WO2016129127A1 - アルミニウム合金製塑性加工品、その製造方法及び自動車用部品 - Google Patents

アルミニウム合金製塑性加工品、その製造方法及び自動車用部品 Download PDF

Info

Publication number
WO2016129127A1
WO2016129127A1 PCT/JP2015/054188 JP2015054188W WO2016129127A1 WO 2016129127 A1 WO2016129127 A1 WO 2016129127A1 JP 2015054188 W JP2015054188 W JP 2015054188W WO 2016129127 A1 WO2016129127 A1 WO 2016129127A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
mass
plastic
element symbol
aluminum
Prior art date
Application number
PCT/JP2015/054188
Other languages
English (en)
French (fr)
Inventor
英貴 竹村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to DE112015000499.8T priority Critical patent/DE112015000499B4/de
Priority to PCT/JP2015/054188 priority patent/WO2016129127A1/ja
Priority to CN201580001123.XA priority patent/CN106062225B/zh
Priority to JP2015552667A priority patent/JP6090725B2/ja
Priority to US15/025,297 priority patent/US20160355914A1/en
Priority to MYPI2016701456A priority patent/MY175993A/en
Priority to TW104136313A priority patent/TWI592498B/zh
Publication of WO2016129127A1 publication Critical patent/WO2016129127A1/ja
Priority to US16/436,051 priority patent/US11136657B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/124Constructional features of arms the arm having triangular or Y-shape, e.g. wishbone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7102Aluminium alloys

