WO2016125548A1 - 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 - Google Patents
立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 Download PDFInfo
- Publication number
- WO2016125548A1 WO2016125548A1 PCT/JP2016/050867 JP2016050867W WO2016125548A1 WO 2016125548 A1 WO2016125548 A1 WO 2016125548A1 JP 2016050867 W JP2016050867 W JP 2016050867W WO 2016125548 A1 WO2016125548 A1 WO 2016125548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- cbn
- cubic boron
- particle size
- polycrystal
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/18—Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
- B23B27/20—Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/12—Boron nitride
- B23B2226/125—Boron nitride cubic [CBN]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/528—Spheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
- C04B2235/783—Bimodal, multi-modal or multi-fractional
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/788—Aspect ratio of the grains
Definitions
- the present invention relates to a cubic boron nitride polycrystal, a cutting tool, an anti-wear tool, a grinding tool, and a method for producing a cubic boron nitride polycrystal.
- Cubic boron nitride has hardness next to diamond and is excellent in thermal stability and chemical stability.
- iron-based materials are more stable than diamond
- cubic boron nitride sintered bodies have been used as processing tools for iron-based materials.
- this cubic boron nitride sintered body contains a binder of about 10 volume% or more and 40 volume% or less (10 to 40 volume%), and this binder has the strength, heat resistance, This was a cause of lowering thermal diffusivity. Therefore, especially when cutting iron-based materials at a high speed, the heat load becomes large, and the cutting edge of the cutting edge and cracks are liable to occur, thereby shortening the tool life.
- cubic boron nitride such as hexagonal boron nitride is directly converted into cubic boron nitride and sintered at the same time (direct conversion sintering method) without using a catalyst under ultra high pressure and high temperature.
- a boron sintered body is obtained.
- Patent Document 1 Japanese Patent Application Laid-Open No. 47-034099
- Patent Document 2 Japanese Patent Application Laid-Open No. 03-159964
- hexagonal boron nitride is converted into cubic boron nitride under an ultra-high pressure and high temperature to form a cubic crystal.
- a method for obtaining a boron nitride sintered body is shown.
- Patent Document 5 Japanese Patent Publication No. 49-027518
- Patent Document 6 Japanese Patent Application Laid-Open No. 11-246271
- Patent Document 5 discloses a method of obtaining a cubic boron nitride sintered body under conditions of a pressure of 6 GPa and 1100 ° C.
- hexagonal boron nitride which is a raw material, has a particle size of 3 ⁇ m or less, so that hexagonal boron nitride contains boron oxide impurities and adsorbed gas of about several mass%. Therefore, due to the influence of these impurities and adsorbed gas, sintering does not proceed sufficiently, and since it contains an oxide, the hardness, strength, and heat resistance are lowered, and it cannot be used as a cutting tool or wear-resistant tool. .
- Patent Document 6 discloses a method of synthesizing under conditions of 6 to 7 GPa and 1550 to 2100 ° C. using low crystalline hexagonal boron nitride as a raw material in order to solve the above problem. Further, it is disclosed that the cubic boron nitride polycrystal synthesized by this method has a crystal grain size of about 0.1 to 1 ⁇ m.
- the particle size of the cubic boron nitride crystal is determined by the synthesis temperature, and usually the particle size of the cubic boron nitride crystal is about ⁇ 0.2 ⁇ m in average particle size It becomes a homogeneous structure.
- the cubic boron nitride polycrystal obtained by the above method has a homogeneous structure, when a fine crack is generated, there is a drawback that the crack tends to progress and is brittle.
- the present disclosure aims to provide a cubic boron nitride polycrystal having excellent toughness.
- a cubic boron nitride (cBN) polycrystalline body is granular, has a maximum particle size of 100 nm or less, and an average particle size of 70 nm or less of cBN, and a plate And a plate-like cBN having an average major axis of 50 nm or more and 10,000 nm or less, and at least one of granular cBN having a granular shape and a minimum particle size exceeding 100 nm and an average particle size of 1000 nm or less .
- the method for producing a cBN polycrystal according to one embodiment of the present invention includes a raw material comprising coarse hexagonal boron nitride (hBN) powder and non-hexagonal boron nitride (non-hBN) powder as starting materials.
- hBN coarse hexagonal boron nitride
- non-hBN non-hexagonal boron nitride
- Preparing a composition When the temperature is T (° C.) and the pressure is P (GPa), P ⁇ 0.0000132T 2 ⁇ 0.0583T + 71.793, T ⁇ 2200 and P ⁇ 25 And a step of directly converting the raw material composition into cBN and sintering at a temperature and pressure that satisfy the conditions:
- the average particle size of the coarse hBN powder is 1 ⁇ m or more
- the non-hBN powder is an amorphous boron nitride powder or a hexagonal crystal other than a hexagonal crystal having a spherical shape, a tubular shape, a wall shape, or a square shape. This is a crystalline boron nitride powder.
- the method for producing a cBN polycrystal includes a step of preparing a raw material composition comprising a coarse hBN powder and a fine hBN powder as a starting material, When the temperature is T (° C.) and the pressure is P (GPa), P ⁇ 0.0000132T 2 ⁇ 0.0583T + 71.793, T ⁇ 2200 and P ⁇ 25 And a step of directly converting the raw material composition into cBN and sintering at a temperature and pressure that satisfy the conditions:
- the average particle size of the coarse hBN powder is 1 ⁇ m or more,
- the average particle size of the fine hBN powder is less than 100 nm.
- the cBN polycrystalline body can have excellent toughness.
- the present inventors have converted a raw material composition containing several types of hBN powders having different characteristics into cBN directly under high temperature and high pressure, It has been found that a tough cBN polycrystal is obtained.
- the cBN polycrystal according to one embodiment of the present invention is granular, has a maximum particle size of 100 nm or less, and a fine cubic boron nitride having an average particle size of 70 nm or less, and a plate shape. At least one of a plate-like cubic boron nitride having an average major axis of 50 nm or more and 10,000 nm or less, and a granular cubic boron nitride that is granular and has a minimum particle size of more than 100 nm and an average particle size of 1000 nm or less; It is a cBN polycrystal containing.
- the plate-like cBN and / or coarse cBN inhibits the progress of cracks, so that a tough polycrystal is obtained.
- the cBN polycrystal preferably further includes wurtzite boron nitride (hereinafter also referred to as “wBN”), and the content of wBN is preferably 0.01% by volume to 80% by volume. Thereby, the structure of the polycrystalline body can be made denser.
- wBN wurtzite boron nitride
- the cBN polycrystal further includes compressed hexagonal boron nitride (hereinafter also referred to as “compressed hBN”), and the content of the compressed hBN is 0.01 volume% or more and 0.5 volume%. The following is preferable. Thereby, progress of a crack can be prevented and toughness can be improved.
- compressed hBN compressed hexagonal boron nitride
- compressed hBN refers to a material having a crystal structure similar to that of normal hBN and having a plane spacing in the c-axis direction that is smaller than the plane spacing (0.333 nm) of normal hBN.
- a cutting tool according to an aspect of the present invention includes the cBN polycrystal described in any one of [1] to [3] above.
- a wear-resistant tool according to an aspect of the present invention includes the cBN polycrystalline body described in any one of [1] to [3] above.
- a grinding tool according to an aspect of the present invention includes the cBN polycrystalline body described in any one of [1] to [3] above.
- This grinding tool has excellent toughness based on the properties of the cBN polycrystal described above.
- the entire tool may be composed of a cBN polycrystalline body, or a part thereof (for example, a cutting edge portion of a cutting tool) is composed of a cBN polycrystalline body. Also good.
- a method for producing a cBN polycrystal according to an aspect of the present invention includes: Preparing a raw material composition comprising coarse hBN powder and non-hBN powder as starting materials; When the temperature is T (° C.) and the pressure is P (GPa), P ⁇ 0.0000132T 2 ⁇ 0.0583T + 71.793, T ⁇ 2200 and P ⁇ 25 And a step of directly converting the raw material composition into cBN and sintering at a temperature and pressure that satisfy the conditions:
- the average particle size of the coarse hBN powder is 1 ⁇ m or more
- the non-hBN powder is amorphous boron nitride or crystalline boron nitride other than hBN having at least one of a spherical shape, a tubular shape, a wall shape, and a square shape.
- the cBN polycrystalline body described in any one of the above [1] to [3] can be easily produced.
- directly converted means that the starting material is directly converted to cBN in the absence of a catalyst and no catalyst added.
- the above production method sinters the starting material simultaneously with this direct conversion, which is a production method to be called “direct conversion sintering”. Through this direct conversion sintering, the intergranular bond in the cBN polycrystal becomes strong.
- the content ratio of the non-hBN powder in the raw material composition is preferably 10% by volume or more and 95% by volume or less.
- a method for producing a cBN polycrystal according to an aspect of the present invention includes: Preparing a raw material composition comprising coarse hBN powder and fine hBN powder as starting materials; When the temperature is T (° C.) and the pressure is P (GPa), P ⁇ 0.0000132T 2 ⁇ 0.0583T + 71.793, T ⁇ 2200 and P ⁇ 25 And a step of directly converting the raw material composition into cBN and sintering at a temperature and pressure that satisfy the conditions:
- the average particle size of the coarse hBN powder is 1 ⁇ m or more,
- the average particle size of the fine hBN powder is less than 100 nm.
- the cBN polycrystalline body described in any one of the above [1] to [3] can be easily produced.
- the content ratio of the fine hBN powder in the raw material composition is preferably 10% by volume or more and 95% by volume or less.
- the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.
- the cBN polycrystal according to the present embodiment includes a mixed structure composed of fine cBN and at least one of plate-like cBN and coarse cBN.
- this cBN polycrystal includes not only fine cBN but also one of plate-like cBN and coarse cBN, or fine cBN, and also contains both plate-like cBN and coarse cBN.
- the cBN polycrystalline body of this embodiment includes such a mixed structure, it may contain inevitable impurities within a range showing the effect of this embodiment. Examples of inevitable impurities include nitrogen (N 2 ), hydrogen (H 2 ), oxygen (O 2 ), and the like.
- the cBN polycrystal according to this embodiment preferably has a normal pressure boron nitride content of 0.1% by volume or less. This is because if the atmospheric pressure type boron nitride is contained in an amount exceeding 0.1% by volume, the strength may be significantly reduced.
