred as the inorganic particles.
- the high part and the polar part of the compound used for the conductive film interact with each other, and it is expected that excellent adhesion can be obtained between the resin substrate and the conductive film.
- it is preferable that the silica fine particles are localized in the vicinity of the surface of the resin substrate on the side in contact with the conductive film.
- One embodiment for localizing silica fine particles near the surface is a mixed solvent contained in the resin composition according to the present invention (hereinafter also referred to as a dope) in the case of producing a resin substrate by a solution casting method.
- a mixed solvent contained in the resin composition according to the present invention hereinafter also referred to as a dope
- the silica particles are distributed in the thickness direction on the support by volatilizing from the surface opposite to the support. Arise. Since the mixed solvent volatilizes from a low boiling point, a distribution of a low boiling point solvent and a high boiling point solvent occurs in the thickness direction. At this time, due to the solubility of the silica fine particles, the dried film is localized in the thickness direction. When the silica fine particles are more soluble in the low boiling solvent than the high boiling solvent, the compound is biased in the direction in which the low boiling solvent volatilizes (opposite to the support), so that it is localized near the surface. It becomes natural.
- the silica fine particles with a polar group, and particularly with a sulfo group, but there is no particular limitation on the modification method.
- silica fine particles examples include, for example, Silicia manufactured by Fuji Silysia Chemical Co., Ltd., Nippon Sil manufactured by Nippon Silica Co., Ltd., Aerosil series manufactured by Nippon Aerosil Co., Ltd., Nissan Chemical Industries ( Colloidal silica, organosilica sol, etc. manufactured by Co., Ltd. can be applied.
- zirconia or titania fine particles can be used, and these can be used alone or in combination.
- the average particle diameter of the inorganic particles is preferably 5 nm or more and 1.0 ⁇ m or less, more preferably 5 nm or more and 500 nm or less. This is because if the particle size is too large, light scattering increases and the transmittance decreases.
- the average particle diameter of the inorganic particles is obtained as a simple average value (number average) by observing the inorganic particles with an electron microscope, determining the particle diameter of 100 arbitrary primary particles.
- each particle diameter is expressed by a diameter assuming a circle equal to the projected area.
- the content ratio of the inorganic particles contained in the resin base material is not particularly limited as long as it satisfies the conditions specified in the present invention, but is preferably 0.1 to 100% by mass with respect to 100% by mass of the cycloolefin resin. From the viewpoint of improving the adhesiveness and the transparency of the resulting film, it is more preferably 0.2 to 10% by mass. More preferably, it is 0.2 to 1% by mass.
- thermoplastic resins or known thermoplastic resins, thermoplastic elastomers, rubber polymers, organic fine particles, inorganic fine particles, etc. may be blended, specific wavelength dispersing agent, surfactant, dispersing agent, sugar ester compound, oxidation Additives such as an inhibitor, a peeling accelerator, rubber particles, a plasticizer, and an ultraviolet absorber may also be included.
- the additive it is preferable to contain an ultraviolet absorber from the viewpoint of improving light resistance.
- the ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet light of 400 nm or less, and the transmittance at a wavelength of 370 nm is preferably in the range of 0 to 30%, more preferably 1 It is in the range of ⁇ 20%, more preferably in the range of 1 to 10%.
- UV absorbers preferably used in the present invention are benzotriazole-based UV absorbers, benzophenone-based UV absorbers, and triazine-based UV absorbers.
- a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
- the method for molding a resin substrate according to the present invention will be described.
- Examples of the method for molding a resin substrate according to the present invention include known methods such as a melt extrusion method, a solution casting method (solution casting method), a calendar method, and a compression molding method.
- solvent used in the solution casting method it is preferable to use one or a mixture of alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, 2-butanol, and the like.
- Chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether, water and the like may be used in combination.
- aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof
- methyl cellosolve ethyl cellosolve
- butyl cellosolve dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone
- One embodiment of molding the resin substrate according to the present invention by the solution casting method is a resin containing a cycloolefin resin having a hydrogen bond accepting group, a solvent component having a hydrogen bond donating group, and inorganic particles.
- the method further comprises a step of further drying the peeled web (second drying step), a step of stretching, and a step of winding up the finished resin substrate.
- Dope preparation step In this step, a dope is prepared by adding, mixing, and dissolving a cycloolefin resin having a hydrogen bonding accepting group, a solvent component having a hydrogen bonding donor group, and inorganic particles.
- a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557, or JP-A-9-95557
- Various dissolution methods such as a method of cooling and dissolving as described in JP-A-9-95538 and a method of performing at high pressure described in JP-A No. 11-21379 can be used.
- the method of pressurizing with is preferable.
- Casting step This is a step of casting the dope prepared in the dope preparation step from a pressure die slit to a casting position on a metal support such as a stainless steel belt or a rotating metal drum. .
- a metal support such as a stainless steel belt or a rotating metal drum.
- concentration of the cyclopolyolefin resin in the dope is high because the drying load after casting on the metal support can be reduced. The load increases, and the filtration accuracy deteriorates.
- the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
- the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
- the cast width can be 1 to 4 m.
- the surface temperature of the support in the casting process is set to ⁇ 50 ° C. or higher and below the temperature at which the web boils and does not foam. A higher temperature is preferable because the web can be dried at a higher speed. However, if the temperature is too high, the web may foam or the flatness may deteriorate.
- a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
- the method for controlling the temperature of the support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the support becomes constant is short.
- the amount of the solvent when peeling the web from the support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
- 2nd drying process It is the process of further evaporating the solvent contained in the web peeled from the support body.
- the web which passed through the 2nd drying process is called resin base material.
- the residual solvent amount is preferably 1000 ppm or less, more preferably 10 to 1000 ppm.
- the residual solvent amount of the resin base material is in the above range, a conductive film having sufficient bending resistance and excellent adhesion between the conductive film and the resin base material can be obtained.
- drying is generally performed while a web is conveyed by a roll drying method (a method in which webs are alternately passed through a plurality of upper and lower rolls) and a tenter method described in Japanese Patent Application Laid-Open No. 2012-13824. The method is adopted.
- the drying temperature is preferably in the range of 30 to 180 ° C, and more preferably in the range of 50 to 170 ° C.
- the thickness of the finished resin substrate of the present invention (after drying) varies depending on the purpose of use, but is usually in the range of 5 to 500 ⁇ m, preferably in the range of 10 to 150 ⁇ m. It is particularly preferred that there is.
- the resin base material used in the present embodiment may be an unstretched base material or a stretched base material, but a stretched base material is preferred from the viewpoint of strength improvement and thermal expansion suppression.
- a stretching method for example, a method in which a difference in peripheral speed is applied to a plurality of rolls, and the roll peripheral speed difference is used to stretch in the longitudinal direction between the rolls.