Definitions

  • the present invention relates to an aluminum alloy plastic processed product manufactured from an ingot of an Al—Mg—Si based aluminum alloy, a manufacturing method thereof, and an automotive part.
  • an aluminum alloy plastic work product manufactured from an ingot of an Al—Mg—Si based aluminum alloy has been used as a structural material (part) for a transport device such as a vehicle, a ship, an aircraft, an automobile, or a motorcycle.
  • the Al—Mg—Si-based aluminum alloy has excellent workability, high strength, and corrosion resistance.
  • A6061 which is a kind of Al—Mg—Si based aluminum alloy is widely used for automobile parts such as suspension arms.
  • a material that is lighter than A6061 is required for the purpose of reducing the weight of the vehicle body.
  • transition elements such as chromium, manganese, and zirconium are added, and grain size corrosion and stress corrosion cracking are prevented by refining the crystal grain size and crystallized material, and the Al-Mg-Si based aluminum alloy It is known to improve the corrosion resistance.
  • the following is disclosed in Patent Document 1 below.
  • Mg 0.6-1.6% (mass%, the same shall apply hereinafter), Si: 0.6-1.8%, Cu: 0.05-1.0%, and Fe 0.30% or less Mn: 0.15 to 0.6%, Cr: 0.1 to 0.2%, Zr: 0.1 to 0.2%, or two or more kinds, and hydrogen: 0
  • the unit of the total area ratio of Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystallized material in the aluminum alloy structure in the forging material Must be 1.5% or less per area.
  • Patent Document 2 for the purpose of providing an aluminum alloy forged material that has high strength and high toughness and is excellent in corrosion resistance and durability.
  • Mg 0.6-1.8% (mass%, the same applies hereinafter), Si: 0.6-1.8%, Cr: 0.1-0.2% and Zr: 0.1- Including one or two of 0.2%, Cu: 0.25% or less, Mn: 0.05% or less, Fe: 0.30% or less, hydrogen: 0.25cc / 100gAl or less, In aluminum alloy forgings with the balance being Al and inevitable impurities, Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates (crystallized matter) present on the grain boundaries of the aluminum alloy structure And the average particle size of the crystal precipitates is set to 3.0 ⁇ m or more.
  • These Al—Mg—Si based aluminum alloy materials have the ability to prevent intergranular corrosion and suppress the occurrence of stress corrosion cracking by refining the crystal grain size and crystallized material.
  • corrosion resistance deteriorates due to an increase in the amount of Cu element added, the generated corrosion weight loss cannot be suppressed. Therefore, when a plastic processed product made of these Al—Mg—Si-based aluminum alloy materials is thinned and reduced in weight, the strength is surely lowered by the thickness reduced by the corrosion weight loss, and the durability is deteriorated. That is, there is a problem that these Al—Mg—Si aluminum alloy materials are not suitable for use in severe corrosive environments.
  • Mg 0.6 to 1.8% (mass%, the same shall apply hereinafter), Si: 0.8 to 1.8%, Cu: 0.2 to 1.0%, and the mass ratio of Si / Mg is 1
  • Mn 0.1 to 0.6%
  • Cr 0.1 to 0.2%
  • Zr 0.1 to 0.2%, or two or more of them, with the balance being Al and
  • the electrical conductivity of the surface of the aluminum alloy forging after the artificial age hardening treatment should be 41.0 to 42.5 IACS%.
  • the form of the recrystallized structure of aluminum generated by solution treatment of an aluminum alloy subjected to processing strain by plastic working is the strength of the plastic work product made of Al-Mg-Si aluminum alloy. It has been found to affect various performances such as proof stress and elongation. That is, when aluminum has a form of coarse recrystallization structure in which aluminum is recrystallized coarsely by solution treatment, various performances such as strength, proof stress, and elongation of the Al-Mg-Si based aluminum alloy plastic processed product are obtained. It has been found that it tends to decrease. It has also been found that various performances such as preferable strength, proof stress and elongation can be obtained by maintaining the structure of the aluminum alloy material at the time of casting after processing strain is applied.
  • the present inventors have determined that the presence and types of precipitates such as chromium, manganese and iron, which are transition metals contained in the Al—Mg—Si based aluminum alloy material, affect the recrystallization of aluminum. This is because the grain boundary migration that occurs during recrystallization of aluminum is affected by such a transition metal precipitate.
  • the present invention has been proposed in view of the above circumstances, and by forming and maintaining a preferable aluminum structure even when solution treatment is applied after processing strain is applied, favorable performance in strength, proof stress, elongation, and the like can be obtained.
  • the present invention relates to an Al—Mg—Si based aluminum alloy plastic processed product. And providing the Al-Mg-Si-based aluminum alloy plastic work product, its manufacturing method, and automotive parts that can improve the corrosion resistance as well as increase the strength, and enable the thinning and surely reduce the weight. Objective.
  • the present invention comprises a meat stealing region formed by plastic processing and rib regions formed at both ends of the meat stealing region, and the cross section is substantially H-shaped or substantially U-shaped.
  • the strain site is a boundary between the meat stealing region and the rib region, and is located near the surface of the plastic working portion, and the strain site is made of non-recrystallized aluminum (element symbol: Al).
  • the aluminum alloy plastic processed product is an automotive part.
  • the present invention is a method for producing an aluminum alloy plastic work product for producing the aluminum alloy plastic work product, wherein the cast product obtained by melt casting is subjected to homogenization treatment and It is characterized by performing solution treatment, water quenching treatment and artificial age hardening treatment after plastic working.
  • the artificial age hardening treatment is characterized in that an aging treatment temperature is 170 ° C. or higher and 210 ° C. or lower, and an aging treatment time is 0.5 hour or longer and 18 hours or shorter.
  • the solution treatment has a solution treatment temperature of 520 ° C. or more and 560 ° C. or less, and the water quenching treatment has a water quenching treatment temperature of 70 ° C. or less.
  • the plastic working is characterized in that it is one or a combination of two or more selected from extrusion, forging and rolling.
  • this invention is obtained using the manufacturing method of the said aluminum alloy plastic processing goods, It is characterized by the above-mentione
  • the aluminum alloy plastic work product according to the present invention forms and maintains a preferable aluminum structure state even if it is subjected to solution treatment after processing strain is applied by plastic working, its strength, proof stress, elongation, etc. Preferred performance can be obtained. Specifically, preferable performances of 380 MPa or more in tensile strength, 350 MPa or more in 0.2% proof stress, and 10.0% or more in elongation can be obtained. Further, no cracks or the like when immersed in a predetermined corrosive liquid are confirmed, and the corrosion resistance is excellent. Therefore, the strength can be increased, the corrosion resistance can be improved, and the thickness can be reduced, so that the required amount of alloy can be reduced and the weight can be reliably reduced. For this reason, the use of the Al-Mg-Si based alloy-made plastic work product can be expanded, and for example, it can be suitably used for automotive parts as a transportation machine application that is intensively pursued for weight reduction.
  • FIG. 1 is an explanatory view schematically showing the appearance of a suspension arm that is an example of an aluminum alloy plastic work product according to the present invention, wherein (a) is a schematic explanatory view showing the appearance of a so-called linear arm, ) Is a schematic explanatory view showing the appearance of a so-called A-arm.
  • FIG. 2 is an explanatory view schematically showing a longitudinal section of a suspension arm, which is an example of an aluminum alloy plastic work product according to the present invention, and FIG. 2 (a) illustrates that the section is substantially H-shaped.
  • (B) is a schematic explanatory drawing explaining what the cross section is substantially U-shaped.
  • FIG. 1 is an explanatory view schematically showing the appearance of a suspension arm that is an example of an aluminum alloy plastic work product according to the present invention, wherein (a) is a schematic explanatory view showing the appearance of a so-called linear arm, ) Is a schematic explanatory view showing the appearance of a so-called A-arm
  • FIG. 3 is a photomicrograph showing that the main part (strained portion) of the aluminum alloy plastic processed product according to the present invention is a structure state composed of an unrecrystallized structure and a fine recrystallized structure.
  • FIG. 4 is a photomicrograph showing that in the aluminum alloy plastic work product of the reference example, the structure state of the portion where the work strain is applied is a coarse recrystallized structure.
  • FIG. 5 is a schematic explanatory view showing an example of the production line of the present invention.
  • FIG. 6 is a schematic diagram schematically showing the relationship between the amount of strain (equivalent strain) and the structure state with respect to the strained portion of the aluminum alloy plastic work product (Example 1) according to the present invention.
  • FIG. 7 is a schematic diagram schematically showing the relationship between the amount of strain (equivalent strain) and the structure state with respect to the strained portion of the conventional aluminum alloy plastic processed product (Comparative Example 1).
  • FIG. 8 is a schematic diagram schematically showing the relationship between the amount of strain (equivalent strain) and the structure state with respect to the strained portion of the conventional aluminum alloy plastic processed product (Comparative Example 2).
  • FIG. 9 is a graph showing the relationship between the magnitude of the strain amount (equivalent strain) and the tensile strength in the strained part between Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 10 is a graph showing the relationship between the amount of strain (equivalent strain) at the strained portion and the 0.2% proof stress between Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 11 is a graph showing a comparison of the relationship between the amount of strain (equivalent strain) and the elongation (%) in the strained part between Example 1, Comparative Example 1 and Comparative Example 2.
  • the aluminum alloy plastic processed product according to the present invention has a substantially H-shaped cross section, and rib regions 21 that are both ends of the substantially H shape, and the rib regions 21.
  • the plastic working part 2 which consists of the meat stealing region 22 which is a communication part.
  • this invention consists of the rib area
  • the aluminum alloy plastic work product according to the present invention is subjected to melt casting with respect to an aluminum alloy material having a predetermined composition, and after performing homogenization treatment and plastic working on the cast product obtained by melt casting, Manufactured by solution treatment, water quenching treatment and artificial age hardening treatment.
  • the meat stealing region 22 is formed by performing plastic working on the cast product.
  • rib regions 21 are formed at both ends of the meat stealing region 22. That is, the plastic working part 2 in the aluminum alloy plastic working product according to the present invention is formed by plastic working into a substantially H shape or a substantially U shape in a sectional view.
  • the substantially H shape or the substantially U shape is a shape superior in bending rigidity per unit weight and bending strength, which is referred to as cross-sectional efficiency, than an aluminum alloy having a circular cross-section or a rectangular cross-section.
  • the plastic-worked product made of aluminum alloy according to the present invention has a strain portion 23 in which a maximum equivalent strain of 4.0 mm / mm is inherent in the plastic working portion 2 as a working strain generated by the plastic working.
  • the strained portion 23 is a boundary between the meat stealing region 22 and the rib region 21 and is located in the vicinity of the surface of the plastic working portion 2 (the strained portion is indicated by 23a in FIG. 2B). .
  • the equivalent strain is also called effective strain, and refers to a strain value calculated for evaluating and comparing the magnitude of plastic deformation that has been received so far in a general multiaxial strain state.
  • an equivalent strain increment is defined based on a similar concept to the equivalent stress, and the equivalent strain increment is integrated to obtain the equivalent strain.
  • work hardening of a material and change in deformation resistance are determined by considerable strain.
  • the strained portion 23 is an unrecrystallized structure in which recrystallization of aluminum (element symbol: Al) does not occur even after solution processing after plastic processing is performed and processing strain is applied. N.
  • the strained portion 23 is composed of an unrecrystallized structure N and a fine crystal structure M.
  • the aluminum alloy plastic processed product according to the present invention is excellent in various performances such as strength, proof stress and elongation, as will be described later.
  • the non-recrystallized structure refers to a structure in which crystals generated when melt casting is performed on an aluminum alloy material remain without being recrystallized. In FIG. 3, it can be seen that crystallized substances are present at the grain boundaries.
  • the aluminum alloy plastic processed product in which the strained portion 23 of the present invention is composed only of the non-recrystallized structure N is also excellent in various performances such as strength, proof stress and elongation, and is included in the technical scope of the patented invention.
  • recrystallization refers to a crystal that is generated at a site where processing strain is applied by performing a solution treatment.
  • FIG. 4 shows a photomicrograph in which a region to which processing strain has been applied is recrystallized coarsely by solution treatment to form a structure called a coarse recrystallized structure L.
  • the grain size of the crystal grains constituting the coarse recrystallized structure L is 10 to 50 times that of the crystal grains constituting the non-recrystallized structure N.
  • the Al-Mg-Si aluminum alloy plastic processed product having such a structure form has strength, proof stress, elongation, and the like as compared with the aluminum alloy plastic processed product according to the present invention. Inferior. Further, the coarse recrystallized structure L is not preferable from the viewpoint of corrosion resistance.
  • the aluminum alloy plastic processed product according to the present invention includes a form in which the strained portion 23 is composed only of the non-recrystallized aluminum non-recrystallized structure N. Further, in the plastically processed product made of aluminum alloy according to the present invention, the strained portion 23 is composed of the non-recrystallized structure N and the recrystallized aluminum fine crystal structure M having a maximum crystal grain diameter of 500 ⁇ m or less. Includes configured forms.
  • the reason why the strained portion 23 of the aluminum alloy plastic work product according to the present invention is composed of the non-recrystallized structure N and the fine crystal structure M as shown in FIG. 3 is considered as follows.
  • the non-recrystallized structure N is formed in the strained portion 23 due to fine precipitates of transition metals such as chromium, manganese, iron, etc. included in the composition of the plastic processed product made of aluminum alloy according to the present invention. This is because the grain boundaries are pinned and fixed. Thereby, the crystal grain boundary of aluminum cannot be moved even by the solution treatment, and the crystal generated at the time of casting remains as it is without being recrystallized.
  • the aluminum crystal grain boundary is pinned and fixed reliably when the amount of processing strain of the aluminum in the strained portion 23 is a predetermined amount or less (for example, 4.0 mm / mm or less as the equivalent strain).
  • the fine crystal structure M is formed in the strained portion 23 by transition metal fine precipitates such as chromium, manganese, iron, etc. included in the composition of the plastic processed product made of aluminum alloy according to the present invention. This is because the field is pinned and the movement is suppressed. Thereby, the crystal grain boundary of aluminum is suppressed from moving even by the solution treatment, and the maximum diameter of the crystal grain remains at 500 ⁇ m or less even when recrystallized.
  • the maximum diameter of the recrystallized crystal grains of aluminum is 100 ⁇ m. That is, it does not become coarse.
  • the amount of processing strain of aluminum in the strained portion 23 is not more than a predetermined amount, particularly if the equivalent strain is not more than 4.0 mm / mm, the crystal of aluminum It can be confirmed that the grain boundary is pinned and the movement is suppressed.
  • the size (grain size) of the crystal grains can be measured, for example, by a section method on an optical micrograph.
  • the aluminum alloy plastic processed product according to the present invention is an Al—Mg—Si based aluminum alloy.
  • the composition is 0.15 to 0.5% by mass of copper (element symbol: Cu), 0.8 to 1.15% by mass of magnesium (element symbol: Mg), and 0.1% of silicon (element symbol: Si).
  • Si coexists with Mg to form a magnesium silicide (composition formula: Mg 2 Si) -based precipitate and contributes to improving the strength of the final product. Since the strength of the final product after the aging treatment is further increased by adding Si in excess beyond the amount of Mg 2 Si generated relative to the amount of Mg described later, the Si content is 0.95% by mass. The above is desirable. On the other hand, if the Si content exceeds 1.15% by mass, Si grain boundary precipitation increases, and grain boundary embrittlement tends to occur, which may reduce the plastic workability of the ingot and the toughness of the final product. is there.
  • the Si content exceeds 1.15% by mass, the average particle size of the ingot crystallized product may exceed a predetermined upper limit. Therefore, the Si content is preferably in the range of 0.95 mass% to 1.15 mass%.
  • Mg coexists with Si to form Mg 2 Si-based precipitates and contributes to improving the strength of the final product. If the Mg content is less than 0.8% by mass, the effect of precipitation strengthening may be reduced. On the other hand, if the Mg content exceeds 1.15% by mass, the plastic workability of the ingot and the toughness of the final product may be reduced. On the other hand, if the Mg content exceeds 1.15% by mass, the average particle size of the ingot crystallized product may exceed a predetermined upper limit.
  • the Mg content is preferably in the range of 0.8% by mass to 1.15% by mass.
  • Cu increases the apparent supersaturation amount of the Mg 2 Si-based precipitates, and increases the Mg 2 Si precipitation amount, thereby significantly promoting the age hardening of the final product. If the Cu content exceeds 0.5% by mass, the forging processability of the ingot and the toughness of the final product are lowered, and the corrosion resistance may be further lowered. Therefore, the Cu content needs to be in the range of 0.5% by mass or less. On the other hand, when the content of Cu is less than 0.15 wt%, to increase the supersaturation of apparent Mg 2 Si based precipitate, the effect of increasing the Mg 2 Si precipitation amount may not be sufficiently obtained .