- the cBN polycrystal of the present embodiment does not substantially contain a binder, a sintering aid, a catalyst, and the like, which is one of the advantages of the cBN polycrystal of the present embodiment. This is because the disadvantages of including a binder or including a sintering aid or a catalyst can be eliminated as in the conventional cBN sintered body.
- the cBN polycrystalline body according to the present embodiment is a sintered body.
- the sintered body is usually intended to include a binder, the term “polycrystalline body” is used in this embodiment. ing.
- the cBN polycrystalline body of the present embodiment includes fine cBN and at least one of plate-like cBN and coarse cBN. These cBNs are firmly bonded to each other to form a dense mixed structure.
- “Fine cBN” means cBN crystals that are granular, have a particle size (maximum particle size) of 100 nm or less, and an average particle size of 70 nm or less. “Granular” means that the shape is spherical, spherical, or indefinite.
- Platinum-like cBN means a cBN crystal having a plate-like shape and an average major axis of 50 nm to 10,000 nm.
- Platinum means a shape different from “granular” and means a scale, flake, or flat plate.
- a plate having an aspect ratio of 3 or more obtained by dividing the major axis of cBN by the minor axis of cBN is defined as “plate shape”.
- Coarse cBN means cBN crystals that are granular, have a particle size (minimum particle size) of more than 100 nm, and an average particle size of 1000 nm or less.
- fine cBN, coarse cBN, and plate-like cBN can be classified using a scanning electron microscope (SEM).
- the surface of the cBN polycrystal is polished using an SEM, and the polished surface is observed at a magnification of 1000 to 100000 times to obtain an SEM image.
- cBN having an aspect ratio of 3 or more is defined as a plate-like cBN.
- those having a particle size of 100 nm or less are defined as fine cBN, and those having a particle size exceeding 100 nm are coarse particles.
- the average particle size of fine cBN can be determined by a cutting method using SEM. Specifically, a circle is drawn on the SEM image, and eight straight lines are drawn from the center of the circle to the outer circumference of the circle in a radial manner (so that the crossing angle between the straight lines is substantially equal).
- the observation magnification and the diameter of the circle are preferably set so that the number of fine cBN particles (crystal grains) placed on one straight line is about 10 to 50.
- the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average intercept length is 1.128.
- the numerical value obtained by multiplying the average particle size is defined as the average particle size (this method is based on the method of calculating the nominal particle size of the ASTM standard).
- the average particle size is more preferably obtained by using several SEM images and obtaining the average particle size by the method as described above for each image, and the average value of the average particle size is expressed as “cBN of fine particles”. It is preferable that the average particle size of
- the measurement by the method as described above may include the particle size of fine particles other than cBN (for example, crystal grains of wBN).
- the particle size of particles other than cBN is included.
- it is regarded as the average particle size of fine cBN.
- the average particle diameter of coarse cBN can also be determined by a cutting method using SEM, similarly to the average particle diameter of fine cBN. Also in this case, the observation magnification and the diameter of the circle are preferably set so that the number of coarse cBN particles (crystal grains) placed on one straight line is about 10 to 50.
- the average major axis of the plate-like cBN can be determined by a cutting method using SEM, similarly to the average grain size of fine cBN. Also in this case, the observation magnification and the diameter of the circle are preferably set so that the number of plate-like cBN particles (crystal grains) placed on one straight line is about 10 to 50.
- the present inventors can have a high hardness in the mixed structure, and when a fine crack occurs, the plate It was found that the shaped cBN and / or coarse-grained cBN has an effect of preventing the growth of cracks. Therefore, the cBN polycrystal of this embodiment becomes a tough polycrystal having excellent crack propagation resistance.
- the cBN polycrystal of the present embodiment has a mixed structure of not only fine cBN but also at least one of plate-like cBN and coarse cBN, so that it is a load when used for a tool or the like. It can be applied to a large purpose.
- the cBN polycrystal of this embodiment preferably contains any of fine cBN, plate-like cBN, and coarse cBN, and in this case, the toughness can be particularly excellent.
- the particle size (maximum particle size) of fine cBN is preferably 30 to 95 nm, more preferably 35 to 95 nm, and even more preferably 70 to 95 nm.
- the average particle size of fine cBN is preferably 70 nm or less, more preferably 54 nm or less. The smaller the average particle size of the fine cBN, the better the effect, that is, the point of increasing the hardness. Therefore, it is not necessary to limit the lower limit. However, the lower limit is 10 nm from the viewpoint of production efficiency.
- the average major axis of the plate-like cBN is preferably 300 to 2100 nm, more preferably 300 to 1100 nm, and further preferably 300 to 1000 nm.
- the average particle diameter of the coarse cBN is preferably 150 to 320 nm, and more preferably 160 to 320 nm.
- the content of cBN (the total amount of the above two or three cBN) in the cBN polycrystal is preferably 20% by volume or more. That is, the proportion of the mixed structure in the cBN polycrystal is preferably 20% by volume or more. In this case, the cBN polycrystal can be particularly excellent in crack propagation resistance that suppresses crack propagation.
- the content of the cBN in the cBN polycrystal is more preferably 92% by volume or more, and still more preferably 98% by volume or more.
- each content rate (volume%) of cBN, wBN mentioned later, and compression type hBN in a cBN polycrystal can be calculated
- the cBN polycrystal of this embodiment may contain wBN, and preferably contains 0.01% by volume or more of such wBN. Thereby, the structure of the polycrystalline body becomes denser.
- the upper limit of content of wBN contained is 80 volume% or less from a viewpoint of the characteristic of wBN.
- the presence of wBN has the effect of inhibiting crack growth and improving toughness, but since wBN is a metastable phase during the transition from hBN to cBN, it is less stable than cBN and has low wear resistance.
- a more preferable range of the content of wBN is 0.01 to 20% by volume, and a further preferable range is 0.01 to 1% by volume.
- the mixed structure composed of a plurality of cBN crystal grains and the plurality of wBN crystal grains form different regions.
- the cBN polycrystal of the present embodiment may contain compressed hBN, and preferably contains 0.01 to 0.5% by volume of such compressed hBN.
- compressed hBN When the compression type hBN exceeds 0.5% by volume, the stress concentration in the compression type hBN becomes large, and the strength may decrease. Therefore, when the cBN polycrystal further contains compressed hBN, the upper limit is 0.5% by volume.
- the volume content of the compressed hBN is more preferably 0.01 to 0.1% by volume, and particularly preferably 0.05 to 0.1% by volume.
- both wBN and compression type hBN may be contained in cBN polycrystal, it is preferable that either one of wBN and compression type hBN is contained. In this case, the toughness can be further improved.
- the cBN polycrystal of this embodiment is tough, it is suitable for use in cutting tools, anti-wear tools, grinding tools, and the like. That is, the cutting tool, the wear-resistant tool, and the grinding tool of the present embodiment are each provided with the above-described cBN polycrystal.
- Each of the above-mentioned tools may be entirely composed of cBN polycrystal, or only a part thereof (for example, a cutting edge portion in the case of a cutting tool) may be composed of cBN polycrystal. .
- Each tool may have a coating film formed on the surface thereof.
- the cutting tool includes a drill, an end mill, a cutting edge exchangeable cutting tip for a drill, a cutting edge exchangeable cutting tip for an end mill, a cutting edge exchangeable cutting tip for milling, a cutting edge exchangeable cutting tip for turning, a metal saw, a tooth
- Examples include cutting tools, reamers, taps, cutting tools, and the like.
- examples of the anti-wear tool include a die, a scriber, a scribing wheel, and a dresser.
- the method for producing a cBN polycrystal according to this embodiment is as follows.
- a step of preparing a raw material composition comprising coarse hBN powder as a starting material and non-hBN powder (hereinafter also referred to as “preparation step”);
- T ° C.
- P GPa
- a step hereinafter also referred to as “sintering step” of directly converting the raw material composition into cBN and sintering at a temperature and pressure satisfying the above conditions (hereinafter also referred to as “synthesis condition A”).
- synthesis condition A synthesis condition
- each of the coarse hBN powder and the non-hBN powder may be prepared in any manner. That is, each may be obtained by a conventionally known synthesis method, or a commercially available product may be obtained.
- the raw material composition can be prepared by mixing the obtained (obtained) powders.
- the “coarse hBN powder” is a powder made of boron nitride having a hexagonal crystal structure, and the average particle diameter is 1 ⁇ m or more.
- the average particle diameter of hBN powder which is a raw material (starting material) is an average particle diameter measured by the laser diffraction scattering method using a laser beam.
- an hBN powder having an average particle size larger than the average particle size (or average major axis) of various cBN in the obtained cBN polycrystal can be employed.
- the bond between hBN is cut and recombined via recombination of atoms, so the particle size of cBN after sintering is smaller than the particle size of the raw material (starting material). It is.
- the particle size of the raw material is small, there are many grain boundaries where there is no bond between the original hBN, and the particle size of cBN after conversion is small. Conversely, when the particle size of the raw material is large, the particle size of cBN increases.
- the upper limit value of the average particle size of the coarse hBN powder is preferably 10 ⁇ m, more preferably 8 ⁇ m, in view of the average particle size (or average major axis) of cBN in the target cBN polycrystal.
- “Non-hBN powder” is a powder made of boron nitride having no hexagonal crystal structure, and is made of amorphous boron nitride, or at least one of a spherical shape, a tubular shape, a wall shape, and an angular shape. It is a powder made of crystalline boron nitride.
- amorphous boron nitride is amorphous boron nitride.
- crystalline boron nitride include nanocrystalline boron nitride.
- nanocrystalline boron nitride boron nitride nano-onion having an onion-like (spherical) shape, boron nitride nanotube having a tubular shape, boron nitride nanowall having a wall-like shape, nitriding having an angular shape
- Examples include boron nanohorns.
- the size (region) of the non-hBN powder is not particularly limited, but preferably has a tendency to be smaller than the average particle size of the coarse hBN powder.
- the diameter of the tubular boron nitride nanotube is preferably 1 to 100 nm, and the particle size of the spherical boron nitride nano-onion is preferably 5 to 50 nm.