- a method of stretching in the vertical direction a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and diagonal stretching.
- a plurality of these methods may be used in combination, and the stretching operation may be performed in multiple stages.
- the film may be stretched in the transverse direction, in the longitudinal direction, or in both directions, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be. Moreover, it may be performed simultaneously with the above-described second drying step. By dividing into several times, it is possible to stretch more uniformly even at high magnification. Before the oblique stretching, the stretching may be performed to prevent horizontal or longitudinal shrinkage in the width direction.
- the in-plane retardation value Ro of the resin substrate of the present invention at a measurement wavelength of 589 nm is preferably in the range of 0 to 150 nm. More preferably, Ro is in the range of 0 to 20 nm or 40 to 200 nm.
- the thickness direction retardation value Rt at a measurement wavelength of 589 nm is preferably in the range of 0 to 400 nm, and particularly preferably, Rt is in the range of 0 to 70 nm or Rt is in the range of 80 to 300 nm.
- Rt is in the range of 0 to 70 nm or Rt is in the range of 80 to 300 nm.
- the retardation values Ro and Rt are calculated by the following formulas (i) and (ii), respectively.
- Formula (i) Ro (nx ⁇ ny) ⁇ d
- Formula (ii) Rt ((nx + ny) / 2 ⁇ nz) ⁇ d
- Ro is the retardation value in the film plane
- Rt is the retardation value in the thickness direction
- nx is the refractive index in the slow axis direction in the film plane
- ny is the refractive index in the fast axis direction in the film plane
- (nz represents the refractive index in the thickness direction of the film
- d represents the thickness (nm) of the film.
- the in-plane retardation value Ro and the thickness direction retardation value Rt at a measurement wavelength of 589 nm are measured with a phase difference measuring device “KOBRA-21ADH” (Oji Scientific Instruments) in an environment of 23 ° C. and 55% RH. Measured by).
- the retardation value of the resin base material can be controlled by selection of the resin material, the draw ratio during film formation, and the like. Specifically, it can be controlled to an arbitrary value by appropriately selecting the stretching ratio in the longitudinal direction and the transverse direction.
- Winding process It is a process which winds up the resin base material formed through the said process in the shape of a long roll.
- a winding method a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
- the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking and scratching during winding.
- the knurling can be performed by heating or pressurizing a metal ring having an uneven pattern on the side surface.
- the resin substrate of the present invention can achieve desired optical properties by appropriately adjusting the process conditions such as the structure of the cycloolefin resin used, the type and amount of additives, the draw ratio, the amount of solvent at the time of peeling. it can.
- the retardation Rt in the thickness direction can be widely controlled to 180 to 300 nm by adjusting the amount of solvent during peeling within 40 to 85% by mass.
- the surface orientation can be relaxed and Rt can be freely lowered, and by adjusting the process conditions It is possible to express various retardations according to various uses.
- the resin base material of the present invention has an equilibrium water content of 3% or less at 25 ° C. and a relative humidity of 60%, preferably from 1% or less, from the viewpoint of phase difference fluctuation and bending resistance.
- a relative humidity of 60% preferably from 1% or less, from the viewpoint of phase difference fluctuation and bending resistance.
- Equilibrium moisture content is determined by leaving the sample film in a room conditioned at 23 ° C. and 20% relative humidity for 4 hours or more and then leaving it in a room conditioned at 23 ° C. and 80% RH for 24 hours. Using a meter (for example, CA-20, manufactured by Mitsubishi Chemical Corporation), moisture is dried and vaporized at a temperature of 150 ° C., and then quantified by the Karl Fischer method.
- a meter for example, CA-20, manufactured by Mitsubishi Chemical Corporation
- surface activation treatment by performing surface activation treatment on the surface of the resin base material, it is possible to improve the moldability of the conductive film disposed on the surface of the resin base material or other layers constituting the conductive film.
- Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
- the conductive film according to the present invention is an extremely thin metal film to such an extent that the light transmission can be maintained and the irradiated light is not lost to plasmon. Furthermore, the conductive film is a metal film that is continuous to the extent that it has conductivity. Specifically, the light transmittance at a wavelength of 550 nm is preferably 60% or more, particularly preferably 80% or more, and the total light transmittance is preferably 80% or more.
- the film thickness is 1 to 30 nm, preferably 1 to 20 nm, and the sheet resistance is 0.0001 to 50 ⁇ / ⁇ , preferably 0.01 to 40 ⁇ / ⁇ .
- the film thickness is not more than the above upper limit value because the absorption component or reflection component of the layer can be kept low and the light transmittance can be maintained. Moreover, electroconductivity is also ensured because a film thickness is more than the said lower limit.
- the material used for the conductive film is not particularly limited as long as it is a material that can obtain the above-described light transmittance, total light transmittance, and sheet resistance properties, but silver, indium phosphide, copper, and the like are preferably used.
- the material used for the conductive film of the present invention is preferably composed of silver or an alloy containing silver as a main component.
- a method for forming such a conductive film for example, a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using the dry process.
- the vapor deposition method is preferably applied.
- the conductive film is characterized in that it has sufficient conductivity even if there is no high-temperature annealing after formation.
- the glass transition temperature (Tg) of the cycloolefin resin which is a main component of a resin base material it is preferable not to exceed the glass transition temperature (Tg) of the cycloolefin resin which is a main component of a resin base material.
- the formation process temperature is preferably 20 ° C. or more lower than the glass transition temperature (Tg) of the cycloolefin resin, more preferably 40 ° C. or more lower.
- the purity of silver is preferably 99% or more.
- palladium, copper, gold, or the like may be added to ensure the stability of silver.
- the silver content is preferably 50% or more.
- alloys include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), silver gold (AgAu), silver aluminum (AgAl) , Silver zinc (AgZn), silver tin (AgSn), silver platinum (AgPt), silver titanium (AgTi), silver bismuth (AgBi), and the like.
- the conductive film as described above may have a structure in which silver or an alloy layer containing silver as a main component is divided into a plurality of layers as necessary. That is, for example, a configuration in which silver layers and alloy layers are alternately stacked a plurality of times may be employed, or a configuration in which a plurality of different alloy layers are stacked may be employed.
- ⁇ Functional layer> In the conductive film of the present invention, functional layers such as a hard coat layer, a barrier layer, a protective layer, a smooth layer, an optical adjustment layer, an adhesive layer, an adhesive layer, and an underlayer are appropriately disposed within the range in which the effects of the present invention are exhibited. Can do. A plurality of these functional layers may be provided, or a plurality of functional layers may be provided in combination.
- these functional layers are appropriately subjected to a dry process such as a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, or a CVD method. It is formed by the method used.