  • Mn crystallizes as an AlMnSi phase, and Mn that does not crystallize precipitates to suppress recrystallization. Due to the action of suppressing the recrystallization, the crystal grains are made fine even after the plastic working, and the effect of improving the toughness and corrosion resistance of the final product is brought about. If the Mn content is less than 0.4% by mass, such an effect may be reduced. On the other hand, if the Mn content exceeds 0.6% by mass, a huge intermetallic compound is produced, and the ingot structure of the present invention may not be satisfied. Therefore, the Mn content is preferably in the range of 0.4% by mass to 0.6% by mass. In particular, the Mn content (mass%) is 0.4 mass% to 0.6 mass%.
  • the crystal grains are made fine even after the plastic working, and the effect of improving the toughness and corrosion resistance of the final product is brought about. If the Cr content is less than 0.1% by mass, such an effect may be reduced. On the other hand, if the Cr content exceeds 0.2% by mass, a giant intermetallic compound is produced, and the ingot structure of the present invention may not be satisfied. Therefore, the Cr content is preferably in the range of 0.11% by mass to 0.19% by mass. Fe combines with Al and Si in the alloy and crystallizes, and also prevents coarsening of crystal grains. If the Fe content is less than 0.2% by mass, such an effect may not be obtained.
  • the Fe content exceeds 0.3% by mass, a coarse intermetallic compound is produced, and the plastic workability may be deteriorated. Therefore, the Fe content is preferably 0.2% by mass to 0.3% by mass.
  • Zn is treated as an impurity. If the Zn content exceeds 0.25% by mass, the corrosion of aluminum itself is promoted and the corrosion resistance deteriorates. Therefore, the content is preferably 0.25% by mass or less.
  • Zr is treated as an impurity. If the Zr content exceeds 0.05% by mass, the effect of grain refinement of the Al—Ti—B alloy is weakened, and the strength of the processed product after plastic working is reduced. Is preferable.
  • Ti is an alloy element that is effective in achieving finer crystal grains.
  • the Ti content is less than 0.012% by mass, the effect of miniaturization may not be obtained.
  • the Ti content exceeds 0.035% by mass, a coarse Ti compound may crystallize and the toughness may deteriorate. Therefore, the Ti content is preferably in the range of 0.012 mass% to 0.035 mass%.
  • B like Ti, is an element effective for refinement of crystal grains. If the B content is less than 0.0001% by mass, the effect of miniaturization may not be obtained. On the other hand, if the B content exceeds 0.03% by mass, the toughness may be deteriorated.
  • the B content is preferably in the range of 0.0001% by mass to 0.03% by mass.
  • the aluminum alloy plastic processed product according to the present invention has z / (x + y) ⁇ 0.65 (where x is the length in the width direction (cm) of the rib region 21, and y is the height of the meat stealing region 22. It is the length (cm) in the length direction, and z is the length (cm) in the height direction of the rib region 21.
  • the composition of each element which comprises the shape of 22 and comprises the alloy is specified in the predetermined range as mentioned above.
  • the present invention is an aluminum alloy plastic processed product having the rib region 21 and the meat stealing region 22, and the shape of the rib region 21 and the meat stealing region 22 is z / (x + y) ⁇ 0.65 (provided that , X is the length (cm) of the rib region 21 in the width direction, y is the height direction length (cm) of the meat stealing region 22, and z is the length of the rib region 21 in the height direction ( cm), which is specified in Fig. 2 (a) and (b).
  • the technical scope of the present invention is that the composition of each element constituting the alloy is specified within the predetermined range as described above.
  • an aluminum alloy plastic work product according to the present invention can be obtained in which the strained portion 23 is composed of the non-recrystallized structure N and the fine crystal structure M of aluminum, and the coarse recrystallized structure L is not recognized.
  • the aluminum alloy plastic processed product according to the present invention can obtain preferable performances such as a tensile strength of 380 MPa or more, a 0.2% proof stress of 350 MPa or more, and an elongation of 10.0% or more. Further, no cracks or the like when immersed in a predetermined corrosive liquid are confirmed, and the corrosion resistance is excellent.
  • the use of the aluminum alloy plastic processed product according to the present invention is preferably a structural material for vehicles and transportation equipment.
  • plastic parts made of aluminum alloy include an upper arm, a lower arm, a knuckle, a control arm, a lower link, a subframe, a compression rod, and a transverse link.
  • the shape of the part corresponding to the substantially H-shaped or substantially U-shaped rib region or the meat stealing region in these parts is z / (x + y) ⁇ 0.65 (where x is the length in the width direction of the rib region 21) 2 is the height (cm) in the height direction of the meat stealing region 22, and z is the length (cm) in the height direction of the rib region 21.
  • the casting can be carried out by selecting any one of the melt casting methods.
  • casting is preferably performed under conditions of a casting temperature of 750 ⁇ 50 ° C. and a casting speed of 240 ⁇ 50 mm / min.
  • the obtained ingot is homogenized at 470 ° C. to 540 ° C. This is because by performing the homogenization treatment in this temperature range, the ingot is sufficiently homogenized and the solute atoms are infused, and the strength required by the subsequent aging treatment can be obtained.
  • the holding time in the homogenization treatment can be 3 to 10 hours.
  • plastic processing is performed, and if necessary, processing is performed to a predetermined size by machining.
  • any conventional plastic working method can be used as long as the heating temperature of the raw material during the processing is within a predetermined range.
  • a processing method such as extrusion, forging, or rolling can be used.
  • the plastic working rate (%) can be defined by [(cross-sectional area subject to deformation) ⁇ (initial cross-sectional area) ⁇ 100] (%).
  • the heating temperature of the raw material of the plastic processed product that undergoes multiple steps in a plurality of steps may be calculated by putting the plastic processing rate (%) for the final shape into the condition of the above formula.
  • the retention time of the solution treatment can be set to 2 to 6 hours.
  • the water quenching treatment after the solution treatment is preferably performed under conditions where the water temperature is 70 ° C. or less.
  • water cooling is desirable for the water quenching treatment. If the water temperature exceeds 70 ° C., the effect of quenching cannot be obtained, and the necessary strength may not be obtained by the subsequent aging treatment.
  • the aluminum alloy plastic processed product according to the present invention is further machined as necessary, for example, cutting, bending, drawing, etc., for vehicles such as vehicles, ships, aircraft, automobiles or motorcycles. Finished with structural materials (parts).
  • the size of the crystal grain size of the ingot greatly affects the strength of an aluminum alloy plastic processed product obtained by plastic processing and subsequent aging treatment. If the crystal grain size of aluminum in the ingot is large, strength improvement after plastic working cannot be obtained. Therefore, the average grain size is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the size of the crystal grain size of aluminum can be measured by, for example, a section method on an optical micrograph.
  • the size of DAS (Dendrite Arm Space) of the ingot needs to be 40 ⁇ m or less on average, and preferably 20 ⁇ m or less.
  • the size of the DAS is described in, for example, “Light Metals (1988), vol. 38, no. 1, p. 45 ”can be measured according to the“ Dendrite arm spacing measurement method ”.
  • the crystallized product described in the present application including the crystallized product of the ingot is an AlMnSi phase, a Mg 2 Si phase, a secondary phase containing Fe and Cr, in a granular or flake form at the aluminum grain boundary.
  • the one crystallized in If the average particle size of the crystallized product is 8 ⁇ m or less, it does not affect the plastic workability, so it is necessary to make it 8 ⁇ m or less, preferably 6.8 ⁇ m or less.
  • the size of the crystallized product is, for example, the diameter when the microstructure is identified with an image analysis apparatus (Luzex: registered trademark) having a microscope and the cross-sectional area of each crystallized product is converted into a circle. Can be measured as An example of a production line configured based on a preferred method for producing an aluminum alloy plastic processed product according to the present invention will be described with reference to FIG.
  • the production line includes an alloy melting furnace 31, a casting apparatus 32, a homogenization processing furnace 33, a raw material preheating apparatus 34, a forging apparatus 35, a machining apparatus 36, a solution treatment furnace 37, a quenching apparatus 38, an aging treatment furnace 39,
  • the pickling device 40 includes a shot blasting device 41, a final machining device 42, and an inspection device 43.
  • the alloy melting furnace 31 is an apparatus that adjusts the alloy composition in the furnace and holds the molten alloy at a predetermined temperature. A melting and holding furnace and a molten metal cleaning device may be provided.
  • the casting device 32 is a device that solidifies the molten alloy to obtain an ingot.
  • the solidification rate can be adjusted by adjusting the cooling capacity such as the cooling water temperature and the cooling water amount.
  • the homogenization furnace 33 is an apparatus that inserts an ingot into the furnace and applies the homogenization process to the ingot.
  • the temperature can be controlled so that the inside of the furnace is in a predetermined temperature state.
  • the ingot is processed into a material by an appropriate forming process such as extrusion, machining, and cutting.
  • the material preheating device 34 is a device that preliminarily heats the material to be molded.
  • the forging device 35 is a device in which an upper die having a forming hole is disposed, an ingot is set as a forming material in the forming hole, and the die is moved up and down to perform plastic working.
  • a lubricant spraying device for performing a lubricant coating process on the mold forming hole and a lubricant coating process on the material may be provided.
  • the machining device 36 is a device that performs machining such as cutting, drilling, and chamfering on a plastic molded product. May be omitted depending on product specifications.
  • the solution treatment furnace 37 is a device that performs a solution treatment on a plastic-processed molded product. The temperature can be controlled so that the inside of the furnace is in a predetermined temperature state.
  • the quenching device 38 is a device for rapidly cooling a molded product in a high temperature state. The molded product is put into water controlled to a certain temperature range and rapidly cooled.
  • the aging treatment furnace 39 is an apparatus that performs an aging treatment, and can control the temperature so that the inside of the furnace is in a predetermined temperature state.
  • the pickling device 40 is a device for cleaning the molded product with an acid solution. May be omitted depending on product specifications.
  • the shot blasting device 41 is a device that performs shot blasting on the surface of a molded product. May be omitted depending on product specifications.
  • the final machining device 42 is a device that performs machining such as cutting, drilling, and chamfering in order to make a molded product into a final shape. Or it is an apparatus which makes a shape of a final part by combining or joining a molded product and another member. May be omitted depending on product specifications.
  • the inspection device 43 is a device that performs an appearance inspection and, if necessary, a weight inspection. In some cases, it can be a direct visual inspection by a human. It is preferable that the apparatuses are connected by a conveying apparatus such as a conveyor or a conveyance vehicle.
  • an aluminum alloy plastic processed product (Comparative Example 1) composed of an A6000 series aluminum alloy, a conventional aluminum alloy plastic processed product owned by the applicant (Comparative Example 2 and Comparative Example 3), and
  • the composition and the cross-sectional shape of the plastic processed part, the rib region and the shape of the meat stealing region are specified.
  • the width direction length x (cm) of the region, the height direction length y (cm) of the meat stealing region, and the height direction length z (cm) of the rib region were shown.
  • the microstructure was observed with an optical microscope (forward light), and the average particle size of the crystallized product was measured.
  • the average particle size was measured by using an image analyzer (Luzex: registered trademark), assuming that the crystallized product had a circle-equivalent diameter. Then, after corroding the observation surface with an etching solution, the microstructure was observed with a polarizing microscope, and the crystal grain size of aluminum was measured.
  • a test piece of 2 mm ⁇ 4.3 mm ⁇ 42.4 mm was cut out from the suspension arm parts based on Comparative Examples 1 to 3 and Examples 1 to 3 prepared by the above procedure, and a surface of 4.3 mm ⁇ 42.4 mm was obtained.
  • a stress corresponding to 90% of the proof stress was applied to the central portion of the steel plate using a three-point bending jig. During the load, the test piece and the jig were electrically insulated.
  • a solution in which 36 g of chromium (IV) oxide, 30 g of potassium dichromate and 3 g of sodium chloride were dissolved per liter of pure water and maintained at 95 to 100 ° C. was prepared as a corrosive liquid.
  • Table 2 shows an evaluation table composed of the mechanical properties (tensile strength, 0.2% proof stress, elongation) of Comparative Examples 1 to 3 and Examples 1 to 3 and the crystal grain size, corrosion resistance, and comprehensive judgment of the crystallized product. Shown in In addition, the definition of the symbol ((circle), (triangle
  • delta), x) of an evaluation column is as follows. In the n 3 test, the corrosion resistance was judged as follows: all three pieces were not cracked, three pieces were cracked at one or two pieces, and three pieces were cracked.
  • produced was set as x.
  • Judgment of mechanical properties is as follows: one having a tensile strength of 380 MPa or more, 0.2% proof stress of 350 MPa or more, and elongation of 10.0% or more satisfying all items. Those not satisfying with the items were marked with ⁇ , and those not satisfying with all the items were marked with ⁇ .
  • Comprehensive judgment is that the corrosion resistance and mechanical properties are both ⁇ , one of the corrosion resistance and mechanical properties is ⁇ , the other is ⁇ , the corrosion resistance and mechanical properties are both ⁇ , Either one was x and all were x.
  • the composition of each element constituting the alloy is within the predetermined range as described above, and the shape of the rib region and the meat stealing region is z / (x + y) ⁇ 0.65
  • preferable performances of 380 MPa or more in tensile strength, 350 MPa or more in 0.2% proof stress, and 10.0% or more (particularly, 14.0% or more) in elongation can be obtained.
  • the average grain size of the crystal grains was about 50 ⁇ m, and it was found that the crystal grains were composed of an unrecrystallized or fine crystal structure of aluminum.
  • one of the compositions of each element constituting the alloy is out of the predetermined range as described above, and the shape of the rib region or the meat stealing region satisfies the condition of z / (x + y) ⁇ 0.65.
  • the tensile strength was 336 MPa
  • the 0.2% proof stress was 308 MPa
  • the elongation was 17.2%.
  • the average grain size of the crystal grains is also about 450 ⁇ m, so that, for example, the equivalent strain in the rib region and the meat stealing region exceeds 2.00 mm / mm depending on the processing rate of plastic working and the conditions of the subsequent solution treatment.
  • the composition of each element constituting the alloy falls within the predetermined range as described above, the comparative example 3 in which the shape of the rib region or the meat stealing region does not satisfy the condition of z / (x + y) ⁇ 0.65 is as follows: The amount of corrosion is small, the corrosion resistance is good, the average grain size of the crystal grains is about 50 ⁇ m, and no coarse recrystallized structure is observed, but the tensile strength is 392 MPa, the 0.2% proof stress is 332 MPa, and the elongation is 10.5. %, All of the mechanical property values expected by the applicant of the present application were not satisfied.
  • Example 6 the strained portion in Example 1 is composed of only the non-recrystallized structure N if the equivalent strain is as large as 2.0 mm / mm.
  • the structure is composed of the non-recrystallized structure N and a part of the fine crystal structure M.
  • the equivalent strain is 3.5 mm / mm, it is composed of the fine crystal structure M. Therefore, it is understood that the coarse recrystallized structure L is not recognized when the equivalent strain is in the range of 0 to 4.0 mm / mm, particularly in the range of 0 to 3.5 mm / mm.
  • Example 1 the tensile strength of Example 1 is extremely superior to that of Comparative Example 1 and Comparative Example 2 when the considerable strain observed in many suspension arms, which are automobile parts, is about 1 to 3 mm / mm. Is recognized.
  • FIG. 10 graphs are shown so that the relationship between the magnitude of the equivalent strain at the strain site and the 0.2% proof stress can be compared between Example 1, Comparative Example 1, and Comparative Example 2.
  • the aluminum alloy plastic processed product of Example 1 has a 0.2% proof stress value even when the equivalent strain at the strained portion increases. Is maintained and excellent.
  • Example 1 the 0.2% proof stress of Example 1 is extremely superior to that of Comparative Example 1 and Comparative Example 2 when the considerable distortion observed in many suspension arms as automotive parts is about 1 to 3 mm / mm.
  • Comparative Example 1 and Comparative Example 2 the relationship between the magnitude of the equivalent strain at the strain site and the elongation (%) is shown in a graph.
  • the aluminum alloy plastic processed product of Example 1 is at the same level as in Comparative Example 1 and Comparative Example 2, and the elongation (%) is increased even when the equivalent strain of the strained portion is increased. It turns out that it is excellent.
  • the strain portion is composed of an unrecrystallized structure and a fine recrystallized structure of aluminum, and a coarse crystal A good aluminum structure is formed and maintained without any structure.
  • the aluminum alloy plastic processed product according to the present invention can obtain preferable performances of a tensile strength of 380 MPa or more, a 0.2% proof stress of 350 MPa or more, and an elongation of 10.0% or more. As a result, the strength is increased, the corrosion resistance is improved, and the thickness can be reduced. Therefore, the required amount of alloy can be reduced and the weight can be reliably reduced. Expanding applications of plastic processed products made of Al-Mg-Si alloys, for example, suitable for use in automotive parts as a transportation equipment application that is intensively pursued for weight reduction, so that the application can be further expanded. Become.