- the content ratio of the non-hBN powder in the raw material composition prepared in the preparation step is preferably 10 to 95% by volume, more preferably 20 to 50% by volume, and further preferably 10 to 50% by volume.
- both the coarse-grained hBN powder and the non-hBN powder can be present in a well-balanced manner in the raw material composition, so that a cBN polycrystal having a mixed structure composed of the above-described two or three kinds of cBN can be easily obtained. Can get to.
- fine hBN powder may be used instead of non-hBN powder.
- the fine hBN powder is different from the coarse hBN powder in that the average particle size is less than 100 nm.
- the coarse hBN powder and the fine hBN powder are aggregates of particles each having a particle size distribution, but since the average particle sizes of the two particles are sufficiently separated from each other, the overlapping region of both particle size distributions. There is no.
- the average particle size of the fine hBN powder one having a particle size larger than the average particle size of the fine cBN in the obtained cBN polycrystal can be adopted.
- the grain size of cBN after sintering is larger than the grain size of the raw material (starting material) in order to break the bond between hBN and recombine via atomic recombination when transitioning from hBN to cBN. This is because is smaller. Therefore, the particle size of the fine hBN powder is less than 100 nm, and the lower limit is 5 nm for manufacturing reasons.
- the content of fine hBN powder in the raw material composition prepared in the preparation step is preferably 10 to 95% by volume, more preferably 50 to 95% by volume.
- both the coarse hBN powder and the fine hBN powder can be present in the raw material composition in a well-balanced manner, so that the cBN polycrystal having a mixed structure composed of the above-described two kinds or three kinds of cBN can be easily obtained. Can get to.
- the temperature T (° C.) in the synthesis condition A is not particularly limited as long as it is a temperature at which the cBN polycrystal is obtained, and it is not necessary to define the lower limit thereof.
- This temperature T (° C.) is more preferably 1300 to 2200 ° C.
- the pressure P (GPa) in the synthesis condition A is not particularly limited as long as it is a pressure at which a cBN polycrystal is obtained, and it is not necessary to define the lower limit value.
- This pressure P (GPa) is more preferably 8 to 20 GPa.
- the application time of the above temperature and pressure in the sintering process is 5 to 20 minutes. If it is shorter than 5 minutes, the sintering is insufficient, and even if it is longer than 20 minutes, there is no difference in the sintered state, which is economically disadvantageous. A more preferable application time is 10 to 20 minutes.
- the sintering step is a step of converting the raw material composition into cBN and sintering, but the conversion of the raw material composition into cBN is performed without using a sintering aid or a catalyst. Boron nitride) is converted directly to cBN alone, and this conversion is usually performed simultaneously with sintering.
- the above-described production method can produce a tough cBN polycrystal according to the present embodiment, that is, a tough cBN polycrystal containing fine cBN and plate-like cBN and / or coarse cBN.
- Examples 1 to 10 and Comparative Examples 1 to 4> CBN polycrystals according to Examples 1 to 10 were produced by the following method. First, in each Example, the starting material was prepared (preparation process). As starting materials, coarse hBN powder, fine hBN powder, and non-hBN powder were prepared, and the raw material composition used for each example was changed.
- the raw material composition prepared above is put into a capsule made of a refractory metal, and held for 20 minutes at the temperature and pressure described in Table 1 (column of “Synthesis Conditions”) using an ultrahigh pressure and high temperature generator.
- the raw material composition was converted to cBN and sintered (sintering process). Thereby, a cBN polycrystal was obtained.
- “coarse hBN powder” means hBN powder having an average particle size of 1 ⁇ m
- “fine particle hBN powder” means hBN powder having an average particle size of less than 100 nm
- “hBN powder” means boron nitride powder other than hBN (specifically, boron nitride powder made of nanocrystalline material).
- the average particle size of the coarse hBN and / or fine hBN used in each example and each comparative example is described, and in the “non-hBN” column, each The type of nanocrystalline as non-hBN used in Examples and Comparative Examples is shown.
- the “content ratio (volume%)” column indicates the content ratio of the powder other than the coarse hBN powder in the raw material composition (that is, the content ratio of the fine hBN powder or the non-hBN powder).
- the synthesis conditions (temperature and pressure) in the sintering process satisfy the synthesis condition A.
- synthesis condition A is satisfied, but differs from the examples in that the raw material composition contains neither fine hBN nor non-hBN.
- the production methods of Comparative Examples 2 to 4 satisfy the synthesis condition A, but differ from the examples in that the raw material composition does not contain coarse particles hBN.
- compositions and particle sizes of the cBN polycrystals of Examples 1 to 10 and Comparative Examples 1 to 4 obtained as described above were measured by the following methods, and a cutting test was performed using each cBN polycrystal. The wear resistance and fracture resistance of each cBN polycrystal were evaluated.
- Cubic boron nitride (cBN), compressed hexagonal boron nitride (compressed hBN), and wurtzite boron nitride (wBN) contained in each cBN polycrystal are identified by an X-ray diffractometer, and each The content ratio was calculated.
- the X-ray source of this apparatus was Cu and was a K ⁇ ray having a wavelength of 1.54 mm. The results are shown in Table 2.
- the average particle size of fine cBN contained in each cBN polycrystal was determined by a cutting method using SEM.
- the surface of the cBN polycrystal was polished using SEM, and the polished surface was observed to obtain an SEM image. Then, in the SEM image, among the cBN, those having an aspect ratio of 3 or more were determined to be plate-like cBN. Next, among the remaining cBN, those having a particle size of 100 nm or less were determined as fine cBN, and those having a particle size exceeding 100 nm were determined as coarse cBN.
- a circle was drawn on the SEM image, and eight straight lines were drawn from the center of the circle to the outer circumference of the circle in a radial pattern (so that the crossing angle between the straight lines was almost equal).
- the observation magnification and the circle diameter were set so that the number of fine cBN particles (crystal grains) placed on one straight line was about 10 to 50.
- the number of crossing the grain boundary of fine cBN is counted, and the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average intercept length is 1.128.
- the numerical value obtained by multiplying was defined as the average particle size of the fine cBN particles. Further, among the observed fine cBN particles, the largest particle size of the cBN particles was taken as the maximum particle size of the fine cBN particles.
- the magnification of the SEM image was 30000 times. The reason for this is that at a magnification less than this, the number of grains in the circle increases, making it difficult to see the grain boundaries, causing counting errors, and increasing the possibility of including a plate-like structure when drawing a line. It is. Further, when the magnification is higher than this, the number of grains in the circle is too small to calculate an accurate average particle diameter.
- the magnification of the SEM image was 10,000. The reason is the same as the reason for calculating fine cBN particles.
- the magnification of the SEM image was 10,000. The reason is the same as the reason for calculating fine cBN particles.
- Examples 1 to 4 and 6 to 10 were confirmed to contain 1 to 80% by volume of wBN.
- the cBN polycrystals of Examples 1, 3, 4, 7, 8, and 10 had a mixed structure composed of fine cBN crystals, coarse cBN crystals, and plate-like cBN crystals.
- the cBN polycrystals of Examples 2, 6 and 9 had a mixed structure consisting of fine cBN crystals and plate-like cBN crystals.
- the cBN polycrystal of Example 5 had a mixed structure composed of fine cBN crystals and coarse cBN crystals.
- Comparative Examples 1 to 4 did not have a mixed structure.