- a dry process such as a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, or a CVD method. It is formed by the method used.
- the underlayer is a layer disposed for the purpose of uniform film thickness of the conductive film.
- the base layer is preferably configured to include either the adhesive layer or the nitrogen-containing layer. Moreover, you may be comprised including both the contact bonding layer and the nitrogen-containing layer. In the case where the conductive film is divided into a plurality of layers and stacked, the conductive film and the base layer may be alternately stacked a plurality of times.
- thermosetting resin an ultraviolet curable resin, an electron beam curable resin, a radiation curable resin, or the like is preferably used.
- the adhesive layer preferably contains a metal oxide, metal nitride, or the like containing atoms such as titanium, platinum, palladium, cobalt, nickel, and molybdenum. Among them, titanium oxide and niobium oxide are preferred. It is preferable to be provided adjacent to the conductive film or the nitrogen-containing layer.
- the nitrogen-containing layer is a layer formed using a compound containing nitrogen atoms, and is provided adjacent to the conductive film.
- a vapor deposition method is preferably applied.
- the compound containing a nitrogen atom constituting the nitrogen-containing layer is not particularly limited as long as it is a compound containing a nitrogen atom in the molecule, but a compound having a heterocycle having a nitrogen atom as a heteroatom is preferable.
- heterocycle having a nitrogen atom as a hetero atom examples include, for example, aziridine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, Indole, isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline and the like.
- the optical adjustment layer is a layer arranged for the purpose of exerting an effect on incident light to the conductive film of the present invention, such as a high refractive index layer, a low refractive index layer, an antiglare layer, and a light scattering layer.
- a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, a radiation curable resin, or the like is preferably used.
- the optical adjustment layer may include particles of metal oxide such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, aluminum oxide, niobium oxide, and titanium oxide, and metal nitride.
- the electroconductive film of this invention is contained in an electronic device.
- Electronic devices include touch panels or membrane switches, televisions equipped with them, mobile communication devices, personal computers, game devices, in-vehicle display devices, network communication devices, lighting / display LEDs, electronic wiring devices for solar cell control, RFID, etc.
- Wireless communication devices or devices that are driven and controlled by a semiconductor wiring substrate or an organic TFT wiring substrate.
- the conductive film of the present invention can be particularly suitably provided on a touch panel from the viewpoint of sufficient bending resistance and transparency.
- Example 1 ⁇ Preparation of conductive film 1> (Preparation of fine particle dispersion) Silica fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 11% by mass Ethanol 89% by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed using a Manton Gorin disperser to prepare a fine particle dispersion.
- Silica fine particles Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution
- ⁇ inh 0.59
- required by ⁇ 13 > CNMR measurement it was confirmed that the monomer which has a methoxycarbonyl group is added 75 mass%.
- the copolymer P obtained above is used as a cycloolefin resin P having 75% by mass of a monomer having a methoxycarbonyl group as a hydrogen bonding accepting group.
- Formation of resin substrate 1 Using the band casting apparatus, the prepared dope A was cast on a stainless casting support (support temperature 22 ° C.). The dope A is peeled off in a state where the solvent amount is approximately 20% by mass, both ends in the width direction of the film are held by a tenter, and the solvent amount is 10% by mass in the width direction at a temperature of 115 ° C. The film was dried while being stretched 05 times (5%). Then, it dried further by conveying between the rolls of a 100 degreeC heat processing apparatus over 30 minutes, and produced the resin base material 1. FIG. The thickness was 60 ⁇ m and the width was 1492 mm.
- a conductive film (thickness 20 nm) was formed on one surface of the resin base material 1 by using ITO to produce a conductive film 1.
- a monomer having a methoxycarbonyl group as a hydrogen bonding accepting group was prepared in the same manner as the synthesis of the cycloolefin resin P except that 30% by mass of DNM, 50% by mass of DCP and 20% by mass of 2-norbornene were used. Cycloolefin resin Q possessed by mass% was synthesized. Then, except that the cycloolefin resin P was changed to the cycloolefin resin Q, the resin base material 2 was prepared in the same manner as the resin base material 1 and the resin base material 1 was changed to the resin base material 2. A conductive film 2 was produced in the same manner as in the above. In addition, when the methoxycarbonyl group addition rate of cycloolefin resin Q was calculated
- a cycloolefin resin R having 25% by mass of a monomer having a methoxycarbonyl group as a hydrogen bonding accepting group was synthesized in the same manner as the synthesis of the cycloolefin resin P except that the DNM was 25% by mass. Then, except that the cycloolefin resin P was changed to the cycloolefin resin R, the resin base material 3 was prepared in the same manner as the resin base material 1, and the conductive film 1 was used except that the resin base material 1 was changed to the resin base material 3. A conductive film 3 was produced in the same manner as in the above. In addition, when the methoxycarbonyl group addition rate of cycloolefin resin R was calculated
- the resin base material 4 is prepared in the same manner as the preparation of the resin base material 1 except that the dope A is changed to the dope B, and the same operation as that of the conductive film 1 is performed except that the resin base material 1 is used as the resin base material 4.
- a conductive film 4 was produced.
- Cycloolefin resin P 100.0% by mass Dichloromethane 300.0% by mass Methanol 15.0% by mass Fine particle dispersion 14.0% by mass
- the resin base material 5 is produced in the same manner as the production of the resin base material 1 except that the dope A is changed to the dope C, and the production method of the conductive film 1 is carried out except that the resin base material 1 is used as the resin base material 5.
- a conductive film 5 was produced. (Composition of dope C) Cycloolefin resin P 100.0% by mass Dichloromethane 280.0% by mass Butanol 20.0% by mass Fine particle dispersion 14.0% by mass
- the resin base material 6 is prepared in the same manner as the preparation of the resin base material 1 except that the dope A is changed to the dope D, and the same process as that of the conductive film 1 is performed except that the resin base material 1 is used as the resin base material 6.
- a conductive film 6 was produced.
- Cycloolefin resin P 100.0% by mass Dichloromethane 280.0% by mass Ethanol 9.0% by mass Distilled water 1.0% by mass Fine particle dispersion 14.0% by mass
- the resin base material 7 is prepared in the same manner as the preparation of the resin base material 1 except that the dope A is changed to the dope E, and the same process as that of the conductive film 1 is performed except that the resin base material 1 is used as the resin base material 7.
- a conductive film 7 was produced.
- Cycloolefin resin P 100.0% by mass Dichloromethane 277.0% by mass Ethanol 10.5% by mass Distilled water 2.5% by mass Fine particle dispersion 14.0% by mass
- ⁇ Preparation of conductive film 8> An underlayer (film thickness 25 nm) is formed on one surface of the resin base material 1 by the vapor deposition method using the following compound B, followed by a conductive film (film thickness 8 nm) made of silver (Ag). Thus, a conductive film 8 was produced.