Abstract

 耐食性及びその強度、耐力、伸び等の機械的特性が好ましいアルミニウムの組織状態を形成したアルミ合金製塑性加工品を得る。 塑性加工により形成される肉盗み領域22と、この肉盗み領域22の両端に形成されるリブ領域21とからなり、断面が略H字形状又は略U字形状となる塑性加工部を備えたアルミニウム合金製塑性加工品を、塑性加工により発生する最大で4.0mm/mmの相当歪みが内在している歪み部位23を有する塑性加工部2とし、この歪み部位23を、肉盗み領域22とリブ領域21との境界において、塑性加工部2の表面近傍に位置させ、再結晶化されていないアルミニウム(元素記号:Al)の未再結晶組織Nで構成し、又は、未再結晶組織Nと、再結晶化されるが、その結晶粒が500μm以下であるアルミニウムの微細結晶組織Mとで構成する。

Description

アルミニウム合金製塑性加工品、その製造方法及び自動車用部品
 本発明は、Al−Mg−Si系アルミニウム合金の鋳塊から製造したアルミニウム合金製塑性加工品、その製造方法及び自動車用部品に関する。
 近年、Al−Mg−Si系アルミニウム合金の鋳塊から製造したアルミニウム合金製塑性加工品が、車両、船舶、航空機、自動車又は自動二輪等の輸送機の構造材(部品)として使用されている。Al−Mg−Si系アルミニウム合金が、加工性に優れ、高強度で、耐食性も備えているからである。
 例えば、Al−Mg−Si系アルミニウム合金の一種であるA6061が、サスペンションアーム等の自動車部品に多用されている。しかし、車体の軽量化を目的として、A6061よりも更に軽量な材料が要請されている。これに対応するため、Al−Mg−Siアルミニウム系合金の高強度化を通じ、必要な合金量を減らすことが試みられている。
 例えば、Al−Mg−Si系アルミニウム合金の高強度化を図るため、過剰Si量としたり、Cu元素の添加量を増加したりすることが試みられている。特に、Cu元素の添加量の増加は、MgSiの析出を促進させるので強度が向上し、また、Cu元素がマトリクスに固溶して強度が向上するので、高強度化において有効な手段となる可能性がある。しかし、Cu元素量が0.05%以上になると、粒界腐食の感受性が高くなるので、Al−Mg−Si系アルミニウム合金を腐食環境下で使用した際に、応力腐食割れが引き起こされる恐れがある。
 従来の技術として、クロム、マンガン、ジルコニウム等の遷移元素を添加し、結晶粒径や晶出物を微細化することで粒界腐食や応力腐食割れを防ぎ、Al−Mg−Si系アルミニウム合金の耐食性の向上を図ることが知られている。
 例えば、高強度高靱性アルミニウム合金鍛造材を提供することを目的として、下記特許文献1に次のことが開示されている。
 Mg:0.6~1.6%(質量%、以下同じ)、Si:0.6~1.8%、Cu:0.05~1.0%を含むとともに、Feを0.30%以下に規制し、Mn:0.15~0.6%、Cr:0.1~0.2%、Zr:0.1~0.2%の一種または二種以上を含み、更に、水素:0.25cc/100gAl以下とし、残部がAlおよび不可避的不純物からなるアルミニウム合金鍛造材において、10℃/sec以上の冷却速度で鋳造されたアルミニウム合金鋳塊を、530~600℃の温度で均質化熱処理した後に、熱間鍛造して鍛造材とし、該鍛造材におけるアルミニウム合金組織中のMgSiとAl−Fe−Si−(Mn、Cr、Zr)系の晶出物の合計の面積率を単位面積当たり1.5%以下とすること。
 また、高強度高靱性であるとともに、耐食性や耐久性に優れたアルミニウム合金鍛造材を提供することを目的として、下記特許文献2に次のことが開示されている。
 Mg:0.6~1.8%(質量%、以下同じ)、Si:0.6~1.8%を含み、更に、Cr:0.1~0.2%およびZr:0.1~0.2%の一種または二種を含むとともに、Cu:0.25%以下、Mn:0.05%以下、Fe:0.30%以下、水素:0.25cc/100gAl以下に各々規制し、残部がAlおよび不可避的不純物からなるアルミニウム合金鍛造材において、アルミニウム合金組織の粒界上に存在するMgSiやAl−Fe−Si−(Mn、Cr、Zr)系晶析出物(晶出物や析出物)の平均粒径を1.2μm以下とするとともに、これら晶析出物同士の平均間隔を3.0μm以上とすること。
 これらのAl−Mg−Si系アルミニウム合金素材は、結晶粒径や晶出物を微細化することによって粒界腐食を防止し、応力腐食割れの発生を抑制する性能を有している。しかし、Cu元素の添加量の増加により耐食性が悪化するので、発生する腐食減量を抑制することができない。したがって、これらのAl−Mg−Si系アルミニウム合金素材からなる塑性加工品を薄肉化して軽量化すると、腐食減量で薄くなった肉厚の分だけ確実に強度が低下し、耐久性が悪化する。すなわち、これらのAl−Mg−Si系アルミニウム合金素材は、厳しい腐食環境での使用に適さないという問題点がある。
 また、合金元素量を多くして高強度化し、かつ薄肉化した強度部材用鍛造材であっても、350MPa以上の0.2%耐力が安定して得られる6000系アルミニウム合金鍛造材および鍛造用素材を提供することを目的として、下記特許文献3に次のことが開示されている。
 Mg:0.6~1.8%(質量%、以下同じ)、Si:0.8~1.8%、Cu:0.2~1.0%を含み、Si/Mgの質量比が1以上であり、更にMn:0.1~0.6%、Cr:0.1~0.2%およびZr:0.1~0.2%の一種または二種以上を含み、残部がAlおよび不可避的不純物からなるアルミニウム合金鍛造材において、人工時効硬化処理後のアルミニウム合金鍛造材の表面の導電率を41.0~42.5IACS%とすること。
特開2000−144296号公報 特開2001−107168号公報 特開2004−43907号公報
 発明者らは、塑性加工によって加工歪みが加わったアルミニウム合金に対して溶体化処理を行うことで発生するアルミニウムの再結晶組織の形態が、Al−Mg−Si系アルミニウム合金製塑性加工品の強度、耐力及び伸び等の各種の性能に影響を及ぼすことを見いだした。すなわち、溶体化処理によりアルミニウムが粗大に再結晶化する粗大再結晶組織の形態を有するようになると、Al−Mg−Si系アルミニウム合金製塑性加工品の強度、耐力及び伸び等の各種の性能が低下する傾向にあることが分かってきた。また、アルミニウム合金素材の鋳造時の組織状態が、加工歪みが加わった後にも維持されることで、好ましい強度、耐力及び伸び等の各種の性能が得られることも分かってきた。
 さらに、Al−Mg−Si系アルミニウム合金素材に含まれる遷移金属であるクロム、マンガン、鉄等の析出物の存在やその種類が、アルミニウムの再結晶化に影響を及ぼすことを突き止めた。アルミニウムの再結晶化時に起こる粒界の移動が、これらの遷移金属の析出物によって阻害される等の影響が出るからである。
 本発明は、上記実情に鑑み提案され、加工歪みが加わった後に溶体化処理されても好ましいアルミニウムの組織状態を形成、維持することで、強度、耐力及び伸び等で好ましい性能を得ることのできるAl−Mg−Si系アルミニウム合金製塑性加工品に係る。そして、高強度化とともに耐食性が向上し、薄肉化を可能にして確実に軽量化することができるAl−Mg−Si系アルミニウム合金製塑性加工品、その製造方法及び自動車用部品を提供することを目的とする。
 上記目的を達成するために、本発明は、塑性加工により形成される肉盗み領域と、この肉盗み領域の両端に形成されるリブ領域とからなり、断面が略H字形状又は略U字形状となる塑性加工部を備えたアルミニウム合金製塑性加工品であって、前記塑性加工部に、塑性加工により発生する最大で4.0mm/mmの相当歪みが内在している歪み部位を有し、前記歪み部位が、前記肉盗み領域と前記リブ領域との境界であって、前記塑性加工部の表面近傍に位置し、前記歪み部位が、再結晶化されていないアルミニウム(元素記号:Al)の未再結晶組織で構成され、又は、前記未再結晶組織と、再結晶化されるが、その結晶粒が500μm以下である前記アルミニウムの微細結晶組織とで構成されることを特徴とする。
 上記アルミニウム合金製塑性加工品において、銅(元素記号:Cu)を0.15~0.5質量%、マグネシウム(元素記号:Mg)を0.8~1.15質量%、珪素(元素記号:Si)を0.95~1.15質量%、マンガン(元素記号:Mn)を0.4~0.6質量%、鉄(元素記号:Fe)を0.2~0.3質量%、クロム(元素記号:Cr)を0.11~0.19質量%、亜鉛(元素記号:Zn)を0.25質量%以下、ジルコニウム(元素記号:Zr)を0.05質量%以下、チタン(元素記号:Ti)を0.012~0.035質量%、ホウ素(元素記号:B)を0.0001~0.03質量%含有し、残りがアルミニウム及び不可避不純物からなる組成であって、前記リブ領域の幅方向長さをx(cm)、前記肉盗み領域の高さ方向長さをy(cm)、前記リブ領域の高さ方向長さをz(cm)で表したときに、前記マンガンの含有量(質量%)が下記[数1]の関係式を満たす、ことを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 また、上記アルミニウム合金製塑性加工品が、自動車用部品であることを特徴とする。
 さらに、本発明は、上記アルミニウム合金製塑性加工品を製造するアルミニウム合金製塑性加工品の製造方法であって、溶解鋳造を施し、前記溶解鋳造で得られた鋳造品に対して均質化処理及び塑性加工を施した後、溶体化処理、水焼き入れ処理及び人工時効硬化処理を施すことを特徴とする。
 前記人工時効硬化処理は、時効処理温度が170℃以上210℃以下、時効処理時間が0.5時間以上18時間以下であることを特徴とする。
 前記溶体化処理は、溶体化処理温度が520℃以上560℃以下であり、前記水焼き入れ処理は、水焼き入れ処理温度が70℃以下であることを特徴とする。
 前記塑性加工は、押出加工、鍛造加工および圧延加工から選ばれる1種又は2種以上の組み合わせであることを特徴とする。
 また、本発明は、上記アルミニウム合金製塑性加工品の製造方法を用いて得られることを特徴とする。
 本発明に係るアルミ合金製塑性加工品は、塑性加工によって加工歪みが加わった後に溶体化処理されても、好ましいアルミニウムの組織状態を形成、維持しているので、その強度、耐力及び伸び等で好ましい性能を得ることができる。具体的には、引っ張り強度で380MPa以上、0.2%耐力で350MPa以上、伸びで10.0%以上という好ましい性能を得ることができる。また、所定の腐食液中に浸漬させたときの割れ等も確認されず、耐食性に優れている。したがって、高強度化し、耐食性が向上し、薄肉化が可能になるため、必要な合金量を減らして確実に軽量化することができる。このため、Al−Mg−Si系合金製塑性加工品の用途を拡大することができ、例えば、軽量化への追求が激しい輸送機用途として自動車用部品に好適に採用することができる。
 図1は、本発明に係るアルミニウム合金製塑性加工品の例であるサスペンションアームの外観を概略で示す説明図であって、(a)は、いわゆるリニアアームの外観を示す概略説明図、(b)は、いわゆるAアームの外観を示す概略説明図である。
 図2は、本発明に係るアルミニウム合金製塑性加工品の例であるサスペンションアームの縦断面を概略で示す説明図であって、(a)は、その断面が略H字形状であるものを説明する概略説明図、(b)は、その断面が略U字形状であるものを説明する概略説明図である。
 図3は、本発明に係るアルミニウム合金製塑性加工品の要部(歪み部位)に関し、未再結晶組織及び微細再結晶組織からなる組織状態であることを示す顕微鏡写真である。
 図4は、参考例のアルミニウム合金製塑性加工品において、加工歪みが加わった部位の組織状態が粗大再結晶組織となっていることを示す顕微鏡写真である。
 図5は、本発明の製造ラインの一例を示す概略説明図である。
 図6は、本発明に係るアルミニウム合金製塑性加工品(実施例1)の歪み部位に関し、歪み量(相当歪み)の大きさと組織状態との関係を模式的に示した模式図である。
 図7は、従来例のアルミニウム合金製塑性加工品(比較例1)の歪み部位に関し、歪み量(相当歪み)の大きさと組織状態との関係を模式的に示した模式図である。
 図8は、従来例のアルミニウム合金製塑性加工品(比較例2)の歪み部位に関し、歪み量(相当歪み)の大きさと組織状態との関係を模式的に示した模式図である。
 図9は、実施例1、比較例1及び比較例2の間で、歪み部位における歪み量(相当歪み)の大きさと引張強度との関係を比較して示したグラフである。
 図10は、実施例1、比較例1及び比較例2の間で、歪み部位における歪み量(相当歪み)の大きさと0.2%耐力との関係を比較して示したグラフである。
 図11は、実施例1、比較例1及び比較例2の間で、歪み部位における歪み量(相当歪み)の大きさと伸び(%)との関係を比較して示したグラフである。
 以下、本発明に係るアルミニウム合金製塑性加工品に関する実施形態を、図面を参照しつつ説明する。以下に説明する実施形態は、本発明の一例であるサスペンションアームに関する。本発明は、特許請求の範囲に記載された事項を逸脱することがなければ、種々の設計変更を行うことが可能である。
 本発明は、例えば、図1(a)、(b)に示すような自動車用部品である直線棒状のリニアアーム11又は、アルファベットのAの形に似たAアーム12と呼ばれるサスペンションアーム等に適用され得るアルミニウム合金製塑性加工品に係る。図2(a)に示すように、本発明に係るアルミニウム合金製塑性加工品は、断面が略H字形状であり、この略H字形状の両端部分であるリブ領域21と、このリブ領域21を連絡する連絡部分である肉盗み領域22からなる塑性加工部2を備えて構成される。なお、本発明は、図2(b)に示すように、リブ領域21aと肉盗み領域22aとからなり、断面が略U字形状である塑性加工部2aを備えて構成されるアルミニウム合金製塑性加工品も、特許発明の技術的範囲に含まれる。
 本発明に係るアルミニウム合金製塑性加工品は、所定の組成からなるアルミニウム合金素材に対して溶解鋳造を施し、溶解鋳造で得られた鋳造品に対して均質化処理及び塑性加工を施した後、溶体化処理、水焼き入れ処理及び人工時効硬化処理を施して製造される。
 鋳造品に対して塑性加工が施されることにより、肉盗み領域22が形成される。肉盗み領域22が形成されることにより、この肉盗み領域22の両端にリブ領域21が形成される。すなわち、本発明に係るアルミニウム合金製塑性加工品における塑性加工部2が断面視で略H字形状又は略U字形状に、塑性加工により形成される。なお、略H字形状又は略U字形状は、断面円形又は断面矩形のアルミニウム合金よりも、断面効率と呼ばれる重量当たりの曲げ剛性や曲げ強度において優れる形状である。
 本発明に係るアルミニウム合金製塑性加工品は、この塑性加工部2において、塑性加工によって発生する加工歪みとして、最大で4.0mm/mmの相当歪みが内在する歪み部位23を有している。この歪み部位23は、肉盗み領域22とリブ領域21との境界であって、塑性加工部2の表面近傍に位置している(図2(b)において歪み部位は、23aで示される。)。相当歪みとは、有効歪みとも呼ばれ、一般の多軸ひずみ状態において、それまでに受けた塑性変形の大きさを評価し、比較するために計算される歪み値をいう。変形途中の微小時間に生じるひずみ増分について、相当応力と類似の考え方に基づいて相当歪み増分を定義し、この相当歪み増分を積分して相当歪みを求める。一般に、相当歪みによって材料の加工硬化や変形抵抗の変化が決まるとされる。
 歪み部位23は、図3に示すように、塑性加工が施され、加工歪みが加わった後の溶体化処理によっても、アルミニウム(元素記号:Al)の再結晶化が起こっていない未再結晶組織Nを有している。また、塑性加工が施され、加工歪みが加わった後の溶体化処理によってアルミニウムが再結晶化して形成される最大径(最大長さ)が500μm以下の結晶粒からなる微細結晶組織Mを有している。未再結晶組織Nを構成する結晶粒の粒径は、微細結晶組織Mを構成する結晶粒の1~1/2倍である。図3中の黒枠内部が、微細結晶組織Mを示し、黒枠外部が未再結晶組織Nを示している。
 すなわち、歪み部位23は、未再結晶組織N及び微細結晶組織Mで構成されている。このような組織形態により、本発明に係るアルミニウム合金製塑性加工品は、後述するように、その強度、耐力及び伸び等の各種の性能が優れている。なお、未再結晶組織とは、アルミニウム合金素材に対して溶解鋳造が施されたときに生成された結晶が、再結晶化されないでそのまま残っている組織をいう。図3において、晶出物が粒界に存在していることが認められる。本発明の歪み部位23が未再結晶組織Nのみからなるアルミニウム合金製塑性加工品も、その強度、耐力及び伸び等の各種の性能が優れ、特許発明の技術的範囲に含まれる。
 また、再結晶化とは、溶体化処理が施されることにより、加工歪みが加わっている部位で生成される結晶をいう。図4に参考例として、加工歪みが加わった部位が、溶体化処理によりアルミニウムが粗大に再結晶化し、粗大再結晶組織Lと呼ばれる組織形態になった顕微鏡写真を示す。粗大再結晶組織Lを構成する結晶粒の粒径は、未再結晶組織Nを構成する結晶粒の10~50倍となる。このような組織形態を有するAl−Mg−Si系アルミニウム合金製塑性加工品は、後述するように、その強度、耐力及び伸び等の性能が、本発明に係るアルミニウム合金製塑性加工品に比べて劣っている。
 また、粗大再結晶組織Lは、耐食性という観点からも好ましくない。粒界腐食が粒界に沿って進展するため、結晶粒が粗大であればあるほど、腐食によって深い切り欠が形成されてしまう。すなわち腐食減量が増加してしまうからである。
 したがって、本発明に係るアルミニウム合金製塑性加工品は、歪み部位23が、再結晶化されていないアルミニウムの未再結晶組織Nのみで構成されている形態を含む。さらに、本発明に係るアルミニウム合金製塑性加工品は、歪み部位23が、この未再結晶組織Nと、その結晶粒の最大径が500μm以下の再結晶化されたアルミニウムの微細結晶組織Mとで構成されている形態を含む。
 本発明に係るアルミニウム合金製塑性加工品の歪み部位23が、図3に示すような未再結晶組織N、及び微細結晶組織Mからなる理由は、以下のとおりであると考えられる。
 歪み部位23において未再結晶組織Nが形成されるのは、本発明に係るアルミニウム合金製塑性加工品の組成に含まれるクロム、マンガン、鉄等の遷移金属系の微細析出物で、アルミニウムの結晶粒界がピンニングされて固定されるからである。これにより、アルミニウムの結晶粒界が、溶体化処理によっても移動することができず、鋳造時に生成された結晶が、再結晶化されないでそのまま残る。アルミニウムの結晶粒界が確実にピンニングされて固定されるのは、歪み部位23のアルミニウムの加工歪みの量が所定量以下(例えば、相当歪みとして4.0mm/mm以下)の場合である。
 歪み部位23において微細結晶組織Mが形成されるのは、本発明に係るアルミニウム合金製塑性加工品の組成に含まれるクロム、マンガン、鉄等の遷移金属系の微細析出物で、アルミニウムの結晶粒界がピンニングされ、移動が抑制されるからである。これにより、アルミニウムの結晶粒界は、溶体化処理によっても移動することが抑制され、再結晶化される場合であっても、その結晶粒の最大径が500μm以下にとどまる。さらに、強度、耐力及び伸び等の各種の性能が特に優れ、好ましい形態となるアルミニウム合金製塑性加工品である場合、アルミニウムの再結晶化された結晶粒の最大径は100μmとなる。すなわち粗大化することがなくなる。
 本発明に係るアルミニウム合金製塑性加工品の組成において、歪み部位23のアルミニウムの加工歪みの量が所定量以下であれば、特に、相当歪みとして4.0mm/mm以下であれば、アルミニウムの結晶粒界がピンニングされ、移動が抑制されることが確認できる。結晶粒の大きさ(粒径)は、例えば光学顕微鏡写真上での切片法により測定することができる。
 本発明に係るアルミニウム合金製塑性加工品は、Al−Mg−Si系アルミニウム合金である。その組成は、銅(元素記号:Cu)を0.15~0.5質量%、マグネシウム(元素記号:Mg)を0.8~1.15質量%、珪素(元素記号:Si)を0.95~1.15質量%、マンガン(元素記号:Mn)を0.4~0.6質量%、鉄(元素記号:Fe)を0.2~0.3質量%、クロム(元素記号:Cr)を0.11~0.19質量%、亜鉛(元素記号:Zn)を0.25質量%以下、ジルコニウム(元素記号:Zr)を0.05質量%以下、チタン(元素記号:Ti)を0.012~0.035質量%、ホウ素(元素記号:B)を0.0001~0.03質量%含有し、残りがアルミニウム及び不可避不純物からなる。
 Siは、Mgと共存してケイ化マグネシウム(組成式:MgSi)系析出物を形成し、最終製品の強度向上に寄与する。Siを後述するMgの量に対してMgSiを生成する量を越えて過剰に添加することにより、時効処理後の最終製品の強度がさらに高まるため、Siの含有量は0.95質量%以上が望ましい。一方、Siの含有量が1.15質量%を越えると、Siの粒界析出が多くなり、粒界脆化が生じ易く、鋳塊の塑性加工性、および最終製品の靭性が低下する恐れがある。また、Siの含有量が1.15質量%を越えると、鋳塊の晶出物の平均粒径が所定の上限を越える恐れがある。したがって、Siの含有量は、0.95質量%~1.15質量%の範囲にするのが好ましい。
 Mgは、Siと共存してMgSi系析出物を形成し、最終製品の強度向上に寄与する。Mgの含有量が0.8質量%よりも少ないと、析出強化の効果が少なくなる恐れがある。一方、Mgの含有量が1.15質量%を越えると、鋳塊の塑性加工性、および最終製品の靭性が低下する恐れがある。また、Mgの含有量が1.15質量%を越えると、鋳塊の晶出物の平均粒径が所定の上限を越えるおそれがある。したがって、Mgの含有量は、0.8質量%~1.15質量%の範囲にするのが好ましい。
 Cuは、MgSi系析出物の見かけの過飽和量を増加させ、MgSi析出量を増加させることにより、最終製品の時効硬化を著しく促進させる。Cuの含有量が0.5質量%を越えると、鋳塊の鍛造加工性、及び最終製品の靭性が低下し、さらに耐食性が低下する恐れがある。したがって、Cuの含有量は、0.5質量%以下の範囲にする必要がある。一方、Cuの含有量が0.15質量%よりも少ないと、MgSi系析出物の見かけの過飽和量を増加させ、MgSi析出量を増加させる効果が十分に得られない恐れがある。
 MnはAlMnSi相として晶出し、晶出しないMnは、析出して再結晶を抑制する。この再結晶を抑制する作用により、塑性加工後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。Mnの含有量が0.4質量%よりも少ないと、そのような効果が少なくなる恐れがある。一方、Mnの含有量が0.6質量%を越えると、巨大金属間化合物が生じ、本発明の鋳塊組織が満たされなくなる恐れがある。したがって、Mnの含有量は、0.4質量%~0.6質量%の範囲にするのが好ましい。
 特に、Mnの含有量(質量%)は、0.4質量%~0.6質量%である。さらに、リブ領域21の幅方向長さをx(cm)、肉盗み領域22の高さ方向長さをy(cm)、リブ領域21の高さ方向長さをz(cm)で表したとき(図2(a)、(b)に例示される塑性加工部2の断面形状を参照)、下記[数2]の関係式を満たす。そのようなMnの含有量とすることにより、遷移金属系の微細析出物により、アルミニウムの結晶粒界をピンニングし、再結晶化を抑制する効果を好適に得ることができる。
Figure JPOXMLDOC01-appb-M000003
 CrはAlCrSi相として晶出し、晶出しないCrは、析出して再結晶を抑制する。この再結晶を抑制する作用により、塑性加工後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。Crの含有量が0.1質量%よりも少ないと、そのような効果が少なくなる恐れがある。一方、Crの含有量が0.2質量%を越えると、巨大金属間化合物が生じ、本発明の鋳塊組織が満たされなくなる恐れがある。したがって、Crの含有量は、0.11質量%~0.19質量%の範囲にするのが好ましい。
 Feは、合金中でAl、Siと結合して晶出するとともに、結晶粒の粗大化を防止する。Feの含有量が0.2質量%より少ないと、そのような効果が得られなくなる恐れがある。また、Feの含有量が0.3質量%を越えると、粗大な金属間化合物を生成するようになり、塑性加工性が悪化する恐れがある。したがって、Feの含有量は、0.2質量%~0.3質量%にするのが好ましい。
 Znは不純物として扱われる。Znの含有量は0.25質量%を超えるとアルミニウムの腐食自体が促進され、耐食性が劣化するため、0.25質量%以下にするのが好ましい。
 Zrは不純物として扱われる。Zrの含有量は0.05質量%を超えると、Al−Ti−B系合金の結晶粒微細化効果が弱められ、塑性加工後の加工品の強度低下を招くため、0.05質量%以下にするのが好ましい。
 Tiは、結晶粒の微細化を図る上で有効な合金元素である。さらに、Tiによって、連続鋳造棒に鋳塊割れなどが発生するのを防止することができる。Tiの含有量が0.012質量%よりも少ないと、微細化効果が得られない恐れがある。一方、Tiの含有量が0.035%質量%を越えると、粗大なTi化合物が晶出し、靭性が劣化する恐れがある。したがって、Tiの含有量は、0.012質量%~0.035質量%の範囲にするのが好ましい。
 BもTiと同様に、結晶粒の微細化に有効な元素である。Bの含有量が0.0001質量%よりも少ないと、微細化効果が得られない恐れがある。一方、Bの含有量が0.03質量%を越えると、靭性が劣化する恐れがある。したがって、Bの含有量は、0.0001質量%~0.03質量%の範囲にするのが好ましい。
 本発明に係るアルミニウム合金製塑性加工品は、z/(x+y)≧0.65(但し、xは、リブ領域21の幅方向長さ(cm)であり、yは、肉盗み領域22の高さ方向長さ(cm)であり、zは、リブ領域21の高さ方向長さ(cm)である。図2(a)、(b)参照)で規定されるリブ領域21や肉盗み領域22の形状を備え、その合金を構成する各元素の組成が上述したような所定の範囲で特定される。
 すなわち、本発明は、リブ領域21や肉盗み領域22を有するアルミニウム合金製塑性加工品であって、そのリブ領域21や肉盗み領域22の形状が、z/(x+y)≧0.65(但し、xは、リブ領域21の幅方向長さ(cm)であり、yは、肉盗み領域22の高さ方向長さ(cm)であり、zは、リブ領域21の高さ方向長さ(cm)である。図2(a)、(b)参照)で特定される。かつ、本発明は、その合金を構成する各元素の組成が上述したような所定の範囲で特定されるものが特許発明の技術的範囲となる。
 このとき、歪み部位23がアルミニウムの未再結晶組織N及び微細結晶組織Mからなり、粗大再結晶組織Lが認められない本発明に係るアルミニウム合金製塑性加工品を得ることができる。そして、本発明に係るアルミニウム合金製塑性加工品は、引っ張り強度で380MPa以上、0.2%耐力で350MPa以上、伸びで10.0%以上という好ましい性能を得ることができる。また、所定の腐食液中に浸漬させたときの割れ等も確認されず、耐食性に優れている。
 本発明に係るアルミニウム合金製塑性加工品の用途は、車両、輸送機の構造材とすることが好ましい。例えば、自動車部品、自動二輪部品、船舶部品、航空機部品、電車、貨物の車両部品などを挙げることができる。
 さらに、アルミニウム合金製塑性加工品の自動車部品とし、アッパーアーム、ロアアーム、ナックル、コントロールアーム、ロアリンク、サブフレーム、コンプレッションロッド、トランスバースリンク等を挙げることができる。これらの部品における略H字形状又は略U字形状のリブ領域や肉盗み領域に相当する部分の形状は、z/(x+y)≧0.65(但し、xは、リブ領域21の幅方向長さ(cm)であり、yは、肉盗み領域22の高さ方向長さ(cm)であり、zは、リブ領域21の高さ方向長さ(cm)である。図2(a)、(b)参照)で規定される関係式を満たしている。
 また、これらの部品は、その全体を本発明に係るアルミニウム合金製塑性加工品から製造することもできるが、本発明に係るアルミニウム合金製塑性加工品と他の部材を組み合わせ、又は接合して部品として製造することができる。すなわち本発明に係るアルミニウム合金製塑性加工品を部品の一部として用いることもできる。
 以下、本発明に係るアルミニウム合金製塑性加工品の好ましい製造方法について説明していく。
 まず、本発明に係るアルミニウム合金製塑性加工品の組成を構成する各元素が、その含有量の範囲内となるように調整され、溶解されているアルミニウム合金溶湯から、アルミニウム合金鋳塊を鋳造する。この場合、水平連続鋳造法、縦型連続鋳造法、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法、気体加圧連続鋳造法、気体加圧ホットトップ連続鋳造法等の溶解鋳造法の何れを選択しても、鋳造することができる。健全な鋳塊を得るため、鋳造温度750±50℃、鋳造速度240±50mm/分の条件で鋳造することが好ましい。
 次に、得られた鋳塊に対し、470℃~540℃で均質化処理を施す。この温度範囲で均質化処理を施すことにより、鋳塊の均質化と溶質原子の溶入化が十分になされ、その後の時効処理によって必要とされる強度が得られるからである。均質化処理における保持時間を、3~10時間とすることができる。
 均質化処理後に塑性加工を施し、必要に応じて、機械加工により所定の大きさに加工する。塑性加工は、加工時の素材の加熱温度を所定の範囲とする加工方法であれば、従来の塑性加工方法を用いることができる。
 例えば、押出加工、鍛造加工又は圧延加工等の加工法を用いることができる。加工後の組織の再結晶を抑制して強度向上を図るため、素材の加熱温度を、〔430+塑性加工率(%)〕℃以上550℃以下の範囲に制御することが望ましい。塑性加工率を条件に入れた温度とすることで粗大再結晶の発生をより抑制し、その後の時効処理で強度をより一層向上させることができる。
 塑性加工率(%)は、押出加工の場合、〔(変形を受ける断面積)÷(初期断面積)×100〕(%)で定義することができる。鍛造加工の一種の据込加工の場合、〔(変形した高さ)÷(初期高さ)×100〕(%)で定義することができる。また、多段で複数回の工程を経る塑性加工品の素材の加熱温度は、その最終形状についての塑性加工率(%)を上記式の条件に入れて算出すればよい。複雑な形状の塑性加工品の素材の加熱温度は、各部ごとの塑性加工率(%)を算出し、その平均値を上記式の条件に入れて算出すればよい。
 塑性加工後は、溶体化処理、水焼入れ、および時効処理を施す。用途に応じ、例えば、車両、船舶、航空機、自動車あるいは自動二輪等の輸送機の構造材(部品)に必要とされる強度および耐食性を得るためである。
 溶体化処理は、520~560℃の範囲とするのが好ましい。溶体化温度が520℃未満であると、MgSiなどが十分に固溶せず、その後の時効処理によって必要とされる強度が得られない恐れがある。また、溶体化温度が560℃を超えると、バーニング(局部溶解)が発生する恐れがある。また、溶体化処理の保持時間を、2~6時間とすることができる。
 溶体化処理後の水焼入れ処理は、水温を70℃以下とする条件で行うのが好ましい。また、水焼入れ処理は水冷が望ましい。水温が70℃を超えた場合、焼入れの効果が得られずに、その後の時効処理によって必要な強度が得られない恐れがある。
 その後、本発明に係るアルミニウム合金製塑性加工品は必要に応じてさらに機械加工、例えば切削加工、曲げ加工、絞り加工などが施され、車両、船舶、航空機、自動車あるいは自動二輪等の輸送機の構造材(部品)などに仕上げられる。
 溶解鋳造したアルミニウム合金鋳塊の組織について説明する。鋳塊の結晶粒径の大きさは、塑性加工、その後の時効処理を施して得られるアルミニウム合金製塑性加工品の強度に大きく影響する。鋳塊におけるアルミニウムの結晶粒径が大きいと塑性加工後の強度向上が得られないため、結晶粒径の大きさを平均値で300μm以下にすることが好ましく、さらに好ましくは250μm以下とする。なお、アルミニウムの結晶粒径の大きさは、例えば光学顕微鏡写真上での切片法により測定することができる。
 鋳塊のDAS(デンドライトアームスペース、Dendrite Arm Space)の大きさも、平均値で40μm以下にする必要があり、好ましくは20μm以下とする。DASの大きさが40μmを超えると塑性加工、その後の時効処理を施して得られるアルミニウム合金製塑性加工品の強度が低下するからである。なお、DASの大きさは、例えば、一般社団法人軽金属学会発行の『軽金属(1988年)、vol.38、No.1、p.45』に記載の『デンドライトアームスペーシングの測定方法』に従って測定することができる。
 鋳塊の晶出物を含め、本願で記載される晶出物とは、AlMnSi相、MgSi相、FeおよびCrを含む2次相が、アルミニウムの結晶粒界に粒状や片状の形で晶出したものをいう。晶出物の平均粒径は、8μm以下であれば塑性加工性に影響を与えないため、8μm以下にする必要があり、好ましくは6.8μm以下にするのがよい。なお、晶出物の大きさは、例えば、顕微鏡を有した画像解析装置(ルーゼックス、Luzex:登録商標)でミクロ組織を同定し、個々の晶出物の断面積を円に換算したときの直径として測定できる。
 本発明に係るアルミニウム合金製塑性加工品の好ましい製造方法に基づいて構成した製造ラインの一例を、図5を用いて説明する。
 製造ラインは、合金溶解炉31、鋳造装置32、均質化処理炉33、素材予備加熱装置34、鍛造装置35、機械加工装置36、溶体化処理炉37、焼き入れ装置38、時効処理炉39、酸洗装置40、ショットブラスト装置41、最終機械加工装置42、および検査装置43から構成されている。
 合金溶解炉31は、その炉内で合金組成を調整し、所定の温度に合金溶湯を保持する装置である。溶解保持炉、溶湯清浄装置を設けてもよい。
 鋳造装置32は、合金溶湯を凝固させて鋳塊を得る装置である。冷却水温度、冷却水量などの冷却能を調整することによって凝固速度を調整することができる。
 均質化処理炉33は、その炉内に鋳塊を挿入し、鋳塊に均質化処理を施す装置である。炉内を所定の温度状態となるように温度を制御することができる。
 鋳塊は適当な成形加工、たとえば押出加工、機械加工、切断加工により、素材に加工される。
 素材予備加熱装置34は、成形する素材に対して予め加熱処理を施す装置である。
 鍛造装置35は、成形孔を有する上金型下金型を配置し、鋳塊を成形用素材として成形孔内にセットし、金型を上下稼動して塑性加工する装置である。必要に応じて、金型の成形孔に潤滑材塗布処理、素材に潤滑材塗布処理を施すための潤滑材噴霧装置を設けてもよい。
 機械加工装置36は、塑性加工された成形品に切削、穴あけ、面取りなどの機械加工を施す装置である。製品仕様によっては省略することができる。
 溶体化処理炉37は、塑性加工された成形品に溶体化処理を施す装置である。炉内が所定の温度状態となるように温度を制御することができる。
 焼き入れ装置38は、高温状態の成形品を急冷する装置である。一定温度範囲に制御された水中に、成形品を投入して急冷する。
 時効処理炉39は、時効処理を施す装置であり、炉内が所定の温度状態となるように温度を制御することができる。
 酸洗装置40は、成形品を酸溶液で洗浄する装置である。製品仕様によっては省略することができる。
 ショットブラスト装置41は、成形品の表面をショットブラスト処理する装置である。製品仕様によっては省略することができる。
 最終機械加工装置42は、成形品を最終的な形状にするため、切削、穴あけ、面取りなどの機械加工を施す装置である。または、成形品と他の部材を組み合わせたり、接合したりして最終部品の形状とする装置である。製品仕様によっては省略することができる。
 検査装置43は、外観検査や、必要に応じて重量検査などを行う装置である。場合によっては、人間による直接的な目視検査とすることができる。
 各装置間は、コンベア、搬送車などの搬送装置によって結ばれているのが好ましい。
 次に本発明の実施例を説明する。
 下記[表1]に、A6000系のアルミニウム合金から構成したアルミニウム合金製塑性加工品(比較例1)、出願人が所有する従来のアルミニウム合金製塑性加工品(比較例2、比較例3)及び、本発明に係るアルミニウム合金製塑性加工品(実施例1、実施例2、実施例3)のそれぞれについて、その組成及び塑性加工部の断面形状、リブ領域や肉盗み領域の形状を特定するリブ領域の幅方向長さx(cm)、肉盗み領域の高さ方向長さy(cm)、リブ領域の高さ方向長さz(cm)の値を示した。
Figure JPOXMLDOC01-appb-T000004
 比較例1~3及び実施例1~3として、それぞれ表1に示した化学成分組成のアルミ合金鋳塊を、ホットトップ鋳造法により、鋳造温度750±50℃、鋳造速度240±50mm/分の条件で鋳造した。この鋳造により得られた鋳塊に対して470℃(保持時間6時間)で均質化処理を行なった。続いて均質化処理を行なった鋳塊を530℃に加熱し、熱間鍛造によって、図1に示すような自動車のサスペンションアームの形状(リニアアーム)となるように塑性加工を施した。なお、塑性加工率は50%であった。次に、この塑性加工品を530℃(保持時間4時間)で溶体化処理を行い、60℃で水焼入れ後、180℃(保持時間2~15時間の範囲内)又は200℃(保持時間0.5~12時間の範囲内)で時効処理を行った。
 なお、加工率50%の塑性加工及び、その後の530℃による溶体化処理により、各実施例及び比較例の鋳塊には、その歪み部位において1.33mm/mmの相当歪みが内在されていると考えられる。
 比較例1~3及び実施例1~3のアルミニウム合金製塑性加工品のそれぞれで、JIS14A号比例試験片(JIS Z2201参照)を採取し、引っ張り強度を測定した。
 また、引張試験片を採取した部分の断面にて、光学顕微鏡(順光)によるミクロ組織観察を行い、晶出物の平均粒径を測定した。晶出物の平均粒径の測定法は、画像解析装置(ルーゼックス、Luzex:登録商標)により晶出物が円相当の直径を持つものとして平均粒径を測定した。その後、観察面をエッチング液で腐食させた後、偏光顕微鏡によるミクロ組織観察を行い、アルミニウムの結晶粒径を測定した。
 さらに、上記の手順で作成した比較例1~3及び実施例1~3に基づくサスペンションアーム部品から、2mm×4.3mm×42.4mmの試験片を切り出し、4.3mm×42.4mmの面の中央部に、3点曲げ治具を用いて耐力の90%に相当する応力を負荷した。負荷の際には、試験片と治具の間を電気的に絶縁にした。純水1リットル当たり、酸化クロム(IV)36g、ニクロム酸カリウム30g、塩化ナトリウム3gを溶解し、95~100℃に保持した溶液を腐食液として用意した。この腐食液中に応力を負荷した試験片を16時間、浸漬した後、試験片を外観観察し、割れが発生しているかどうかについて確認し、割れが発生したものについては、耐食性に劣ると判断した。
 比較例1~3及び実施例1~3の機械的特性(引張強度、0.2%耐力、伸び)と晶出物の結晶粒径、耐食性、総合判定からなる評価表を下記[表2]に示す。なお、評価欄の記号(○、△、×)の定義は以下の通りである。
 耐食性の判定は、n=3の試験において、3個のうちすべてで割れがなかったものを○、3個のうち1~2個で割れが発生したものを△、3個のうちすべてで割れが発生したものを×とした。
 機械的特性の判定は、引張強度が380MPa以上の特性、0.2%耐力が350MPa以上の特性、伸びが10.0%以上の特性を、すべての項目で満たすものを○、1~2つの項目で満たさないものを△、すべての項目で満たさないものを×とした。
 総合判定としては、耐食性及び機械的特性がいずれも○のものを○、耐食性及び機械的特性のいずれか一方が○で、他方が△のものを△、耐食性及び機械的特性がいずれも△、いずれか一方が×及び、いずれも×のものを×とした。
Figure JPOXMLDOC01-appb-T000005
 実施例1~3のように、合金を構成する各元素の組成が上述したような所定の範囲に収まり、かつ、リブ領域や肉盗み領域の形状がz/(x+y)≧0.65の条件を満たすアルミニウム合金製塑性加工品において引っ張り強度で380MPa以上、0.2%耐力で350MPa以上、伸びで10.0%以上(特に、14.0%以上)という好ましい性能を得ることができた。また、結晶粒の平均粒径も50μm程度であって、アルミニウムの未再結晶組織又は微細結晶組織で構成されていることが分かった。
 一方、合金を構成する各元素の組成のいずれかが上述したような所定の範囲から外れ、かつ、リブ領域や肉盗み領域の形状がz/(x+y)≧0.65の条件を満たすことがない比較例1は、引っ張り強度が336MPa、0.2%耐力が308MPa、伸びが17.2%となった。結晶粒の平均粒径も450μm程度となって、塑性加工の加工率や、その後の溶体化処理の条件によって、例えば、リブ領域や肉盗み領域中の相当歪みが2.00mm/mmを超えるようになると、粗大再結晶組織を呈するようになることが分かった(尚、図7も参照)。腐食量が多く、耐食性も良いとはいえなかった。
 リブ領域や肉盗み領域の形状がz/(x+y)≧0.65の条件を満たすものの、合金を構成する各元素の組成のいずれかが上述したような所定の範囲から外れる比較例2は、腐食量が少なくて耐食性も良く、結晶粒の平均粒径も50μm程度であり、粗大再結晶組織が認められなかったが、引っ張り強度が367MPa、0.2%耐力が320MPa、伸びが18.0%と、本願の出願人が期待する機械的特性の値をすべて満たしているとはいえなかった。
 また、合金を構成する各元素の組成が上述したような所定の範囲に収まるものの、リブ領域や肉盗み領域の形状がz/(x+y)≧0.65の条件を満たさない比較例3は、腐食量が少なくて耐食性も良く、結晶粒の平均粒径も50μm程度であり、粗大再結晶組織が認められなかったが、引っ張り強度が392MPa、0.2%耐力が332MPa、伸びが10.5%と、本願の出願人が期待する機械的特性の値をすべて満たしているとはいえなかった。
 また、図6~図8において、比較例1~2及び実施例1における歪み部位に関し、相当歪みの大きさと組織状態との関係を模式的に示したので、これらの図について説明する。これらの図において、(a)は、相当歪みが0mm/mmの大きさであるときの、(b)は、相当歪みが0.67mm/mmの大きさであるときの、(c)は、相当歪みが1.25mm/mmの大きさであるときの、(d)は、相当歪みが2.00mm/mmの大きさであるときの、(e)は、相当歪みが2.75mm/mmの大きさであるときの、(f)は、相当歪みが3.5mm/mmの大きさであるときの、それぞれアルミニウム合金製塑性加工品の歪み部位の組織状態を模式的に示している。
 図6に示すように、実施例1における歪み部位では、相当歪みが2.0mm/mmまでの大きさであれば、未再結晶組織Nのみから構成される。相当歪みが2.75mm/mmの大きさのときに未再結晶組織Nと、一部が微細結晶組織Mとなる組織状態で構成される。また、相当歪みが3.5mm/mmの大きさであっても微細結晶組織Mから構成されることが分かる。したがって、相当歪みが0~4.0mm/mmの範囲、特に、0~3.5mm/mmの範囲で粗大再結晶組織Lは認められないことが理解される。
 一方、図7に示すように、比較例1における歪み部位では、相当歪みが2、0mm/mmの大きさで、粗大再結晶組織Lが認められてしまった。図8に示すように、比較例2における歪み部位においても、相当歪みが3.5mm/mmの大きさになると粗大再結晶組織Lが認められてしまった。
 また、図9において、実施例1、比較例1及び比較例2の間で、歪み部位における相当歪みの大きさと引張強度との関係が比較できるようにグラフで示した。このグラフから理解されるように、比較例1及び比較例2と異なり、実施例1のアルミニウム合金製塑性加工品は、歪み部位の相当歪みが大きくなっても、その引張強度の強さが維持され、優れていることが分かる。特に、自動車部品であるサスペンションアームで数多く認められる相当歪みが1~3mm/mm程度であるときに、実施例1の引張強度は、比較例1及び比較例2に比して極めて優れていると認められる。
 図10において、実施例1、比較例1及び比較例2の間で、歪み部位における相当歪みの大きさと0.2%耐力との関係が比較できるようにグラフで示した。このグラフから理解されるように、比較例1及び比較例2と異なり、実施例1のアルミニウム合金製塑性加工品は、歪み部位の相当歪みが大きくなっても、その0.2%耐力の値が維持され、優れていることが分かる。特に、自動車部品であるサスペンションアームで数多く認められる相当歪みが1~3mm/mm程度であるときに、実施例1の0.2%耐力は、比較例1及び比較例2に比して極めて優れていると認められる。
 図11において、実施例1、比較例1及び比較例2で歪み部位における相当歪みの大きさと伸び(%)の関係をグラフで示した。このグラフから理解されるように、比較例1及び比較例2と同様なレベルで、実施例1のアルミニウム合金製塑性加工品は、歪み部位の相当歪みが大きくなってもその伸び(%)において優れていることが分かる。
 したがって、本発明に係るアルミ合金製塑性加工品は、塑性加工によって加工歪みが加わった後に溶体化処理されても、その歪み部位がアルミニウムの未再結晶組織及び微再結晶組織からなり、粗大結晶組織が認められないで良好なアルミニウムの組織状態が形成、維持されている。本発明に係るアルミ合金製塑性加工品は、引っ張り強度で380MPa以上、0.2%耐力で350MPa以上、伸びで10.0%以上という好ましい性能を得ることができる。これにより、高強度化し、耐食性が向上し、薄肉化が可能になるため、必要な合金量を減らして確実に軽量化することができる。Al−Mg−Si系合金製塑性加工品の用途を拡大、例えば、軽量化への追求が激しい輸送機用途として自動車用部品に好適に採用されて、その用途をさらに拡大することができるようになる。
11・・リニアアーム
12・・Aアーム
2・・・塑性加工部
21・・リブ領域
22・・肉盗み領域
23・・歪み部位
2a・・塑性加工部
21a・リブ領域
22a・肉盗み領域
N・・・未再結晶組織
M・・・微細結晶組織
L・・・粗大結晶組織