- Cutting method Wet cutting Work material: Round bar of sintered alloy SMF4040 (six vertical grooves along the axial direction are formed on the outer peripheral surface at equal intervals) Cutting speed: 100 mm / min Cutting depth: 0.2mm Feed: 0.1 mm / rev. Evaluation method: Amount of flank wear when cutting 2 km and presence or absence of defects.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Abstract
優れた靱性を有する立方晶窒化ホウ素多結晶体を提供することを目的とする。粒状であって最大粒径が100nm以下であり、かつ平均粒径が70nm以下の微粒の立方晶窒化ホウ素と、板状であって平均長径が50nm以上10000nm以下の板状の立方晶窒化ホウ素、および、粒状であって最小粒径が100nmを超え、かつ平均粒径が1000nm以下の粗粒の立方晶窒化ホウ素の少なくとも一方と、を含む立方晶窒化ホウ素多結晶体である。
Description
本発明は、立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法に関するものである。
立方晶窒化ホウ素はダイヤモンドに次ぐ硬度を有し、熱的安定性および化学的安定性にも優れる。また、鉄系材料に対しては、ダイヤモンドよりも安定なため、鉄系材料の加工工具として立方晶窒化ホウ素焼結体が用いられてきた。
しかし、この立方晶窒化ホウ素焼結体には、10体積%以上40体積%以下(10~40体積%)程度のバインダーが含まれており、このバインダーが、焼結体の強度、耐熱性、熱拡散性を低下させる原因となっていた。そのため、特に鉄系材料を高速で切削加工する場合に、熱負荷が大きくなり、刃先の欠損や亀裂が生じやすく工具の寿命を短くしていた。
この問題を解決する手法として、バインダーを用いずに、触媒を用いて立方晶窒化ホウ素焼結体を製造する方法がある。この方法では、六方晶窒化ホウ素を原料とし、ホウ窒化マグネシウム(Mg3BN3)等を触媒として反応焼結させる。この方法で得られた立方晶窒化ホウ素焼結体は、バインダーを含まないため、立方晶窒化ホウ素同士が強く結合しており、熱伝導率が高くなる。そのため、ヒートシンク材やTAB(Tape Automated Bonding)ボンディングツールなどに用いられている。しかし、この焼結体の中には触媒が少量残留しているため、熱を加えると触媒と立方晶窒化ホウ素との熱膨張差による微細クラックが入りやすく、切削工具等には向かない。また、粒径が10μm前後と大きいため、熱伝導率が高いものの、強度は弱く、負荷の大きい切削用途等には耐えられない。
一方、六方晶窒化ホウ素等の常圧型窒化ホウ素を、超高圧高温下で触媒を用いず、直接立方晶窒化ホウ素へ変換させると同時に焼結させること(直接変換焼結法)によっても立方晶窒化ホウ素焼結体は得られる。たとえば、特開昭47-034099号公報(特許文献1)や特開平03-159964号公報(特許文献2)に、六方晶窒化ホウ素を超高圧高温下で立方晶窒化ホウ素に変換させて立方晶窒化ホウ素焼結体を得る方法が示されている。また、熱分解窒化ホウ素を原料とし、立方晶窒化ホウ素焼結体を得る方法がある。この種の方法が、例えば特開昭54-033510号公報(特許文献3)や特開平08-047801号公報(特許文献4)に示されている。この方法では7GPa、2100℃以上の条件が必要である。
上記の条件よりもマイルドな条件で立方晶窒化ホウ素焼結体を得る方法が、特公昭49-027518号公報(特許文献5)および特開平11-246271号公報(特許文献6)に記載されている。
特許文献5は、圧力6GPa、1100℃という条件で立方晶窒化ホウ素焼結体を得る方法を開示している。この方法では原料である六方晶窒化ホウ素の粒子を3μm以下にするため、六方晶窒化ホウ素が数質量%程度の酸化ホウ素不純物や吸着ガスを含む。したがって、これらの不純物や吸着ガスの影響により、焼結が十分に進行せず、また、酸化物を含むために硬度、強度、耐熱性が低くなり、切削工具および耐摩工具等として用いることができない。
特許文献6は、上記の問題を解決するために、低結晶性の六方晶窒化ホウ素を原料とし、6~7GPa、1550~2100℃の条件で合成する方法を開示している。また、この方法で合成された立方晶窒化ホウ素多結晶体では結晶粒径が0.1~1μm程度であることが開示されている。
しかしながら、上記方法で得られた立方晶窒化ホウ素多結晶体において、立方晶窒化ホウ素結晶の粒径は合成温度により決まり、通常、立方晶窒化ホウ素結晶の粒径が平均粒径±0.2μm程度に揃った均質な組織となる。このように、上記方法で得られた立方晶窒化ホウ素多結晶体は均質な組織を有するため、微細なクラックが生じた場合に、クラックが進展しやすく、脆いという欠点がある。
上記のような課題に鑑み、本開示は、優れた靱性を有する立方晶窒化ホウ素多結晶体を提供することを目的とする。
本発明の一態様に係る立方晶窒化ホウ素(cBN;cubic Boron Nitride)多結晶体は、粒状であって最大粒径が100nm以下であり、かつ平均粒径が70nm以下の微粒のcBNと、板状であって平均長径が50nm以上10000nm以下の板状のcBN、および、粒状であって最小粒径が100nmを超え、かつ平均粒径が1000nm以下の粗粒のcBNの少なくとも一方と、を含む。
本発明の一態様に係るcBN多結晶体の製造方法は、出発物質として粗粒の六方晶窒化ホウ素(hBN;hexagonal Boron Nitride)粉末と、非六方晶窒化ホウ素(非hBN)粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、非hBN粉末は、非晶質の窒化ホウ素粉末、または、形状が球状、管状、壁状および角状の少なくともいずれかである六方晶以外の結晶質の窒化ホウ素粉末である。
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、非hBN粉末は、非晶質の窒化ホウ素粉末、または、形状が球状、管状、壁状および角状の少なくともいずれかである六方晶以外の結晶質の窒化ホウ素粉末である。
本発明の一態様に係るcBN多結晶体の製造方法は、出発物質として粗粒のhBN粉末と、微粒のhBN粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
微粒のhBN粉末の平均粒径は100nm未満である。
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
微粒のhBN粉末の平均粒径は100nm未満である。
上記によれば、cBN多結晶体は、優れた靱性を有することができる。
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
最初に本発明の実施態様を列記して説明する。
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、それぞれ異なる特徴を有する数種のhBN粉末を含む原料組成物を、高温高圧下において直接的にcBNに変換することで、強靭なcBN多結晶体が得られることを見出した。
〔1〕本発明の一態様に係るcBN多結晶体は、粒状であって最大粒径が100nm以下であり、かつ平均粒径が70nm以下の微粒の立方晶窒化ホウ素と、板状であって平均長径が50nm以上10000nm以下の板状の立方晶窒化ホウ素、および、粒状であって最小粒径が100nmを超え、かつ平均粒径が1000nm以下の粗粒の立方晶窒化ホウ素の少なくとも一方と、を含むcBN多結晶体である。
上記cBN多結晶体によれば、板状のcBNおよび/または粗粒のcBNが亀裂の進展を阻止するため、強靭な多結晶体となる。
〔2〕上記cBN多結晶体は、ウルツ鉱型窒化ホウ素(以下、「wBN」とも記す)をさらに有し、wBNの含有率が0.01体積%以上80体積%以下であることが好ましい。これにより、多結晶体の組織をより緻密なものとすることができる。
〔3〕上記cBN多結晶体は、圧縮型六方晶窒化ホウ素(以下、「圧縮型hBN」とも記す)をさらに有し、圧縮型hBNの含有率が0.01体積%以上0.5体積%以下であることが好ましい。これにより、亀裂の進展を阻止し靱性を向上させることができる。
なお「圧縮型hBN」とは、通常のhBNと結晶構造が類似し、c軸方向の面間隔が通常のhBNの面間隔(0.333nm)よりも小さいものをいう。
〔4〕本発明の一態様に係る切削工具は、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を備える。
この切削工具は、上述したcBN多結晶体の性質に基づき、優れた靱性を有する。
〔5〕本発明の一態様に係る耐摩工具は、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を備える。
〔5〕本発明の一態様に係る耐摩工具は、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を備える。
この耐摩工具は、上述したcBN多結晶体の性質に基づき、優れた靱性を有する。
〔6〕本発明の一態様に係る研削工具は、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を備える。
〔6〕本発明の一態様に係る研削工具は、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を備える。
この研削工具は、上述したcBN多結晶体の性質に基づき、優れた靱性を有する。
なお、これらの工具は、工具全体がcBN多結晶体から構成されるものであってもよいし、その一部(たとえば切削工具の刃先部)がcBN多結晶体から構成されるものであってもよい。
なお、これらの工具は、工具全体がcBN多結晶体から構成されるものであってもよいし、その一部(たとえば切削工具の刃先部)がcBN多結晶体から構成されるものであってもよい。
〔7〕本発明の一態様に係るcBN多結晶体の製造方法は、
出発物質として粗粒のhBN粉末と、非hBN粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
非hBN粉末は、非晶質の窒化ホウ素、または、形状が球状、管状、壁状および角状の少なくともいずれかであるhBN以外の結晶質の窒化ホウ素である。
出発物質として粗粒のhBN粉末と、非hBN粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
非hBN粉末は、非晶質の窒化ホウ素、または、形状が球状、管状、壁状および角状の少なくともいずれかであるhBN以外の結晶質の窒化ホウ素である。
この製造方法によれば、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を容易に製造することができる。
なお「直接変換される」とは、焼結助剤および触媒が添加されていない無触媒の下で出発物質がcBNに直接的に変換されることを意味する。上記製造方法は、この直接変換と同時に出発物質を焼結するものであり、いわば「直接変換焼結」ともいうべき製造方法である。この直接変換焼結を経ることにより、cBN多結晶体における粒間結合は強固なものとなる。
〔8〕上記製造方法において、原料組成物における非hBN粉末の含有割合は、10体積%以上95体積%以下であることが好ましい。これにより、より靱性に優れたcBN多結晶体を製造することができる。
〔9〕本発明の一態様に係るcBN多結晶体の製造方法は、
出発物質として粗粒のhBN粉末と、微粒のhBN粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
微粒のhBN粉末の平均粒径は100nm未満である。
出発物質として粗粒のhBN粉末と、微粒のhBN粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程と、を備え、
粗粒のhBN粉末の平均粒径は1μm以上であり、
微粒のhBN粉末の平均粒径は100nm未満である。
この製造方法によれば、上記〔1〕~〔3〕のいずれか1つに記したcBN多結晶体を容易に製造することができる。
〔10〕上記製造方法において、原料組成物における微粒のhBN粉末の含有割合は、10体積%以上95体積%以下であることが好ましい。これにより、より靱性に優れたcBN多結晶体を製造することができる。
[本発明の実施形態の詳細]
以下、本発明の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。
以下、本発明の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。
<立方晶窒化ホウ素多結晶体(cBN多結晶体)>
本実施形態に係るcBN多結晶体は、微粒のcBNと、板状のcBNおよび粗粒のcBNの少なくともいずれか一方と、からなる混合組織を含む。つまりこのcBN多結晶体は、微粒のcBNの他、板状のcBNおよび粗粒のcBNの一方を含むもの、または微粒のcBNの他、板状のcBNおよび粗粒のcBNの両方を含むものである。本実施形態のcBN多結晶体は、このような混合組織を含む限り、本実施形態の効果を示す範囲において不可避不純物を含んでいても差し支えない。不可避不純物としては、たとえば窒素(N2)、水素(H2)、酸素(O2)などを挙げることができる。