- a conductive film 9 was produced in the same manner as the production of the conductive film 8 except that the conductive film was formed by sputtering using ITO and the film thickness was 20 nm.
- the resin base material 10 was prepared in the same manner as the resin base material 1 except that the drying process after stretching was performed for 10 minutes between rolls of a heat treatment apparatus at 100 ° C.
- a conductive film 10 was produced in the same manner as in the production of the conductive film 1 except that the number was 10.
- the resin base material 11 was prepared in the same manner as the resin base material 1 except that the drying process after stretching was performed for 15 minutes between rolls of a heat treatment apparatus at 90 ° C.
- a conductive film 11 was produced in the same manner as in the production of the conductive film 1 except that the number was 11.
- the resin base material 12 is prepared in the same manner as the preparation of the resin base material 1 except that the dope A is changed to the dope E, and the same process as that of the conductive film 1 is performed except that the resin base material 1 is used as the resin base material 12.
- a conductive film 12 was produced.
- the resin base material 13 is prepared in the same manner as the preparation of the resin base material 1 except that the dope A is changed to the dope F, and the same process as that of the conductive film 1 is performed except that the resin base material 1 is used as the resin base material 13.
- a conductive film 13 was produced.
- Cycloolefin resin P 100.0% by mass Dichloromethane 290.0% by mass Acetonitrile 10.0% by mass Fine particle dispersion 14.0% by mass
- Resin S1 was synthesized as a cycloolefin resin having no hydrogen bonding accepting group in the same manner as the synthesis of cycloolefin resin P, except that in the synthesis of cycloolefin resin P, DCP was 70% by mass and 2-norbornene was 30% by mass. And the electroconductive film 14 was produced like production of the electroconductive film 1 except having made cycloolefin resin P into cycloolefin resin S1.
- ⁇ Preparation of conductive film 15> (Preparation of cycloolefin resin S2 synthesis solution) Silica fine particles, 10-undecenoic acid, phenol stabilizer, phosphorus stabilizer, hindered amine light stabilizer are added to the following norbornene monomer mixture solution to dissolve or disperse it, and triphenylphosphine, represented by the following compound C Ruthenium catalyst was added and mixed with a line mixer to prepare a cycloolefin resin S2 synthesis solution.
- the composition of the cycloolefin resin S2 synthesis solution is shown below.
- composition of cycloolefin resin S2 synthesis solution Norbornene-based monomer mixture (dicyclopentadiene 90 parts, tricyclopentadiene 10 parts) 100.0% by mass Silica fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 10.0% by mass 10-undecenoic acid 0.3% by mass Phenol stabilizer 1.0% by mass Phosphorus stabilizer 1.0% by mass Hindered amine light stabilizer 1.0% by mass Triphenylphosphine 1.0% by mass Ruthenium catalyst 1.7% by mass
- the cycloolefin resin S2 synthesis solution prepared above was coated on a polyethylene terephthalate carrier film having a thickness of 0.075 mm at 25 ° C. to form a cast film.
- the carrier film was laminated. Thereafter, heating is performed at 200 ° C. for 3 minutes, and after cooling to 20 ° C., the upper and lower carrier films are peeled off, and the resin base material 15 mainly composed of cycloolefin resin S2 having no hydrogen bonding accepting group is obtained.
- a conductive film 15 was produced in the same manner as the production of the conductive film 1 except that the resin base material 1 was changed to the resin base material 15.
- Resin base material obtained by cutting out the residual amount of alcohol or distilled water used as a solvent component into a certain shape was put into a 20 ml sealed glass container and treated at 120 ° C. for 20 minutes, followed by gas chromatography (equipment: HP 5890SERIES). II, column: J & W DB-WAX (inner diameter 0.32 mm, length 30 m), detection: FID) was held at 40 ° C. for 5 minutes and then heated to 100 ° C. at 80 ° C./min. Asked.
- the performance of the conductive films 1 to 15 prepared above was evaluated by the following method.
- Table 1 shows the configuration and evaluation of each conductive film.
- ⁇ Flexibility> The transparency of the produced conductive films 1 to 15 was evaluated for flex resistance according to the method defined in JIS K 5400. In evaluating the bending resistance, a stainless steel rod having a diameter of 10 mm was used for winding the optical film sample.
- rank evaluation was performed as follows. ⁇ : No change ⁇ : Slightly deformed, but no problem for practical use ⁇ : Wrinkle or warp deformation, has a practical problem ⁇ : There are fine cracks in the electrode layer, causing a practical problem is there
- Haze is also called haze value and represents the degree of haze or the degree of diffusion.
- haze (%) was measured according to JISK-7136 and evaluated according to the following criteria. The smaller the haze (%), the higher the transparency without cloudiness. The measured haze was evaluated according to the following criteria. Note that when the haze of the conductive film is 2% or more, white blurring occurs and the visibility of the touch panel decreases. ⁇ : Less than 0.5% ⁇ : 0.5% or more and less than 2% ⁇ : 2% or more
- ⁇ Conductive performance> The conductive performances of the conductive films 1 to 15 produced above were evaluated using the surface resistivity.
- the surface resistivity of the conductive region of the conductive layer was measured using Loresta (registered trademark) -GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
- the surface resistivity was measured at 20 points selected at random in the center of the conductive region of the 10 cm ⁇ 10 cm sample, and the variation in the surface resistivity was evaluated. Note that a surface resistivity within the range of 0 to 200 ⁇ / ⁇ is a practically preferable range.
- the conductive film of the present invention has sufficient bending resistance and transparency, and a uniform in-plane conductive performance can be obtained.