Claims (8)

  1.  塑性加工により形成される肉盗み領域と、この肉盗み領域の両端に形成されるリブ領域とからなり、断面が略H字形状又は略U字形状となる塑性加工部を備えたアルミニウム合金製塑性加工品であって、
     前記塑性加工部に、前記塑性加工により発生する最大で4.0mm/mmの相当歪みが内在している歪み部位を有し、
     前記歪み部位が、前記肉盗み領域と前記リブ領域との境界であって、前記塑性加工部の表面近傍に位置し、
     前記歪み部位が、再結晶化されていないアルミニウム(元素記号:Al)の未再結晶組織で構成され、又は、前記未再結晶組織と、再結晶化されるが、その結晶粒が500μm以下である前記アルミニウムの微細結晶組織とで構成される、
     ことを特徴とするアルミニウム合金製塑性加工品。
  2.  銅(元素記号:Cu)を0.15~0.5質量%、マグネシウム(元素記号:Mg)を0.8~1.15質量%、珪素(元素記号:Si)を0.95~1.15質量%、マンガン(元素記号:Mn)を0.4~0.6質量%、鉄(元素記号:Fe)を0.2~0.3質量%、クロム(元素記号:Cr)を0.11~0.19質量%、亜鉛(元素記号:Zn)を0.25質量%以下、ジルコニウム(元素記号:Zr)を0.05質量%以下、チタン(元素記号:Ti)を0.012~0.035質量%、ホウ素(元素記号:B)を0.0001~0.03質量%含有し、残りがアルミニウム及び不可避不純物からなる組成であって、
     前記リブ領域の幅方向長さをx(cm)、前記肉盗み領域の高さ方向長さをy(cm)、前記リブ領域の高さ方向長さをz(cm)で表したときに、前記マンガンの含有量(質量%)が下記[数1]の関係式を満たす、
    Figure JPOXMLDOC01-appb-M000001
     ことを特徴とする請求項1に記載のアルミニウム合金製塑性加工品。
  3.  自動車用部品である、
     ことを特徴とする請求項1又は請求項2に記載のアルミニウム合金製塑性加工品。
  4.  請求項1から請求項3の何れか1項に記載のアルミニウム合金製塑性加工品を製造するアルミニウム合金製塑性加工品の製造方法であって、
     溶解鋳造を施し、前記溶解鋳造で得られた鋳造品に対して均質化処理及び塑性加工を施した後、溶体化処理、水焼き入れ処理及び人工時効硬化処理を施す、
     ことを特徴とするアルミニウム合金製塑性加工品の製造方法。
  5.  前記人工時効硬化処理は、時効処理温度が170℃以上210℃以下、時効処理時間が0.5時間以上18時間以下である、
     ことを特徴とする請求項4に記載のアルミニウム合金製塑性加工品の製造方法。
  6.  前記溶体化処理は、溶体化処理温度が520℃以上560℃以下であり、
     前記水焼き入れ処理は、水焼き入れ処理温度が70℃以下である、
     ことを特徴とする請求項4又は請求項5に記載のアルミニウム合金製塑性加工品の製造方法。
  7.  前記塑性加工は、押出加工、鍛造加工および圧延加工から選ばれる1種又は2種以上の組み合わせである、
     ことを特徴とする請求項4から請求項6の何れか1項に記載のアルミニウム合金製塑性加工品の製造方法。
  8.  請求項4から請求項7の何れか1項に記載のアルミニウム合金製塑性加工品の製造方法を用いて得られる、
     ことを特徴とする自動車用部品。
PCT/JP2015/054188 2015-02-10 2015-02-10 アルミニウム合金製塑性加工品、その製造方法及び自動車用部品 WO2016129127A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE112015000499.8T DE112015000499B4 (de) 2015-02-10 2015-02-10 Verfahren zum Herstellen eines plastisch verformten Aluminiumlegierungsprodukts
PCT/JP2015/054188 WO2016129127A1 (ja) 2015-02-10 2015-02-10 アルミニウム合金製塑性加工品、その製造方法及び自動車用部品
CN201580001123.XA CN106062225B (zh) 2015-02-10 2015-02-10 铝合金制塑性加工品的制造方法
JP2015552667A JP6090725B2 (ja) 2015-02-10 2015-02-10 アルミニウム合金製塑性加工品の製造方法
US15/025,297 US20160355914A1 (en) 2015-02-10 2015-02-10 Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component
MYPI2016701456A MY175993A (en) 2015-02-10 2015-02-10 Method for manufacturing aluminum alloy plastic worked article
TW104136313A TWI592498B (zh) 2015-02-10 2015-11-04 Aluminum alloy plastic processed products, manufacturing method thereof and automobile parts
US16/436,051 US11136657B2 (en) 2015-02-10 2019-06-10 Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054188 WO2016129127A1 (ja) 2015-02-10 2015-02-10 アルミニウム合金製塑性加工品、その製造方法及び自動車用部品

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/025,297 A-371-Of-International US20160355914A1 (en) 2015-02-10 2015-02-10 Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component
US16/436,051 Division US11136657B2 (en) 2015-02-10 2019-06-10 Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component

Publications (1)

Publication Number Publication Date
WO2016129127A1 true WO2016129127A1 (ja) 2016-08-18

Family

ID=56614524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054188 WO2016129127A1 (ja) 2015-02-10 2015-02-10 アルミニウム合金製塑性加工品、その製造方法及び自動車用部品

Country Status (6)

Country Link
US (2) US20160355914A1 (ja)
JP (1) JP6090725B2 (ja)
CN (1) CN106062225B (ja)
DE (1) DE112015000499B4 (ja)
TW (1) TWI592498B (ja)
WO (1) WO2016129127A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085082A1 (ja) * 2018-10-22 2020-04-30 昭和電工株式会社 Al-Mg-Si系アルミニウム合金押出材およびその製造方法
CN111549260A (zh) * 2019-02-08 2020-08-18 通用汽车环球科技运作有限责任公司 高强度延性铝合金挤压件
WO2021230080A1 (ja) * 2020-05-13 2021-11-18 日本軽金属株式会社 アルミニウム合金鍛造材及びその製造方法
CN114369745A (zh) * 2021-12-28 2022-04-19 广东和胜工业铝材股份有限公司 一种高强度铝合金及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017213564A1 (de) * 2017-08-04 2019-02-07 Zf Friedrichshafen Ag Dreipunktlenker und Herstellungsverfahren für einen Dreipunktlenker
DE102017222579A1 (de) * 2017-12-13 2019-06-13 Schäfer MWN GmbH Verfahren zum Herstellen eines Bauelements und Bauelement
DE102018115166A1 (de) * 2018-06-25 2020-01-02 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von Kraftfahrzeuglenkern und Kraftfahrzeuglenker
CN109109591A (zh) * 2018-08-31 2019-01-01 青岛航大新材料技术有限公司 铝合金分体式v型推力杆及其制备工艺与搅拌摩擦焊装配方法
DE102019206436A1 (de) * 2019-05-06 2020-11-12 Schäfer MWN GmbH Mehrpunktlenker für ein Fahrwerk eines Fahrzeugs
DE102019206435A1 (de) * 2019-05-06 2020-11-12 Schäfer MWN GmbH Mehrpunktlenker für ein Fahrwerk eines Fahrzeugs
JP2021095588A (ja) * 2019-12-13 2021-06-24 トヨタ自動車株式会社 アルミニウム合金塑性加工品の製造方法
RU2744189C1 (ru) * 2020-02-10 2021-03-03 Старинская Елена Леонидовна Способ приготовления порционного пищевого продукта
CN111391590A (zh) * 2020-04-20 2020-07-10 陕西德仕汽车部件(集团)有限责任公司 一种铝合金i型推力杆及其加工方法
CN113088773A (zh) * 2021-03-05 2021-07-09 长春市吉通凯撒铝业有限责任公司 一种高强度铝合金及其生产工艺和应用
CN113584363A (zh) * 2021-07-29 2021-11-02 中北大学 一种2024铝合金的表面强化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163445A (ja) * 2006-03-31 2008-07-17 Kobe Steel Ltd 自動車足回り部品およびその製造方法
WO2011122263A1 (ja) * 2010-03-31 2011-10-06 株式会社神戸製鋼所 アルミニウム合金鍛造材およびその製造方法
WO2011129431A1 (ja) * 2010-04-16 2011-10-20 昭和電工株式会社 アルミニウム合金鍛造部材の製造方法
JP2014081310A (ja) * 2012-10-17 2014-05-08 Nippon Steel & Sumitomo Metal 成形温度評価方法及び成形温度評価システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3684313B2 (ja) 1998-08-25 2005-08-17 株式会社神戸製鋼所 自動車のサスペンション部品用高強度高靱性アルミニウム合金鍛造材
JP3721020B2 (ja) 1999-10-06 2005-11-30 株式会社神戸製鋼所 耐食性に優れた高強度高靱性アルミニウム合金鍛造材
JP3766357B2 (ja) 2002-07-12 2006-04-12 株式会社神戸製鋼所 強度部材用アルミニウム合金鍛造材および鍛造用素材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163445A (ja) * 2006-03-31 2008-07-17 Kobe Steel Ltd 自動車足回り部品およびその製造方法
WO2011122263A1 (ja) * 2010-03-31 2011-10-06 株式会社神戸製鋼所 アルミニウム合金鍛造材およびその製造方法
WO2011129431A1 (ja) * 2010-04-16 2011-10-20 昭和電工株式会社 アルミニウム合金鍛造部材の製造方法
JP2014081310A (ja) * 2012-10-17 2014-05-08 Nippon Steel & Sumitomo Metal 成形温度評価方法及び成形温度評価システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085082A1 (ja) * 2018-10-22 2020-04-30 昭和電工株式会社 Al-Mg-Si系アルミニウム合金押出材およびその製造方法
JP2020066752A (ja) * 2018-10-22 2020-04-30 昭和電工株式会社 Al−Mg−Si系アルミニウム合金押出材およびその製造方法
JP7182425B2 (ja) 2018-10-22 2022-12-02 昭和電工株式会社 Al-Mg-Si系アルミニウム合金押出材およびその製造方法
CN111549260A (zh) * 2019-02-08 2020-08-18 通用汽车环球科技运作有限责任公司 高强度延性铝合金挤压件
US11359269B2 (en) 2019-02-08 2022-06-14 GM Global Technology Operations LLC High strength ductile 6000 series aluminum alloy extrusions
US11708629B2 (en) 2019-02-08 2023-07-25 GM Global Technology Operations LLC High strength ductile 6000 series aluminum alloy extrusions
WO2021230080A1 (ja) * 2020-05-13 2021-11-18 日本軽金属株式会社 アルミニウム合金鍛造材及びその製造方法
CN114369745A (zh) * 2021-12-28 2022-04-19 广东和胜工业铝材股份有限公司 一种高强度铝合金及其制备方法和应用
CN114369745B (zh) * 2021-12-28 2022-12-20 广东和胜工业铝材股份有限公司 一种高强度铝合金及其应用

Also Published As

Publication number Publication date
US20190330726A1 (en) 2019-10-31
JP6090725B2 (ja) 2017-03-08
US20160355914A1 (en) 2016-12-08
CN106062225A (zh) 2016-10-26
CN106062225B (zh) 2017-11-21
JPWO2016129127A1 (ja) 2017-04-27
US11136657B2 (en) 2021-10-05
DE112015000499T5 (de) 2016-11-10
DE112015000499B4 (de) 2023-09-28
TW201634709A (zh) 2016-10-01
TWI592498B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
JP6090725B2 (ja) アルミニウム合金製塑性加工品の製造方法
JP5678099B2 (ja) 構造部材製造用アルミニウム合金製品およびその製造方法
KR101333915B1 (ko) 알루미늄-아연-마그네슘-스칸듐 합금 및 이의 제조 방법
JP5698695B2 (ja) 自動車用アルミニウム合金鍛造材およびその製造方法
KR102162947B1 (ko) 쾌삭 단련 알루미늄 합금 제품 및 그 제조 방법
JP7182425B2 (ja) Al-Mg-Si系アルミニウム合金押出材およびその製造方法
JP2013525608A (ja) 階層状の微細構造を有する損傷耐性アルミ材
JP4801386B2 (ja) アルミ合金製塑性加工品、その製造方法、自動車用部品、時効処理炉、およびアルミ合金製塑性加工品の製造システム
JP2013525608A5 (ja)
WO2016204043A1 (ja) 高強度アルミニウム合金熱間鍛造材
JP7182435B2 (ja) Al-Mg-Si系アルミニウム合金押出引抜材
JP5275321B2 (ja) アルミ合金製塑性加工品の製造方法
CN112823218A (zh) 变形钛合金的高强度紧固件坯料及其制造方法
WO2018161311A1 (en) Aluminum alloys
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
JP2004292937A (ja) 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
KR102589799B1 (ko) 고강도 알루미늄-계 합금 및 그로부터 물품을 생산하기 위한 방법
JP2006274415A (ja) 高強度構造部材用アルミニウム合金鍛造材
JP2004315938A (ja) 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
JP5476452B2 (ja) 耐食性に優れた高強度、高靭性アルミニウム合金鍛造材とその製造方法、およびサスペンション部品
JP5532462B2 (ja) アルミ合金製塑性加工品の製造方法
JP2007169699A (ja) 耐食性に優れた高強度、高靭性アルミニウム合金鍛造材とその製造方法、およびサスペンション部品
JP3929850B2 (ja) 耐食性に優れた構造用アルミニウム合金鍛造材およびその製造方法
JP2011106011A (ja) 耐食性及び加工性に優れた高強度Al合金鍛造材及びその製造方法
CN105671376A (zh) 高强高塑重力铸造与室温冷轧亚共晶铝硅合金材料及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015552667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000499

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882001

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15882001

Country of ref document: EP

Kind code of ref document: A1