本実施形態に係るcBN多結晶体は、微粒のcBNと、板状のcBNおよび粗粒のcBNの少なくともいずれか一方と、からなる混合組織を含む。つまりこのcBN多結晶体は、微粒のcBNの他、板状のcBNおよび粗粒のcBNの一方を含むもの、または微粒のcBNの他、板状のcBNおよび粗粒のcBNの両方を含むものである。本実施形態のcBN多結晶体は、このような混合組織を含む限り、本実施形態の効果を示す範囲において不可避不純物を含んでいても差し支えない。不可避不純物としては、たとえば窒素(N2)、水素(H2)、酸素(O2)などを挙げることができる。
また、本実施形態に係るcBN多結晶体は、常圧型窒化ホウ素の含有率が0.1体積%以下であることが好ましい。常圧型窒化ホウ素を0.1体積%を超えて含有すると、強度が大幅に低下する可能性があるためである。
本実施形態のcBN多結晶体は、実質的にバインダー、焼結助剤、触媒などを含んでおらず、これは本実施形態のcBN多結晶体の有利な点の一つである。なぜなら、従来のcBN焼結体のように、バインダーを含んだり、焼結助剤や触媒を含むことによるデメリットを解消できるからである。
なお、本実施形態に係るcBN多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本実施形態では「多結晶体」という用語を用いている。
(立方晶窒化ホウ素(cBN))
本実施形態のcBN多結晶体は、上述のように、微粒のcBNと、板状のcBNおよび粗粒のcBNの少なくともいずれか一方とを含む。これらのcBNは互いに強固に結合して緻密な混合組織を構成する。
本実施形態のcBN多結晶体は、上述のように、微粒のcBNと、板状のcBNおよび粗粒のcBNの少なくともいずれか一方とを含む。これらのcBNは互いに強固に結合して緻密な混合組織を構成する。
「微粒のcBN」とは、粒状であり、粒径(最大粒径)が100nm以下であり、かつ平均粒径が70nm以下のcBNの結晶を意味する。「粒状」とは、その形状が真球状、球状、不定形状のものを意味する。
「板状のcBN」とは、板状であり、その平均長径が50nm以上10000nm以下であるcBNの結晶を意味する。「板状」とは、「粒状」とは異なる形状であって、鱗片状、フレーク状、平板状のものを意味する。本明細書では、cBNの長径をcBNの短径で割ったアスペクト比が3以上のものを「板状」とする。
「粗粒のcBN」とは、粒状であり、粒径(最小粒径)が100nmを超え、かつ平均粒径が1000nm以下のcBNの結晶を意味する。
cBN多結晶体に含まれるcBNにおいて、微粒のcBN、粗粒のcBNおよび板状のcBNの分類は、走査電子顕微鏡(SEM;Scanning Electron Microscope)を用いて行うことができる。
具体的には、まずSEMを用いてcBN多結晶体の表面を研磨し、研磨された面を1000~100000倍の倍率で観察し、SEM画像を得る。そして、SEM画像中において、cBNのうち、アスペクト比が3以上のものを板状のcBNとする。次に、板状のcBNと認定したcBN以外のcBN(すなわちアスペクト比が3未満のもの)のうち、粒径が100nm以下のものを微粒のcBNとし、粒径が100nmを超えるものを粗粒のcBNとする。
また微粒のcBNの平均粒径は、SEMを用いた切断法により求めることができる。具体的には、上記のSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引く。
この場合、上記の観察倍率および円の直径は、上記の直線1本あたりに載る微粒のcBN粒子(結晶粒)の個数が10~50個程度になるように設定することが好ましい。
引続き、上記の各直線毎に微粒のcBN粒子の結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とする(この方法は、ASTM規格の公称粒径を算出する方法に準じたものである)。なお、このような平均粒径は、より好ましくは数枚のSEM画像を用いて、各画像毎に上記のような方法で平均粒径を求め、その平均粒径の平均値を「微粒のcBNの平均粒径」とすることが好適である。
また、上記のような方法による測定では、cBN以外の微粒の粒子(たとえばwBNの結晶粒)の粒径を含む可能性があるが、このようにcBN以外の粒子の粒径を含む場合であっても、微粒のcBNの平均粒径とみなすものとする。
粗粒のcBNの平均粒径も、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めることができる。この場合にも、上記の観察倍率および円の直径は、上記の直線1本あたりに載る粗粒のcBN粒子(結晶粒)の個数が10~50個程度になるように設定することが好ましい。
板状のcBNの平均長径も、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めることができる。この場合にも、上記の観察倍率および円の直径は、上記の直線1本あたりに載る板状のcBN粒子(結晶粒)の個数が10~50個程度になるように設定することが好ましい。
本発明者らは、上記の2種または3種のcBNからなる混合組織を有するcBN多結晶体においては、混合組織が高い硬度を有することができるとともに、微細なクラックが生じた際に、板状のcBNおよび/または粗粒のcBNがクラックの進展を阻止する効果があることを知見した。したがって、本実施形態のcBN多結晶体は耐亀裂伝搬性に優れた強靭な多結晶体となる。
本実施形態のcBN多結晶体は、このように微粒のcBNだけでなく、板状のcBNおよび粗粒のcBNの少なくとも一方を含むcBNの混合組織を有することにより、工具等に用いる場合に負荷の大きな用途などに適用することができるものとなる。特に、本実施形態のcBN多結晶体は、微粒のcBN、板状のcBNおよび粗粒のcBNのいずれをも含むことが好ましく、この場合、特に靱性に優れることができる。
本実施形態のcBN多結晶体において、微粒のcBNの粒径(最大粒径)は30~95nm以下が好ましく、35~95nmがより好ましく、70~95nmがさらに好ましい。また、微粒のcBNの平均粒径は70nm以下が好ましく、54nm以下がより好ましい。微粒のcBNの平均粒径は、小さいほど上記効果、すなわち硬度を高める点で好ましいため、その下限をあえて限定する必要はない。ただし、製造効率の観点からその下限は10nmである。
本実施形態のcBN多結晶体において、板状のcBNの平均長径は300~2100nmが好ましく、300~1100nmがより好ましく、300~1000nmがさらに好ましい。
本実施形態のcBN多結晶体において、粗粒のcBNの平均粒径は150~320nmであることが好ましく、160~320nmであることがより好ましい。
またcBN多結晶体におけるcBN(上記2種または上記3種のcBNの合計量)の含有率は20体積%以上であることが好ましい。つまり、cBN多結晶体において混合組織が占める割合は20体積%以上であることが好ましい。この場合、cBN多結晶体は亀裂進展を抑制する耐亀裂伝搬性に特に優れることができる。cBN多結晶体における上記cBNの含有率は92体積%以上がより好ましく、98体積%以上がさらに好ましい。
なお、cBN多結晶体中におけるcBN、後述するwBN、圧縮型hBNのそれぞれの含有割合(体積%)は、従来公知の方法、たとえばX線回折法により求めることができる。
(ウルツ鉱型窒化ホウ素(wBN))
本実施形態のcBN多結晶体は、wBNを含んでいても良く、このようなwBNを0.01体積%以上含むことが好ましい。これにより、多結晶体の組織がより緻密なものとなる。なお、含有されるwBNの含有量の上限は、wBNの特性の観点から80体積%以下である。wBNが存在すると亀裂進展を阻害し靱性を向上させる効果があるが、wBNはhBNからcBNへの転移の間の準安定相であるため、cBNよりも安定性に劣り、耐摩耗性が低いという特性を有する。wBNの含有量のより好ましい範囲は、0.01~20体積%であり、さらに好ましい範囲は、0.01~1体積%である。
本実施形態のcBN多結晶体は、wBNを含んでいても良く、このようなwBNを0.01体積%以上含むことが好ましい。これにより、多結晶体の組織がより緻密なものとなる。なお、含有されるwBNの含有量の上限は、wBNの特性の観点から80体積%以下である。wBNが存在すると亀裂進展を阻害し靱性を向上させる効果があるが、wBNはhBNからcBNへの転移の間の準安定相であるため、cBNよりも安定性に劣り、耐摩耗性が低いという特性を有する。wBNの含有量のより好ましい範囲は、0.01~20体積%であり、さらに好ましい範囲は、0.01~1体積%である。
cBN多結晶体がwBNを含む場合、上述のように、複数のcBNの結晶粒からなる混合組織と複数のwBNの結晶粒とが、互いに異なった領域を形成する。そして、cBN同士は混合組織として強固に結合し、wBN同士もまた強固に結合し、さらにcBNとwBNともまた強固に結合するため、結果的に緻密な組織を有することになる。
(圧縮型六方晶窒化ホウ素(圧縮型hBN))
本実施形態のcBN多結晶体は、圧縮型hBNを含んでいても良く、このような圧縮型hBNを0.01~0.5体積%含むことが好ましい。これにより、亀裂の進展を阻止し靭性を向上させる作用をもたらすことができる。また圧縮型hBNの存在を許容することで、広い温度範囲で焼結が可能となり、生産性が向上する。ただし圧縮型hBNが0.5体積%を超えると、圧縮型hBNでの応力集中が大きくなり強度が低下する場合もある。したがってcBN多結晶体が圧縮型hBNをさらに含む場合、その上限は0.5体積%である。圧縮型hBNの体積含有率は、より好ましくは0.01~0.1体積%であり、特に好ましくは0.05~0.1体積%である。
本実施形態のcBN多結晶体は、圧縮型hBNを含んでいても良く、このような圧縮型hBNを0.01~0.5体積%含むことが好ましい。これにより、亀裂の進展を阻止し靭性を向上させる作用をもたらすことができる。また圧縮型hBNの存在を許容することで、広い温度範囲で焼結が可能となり、生産性が向上する。ただし圧縮型hBNが0.5体積%を超えると、圧縮型hBNでの応力集中が大きくなり強度が低下する場合もある。したがってcBN多結晶体が圧縮型hBNをさらに含む場合、その上限は0.5体積%である。圧縮型hBNの体積含有率は、より好ましくは0.01~0.1体積%であり、特に好ましくは0.05~0.1体積%である。
なお、cBN多結晶体中にwBNおよび圧縮型hBNのいずれもが含まれていてもよいが、wBNおよび圧縮型hBNのいずれか一方が含まれていることが好ましい。この場合、より靱性に優れることができる。
<用途>
本実施形態のcBN多結晶体は、強靭であるため、切削工具、耐摩工具、研削工具などに用いることが好適となる。すなわち、本実施形態の切削工具、耐摩工具、および研削工具は、それぞれ上記のcBN多結晶体を備えたものである。
本実施形態のcBN多結晶体は、強靭であるため、切削工具、耐摩工具、研削工具などに用いることが好適となる。すなわち、本実施形態の切削工具、耐摩工具、および研削工具は、それぞれ上記のcBN多結晶体を備えたものである。
なお、上記の各工具は、その全体がcBN多結晶体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみがcBN多結晶体で構成されていても良い。また、各工具は、その表面にコーティング膜が形成されていても良い。
ここで、上記切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイト等を挙げることができる。
また、上記耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。
また、上記研削工具としては、研削砥石などを挙げることができる。
<製造方法>
本実施形態に係るcBN多結晶体の製造方法は、
出発物質としての粗粒のhBN粉末と、非hBN粉末とからなる原料組成物を準備する工程(以下「準備工程」とも記す)と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件(以下「合成条件A」ともいう)を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程(以下「焼結工程」とも記す)とを備える。以下、各工程について説明する。
<製造方法>
本実施形態に係るcBN多結晶体の製造方法は、
出発物質としての粗粒のhBN粉末と、非hBN粉末とからなる原料組成物を準備する工程(以下「準備工程」とも記す)と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件(以下「合成条件A」ともいう)を満たす温度および圧力において、原料組成物をcBNに直接変換させ、かつ焼結させる工程(以下「焼結工程」とも記す)とを備える。以下、各工程について説明する。
(準備工程)
準備工程において、粗粒のhBN粉末および非hBN粉末のそれぞれは、どのように準備されてもよい。すなわちそれぞれは従来公知の合成法により得たものでもよく、市販のものを入手してもよい。それぞれ得た(入手した)粉末を混合することにより、原料組成物を調製することができる。
準備工程において、粗粒のhBN粉末および非hBN粉末のそれぞれは、どのように準備されてもよい。すなわちそれぞれは従来公知の合成法により得たものでもよく、市販のものを入手してもよい。それぞれ得た(入手した)粉末を混合することにより、原料組成物を調製することができる。