- the present invention can be particularly suitably used for a conductive film having a resin base material and a conductive film, a touch panel provided with the conductive film, and a method for manufacturing the conductive film.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
1.樹脂基材と導電膜を有する導電性フィルムにおいて、
前記樹脂基材は、水素結合性受容基を有するシクロオレフィン樹脂と水素結合性供与基を有する溶媒成分と無機粒子を含む樹脂組成物を含んで形成され、
前記溶媒成分はアルコール系溶媒を含み、
前記溶媒成分は、前記樹脂基材中に10~1000ppm含まれていることを特徴とする導電性フィルム。
2.前記溶媒成分は水を含むことを特徴とする第1項に記載の導電性フィルム。
3.第1項又は第2項に記載の導電性フィルムを備えることを特徴とするタッチパネル。
4.樹脂基材と導電膜を有する導電性フィルムの製造方法において、
前記樹脂基材を、水素結合性供与基を有する溶媒成分と水素結合性受容基を有するシクロオレフィン樹脂と無機粒子を含む樹脂組成物を含んで形成する工程を有し、
前記樹脂組成物中の前記溶媒成分の含有割合が1~50質量%であることを特徴とする導電性フィルムの製造方法。
本発明の実施態様としては、生産性向上の観点から、前記溶媒成分が水を含むことが好ましい。
本発明の導電性フィルムは、十分な耐屈曲性と透明性を有する点から、タッチパネルに好適に具備される。
また、アルキル基等の「基」は、特に述べない限り、置換基を有していてもよい。さらに、炭素数が限定されている基の場合、該炭素数は、置換基が有する炭素数を含めた数を意味している。
本発明の導電性フィルムは、少なくとも樹脂基材と導電膜を有することを特徴としている。
本発明に係る樹脂基材は、水素結合性受容基を有するシクロオレフィン樹脂と水素結合性供与基を有する溶媒成分と無機粒子を含む樹脂組成物を含んで形成され、前記溶媒成分が、少なくともアルコール系溶媒を含み、前記樹脂基材中に10~1000ppm含まれていることを特徴としている。
本発明に係るシクロオレフィン樹脂は、少なくとも1つの水素結合性受容基を含む樹脂組成物から形成されることを特徴としている。なお、「水素結合性受容基」とは、水素結合を形成する際に水素原子を受容する官能基をいい、「水素結合性供与基」とは、水素結合を形成する際に水素原子を供与する官能基をいう。
また、シクロオレフィン樹脂の水素結合性受容基の保有比率は例えば、カーボン-13核磁気共鳴(13CNMR)スペクトル法を用いて同定することができる。
本発明に係る溶媒成分は、水素結合性供与基を有する溶媒を少なくとも1種以上含むことを特徴としている。
本発明に係る樹脂基材は無機粒子を含むことを特徴としている。無機粒子としてはシリカ微粒子が好ましい。導電膜と樹脂基材の界面において、シリカ微粒子の表面にあるヒドロキシ基(OH基)や、スルホニル基、シロキサン結合に含まれる酸素原子(Si-O-Si、O=Si=O)等極性が高い部位と導電膜に用いられる化合物の極性部とが相互作用し、樹脂基材と導電膜間で優れた密着性が得られることが期待される。前記した相互作用を効果的に得るためには、シリカ微粒子が導電膜と接する側の樹脂基材表面付近に局在していることが好ましい。
樹脂組成物には、本発明の効果を損なわない範囲で、例えば特開平9-221577号公報、特開平10-287732号公報、特開2014-159082号公報に記載されている、特定の炭化水素系樹脂、又は公知の熱可塑性樹脂、熱可塑性エラストマー、ゴム質重合体、有機微粒子、無機微粒子などを配合しても良く、特定の波長分散剤、界面活性剤、分散剤、糖エステル化合物、酸化防止剤、剥離促進剤、ゴム粒子、可塑剤、紫外線吸収剤などの添加剤を含んでも良い。
本発明に係る樹脂基材の成形方法について説明する。
本発明に係る樹脂基材の成形の方法としては、例えば、溶融押出法、溶液キャスト法(溶液流延法)、カレンダー法、圧縮成形法など公知の方法が挙げられる。
溶液流延法に用いられる溶媒としては、メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒を1種又は複数種混合して用いることが好ましく、また前記アルコール系溶媒と、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル、水などを併用してもよい。
水素結合性受容基を有するシクロオレフィン樹脂、水素結合性供与基を有する溶媒成分、無機粒子をそれぞれ添加混合し、溶解することでドープを調製する工程である。溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
上記ドープ調製工程で調製したドープを、例えばステンレスベルト、又は回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。液流延法では、ドープ中のシクロポリオレフィン樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、シクロポリオレフィン樹脂の濃度が高すぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。
ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。流延工程の支持体の表面温度は-50℃以上、ウェブが沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
ウェブを剥離する際の溶媒量(質量%)={(M-N)/N}×100
なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
支持体から剥離したウェブに含まれる溶媒を更に蒸発させる工程である。本発明においては、第2乾燥工程を経たウェブを樹脂基材という。
樹脂基材の残留溶媒量が上記の範囲にあることで十分な耐屈曲性を有し、導電膜と樹脂基材の密着性に優れた導電性フィルムが得られる。
本実施形態で用いる樹脂基材は未延伸の基材でもよく、延伸した基材でもよいが、強度向上、熱膨張抑制の点から延伸した基材が好ましい。延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、又は縦横同時に広げて縦横両方向に延伸する方法、斜め延伸等が挙げられる。
これ等の方法は、複数組み合わせて用いてもよく、延伸操作を多段階に分割して実施してもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸しても良く、更に両方向に延伸する場合は同時延伸であっても、逐次延伸であってもよい。また、上記した第2乾燥工程と同時に行われもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。斜め延伸前に、横又は縦に幅方向の収縮を防止する程度の延伸を行ってもよい。
式(i) Ro=(nx-ny)×d
式(ii) Rt=((nx+ny)/2-nz)×d
(式中、Roはフィルム面内リターデーション値、Rtは厚さ方向リターデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚さ方向の屈折率、dはフィルムの厚さ(nm)を表す。)
本発明においては、測定波長589nmにおける面内リターデーション値Ro及び厚さ方向リターデーション値Rtは、23℃・55%RHの環境下において、位相差測定装置「KOBRA-21ADH」(王子計測機器(株)製)によって測定する。
上記工程を経て形成された樹脂基材を長尺ロール状に巻き取る工程である。巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
本発明に係る導電膜は、光透過性を保てる程度、かつ、照射された光がプラズモン損失されない程度に極薄い金属膜である。さらに、導電膜は、導電性を有する程度に連続した金属膜である。具体的には、波長550nmにおける光透過率が60%以上であることが好ましく、特に80%以上であることが好ましく、全光線透過率が80%以上であることが好ましい。また、膜厚が1~30nm、好ましくは1~20nmであり、シート抵抗が0.0001~50Ω/□、好ましくは0.01~40Ω/□である。膜厚が上記上限値以下であることにより、層の吸収成分又は反射成分が低く抑えられ、光透過率が維持されるため好ましい。また、膜厚が上記下限値以上であることにより、導電性も確保される。
プロセス中でシクロオレフィン樹脂のガラス転移点以下とすることにより、熱樹脂への損傷を防ぐことができる。このため、透明性、及び、経時安定性に優れる導電性フィルムを形成することができる。
本発明の導電性フィルムは、本発明の効果を奏する範囲でハードコート層やバリア層、保護層、平滑層、光学調節層、粘着層、接着層、下地層等の機能層を適宜配置することができる。これらの機能層はそれぞれを複数設けてもよいし、複数層組み合わせて設けてもよい。またこれらの機能層は、適宜、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等によって形成される。
本発明の導電性フィルムは、電子機器に含まれることが好ましい。電子機器とは、タッチパネルもしくはメンブレンスイッチやそれらを搭載したテレビ・モバイル通信機器・パーソナルコンピューター・ゲーム機器・車載表示機器・ネット通信機器、照明・表示用LED、太陽電池制御に関する電子配線機器、RFIDなどの無線通信デバイス、又は半導体配線基板や有機TFT配線基板で駆動制御された機器類を指す。
本発明の導電性フィルムは、十分な耐屈曲性と透明性を有する点から、タッチパネルに特に好適に具備され得る。
<導電性フィルム1の作製>
(微粒子分散液の調製)
シリカ微粒子(アエロジル R812 日本アエロジル(株)製)
11質量%
エタノール 89質量%
以上をディゾルバーで50分間撹拌混合した後、マントンゴーリン分散機を用いて分散を行い、微粒子分散液を調製した。
溶解タンクにジクロロメタンを入れ、ジクロロメタンを十分に撹拌しながら上記調製した微粒子分散液を50質量%となるようにゆっくりと添加した。更に、二次粒子の粒径が、所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過して、微粒子添加液1を調製した。
8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(DNM)75質量%、ジシクロペンタジエン(DCP)24質量%、2-ノルボルネン1質量%、分子量調節剤の1-へキセン9部およびトルエン200部を、窒素置換した反応容器に仕込んで110℃に加熱した。これにトリエチルアルミニウム0.005部、メタノール変性WCl6(無水メタノール:PhPOCl2:WCl6=103:630:427質量比)0.005部を加え1時間反応させることにより重合体を得た。得られた重合体の溶液をオートクレーブに入れ、さらにトルエンを200部加えた。次に、水素添加触媒であるRuHCl(CO)[P(C6H5)]3を0.006部添加し、90℃まで加熱した後、水素ガスを反応器へ投入し、圧力を10MPaとした。その後、圧力を10MPaに保ったまま、165℃、3時間の反応を行った。反応終了後、多量のメタノール溶液に沈殿させ、更に沈殿物をトルエンおよびメタノールを用いて再沈殿精製して共重合体Pを得た。
エタノールの入った加圧溶解タンクに、上記合成したシクロオレフィン系重合体Pを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解した。次いで、微粒子添加液1を添加した後、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープAを調製した。ドープAの組成を下記に示す。本発明に係る水素結合性供与基を有する溶媒成分としてはエタノールがそれにあたる。
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 290.0質量%
エタノール 10.0質量%
微粒子分散液 14.0質量%
バンド流延装置を用い、前記調製したドープAをステンレス製の流延支持体(支持体温度22℃)に流延した。ドープA中の溶媒量が略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンターで把持し、溶媒量が10質量%の状態で、115℃の温度下で幅方向に1.05倍(5%)延伸しつつ乾燥した。その後、100℃の熱処理装置のロール間を30分かけて搬送することによりさらに乾燥させ、樹脂基材1を作製した。厚さは60μm、幅は1492mmであった。
樹脂基材1の片面上にITOを用いて導電膜(膜厚20nm)をスパッタ法によって形成し、導電性フィルム1を作製した。
DNMを30質量%、DCPを50質量%、2-ノルボルネンを20質量%とした以外はシクロオレフィン樹脂Pの合成と同様の手法で、水素結合性受容基としてメトキシカルボニル基有する単量体を30質量%保有するシクロオレフィン樹脂Qを合成した。そして、シクロオレフィン樹脂Pをシクロオレフィン樹脂Qとした以外は樹脂基材1の作製と同様にして樹脂基材2を作製し、樹脂基材1を樹脂基材2とした以外は導電性フィルム1の作製と同様にして、導電性フィルム2を作製した。なお、13CNMR測定によりシクロオレフィン樹脂Qのメトキシカルボニル基添加率を求めたところ、メトキシカルボニル基を有する単量体が30質量%添加されていることが確認された。
DNMを25質量%とした以外はシクロオレフィン樹脂Pの合成と同様の手法で、水素結合性受容基としてメトキシカルボニル基有する単量体を25質量%保有するシクロオレフィン樹脂Rを合成した。そして、シクロオレフィン樹脂Pをシクロオレフィン樹脂Rとした以外は樹脂基材1の作製と同様にして樹脂基材3を作製し、樹脂基材1を樹脂基材3とした以外は導電性フィルム1の作製と同様にして、導電性フィルム3を作製した。なお、13CNMR測定によりシクロオレフィン樹脂Rのメトキシカルボニル基添加率を求めたところ、メトキシカルボニル基を有する単量体が25質量%添加されていることが確認された。
ドープAをドープBとした以外は樹脂基材1の作製と同様にして樹脂基材4を作製し、樹脂基材1を樹脂基材4とした以外は導電性フィルム1の作製と同様にして、導電性フィルム4を作製した。
(ドープBの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 300.0質量%
メタノール 15.0質量%
微粒子分散液 14.0質量%
ドープAをドープCとした以外は樹脂基材1の作製と同様にして樹脂基材5を作製し、樹脂基材1を樹脂基材5とした以外は導電性フィルム1の作製と同様にして、導電性フィルム5を作製した。
(ドープCの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 280.0質量%
ブタノール 20.0質量%
微粒子分散液 14.0質量%
ドープAをドープDとした以外は樹脂基材1の作製と同様にして樹脂基材6を作製し、樹脂基材1を樹脂基材6とした以外は導電性フィルム1の作製と同様にして、導電性フィルム6を作製した。
(ドープDの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 280.0質量%
エタノール 9.0質量%
蒸留水 1.0質量%
微粒子分散液 14.0質量%
ドープAをドープEとした以外は樹脂基材1の作製と同様にして樹脂基材7を作製し、樹脂基材1を樹脂基材7とした以外は導電性フィルム1の作製と同様にして、導電性フィルム7を作製した。
(ドープEの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 277.0質量%
エタノール 10.5質量%
蒸留水 2.5質量%
微粒子分散液 14.0質量%
樹脂基材1の片面上に、下記の化合物Bを用いて下地層(膜厚25nm)を蒸着法によって形成し、これに続けて銀(Ag)からなる導電膜(膜厚8nm)を蒸着法によって形成して導電性フィルム8を作製した。
導電性フィルム8の作製において、導電膜をITOを用いてスパッタ法によって形成し、膜厚を20nmとした以外は導電性フィルム8の作製と同様にして、導電性フィルム9を作製した。
延伸後の乾燥工程の条件を100℃の熱処理装置のロール間を10分で行った以外は樹脂基材1の作製と同様にして樹脂基材10を作製し、樹脂基材1を樹脂基材10とした以外は導電性フィルム1の作製と同様にして、導電性フィルム10を作製した。
延伸後の乾燥工程の条件を90℃の熱処理装置のロール間を15分で行った以外は樹脂基材1の作製と同様にして樹脂基材11を作製し、樹脂基材1を樹脂基材11とした以外は導電性フィルム1の作製と同様にして、導電性フィルム11を作製した。
ドープAをドープEとした以外は樹脂基材1の作製と同様にして樹脂基材12を作製し、樹脂基材1を樹脂基材12とした以外は導電性フィルム1の作製と同様にして、導電性フィルム12を作製した。
(ドープEの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 300.0質量%
微粒子分散液 14.0質量%
ドープAをドープFとした以外は樹脂基材1の作製と同様にして樹脂基材13を作製し、樹脂基材1を樹脂基材13とした以外は導電性フィルム1の作製と同様にして、導電性フィルム13を作製した。
(ドープFの組成)
シクロオレフィン樹脂P 100.0質量%
ジクロロメタン 290.0質量%
アセトニトリル 10.0質量%
微粒子分散液 14.0質量%
シクロオレフィン樹脂Pの合成において、DCP70質量%、2-ノルボルネン30質量%とした以外はシクロオレフィン樹脂Pの合成と同様にして、水素結合性受容基のないシクロオレフィン樹脂として樹脂S1を合成した。そして、シクロオレフィン樹脂Pを、シクロオレフィン樹脂S1とした以外は導電性フィルム1の作製と同様にして、導電性フィルム14を作製した。
(シクロオレフィン樹脂S2合成液の調製)
下記のノルボルネン系モノマー混合液にシリカ微粒子、10-ウンデセン酸、フェノール系安定剤、リン系安定剤、ヒンダードアミン系光安定剤を加えて溶化し又は分散させ、さらにトリフェニルホスフィン、下記化合物Cで示したルテニウム触媒を添加し、ラインミキサーで混合し、シクロオレフィン樹脂S2合成液を調製した。シクロオレフィン樹脂S2合成液の組成を下記に示す。
(シクロオレフィン樹脂S2合成液の組成)
ノルボルネン系モノマー混合液(ジシクロペンタジエン90部、トリシクロペンタジエン10部) 100.0質量%
シリカ微粒子(アエロジル R812 日本アエロジル(株)製) 10.0質量%
10-ウンデセン酸 0.3質量%
フェノール系安定剤 1.0質量%
リン系安定剤 1.0質量%
ヒンダードアミン系光安定剤 1.0質量%
トリフェニルホスフィン 1.0質量%
ルテニウム触媒 1.7質量%
上記で作製した導電性フィルム1~15を構成する各樹脂基材中のアルコール又は蒸留水の残留量を下記の手法で評価し、表1に示す。
溶媒成分として用いたアルコール又は蒸留水の残留量を、一定の形状に切り取った樹脂基材を20mlの密閉ガラス容器に入れ、120℃で20分間処理したあと、ガスクロマトグラフィー(機器:HP社 5890SERIES II、カラム:J&W社 DB-WAX(内径0.32mm、長さ30m)、検出:FID)でGC昇温条件を40℃で5分間保持したあと、80℃/分で100℃まで昇温して求めた。
<耐屈曲性>
上記作製した導電性フィルム1~15の透明性の、JIS K 5400に規定の方法に準じた耐屈曲性を評価した。耐屈曲性評価にあたり、光学フィルム試料の巻き付けには直径10mmのステンレス棒を用いた。電極層の状態について、下記のようにランク評価を行った。
◎ : 何らの変化もなかった
○ : 僅かに変形したが、実用上問題ない
△ : シワ又は反りの変形があり、実用上問題がある
× : 電極層に微細なクラックがあり、実用上問題がある
ヘイズは、曇価ともよばれ、曇り具合又は拡散度合いを表す。市販されているヘイズメーター(日本電色社製、製品名「NDH 2000」)を用いて、JISK-7136に準拠してヘイズ(%)を測定し、下記の基準で評価した。ヘイズ(%)が小さいほど、曇りがなく透明性が高いことを示す。測定したヘイズを下記の基準で評価した。なお、導電性フィルムのヘイズが2%以上であると、白ボケが発生しタッチパネルの視認性が低下する。
◎:0.5%未満
○:0.5%以上2%未満
×:2%以上
上記作製した導電性フィルム1~15について、表面抵抗率を用いて導電性能を評価した。導電層の導電性領域の表面抵抗率を、三菱化学株式会社製Loresta(登録商標)-GP MCP-T600を用いて測定した。10cm×10cmのサンプルの導電性領域の中央部のランダムに選択した20箇所について表面抵抗率を測定し、表面抵抗率のバラつきを評価した。なお、表面抵抗率が0~200Ω/□の範囲内を、実用上好ましい範囲とする。
○:20箇所測定した時の表面抵抗率のバラつきが10Ω以内で実用上問題ない
△:20箇所測定した時の表面抵抗率のバラつきが10Ω以上で実用上問題になる
×:20箇所測定した時の表面抵抗率のバラつきが15Ω以上で実用上問題になる
Claims (4)
- 樹脂基材と導電膜を有する導電性フィルムにおいて、
前記樹脂基材は、水素結合性受容基を有するシクロオレフィン樹脂と水素結合性供与基を有する溶媒成分と無機粒子を含む樹脂組成物を含んで形成され、
前記溶媒成分はアルコール系溶媒を含み、
前記溶媒成分は前記樹脂基材中に10~1000ppm含まれていることを特徴とする導電性フィルム。 - 前記溶媒成分は水を含むことを特徴とする請求項1に記載の導電性フィルム。
- 請求項1又は請求項2に記載の導電性フィルムを備えることを特徴とするタッチパネル。
- 樹脂基材と導電膜を有する導電性フィルムの製造方法において、
前記樹脂基材を、水素結合性供与基を有する溶媒成分と水素結合性受容基を有するシクロオレフィン樹脂と無機粒子を含む樹脂組成物を含んで形成する工程を有し、
前記樹脂組成物中の前記溶媒成分の含有割合が1~50質量%であることを特徴とする導電性フィルムの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177022000A KR101976303B1 (ko) | 2015-02-10 | 2015-10-13 | 도전성 필름, 터치 패널 및 도전성 필름의 제조 방법 |
JP2016574621A JP6729402B2 (ja) | 2015-02-10 | 2015-10-13 | 導電性フィルム、タッチパネル、および導電性フィルムの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-023759 | 2015-02-10 | ||
JP2015023759 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129145A1 true WO2016129145A1 (ja) | 2016-08-18 |
Family
ID=56615151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078869 WO2016129145A1 (ja) | 2015-02-10 | 2015-10-13 | 導電性フィルム、タッチパネル、および導電性フィルムの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6729402B2 (ja) |
KR (1) | KR101976303B1 (ja) |
WO (1) | WO2016129145A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018161789A (ja) * | 2017-03-24 | 2018-10-18 | 日本ゼオン株式会社 | 透明導電性フィルム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003014901A (ja) * | 2001-04-27 | 2003-01-15 | Jsr Corp | 熱可塑性ノルボルネン系樹脂系光学用フィルム |
JP2006289933A (ja) * | 2005-03-14 | 2006-10-26 | Fuji Photo Film Co Ltd | 環状ポリオレフィンフィルム及びその製法 |
JP2007090613A (ja) * | 2005-09-28 | 2007-04-12 | Fujifilm Corp | 環状ポリオレフィンフィルム並びにその製造方法、それを用いた光学補償フィルム、偏光板、偏光板保護フィルムおよび液晶表示装置 |
WO2007122932A1 (ja) * | 2006-03-23 | 2007-11-01 | Zeon Corporation | ノルボルネン化合物付加重合体フィルム、その製造方法及びその用途 |
WO2008041657A1 (fr) * | 2006-09-29 | 2008-04-10 | Fujifilm Corporation | Film de résine de polycyclooléfine, procédé de fabrication de celui-ci, polariseur et dispositif d'affichage à cristaux liquides |
JP2014177089A (ja) * | 2013-03-15 | 2014-09-25 | Fujifilm Corp | フィルムおよびフィルムの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024175A1 (ja) * | 2008-08-25 | 2010-03-04 | 株式会社関東学院大学表面工学研究所 | 積層体及びその製造方法 |
JP2014162841A (ja) | 2013-02-25 | 2014-09-08 | Nippon Zeon Co Ltd | 架橋環状オレフィン樹脂組成物、架橋環状オレフィン樹脂フィルム、積層体及びそれらの製造方法 |
-
2015
- 2015-10-13 KR KR1020177022000A patent/KR101976303B1/ko active IP Right Grant
- 2015-10-13 JP JP2016574621A patent/JP6729402B2/ja active Active
- 2015-10-13 WO PCT/JP2015/078869 patent/WO2016129145A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003014901A (ja) * | 2001-04-27 | 2003-01-15 | Jsr Corp | 熱可塑性ノルボルネン系樹脂系光学用フィルム |
JP2006289933A (ja) * | 2005-03-14 | 2006-10-26 | Fuji Photo Film Co Ltd | 環状ポリオレフィンフィルム及びその製法 |
JP2007090613A (ja) * | 2005-09-28 | 2007-04-12 | Fujifilm Corp | 環状ポリオレフィンフィルム並びにその製造方法、それを用いた光学補償フィルム、偏光板、偏光板保護フィルムおよび液晶表示装置 |
WO2007122932A1 (ja) * | 2006-03-23 | 2007-11-01 | Zeon Corporation | ノルボルネン化合物付加重合体フィルム、その製造方法及びその用途 |
WO2008041657A1 (fr) * | 2006-09-29 | 2008-04-10 | Fujifilm Corporation | Film de résine de polycyclooléfine, procédé de fabrication de celui-ci, polariseur et dispositif d'affichage à cristaux liquides |
JP2014177089A (ja) * | 2013-03-15 | 2014-09-25 | Fujifilm Corp | フィルムおよびフィルムの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018161789A (ja) * | 2017-03-24 | 2018-10-18 | 日本ゼオン株式会社 | 透明導電性フィルム |
Also Published As
Publication number | Publication date |
---|---|
KR20170104538A (ko) | 2017-09-15 |
KR101976303B1 (ko) | 2019-05-07 |
JPWO2016129145A1 (ja) | 2017-11-16 |
JP6729402B2 (ja) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3064969B1 (en) | Multilayer film, optically anisotropic laminate, circular polarizer and manufacturing methods | |
JP5831559B2 (ja) | タッチパネル付き液晶表示装置 | |
JP6657602B2 (ja) | 環状ポリオレフィンフィルムの製造方法 | |
CN109074763B (zh) | 膜传感器构件及其制造方法、圆偏振片及其制造方法、以及图像显示装置 | |
JP7371641B2 (ja) | アクリル樹脂フィルムの製造方法、応用品、応用品の製造方法、ガスバリアー性フィルムの製造方法、導電性フィルムの製造方法、有機エレクトロルミネッセンス素子の製造方法及び偽造防止媒体の製造方法 | |
JP7044468B2 (ja) | 光学積層体および該光学積層体を用いた画像表示装置 | |
TW201602658A (zh) | 積層體及圖像顯示裝置 | |
KR101503613B1 (ko) | 하드 코트 필름, 편광판 및 액정 표시 장치 | |
JP5996163B2 (ja) | 光学フィルムの製造方法、偏光板及び画像表示装置 | |
JP6712335B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP5668593B2 (ja) | 偏光板、その製造方法及び垂直配向型液晶表示装置 | |
JP6709637B2 (ja) | 光学補償層付偏光板およびそれを用いた有機elパネル | |
JP6638657B2 (ja) | 単層樹脂フィルム、その製造方法、それを具備した太陽電池用バックシート、偏光板保護フィルム、建築用部材、自動車用部材及びモバイル機器用加飾シート | |
JP6900312B2 (ja) | 光学積層体、偏光板及び液晶表示装置 | |
JP6927285B2 (ja) | 光学フィルム、その製造方法、それを具備した偏光板及び表示装置 | |
JP6729402B2 (ja) | 導電性フィルム、タッチパネル、および導電性フィルムの製造方法 | |
WO2022196685A1 (ja) | 位相差フィルム | |
JP2016160338A (ja) | 共重合体、シクロオレフィン系樹脂組成物、シクロオレフィン系樹脂フィルム、導電性フィルム、及びタッチパネル | |
WO2017135239A1 (ja) | 光学積層体および該光学積層体を用いた画像表示装置 | |
WO2007001020A1 (ja) | 光学フィルムの製造方法、光学フィルムおよび偏光板 | |
JP6682797B2 (ja) | 光学フィルム、偏光板及び表示装置 | |
JP2008307730A (ja) | 光学用フィルムの製造方法、光学用フィルム、偏光板及び液晶表示装置 | |
TW202020028A (zh) | 相位差膜、附相位差層之偏光板、及相位差膜之製造方法 | |
CN110858011A (zh) | 相位差膜、带相位差层的偏振片及相位差膜的制造方法 | |
JP2010054804A (ja) | 積層フィルムおよび積層フィルムの製造方法、ならびにそれを備える偏光板および液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882019 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016574621 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177022000 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882019 Country of ref document: EP Kind code of ref document: A1 |