「粗粒のhBN粉末」は、六方晶の結晶構造を有する窒化ホウ素よりなる粉末であってその平均粒径は1μm以上である。なお、原料(出発物質)であるhBN粉末の平均粒径は、レーザー光を利用したレーザー回折散乱法により測定された平均粒径である。
ここで、粗粒のhBN粉末としては、得られるcBN多結晶体における各種cBNの平均粒径(または平均長径)よりも大きな平均粒径を有するhBN粉末を採用することができる。hBNからcBNへと転移する際にhBN間の結合を切って、原子の組み換えを経て再結合するために原料(出発物質)の粒径よりも焼結後のcBNの粒径のほうが小さくなるためである。ただし、原料の粒径が小さいと本来のhBN間の結合が無い粒界が多くなるため、変換後のcBNの粒径は小さくなる。逆に原料の粒径が大きいとcBNの粒径が大きくなる。
したがって、粗粒のhBN粉末の平均粒径の上限値は、目的とするcBN多結晶体中のcBNの平均粒径(または平均長径)に鑑み、10μmが好ましく、8μmがより好ましい。「非hBN粉末」は、六方晶の結晶構造を有さない窒化ホウ素よりなる粉末であり、非晶質の窒化ホウ素よりなる粉末、または形状が球状、管状、壁状および角状の少なくともいずれかである結晶質の窒化ホウ素よりなる粉末である。
非晶質の窒化ホウ素としては、アモルファスの窒化ホウ素を挙げることができる。また結晶質の窒化ホウ素としては、ナノ結晶質の窒化ホウ素を挙げることができる。ナノ結晶質の窒化ホウ素としては、オニオン状(球状)の形状を有する窒化ホウ素ナノオニオン、管状の形状を有する窒化ホウ素ナノチューブ、壁状の形状を有する窒化ホウ素ナノウォール、角状の形状を有する窒化ホウ素ナノホーン等がある。
上記非hBN粉末の大きさ(領域)は特に制限されないが、粗粒のhBN粉末の平均粒径に対して小さい傾向にあることが好ましい。たとえば、管状の窒化ホウ素ナノチューブの直径は1~100nmであることが好ましく、球状の窒化ホウ素ナノオニオンの粒径は5~50nmであることが好ましい。
準備工程で準備される原料組成物における非hBN粉末の含有割合は、10~95体積%が好ましく、20~50体積%がより好ましく、10~50体積%がさらに好ましい。これにより、原料組成物中に粗粒hBN粉末と非hBN粉末の両者がバランスよく存在することができ、もって、上述の2種または3種のcBNからなる混合組織を有するcBN多結晶体を容易に得ることができる。
また、準備工程において、非hBN粉末の代わりに微粒のhBN粉末を用いてもよい。
微粒のhBN粉末は、平均粒径が100nm未満である点で、粗粒のhBN粉末と異なる。なお、粗粒のhBN粉末および微粒のhBN粉末とは、それぞれ粒度分布を有する粒子の集合体であるが、両者の平均粒径が十分に離れていることから、両者の粒度分布のうち重なる領域はない。
微粒のhBN粉末は、平均粒径が100nm未満である点で、粗粒のhBN粉末と異なる。なお、粗粒のhBN粉末および微粒のhBN粉末とは、それぞれ粒度分布を有する粒子の集合体であるが、両者の平均粒径が十分に離れていることから、両者の粒度分布のうち重なる領域はない。
ここで、微粒のhBN粉末の平均粒径は、得られるcBN多結晶体における微粒のcBNの平均粒径よりも大きな粒径を有するものを採用することができる。上述のように、hBNからcBNへと転移する際にhBN間の結合を切って、原子の組み換えを経て再結合するために原料(出発物質)の粒径よりも焼結後のcBNの粒径のほうが小さくなるためである。したがって、上記微粒のhBN粉末の粒径は100nm未満とし、製造的理由からその下限値は5nmである。
準備工程で準備される原料組成物における微粒のhBN粉末の含有割合は、10~95体積%が好ましく、50~95体積%がより好ましい。これにより、原料組成物中に粗粒hBN粉末と微粒hBN粉末の両者がバランスよく存在することができ、もって、上述の2種または3種のcBNからなる混合組織を有するcBN多結晶体を容易に得ることができる。
(焼結工程)
焼結工程において、圧力P(GPa)および温度T(℃)は、高温側では粒成長、低温側では未変換hBNの残留などの問題が発生するという理由から、上記の合成条件Aを満たすことが必要である。
焼結工程において、圧力P(GPa)および温度T(℃)は、高温側では粒成長、低温側では未変換hBNの残留などの問題が発生するという理由から、上記の合成条件Aを満たすことが必要である。
ここで、合成条件Aにおける温度T(℃)は、cBN多結晶体が得られる温度であれば特に限定はなく、その下限値を規定する必要はない。この温度T(℃)は、より好ましくは1300~2200℃である。
また、合成条件Aにおける圧力P(GPa)も、cBN多結晶体が得られる圧力であれば特に限定はなく、その下限値を規定する必要はない。この圧力P(GPa)は、より好ましくは8~20GPaである。
また焼結工程における上記温度および圧力の適用時間は、5~20分である。5分より短い場合、焼結が不十分となり、20分より長くしても焼結状態に差はなく経済的に不利となる。より好ましい適用時間は、10~20分である。
上記焼結工程は、原料組成物をcBNに変換させ、かつ焼結させる工程であるが、原料組成物のcBNへの変換は、焼結助剤や触媒を用いることなく、原料組成物(すなわち窒化ホウ素)が単独で直接cBNに変換されるものであり、通常この変換は焼結と同時に行なわれることになる。
上述の製造方法により、本実施形態に係るcBN多結晶体、すなわち、微粒のcBNと板状のcBNおよび/または粗粒のcBNとを含む、強靭なcBN多結晶体を製造することができる。
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1~10および比較例1~4>
実施例1~10に係るcBN多結晶体を以下の方法で作製した。まず、各実施例において、出発物質を準備した(準備工程)。出発物質としては粗粒のhBN粉末、微粒のhBN粉末、非hBN粉末を準備し、各実施例毎に使用する原料組成物を変更した。
実施例1~10に係るcBN多結晶体を以下の方法で作製した。まず、各実施例において、出発物質を準備した(準備工程)。出発物質としては粗粒のhBN粉末、微粒のhBN粉末、非hBN粉末を準備し、各実施例毎に使用する原料組成物を変更した。
次いで、上記で準備した原料組成物を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより、原料組成物をcBNに変換させ、かつ焼結させた(焼結工程)。これにより、cBN多結晶体を得た。
表1の原料組成物の欄において、「粗粒hBN粉末」は平均粒径が1μmのhBN粉末を意味し、「微粒hBN粉末」は平均粒径が100nm未満のhBN粉末を意味し、「非hBN粉末」はhBN以外の窒化ホウ素粉末(具体的にはナノ結晶質からなる窒化ホウ素の粉末)を意味する。「粗粒hBN」および「微粒hBN」の欄には、各実施例および各比較例で用いた粗粒hBNおよび/または微粒hBNの平均粒径を記し、「非hBN」の欄には、各実施例および各比較例で用いた非hBNとしてのナノ結晶質の種類を記している。また、「含有割合(体積%)」の欄には、原料組成物における粗粒hBN粉末以外の粉末の含有割合(すなわち微粒hBN粉末または非hBN粉末の含有割合)を示している。
実施例1~10の製造方法に関し、焼結工程における合成条件(温度および圧力)は、合成条件Aを満たしている。
比較例1の製造方法に関し、合成条件Aを満たしているが、原料組成物に微粒hBNおよび非hBNのいずれも含んでいないという点で実施例と異なっている。比較例2~4の製造方法に関し、合成条件Aを満たしているが、原料組成物に粗粒hBNを含んでない点で実施例と異なっている。
<評価>
上記の様にして得られた実施例1~10および比較例1~4のcBN多結晶体の組成、粒径を下記の手法で測定し、さらに各cBN多結晶体を用いて切削試験を行い、各cBN多結晶体の耐摩耗性、耐欠損性を評価した。
上記の様にして得られた実施例1~10および比較例1~4のcBN多結晶体の組成、粒径を下記の手法で測定し、さらに各cBN多結晶体を用いて切削試験を行い、各cBN多結晶体の耐摩耗性、耐欠損性を評価した。
(組成)
各cBN多結晶体に含まれる立方晶窒化ホウ素(cBN)、圧縮型六方晶窒化ホウ素(圧縮型hBN)、およびウルツ鉱型窒化ホウ素(wBN)を、X線回折装置により同定し、さらにそれぞれの含有割合を算出した。この装置のX線の線源はCuであり、波長1.54ÅのKα線であった。その結果を表2に示す。
各cBN多結晶体に含まれる立方晶窒化ホウ素(cBN)、圧縮型六方晶窒化ホウ素(圧縮型hBN)、およびウルツ鉱型窒化ホウ素(wBN)を、X線回折装置により同定し、さらにそれぞれの含有割合を算出した。この装置のX線の線源はCuであり、波長1.54ÅのKα線であった。その結果を表2に示す。
(微粒のcBNの平均粒径および最大粒径)
各cBN多結晶体に含まれる微粒のcBNの平均粒径は、SEMを用いた切断法により求めた。
各cBN多結晶体に含まれる微粒のcBNの平均粒径は、SEMを用いた切断法により求めた。
すなわち、まずSEMを用いてcBN多結晶体の表面を研磨してその研磨された面を観察し、SEM画像を得た。そして、SEM画像中において、cBNのうち、アスペクト比が3以上のものを板状のcBNと判断した。次に残りのcBNのうち、粒径が100nm以下のものを微粒のcBNとし、粒径が100nmを超えるものを粗粒のcBNと判断した。
次にそのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引いた。この場合、上記の観察倍率および円の直径は、上記の直線1本あたりに載る微粒のcBN粒子(結晶粒)の個数が10~50個程度になるように設定した。
引続き、上記の各直線毎に微粒のcBNの結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を微粒のcBN粒子の平均粒径とした。また、観察される微粒のcBN粒子のうち、その粒径が最大のものを微粒のcBNの最大粒径とした。
なお、微粒のcBN粒子の平均粒径の算出にあたって、上記のSEM画像の倍率は30000倍とした。その理由は、これ以下の倍率では、円内の粒の数が多くなり、粒界が見えにくくなるとともに数え間違いが発生する上、線を引く際に板状組織を含める可能性が高くなったためである。また、これ以上の倍率では、円内の粒の数が少な過ぎて、正確な平均粒径が算出できなかったためである。
また、各実施例および各比較例毎に、1つの試料に対して別々の箇所を撮影した3枚のSEM画像を使用し、各SEM画像毎に上記の方法で平均粒径を求め、得られた3つの平均粒径の平均値を「微粒のcBNの平均粒径」とした。その結果を表2の「生成物」の欄に示す。
(粗粒のcBNの平均粒径)
各cBN多結晶体に含まれる粗粒のcBNの平均粒径は、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めた。その結果を表2に示す。
各cBN多結晶体に含まれる粗粒のcBNの平均粒径は、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めた。その結果を表2に示す。
なお、粗粒のcBN粒子の平均粒径の算出にあたって、SEM画像の倍率は10000倍とした。その理由は、微粒のcBN粒子を算出する際における理由と同様である。
(板状のcBNの平均長径)
各cBN多結晶体に含まれる板状のcBNの平均長径は、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めた。その結果を表2に示す。
各cBN多結晶体に含まれる板状のcBNの平均長径は、微粒のcBNの平均粒径と同様に、SEMを用いた切断法により求めた。その結果を表2に示す。
なお、板状のcBN粒子の平均長径の算出にあたって、SEM画像の倍率は10000倍とした。その理由は、微粒のcBN粒子を算出する際における理由と同様である。
表2に示すように、実施例1~4および6~10は、1~80体積%のwBNを含有していることが確認された。また、実施例1、3、4、7、8および10のcBN多結晶体は、微粒のcBN、粗粒のcBNおよび板状のcBNの結晶からなる混合組織を有していた。また実施例2、6および9のcBN多結晶体は、微粒のcBNおよび板状のcBNの結晶からなる混合組織を有していた。また実施例5のcBN多結晶は、微粒のcBNおよび粗粒のcBNの結晶からなる混合組織を有していた。これに対し、比較例1~4は混合組織となっていなかった。
(切削試験)
各実施例および各比較例のcBN多結晶体を切削加工用チップに加工した。これらの切削加工用チップを使用して、以下の切削条件で切削試験を行って耐摩耗性、耐欠損性を評価した。その結果を表3に示す。
各実施例および各比較例のcBN多結晶体を切削加工用チップに加工した。これらの切削加工用チップを使用して、以下の切削条件で切削試験を行って耐摩耗性、耐欠損性を評価した。その結果を表3に示す。
切削方式:湿式切削
被削材:焼結合金SMF4040の丸棒(外周面に軸方向に沿った垂直な溝が等間隔に6本形成されたもの)
切削速度:100mm/min
切り込み量:0.2mm
送り:0.1mm/rev.
評価方法:2km切削した際の逃げ面摩耗量と、欠損の有無。
被削材:焼結合金SMF4040の丸棒(外周面に軸方向に沿った垂直な溝が等間隔に6本形成されたもの)
切削速度:100mm/min
切り込み量:0.2mm
送り:0.1mm/rev.
評価方法:2km切削した際の逃げ面摩耗量と、欠損の有無。
表3に示すように、実施例1を基準とすると実施例2~10の摩耗量は0.9~1.2で、欠損は無かった。これに対し、比較例1~4は欠損が生じていた。このため、実施例のcBN多結晶体が比較例のcBN多結晶体に対し、強靭であることが確認された。
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Claims (10)
- 粒状であって最大粒径が100nm以下であり、かつ平均粒径が70nm以下の微粒の立方晶窒化ホウ素と、
板状であって平均長径が50nm以上10000nm以下の板状の立方晶窒化ホウ素、および、粒状であって最小粒径が100nmを超え、かつ平均粒径が1000nm以下の粗粒の立方晶窒化ホウ素の少なくとも一方と、
を含む立方晶窒化ホウ素多結晶体。 - ウルツ鉱型窒化ホウ素をさらに有し、
前記ウルツ鉱型窒化ホウ素の含有率が0.01体積%以上80体積%以下である、請求項1に記載の立方晶窒化ホウ素多結晶体。 - 圧縮型六方晶窒化ホウ素をさらに有し、
前記圧縮型六方晶窒化ホウ素の含有率が0.01体積%以上0.5体積%以下である、請求項1に記載の立方晶窒化ホウ素多結晶体。 - 請求項1から請求項3のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備える、切削工具。
- 請求項1から請求項3のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備える、耐摩工具。
- 請求項1から請求項3のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備える、研削工具。
- 出発物質として粗粒の六方晶窒化ホウ素粉末と、非六方晶窒化ホウ素粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、前記原料組成物を立方晶窒化ホウ素に直接変換させ、かつ焼結させる工程と、を備え、
前記粗粒の六方晶窒化ホウ素粉末の平均粒径は1μm以上であり、
前記非六方晶窒化ホウ素粉末は、非晶質の窒化ホウ素粉末、または、形状が球状、管状、壁状および角状の少なくともいずれかである六方晶以外の結晶質の窒化ホウ素粉末である、立方晶窒化ホウ素多結晶体の製造方法。 - 前記原料組成物における前記非六方晶窒化ホウ素粉末の含有割合は、10体積%以上95体積%以下である、請求項7に記載の立方晶窒化ホウ素多結晶体の製造方法。
- 出発物質として粗粒の六方晶型窒化ホウ素粉末と、微粒の六方晶型窒化ホウ素粉末とからなる原料組成物を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、
P≧0.0000132T2-0.0583T+71.793、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、前記原料組成物を立方晶窒化ホウ素に直接変換させ、かつ焼結させる工程と、を備え、前記粗粒の六方晶型窒化ホウ素粉末の平均粒径は1μm以上であり、
前記微粒の六方晶型窒化ホウ素粉末の平均粒径は100nm未満である、立方晶窒化ホウ素多結晶体の製造方法。 - 前記原料組成物における前記微粒の六方晶窒化ホウ素粉末の含有割合は、10体積%以上95体積%以下である、請求項9に記載の立方晶窒化ホウ素多結晶体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16746379.3A EP3255023B1 (en) | 2015-02-04 | 2016-01-13 | Cubic boron nitride polycrystalline body, cutting tool, abrasion resistant tool, grinding tool and method for producing cubic boron nitride polycrystalline body |
CN201680008804.3A CN107207363B (zh) | 2015-02-04 | 2016-01-13 | 立方氮化硼多晶材料、切削工具、耐磨工具、研磨工具、和制造立方氮化硼多晶材料的方法 |
US15/546,431 US10562822B2 (en) | 2015-02-04 | 2016-01-13 | Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-020259 | 2015-02-04 | ||
JP2015020259A JP6447197B2 (ja) | 2015-02-04 | 2015-02-04 | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125548A1 true WO2016125548A1 (ja) | 2016-08-11 |
Family
ID=56563899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050867 WO2016125548A1 (ja) | 2015-02-04 | 2016-01-13 | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10562822B2 (ja) |
EP (1) | EP3255023B1 (ja) |
JP (1) | JP6447197B2 (ja) |
CN (1) | CN107207363B (ja) |
WO (1) | WO2016125548A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180029942A1 (en) * | 2015-02-09 | 2018-02-01 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal |
WO2019244894A1 (ja) | 2018-06-18 | 2019-12-26 | 住友電工ハードメタル株式会社 | 立方晶窒化硼素多結晶体及びその製造方法 |
WO2020009117A1 (ja) | 2018-07-03 | 2020-01-09 | 住友電工ハードメタル株式会社 | 切削インサート及びその製造方法 |
US10562822B2 (en) | 2015-02-04 | 2020-02-18 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201717270D0 (en) * | 2017-10-20 | 2017-12-06 | Element Six Ltd | Polycrystalline cubic boron nitride body |
CN108311795B (zh) * | 2018-01-19 | 2020-05-29 | 天津科技大学 | Pcbn的二氧化碳激光加工方法及加工装置 |
CN112752737B (zh) * | 2018-09-27 | 2023-01-10 | 住友电工硬质合金株式会社 | 多晶立方氮化硼及其制造方法 |
CN109437920B (zh) * | 2018-12-30 | 2021-06-15 | 南方科技大学 | 纳米/亚微米结构wBN超硬材料及wBN-cBN超硬复合材料及制备方法和刀具 |
EP3932893A4 (en) * | 2019-02-28 | 2022-05-11 | Sumitomo Electric Hardmetal Corp. | POLYCRYSTALLINE CUBIC BORON NITRIDE AND METHOD FOR PRODUCTION THEREOF |
WO2020174921A1 (ja) * | 2019-02-28 | 2020-09-03 | 住友電工ハードメタル株式会社 | 立方晶窒化硼素多結晶体及びその製造方法 |
JP7204558B2 (ja) * | 2019-03-27 | 2023-01-16 | 京セラ株式会社 | 窒化硼素質焼結体、インサートおよび切削工具 |
CN110372393B (zh) * | 2019-08-02 | 2021-09-07 | 金华中烨超硬材料有限公司 | 一种聚晶立方氮化硼复合片的生产方法 |
JP7047975B2 (ja) * | 2019-12-16 | 2022-04-05 | 住友電工ハードメタル株式会社 | 立方晶窒化硼素焼結体及びその製造方法 |
US11414963B2 (en) | 2020-03-25 | 2022-08-16 | Saudi Arabian Oil Company | Wellbore fluid level monitoring system |
US11280178B2 (en) | 2020-03-25 | 2022-03-22 | Saudi Arabian Oil Company | Wellbore fluid level monitoring system |
US11125075B1 (en) | 2020-03-25 | 2021-09-21 | Saudi Arabian Oil Company | Wellbore fluid level monitoring system |
CN111362703B (zh) * | 2020-03-30 | 2022-03-25 | 中原工学院 | 一种低压烧结的聚晶立方氮化硼刀具及制备方法 |
US11414984B2 (en) | 2020-05-28 | 2022-08-16 | Saudi Arabian Oil Company | Measuring wellbore cross-sections using downhole caliper tools |
US11866372B2 (en) | 2020-05-28 | 2024-01-09 | Saudi Arabian Oil Company | Bn) drilling tools made of wurtzite boron nitride (W-BN) |
US11414985B2 (en) | 2020-05-28 | 2022-08-16 | Saudi Arabian Oil Company | Measuring wellbore cross-sections using downhole caliper tools |
US11631884B2 (en) | 2020-06-02 | 2023-04-18 | Saudi Arabian Oil Company | Electrolyte structure for a high-temperature, high-pressure lithium battery |
EP4157570A1 (en) | 2020-06-02 | 2023-04-05 | Saudi Arabian Oil Company | Producing catalyst-free pdc cutters |
US11391104B2 (en) | 2020-06-03 | 2022-07-19 | Saudi Arabian Oil Company | Freeing a stuck pipe from a wellbore |
US11149510B1 (en) | 2020-06-03 | 2021-10-19 | Saudi Arabian Oil Company | Freeing a stuck pipe from a wellbore |
US11719089B2 (en) | 2020-07-15 | 2023-08-08 | Saudi Arabian Oil Company | Analysis of drilling slurry solids by image processing |
US11255130B2 (en) | 2020-07-22 | 2022-02-22 | Saudi Arabian Oil Company | Sensing drill bit wear under downhole conditions |
US11506044B2 (en) | 2020-07-23 | 2022-11-22 | Saudi Arabian Oil Company | Automatic analysis of drill string dynamics |
US11867008B2 (en) | 2020-11-05 | 2024-01-09 | Saudi Arabian Oil Company | System and methods for the measurement of drilling mud flow in real-time |
KR20220076179A (ko) | 2020-11-30 | 2022-06-08 | 삼성전자주식회사 | 비정질 질화 붕소막 및 이를 포함하는 반사 방지 코팅 구조체 |
KR20220078281A (ko) * | 2020-12-03 | 2022-06-10 | 삼성전자주식회사 | 비정질 질화 붕소막을 포함하는 하드 마스크 및 그 제조방법과, 하드마스크를 이용한 패터닝 방법 |
US11434714B2 (en) | 2021-01-04 | 2022-09-06 | Saudi Arabian Oil Company | Adjustable seal for sealing a fluid flow at a wellhead |
US11697991B2 (en) | 2021-01-13 | 2023-07-11 | Saudi Arabian Oil Company | Rig sensor testing and calibration |
US12024470B2 (en) | 2021-02-08 | 2024-07-02 | Saudi Arabian Oil Company | Fabrication of downhole drilling tools |
US11572752B2 (en) | 2021-02-24 | 2023-02-07 | Saudi Arabian Oil Company | Downhole cable deployment |
US11727555B2 (en) | 2021-02-25 | 2023-08-15 | Saudi Arabian Oil Company | Rig power system efficiency optimization through image processing |
US11846151B2 (en) | 2021-03-09 | 2023-12-19 | Saudi Arabian Oil Company | Repairing a cased wellbore |
US11624265B1 (en) | 2021-11-12 | 2023-04-11 | Saudi Arabian Oil Company | Cutting pipes in wellbores using downhole autonomous jet cutting tools |
US11867012B2 (en) | 2021-12-06 | 2024-01-09 | Saudi Arabian Oil Company | Gauge cutter and sampler apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217281A (ja) * | 2007-05-22 | 2007-08-30 | Sumitomo Electric Ind Ltd | 立方晶窒化ホウ素焼結体およびその製造方法 |
JP2008019164A (ja) * | 2007-08-08 | 2008-01-31 | National Institute For Materials Science | 超微粒子cBN焼結体 |
JP2012148932A (ja) * | 2011-01-19 | 2012-08-09 | Nagoya City | 六方晶系窒化ホウ素焼結体の製造方法及び六方晶系窒化ホウ素焼結体 |
WO2013031681A1 (ja) * | 2011-08-30 | 2013-03-07 | 住友電気工業株式会社 | 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引ダイス、ならびに研削工具 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4927518B1 (ja) | 1970-05-23 | 1974-07-18 | ||
JPS515660B2 (ja) | 1972-07-11 | 1976-02-21 | ||
IN150013B (ja) | 1977-07-01 | 1982-06-26 | Gen Electric | |
JP2590413B2 (ja) | 1989-11-17 | 1997-03-12 | 科学技術庁無機材質研究所長 | 透光性高純度立方晶窒化ほう素焼結体の製造法 |
JP3472630B2 (ja) | 1994-08-05 | 2003-12-02 | 電気化学工業株式会社 | 切削工具用立方晶窒化ほう素燒結体及び切削工具 |
JPH08336705A (ja) | 1995-06-07 | 1996-12-24 | Mitsubishi Materials Corp | 切刃のすくい面がすぐれた耐摩耗性を示す立方晶窒化ほう素焼結体製切削工具 |
JP4106574B2 (ja) | 1998-02-28 | 2008-06-25 | 住友電気工業株式会社 | 立方晶窒化ホウ素焼結体およびその製造方法 |
JP5958835B2 (ja) | 2011-04-11 | 2016-08-02 | 住友電気工業株式会社 | 切削工具およびその製造方法 |
JP6159064B2 (ja) | 2012-08-08 | 2017-07-05 | 住友電気工業株式会社 | 立方晶窒化ホウ素複合多結晶体及び切削工具、線引きダイス、ならびに研削工具 |
JP2014080322A (ja) | 2012-10-16 | 2014-05-08 | Sumitomo Electric Ind Ltd | 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具 |
GB201305873D0 (en) * | 2013-03-31 | 2013-05-15 | Element Six Abrasives Sa | Superhard constructions & method of making same |
JP6256169B2 (ja) | 2014-04-14 | 2018-01-10 | 住友電気工業株式会社 | 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具 |
JP6447197B2 (ja) | 2015-02-04 | 2019-01-09 | 住友電気工業株式会社 | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 |
JP6447205B2 (ja) | 2015-02-09 | 2019-01-09 | 住友電気工業株式会社 | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 |
-
2015
- 2015-02-04 JP JP2015020259A patent/JP6447197B2/ja active Active
-
2016
- 2016-01-13 EP EP16746379.3A patent/EP3255023B1/en active Active
- 2016-01-13 WO PCT/JP2016/050867 patent/WO2016125548A1/ja active Application Filing
- 2016-01-13 US US15/546,431 patent/US10562822B2/en active Active
- 2016-01-13 CN CN201680008804.3A patent/CN107207363B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217281A (ja) * | 2007-05-22 | 2007-08-30 | Sumitomo Electric Ind Ltd | 立方晶窒化ホウ素焼結体およびその製造方法 |
JP2008019164A (ja) * | 2007-08-08 | 2008-01-31 | National Institute For Materials Science | 超微粒子cBN焼結体 |
JP2012148932A (ja) * | 2011-01-19 | 2012-08-09 | Nagoya City | 六方晶系窒化ホウ素焼結体の製造方法及び六方晶系窒化ホウ素焼結体 |
WO2013031681A1 (ja) * | 2011-08-30 | 2013-03-07 | 住友電気工業株式会社 | 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引ダイス、ならびに研削工具 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10562822B2 (en) | 2015-02-04 | 2020-02-18 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material |
US20180029942A1 (en) * | 2015-02-09 | 2018-02-01 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal |
US10519068B2 (en) * | 2015-02-09 | 2019-12-31 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal |
WO2019244894A1 (ja) | 2018-06-18 | 2019-12-26 | 住友電工ハードメタル株式会社 | 立方晶窒化硼素多結晶体及びその製造方法 |
KR20200140372A (ko) | 2018-06-18 | 2020-12-15 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 입방정 질화붕소 다결정체 및 그 제조 방법 |
US11046581B2 (en) | 2018-06-18 | 2021-06-29 | Sumitomo Electric Hardmetal Corp. | Polycrystalline cubic boron nitride and method for manufacturing the same |
WO2020009117A1 (ja) | 2018-07-03 | 2020-01-09 | 住友電工ハードメタル株式会社 | 切削インサート及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107207363A (zh) | 2017-09-26 |
JP6447197B2 (ja) | 2019-01-09 |
EP3255023B1 (en) | 2019-08-28 |
US20180265416A1 (en) | 2018-09-20 |
EP3255023A1 (en) | 2017-12-13 |
US10562822B2 (en) | 2020-02-18 |
CN107207363B (zh) | 2020-10-16 |
JP2016141609A (ja) | 2016-08-08 |
EP3255023A4 (en) | 2018-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6447197B2 (ja) | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 | |
JP6447205B2 (ja) | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 | |
JP6665920B2 (ja) | 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具 | |
JP6291995B2 (ja) | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 | |
EP3266756B1 (en) | Polycrystalline diamond body, cutting tool, wear-resistant tool, and grinding tool | |
EP2752398B1 (en) | Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool | |
JP6256169B2 (ja) | 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具 | |
JP6387897B2 (ja) | ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具 | |
EP3351520A1 (en) | Method for producing diamond polycrystal, diamond polycrystal, cutting tool, wear-resistant tool, and grinding tool | |
JP6291986B2 (ja) | 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具 | |
JP6772743B2 (ja) | ダイヤモンド多結晶体の製造方法、ダイヤモンド多結晶体、切削工具、耐摩工具および研削工具 | |
JP6720816B2 (ja) | 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具 | |
JP6521206B1 (ja) | ダイヤモンド多結晶体、ダイヤモンド多結晶体を備える工具及びダイヤモンド多結晶体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746379 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016746379 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15546431 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |