JP7047975B2 - 立方晶窒化硼素焼結体及びその製造方法 - Google Patents

立方晶窒化硼素焼結体及びその製造方法 Download PDF

Info

Publication number
JP7047975B2
JP7047975B2 JP2021525839A JP2021525839A JP7047975B2 JP 7047975 B2 JP7047975 B2 JP 7047975B2 JP 2021525839 A JP2021525839 A JP 2021525839A JP 2021525839 A JP2021525839 A JP 2021525839A JP 7047975 B2 JP7047975 B2 JP 7047975B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
particles
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021525839A
Other languages
English (en)
Other versions
JPWO2021124701A1 (ja
Inventor
真知子 阿部
暁 久木野
倫子 松川
泰助 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Publication of JPWO2021124701A1 publication Critical patent/JPWO2021124701A1/ja
Application granted granted Critical
Publication of JP7047975B2 publication Critical patent/JP7047975B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/784Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature

Description

本開示は、立方晶窒化硼素焼結体及びその製造方法に関する。本出願は、2019年12月16日に出願した日本特許出願である特願2019-226361号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
立方晶窒化硼素(以下「cBN」とも記す。)焼結体は、非常に高い硬度を有するとともに、熱的安定性及び化学的安定性にも優れることから、切削工具や耐磨工具に利用されている。
特開2005-187260号公報(特許文献1)、国際公開第2005/066381号(特許文献2)には、立方晶窒化硼素粉末と結合材粉末とを混合して混合粉末を得、該混合粉末を超高圧高温条件下で焼結することにより、cBN粒子と結合材とを含む立方晶窒化硼素を得る方法が開示されている。
また、特開2015-202981号公報(特許文献3)、特開2015-202980号公報(特許文献4)には、常圧型窒化硼素とセラミックスとを混合して混合体を得、該混合体を超高圧高温条件下で焼結することにより、立方晶窒化硼素多結晶体とセラミックス相とを含む立方晶窒化硼素複合焼結体を得る方法が開示されている。
特開2005-187260号公報 国際公開第2005/066381号 特開2015-202981号公報 特開2015-202980号公報
本開示の立方晶窒化硼素焼結体は、70体積%以上98体積%以下の立方晶窒化硼素粒子と、結合相と、を備える立方晶窒化硼素焼結体であって、
前記結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、前記第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含み、
前記立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含み、
前記立方晶窒化硼素粒子の質量を100質量%とした場合、前記立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウムの合計含有量は0.001質量%未満である、立方晶窒化硼素焼結体である。
本開示の立方晶窒化硼素焼結体の製造方法は、上記の立方晶窒化硼素焼結体の製造方法であって、
六方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を得る第1工程と、
前記混合粉末を、圧力8GPa以上20GPa以下、かつ、温度2300℃以上2500℃以下まで昇圧昇温し、昇圧昇温により到達した最高圧力及び最高温度において30分以上90分未満保持することにより焼結して立方晶窒化硼素焼結体を得る第2工程とを備える、立方晶窒化硼素焼結体の製造方法である。
[本開示が解決しようとする課題]
特許文献1及び特許文献2の立方晶窒化硼素焼結体を用いた工具に対して、特に、鋳鉄の高能率加工に用いる場面において、更なる耐摩耗性や耐欠損性等の工具性能の向上が求められている。本発明者らは、特許文献1及び特許文献2の立方晶窒化硼素焼結体を用いた工具において摩耗や欠損の生じるメカニズムについて検討した結果、下記のメカニズムを新たに想定した。
特許文献1及び特許文献2では、立方晶窒化硼素粉末を原料として用いる。該立方晶窒化硼素粉末は、六方晶窒化硼素(以下、「hBN」とも記す。)と触媒を、cBNの熱的安定条件である高温高圧下で処理することにより製造される。触媒としては、一般的にアルカリ金属元素(リチウム)、アルカリ土類金属元素(マグネシウム、カルシウム、ストロンチウム、ベリリウム、バリウム)等が用いられる。従って、得られた立方晶窒化硼素粉末には、触媒元素が含まれている。
立方晶窒化硼素焼結体を用いた工具で切削加工を行うと、被削材との接点付近の工具の圧力及び温度が上昇する。特に鋳鉄の高能率加工においては、圧力及び温度の上昇が顕著である。立方晶窒化硼素焼結体が触媒元素を含む場合、鋳鉄の高能率加工における被削材との接点付近の工具の圧力及び温度条件下では、触媒元素が立方晶窒化硼素から六方晶窒化硼素への相変換を促進する。このため、工具の切れ刃の被削材との接点近傍で、熱伝導率の低下や、硬度の低下が生じやすい傾向がある。熱伝導率の低下や硬度の低下は、耐摩耗性や耐欠損性等の切削性能の低下を引き起こすと考えられる。
特許文献3及び特許文献4の立方晶窒化硼素複合焼結体を用いた工具に対しても、特に、鋳鉄の高能率加工に用いる場面において、更なる耐摩耗性や耐欠損性等の工具性能の向上が求められている。本発明者らは、特許文献3及び特許文献4の立方晶窒化硼素複合焼結体を用いた工具において摩耗や欠損の生じるメカニズムについて検討した結果、下記のメカニズムを新たに想定した。
特許文献3及び特許文献4では、立方晶窒化硼素多結晶体を構成する立方晶窒化硼素単結晶の平均結晶粒径が500nm以下と小さく、微粒である。立方晶窒化硼素焼結体中に微粒成分が多く存在すると、立方晶窒化硼素焼結体の靱性及び熱伝導率が低下する傾向がある。このため、特に鋳鉄の高能率加工において、耐摩耗性及び耐欠損性等の工具性能の低下を引き起こすと考えられる。
本発明者らは、上記の新たに想定したメカニズムに基づき、立方晶窒化硼素焼結体中の触媒元素の量、及び、立方晶窒化硼素単結晶の粒径が耐摩耗性及び耐欠損性等の工具性能に影響を与えていると仮定した。
本開示は、上記の想定した新たなメカニズム及び仮定に基づき、本発明者らが鋭意検討して得られたものである。
本開示は、工具として用いた場合に、鋳鉄の高能率加工においても、優れた切削性能を有することのできる立方晶窒化硼素焼結体を提供することを目的とする。
[本開示の効果]
本開示の立方晶窒化硼素焼結体は、工具として用いた場合に、鋳鉄の高能率加工においても、優れた切削性能を有することができる。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の立方晶窒化硼素焼結体は、
70体積%以上98体積%以下の立方晶窒化硼素粒子と、結合相と、を備える立方晶窒化硼素焼結体であって、
前記結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、前記第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含み、
前記立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含み、
前記立方晶窒化硼素粒子の質量を100質量%とした場合、前記立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウムの合計含有量は0.001質量%未満である、立方晶窒化硼素焼結体である。
本開示の立方晶窒化硼素焼結体は、工具として用いた場合に、鋳鉄の高能率加工においても、優れた切削性能を有することができる。
(2)前記立方晶窒化硼素焼結体のX線回折スペクトルにおいて、圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度IC及び立方晶窒化硼素由来のピーク強度IDが、下記式Iの関係を示すことが好ましい。
(IA+IB+IC)/ID≦0.05 式I
これによると、該立方晶窒化硼素を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性を有することができる。
(3)本開示の立方晶窒化硼素焼結体の製造方法は、上記の立方晶窒化硼素焼結体の製造方法であって、
六方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を得る第1工程と、
前記混合粉末を、圧力8GPa以上20GPa以下、かつ、温度2300℃以上2500℃以下まで昇圧昇温し、昇圧昇温により到達した最高圧力及び最高温度において30分以上90分未満保持することにより焼結して立方晶窒化硼素焼結体を得る第2工程とを備える、立方晶窒化硼素焼結体の製造方法である。
これによると、工具として用いた場合に、鋳鉄の高能率加工においても、優れた切削性能を有することができる立方晶窒化硼素焼結体を得ることができる。
[本開示の実施形態の詳細]
本開示の立方晶窒化硼素焼結体及びその製造方法を以下に説明する。
本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「WC」と記載されている場合、WCを構成する原子数の比は従来公知のあらゆる原子比が含まれる。このことは、WC以外の化合物の記載についても同様である。
[実施形態1:立方晶窒化硼素焼結体]
本開示の立方晶窒化硼素焼結体は、70体積%以上98体積%以下の立方晶窒化硼素粒子と、結合相と、を備える立方晶窒化硼素焼結体であって、結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含み、立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含み、立方晶窒化硼素粒子の質量を100質量%とした場合、立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウムの合計含有量は0.001質量%未満である。
本開示の立方晶窒化硼素焼結体は、工具として用いた場合に、鋳鉄の高能率加工においても、優れた切削性能を有することができる。この理由は、下記(i)~(iv)の通りと推察される。
(i)本開示の立方晶窒化硼素焼結体は、優れた強度及び靱性を有する立方晶窒化硼素粒子を70体積%以上98体積%以下含む。このため、cBN焼結体も優れた強度及び靱性を有することができる。従って、該立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
(ii)本開示の立方晶窒化硼素焼結体において、結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含む。第1化合物は、それ自体が高い強度及び靱性を有し、かつ、cBN粒子同士の結合力を向上させる。従って、該第1化合物を結合相として含む立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
(iii)本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含む。
立方晶窒化硼素粒子が微粒であると、立方晶窒化硼素焼結体の靱性及び熱伝導率が低下する傾向にある。本開示の立方晶窒化硼素焼結体では、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上である。すなわち、微粒である円相当径が0.5μm以下の立方晶窒化硼素粒子の割合が50%以下であり、微粒の割合が小さいため、立方晶窒化硼素焼結体は優れた靱性及び熱伝導率を有することができる。
また、立方晶窒化硼素粒子が粗粒であると、立方晶窒化硼素焼結体の強度が低下する傾向にある。本開示の立方晶窒化硼素焼結体では、粗粒である円相当径が2μm超の立方晶窒化硼素粒子の割合が50%以下であり、粗粒の割合が小さいため、立方晶窒化硼素焼結体は優れた強度を有することができる。
よって、本開示の立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
(iv)本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の質量を100質量%とした場合、立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウム(以下、これらの元素を「触媒元素」とも記す。)の合計含有量は0.001質量%未満である。立方晶窒化硼素粒子中に触媒元素が存在すると、鋳鉄の高能率加工における工具と被削材との接点付近の圧力及び温度条件下では、触媒元素が立方晶窒化硼素から六方晶窒化硼素への相変換を促進する。このため、工具の切れ刃の被削材との接点近傍で、熱伝導率の低下や、硬度の低下が生じやすい傾向がある。
本開示の立方晶窒化硼素焼結体においては、立方晶窒化硼素粒子中の触媒元素の合計含有量が0.001質量%未満であるため、鋳鉄の高能率加工時の圧力及び温度条件下においても、触媒元素による立方晶窒化硼素から六方晶窒化硼素への相変換は生じにくい。よって、本開示の立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
<組成>
本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を70体積%以上98体積%以下と、結合相とを備える。本開示の立方晶窒化硼素焼結体は、優れた強度及び靱性を有する立方晶窒化硼素を含むため、立方晶窒化硼素焼結体も優れた強度及び靱性を有することができる。よって、該立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
cBN焼結体中のcBN粒子の含有割合の下限は、70体積%であり、80体積%が好ましい。cBN焼結体中のcBN粒子の含有割合の上限は、98体積%である。cBN焼結体中のcBN粒子の含有割合は、80体積%以上98体積%以下が好ましい。
本開示の立方晶窒化硼素焼結体は、高い強度を有し、かつ、cBN粒子同士の結合力を向上させる結合相を含むため、立方晶窒化硼素焼結体も優れた強度及び靱性を有することができる。よって、該立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
cBN焼結体中の結合相の含有割合の下限は、2体積%が好ましい。cBN焼結体中の結合相の含有割合の上限は、30体積%が好ましく、20体積%がより好ましい。cBN焼結体中の結合相の含有割合は、2体積%以上30体積%以下が好ましく、2体積%以上20体積%以下がより好ましい。
cBN焼結体におけるcBN粒子の含有割合(体積%)及び結合相の含有割合(体積%)は、走査電子顕微鏡(SEM)(日本電子社製の「JSM-7800F」(商標))付帯のエネルギー分散型X線分析装置(EDX)(EDAX社製の「Octane Elect(オクタンエレクト) EDS システム」(商標))を用いて、cBN焼結体に対し、組織観察、元素分析等を実施することによって確認することができる。
具体的には、次のようにしてcBN粒子の含有割合(体積%)を求めることができる。まず、cBN焼結体の任意の位置を切断し、cBN焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて5000倍で観察して、反射電子像を得る。反射電子像においては、cBN粒子は黒く見え(暗視野)、結合相が存在する領域が灰色又は白色(明視野)となる。
次に、上記反射電子像に対して画像解析ソフト(例えば、三谷商事(株)の「WinROOF」)を用いて二値化処理を行う。二値化処理後の画像から、測定視野の面積に占める暗視野に由来する画素(cBN粒子に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有割合(体積%)を求めることができる。
二値化処理後の画像から、測定視野の面積に占める明視野に由来する画素(結合相に由来する画素)の面積比率を算出することにより、結合相の含有割合(体積%)を求めることができる。
本開示の立方晶窒化硼素焼結体は、本開示の効果を示す範囲において不可避不純物を含んでいても構わない。本開示のcBN焼結体を製造する過程で、例えば超硬合金製のボールや容器を使用する。そのため、例えば超硬合金に含まれる元素や化合物が、cBN焼結体の中に不可避不純物として混入する場合がある。立方晶窒化硼素焼結体が不可避不純物を含む場合は、不可避不純物の含有量は0.1質量%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
本開示の立方晶窒化硼素焼結体は、本開示の効果を示す範囲において、圧縮型六方晶窒化硼素、六方晶窒化硼素及びウルツ鉱型窒化硼素の少なくともいずれかを含んでいても構わない。ここで、「圧縮型六方晶窒化硼素」とは、通常の六方晶窒化硼素と結晶構造が類似し、c軸方向の面間隔が通常の六方晶窒化硼素の面間隔(0.333nm)よりも小さいものを示す。立方晶窒化硼素に対する圧縮型六方晶窒化硼素、六方晶窒化硼素及びウルツ鉱型窒化硼素の含有割合については、後述の<X線回折スペクトル>において詳述する。
<立方晶窒化硼素粒子>
(円相当径)
本開示の立方晶窒化硼素焼結体に含まれる立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含む。ただし数基準を計算する際は、円相当径が0.05μm未満の粒子をカウントしないこととする。
円相当径が0.5μm超の立方晶窒化硼素粒子の割合が50%以上であると、立方晶窒化硼素焼結体は優れた靱性及び熱伝導率を有することができる。また、円相当径が2μm超の立方晶窒化硼素粒子の割合が50%以下であると、立方晶窒化硼素焼結体は優れた強度を有することができる。よって、本開示の立方晶窒化硼素焼結体を用いた工具は、焼入鋼の高負荷加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
立方晶窒化硼素粒子全体における円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合の下限は、50%であり、70%が好ましい。立方晶窒化硼素粒子全体における円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合の上限は、100%が好ましい。立方晶窒化硼素粒子全体における円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合は、50%以上100%以下が好ましく、70%以上100%以下が更に好ましい。
立方晶窒化硼素粒子全体における円相当径が2μm超の立方晶窒化硼素粒子の数基準の割合の下限は、0%が好ましい。立方晶窒化硼素粒子全体における円相当径が2μm超の立方晶窒化硼素粒子の割合の上限は、50%であり、40%が好ましい。立方晶窒化硼素粒子全体における円相当径が2μm超の立方晶窒化硼素粒子の割合は、0%以上50%以下が好ましく、0%以上40%以下がより好ましい。
立方晶窒化硼素粒子における円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合、及び、円相当径が2μm超の立方晶窒化硼素粒子の数基準の割合の算出方法について、下記に具体的に説明する。
まず、測定箇所が露出するように立方晶窒化硼素焼結体をダイヤモンド砥石電着ワイヤー等で切断し、断面を研磨する。立方晶窒化硼素焼結体が工具の一部として用いられている場合は、立方晶窒化硼素焼結体の部分を、ダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨する。該研磨面において5箇所の測定箇所を任意に設定する。5箇所の各測定箇所をSEM(日本電子株式会社社製「JSM-7500F」(商標))を用いて観察し、5つのSEM画像を得る。測定視野のサイズは12μm×15μmとし、観察倍率は10000倍とする。
5つのSEM画像のそれぞれを画像処理ソフト(Win Roof ver.7.4.5)を用いて処理することにより、測定視野内に観察される立方晶窒化硼素粒子の総数、及び、各立方晶窒化硼素粒子の円相当径を算出する。
各測定視野に含まれる立方晶窒化硼素粒子の総数を分母として、円相当径が0.5μm超の立方晶窒化硼素粒子の数の割合を算出する。5箇所の測定視野における円相当径が0.5μm超の立方晶窒化硼素粒子の数の割合の平均値が、立方晶窒化硼素粒子における円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合に該当する。
各測定視野に含まれる立方晶窒化硼素粒子の総数を分母として、円相当径が2μm超の立方晶窒化硼素粒子の数の割合を算出する。5箇所の測定視野における円相当径が2μm超の立方晶窒化硼素粒子の数の割合の平均値が、立方晶窒化硼素粒子における円相当径が2μm超の立方晶窒化硼素粒子の数基準の割合に該当する。
なお、出願人が測定した限りでは、同一の試料において立方晶窒化硼素粒子の総数及び各立方晶窒化硼素粒子の円相当径を測定する限り、測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
(触媒元素)
本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の質量を100質量%とした場合、立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウムの合計含有量は0.001質量%未満である。本開示の立方晶窒化硼素焼結体では、立方晶窒化硼素から六方晶窒化硼素への相変換を促進する触媒元素の含有量が非常に少ない、又は、触媒元素が存在しないため、鋳鉄の高能率加工時の圧力及び温度条件下においても、触媒元素による立方晶窒化硼素から六方晶窒化硼素への相変換は生じにくい。よって、本開示の立方晶窒化硼素焼結体を用いた工具は、鋳鉄の高能率加工においても、優れた耐摩耗性及び耐欠損性を有することができる。
立方晶窒化硼素粒子中の触媒元素の合計含有量の下限は、0質量%が好ましい。これらの触媒元素の合計含有量の上限は、0.001質量%未満である。これらの触媒元素の合計含有量は、0質量%以上0.001質量%未満が好ましい。
立方晶窒化硼素粒子中の触媒元素の含有量は、高周波誘導プラズマ発光分析法((ICP発光分光分析法)、使用機器:島津製作所製「ICPS-8100」(商標))により測定することができる。具体的には、下記の手順で測定することができる。
まず、立方晶窒化硼素焼結体を密閉容器内で弗硝酸に48時間浸し、結合相を弗硝酸に溶解させる。弗硝酸中に残った立方晶窒化硼素粒子について高周波誘導プラズマ発光分析法を行い、各触媒元素の含有量を測定する。これにより、立方晶窒化硼素粒子中の触媒元素の合計含有量を測定することができる。
<結合相>
本開示の立方晶窒化硼素焼結体に含まれる結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、前記第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含む。第1化合物は、それ自体が高い強度及び靱性を有し、立方晶窒化硼素粒子同士を強固に結合することができるため、焼結体の強度が向上し、焼結体は優れた耐摩耗性を有することができる。
コバルト化合物としては、WCoB、WCoC、WCo21を挙げることができる。
アルミニウム化合物としては、硼化アルミニウム(AlB)、酸化アルミニウム(Al)を挙げることができる。
第1化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
結合相は、第1化合物由来の固溶体を含むことができる。ここで、第1化合物由来の固溶体とは、2種類以上の第1化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
結合相は、第1化合物及び第1化合物の固溶体からなる群より選択される1種以上のみからなることができる。また、結合相は、第1化合物及び第1化合物の固溶体からなる群より選択される1種以上を合計で99.9体積%以上と、残部とからなることができる。
ここで残部とは、結合相中の不可避不純物に該当する。立方晶窒化硼素焼結体における不可避不純物の含有割合は、0体積%以上0.1質量%以下が好ましい。
結合相の組成は、X線回折法を用いて測定することができる。具体的な測定方法は下記の通りである。
まず、測定箇所が露出するように立方晶窒化硼素焼結体をダイヤモンド砥石電着ワイヤー等で切断し、断面を研磨する。立方晶窒化硼素焼結体が工具の一部として用いられている場合は、立方晶窒化硼素焼結体の部分を、ダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨する。当該研磨面において5箇所の測定箇所を任意に設定する。
X線回折装置(Rigaku社製「MiniFlex600」(商標))を用いて上記の研磨面のX線回折スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
特性X線: Cu-Kα(波長1.54Å)
管電圧: 45kV
管電流: 40mA
フィルター: 多層ミラー
光学系: 集中法
X線回折法: θ-2θ法。
得られたX線回折スペクトルに基づき、結合相の組成を同定する。
<X線回折スペクトル>
本開示の立方晶窒化硼素焼結体は、そのX線回折スペクトルにおいて、圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度IC及び立方晶窒化硼素由来のピーク強度IDが、下記式Iの関係を示すことが好ましい。
(IA+IB+IC)/ID≦0.05 式I
圧縮型六方晶窒化硼素、六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素は、全て同程度の電子的な重みを有する。従って、X線回折スペクトルにおけるピーク強度IA、ピーク強度IB、ピーク強度IC及びピーク強度IDの比は、立方晶窒化硼素焼結体中の圧縮型六方晶窒化硼素、六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素の体積比と見做すことができる。
ピーク強度IA、ピーク強度IB、ピーク強度IC及びピーク強度IDが上記式Iの関係を満たす場合、立方晶窒化硼素焼結体中の圧縮型六方晶窒化硼素、六方晶窒化硼素、ウルツ鉱型窒化硼素の体積割合は、立方晶窒化硼素の体積割合よりも非常に小さい。従って、該立方晶窒化硼素焼結体は、圧縮型六方晶窒化硼素、六方晶窒化硼素、ウルツ鉱型窒化硼素に起因する強度及び靱性の低下という影響が非常に少なく、優れた耐摩耗性及び耐欠損性を有することができる。
圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度IC及び立方晶窒化硼素由来のピーク強度IDの測定方法について、下記に具体的に説明する。
まず、測定箇所が露出するように立方晶窒化硼素焼結体をダイヤモンド砥石電着ワイヤー等で切断し、断面を研磨する。立方晶窒化硼素焼結体が工具の一部として用いられている場合は、立方晶窒化硼素焼結体の部分を、ダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨する。当該研磨面において5箇所の測定箇所を任意に設定する。
X線回折装置(Rigaku社製「MiniFlex600」(商標))を用いて上記の研磨面のX線回折スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
特性X線: Cu-Kα(波長1.54Å)
管電圧: 45kV
管電流: 40mA
フィルター: 多層ミラー
光学系: 集中法
X線回折法: θ-2θ法。
得られたX線回折スペクトルにおいて、下記のピーク強度IA、ピーク強度IB、ピーク強度IC、ピーク強度IDを測定する。
ピーク強度IA:回折角2θ=28.5°付近のピーク強度から、バックグランドを除いた圧縮型六方晶窒化硼素のピーク強度。
ピーク強度IB:回折角2θ=41.6°付近のピーク強度から、バックグランドを除いた六方晶窒化硼素のピーク強度。
ピーク強度IC:回折角2θ=40.8°付近のピーク強度から、バックグラウンドを除いたウルツ鉱型窒化硼素のピーク強度。
ピーク強度ID:回折角2θ=43.5°付近のピーク強度から、バックグラウンドを除いた立方晶窒化硼素のピーク強度。
5箇所の測定箇所のそれぞれにおいて、ピーク強度IA、ピーク強度IB、ピーク強度IC、ピーク強度IDを測定し、(IA+IB+IC)/IDの値を得る。5箇所の測定箇所における(IA+IB+IC)/IDの値の平均値が、立方晶窒化硼素焼結体における(IA+IB+IC)/IDに該当する。
なお、出願人が測定した限りでは、同一の試料においてピーク強度IA、ピーク強度IB、ピーク強度IC、ピーク強度IDを測定する限り、測定箇所の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認された。
<用途>
本開示の立方晶窒化硼素焼結体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
本開示の立方晶窒化硼素焼結体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素焼結体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素焼結体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
[実施形態2:立方晶窒化硼素焼結体の製造方法]
本開示の立方晶窒化硼素焼結体の製造方法は、実施形態1の立方晶窒化硼素焼結体の製造方法であって、六方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を得る第1工程と、混合粉末を、圧力8GPa以上20GPa以下、かつ、温度2300℃以上2500℃以下まで昇圧昇温し、昇圧昇温により到達した最高圧力及び最高温度において30分以上90分未満保持することにより焼結して立方晶窒化硼素焼結体を得る第2工程とを備える。
<第1工程>
まず、六方晶窒化硼素粉末と結合材粉末とを準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有率)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
結合材粉末は、目的とする結合相の組成に合わせて選択される。具体的には、実施形態1の結合相に記載される第1化合物からなる粒子を用いることができる。また、第1化合物からなる粒子とともに、アルミニウム粒子を用いることができる。結合材粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
次に、六方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を得る。六方晶窒化硼素粉末と結合材粉末との混合比は、最終的に得られる立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の割合が70体積%以上98体積%以下となるように調整する。
混合には、例えばボールミル、アトライタ等の混合装置を使用できる。混合時間は、たとえば5時間以上24時間以下程度である。
こうして得られた混合粉末では、六方晶窒化硼素粉末が、混合中に表面酸化の影響で生成される酸化硼素や水分等の吸着ガスを含み得る。これらの不純物は六方晶窒化硼素から立方晶窒化硼素への直接変換を阻害する。又は、これらの不純物が触媒となって粒成長を引き起こし、立方晶窒化硼素粒子同士の結合を弱化させる。そこで高温精製処理を行なって不純物を除去することが好ましい。例えば、混合粉末を窒素ガス中2050℃以上の条件、または真空中1650℃以上の条件等で熱処理して酸化硼素や吸着ガスを除去することができる。こうして得られた混合粉末は不純物が非常に少なく、六方晶窒化硼素から立方晶窒化硼素への直接変換に適する。
(第2工程)
第2工程では、上記の混合粉末を圧力8GPa以上20GPa以下、かつ、温度2300℃以上2500℃以下まで昇圧昇温し、昇圧昇温により到達した最高圧力及び最高温度において30分以上90分未満保持することにより焼結して立方晶窒化硼素焼結体を得る。このとき六方晶窒化硼素は立方晶窒化硼素へと直接変換される。更に、六方晶窒化硼素から立方晶窒化硼素への変換と同時に混合粉末が焼結され、立方晶窒化硼素焼結体となる。
第2工程では、触媒元素を用いることなく、六方晶窒化硼素から立方晶窒化硼素への直接変換が行われる。このためには、混合粉末の焼結条件を、従来の触媒元素を用いる焼結条件よりも高圧高温とする必要がある。
本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
[実施例1]
<立方晶窒化硼素焼結体の作製>
〔試料No.1~試料No.6、試料No.13~試料No.19〕
下記の製造方法を用いて、試料No.1~試料No.6、試料No.13~試料No.19の立方晶窒化硼素焼結体を作製した。
(第1工程)
まず出発物質(原料)として、平均粒子径10μmの六方晶窒化硼素粉末(表1において「hBN粉末」と記す。)と、表1の「第1工程」の「原料粉末」欄に示す組成を有する結合材粉末とを準備した。結合材粉末が2種類の粉末を含む場合は、体積比を記載した。例えば、試料No.1では、結合材粉末は、WC粉末とAl粉末とを体積比3:2で含むことを示す。
六方晶窒化硼素粉末と結合材粉末との混合比は、最終的に得られる立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の割合が表1の「立方晶窒化硼素焼結体」の「cBN粒子(体積%)」欄に記載の割合となるように調整した。
六方晶窒化硼素粉末と結合材粉末とをボールミルを使用して5時間に亘って混合した。これにより混合粉末を得た。該混合粉末を窒素雰囲気下2050℃の温度で熱処理して不純物を除去した(高温精製処理)。
(第2工程)
高温精製処理を経た混合粉末を高融点金属からなるカプセルに入れ、超高圧高温発生装置を使用して表1の「第2工程」の「圧力(GPa)」、「温度(℃)」及び「時間(分)」欄に示す圧力、温度及び時間で保持して、立方晶窒化硼素焼結体を得た。
〔試料No.7~試料No.12〕
下記の製造方法を用いて、試料No.7~試料No.12の立方晶窒化硼素焼結体を作製した。
(第1工程)
まず出発物質(原料)として、平均粒子径1μmの立方晶窒化硼素粉末(表1において、「cBN粉末」と記す。)と、表1の「第1工程」の「原料粉末」欄に示す組成を有する結合材粉末とを準備した。立方晶窒化硼素粉末は、触媒を用いる従来の方法で作製されたものである。結合材粉末が2種類の粉末を含む場合は、体積比を記載した。例えば、試料No.7では、結合材粉末において、WC粉末とAl粉末との体積比は3:2であることを示す。
立方晶窒化硼素粉末と結合材粉末とを体積比でcBN粉末:結合材粉末=90:10で配合し、さらにボールミルを使用して立方晶窒化硼素粉末と結合材粉末とを5時間に亘って混合した。これにより混合粉末を得た。該混合粉末を窒素雰囲気下2050℃の温度で熱処理して不純物を除去した(高温精製処理)。
(第2工程)
高温精製処理を経た混合粉末を高融点金属からなるカプセルに入れ、超高圧高温発生装置を使用して表1の「第2工程」の「圧力(GPa)」、「温度(℃)」及び「時間(分)」欄に示す圧力、温度及び時間で保持して、立方晶窒化硼素焼結体を得た。
Figure 0007047975000001
<測定>
(立方晶窒化硼素焼結体の組成)
各試料の立方晶窒化硼素焼結体の組成(立方晶窒化硼素の含有率、結合相の含有率)をSEM反射電子像の画像解析(画像処理ソフトWinROOFを用いて)により測定した。具体的な測定方法は実施形態1に示されるためその説明は繰り返さない。結果を表1の「立方晶窒化硼素焼結体」の「cBN粒子(体積%)」及び「結合相(体積%)欄に示す。
(結合相の組成)
各試料の結合相の組成をX線回折法を用いて測定した。具体的な測定方法は実施形態1に示されるためその説明は繰り返さない。結果を表1の「結合相の組成」欄に示す。
(立方晶窒化硼素粒子の粒径)
各試料の立方晶窒化硼素粒子の粒径をSEMを用いて測定し、円相当径が0.5μm超の立方晶窒化硼素粒子の数基準の割合、及び、円相当径が2μm以上の立方晶窒化硼素粒子の数基準の割合を算出した。具体的な測定方法は実施形態1に示されるためその説明は繰り返さない。結果を表1の「cBN粒子の数基準割合」の「円相当径0.5μm超(%)」及び「円相当径2μm超(%)」欄に示す。
(触媒元素の含有量)
各試料の立方晶窒化硼素粒子中の触媒元素の種類及び含有量をICP発光分光分析法を用いて測定した。具体的な測定方法は実施形態1に示されるためその説明は繰り返さない。結果を表1の「cBN粒子中の触媒元素含有量(質量%)」欄に示す。なお、結果が「-」と示されている場合は、未検出であり、含有量が検出限界(0.001質量%)未満であることを示す。
(X線回折スペクトル)
各試料の立方晶窒化硼素粒子についてX線回折測定を行い、X線回折スペクトルを得た。具体的な測定方法は実施形態1に示されるためその説明は繰り返さない。該X線回折スペクトルに基づき、圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度IC及び立方晶窒化硼素由来のピーク強度IDを測定し、(IA+IB+IC)/IDの値を得た。結果を表1の「(IA+IB+IC)/ID」欄に示す。なお、結果が「-」と示されている場合は、圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度ICのいずれのピークも検出されなかったことを示す。
<評価>
(切削工具の製造および切削性能の評価)
各試料の立方晶窒化硼素焼結体を刃先に用いて、工具形状SNMN120408の工具を作製した。該工具を使用して、下記の切削条件でフライス加工を行い、5分加工時点の熱亀裂の本数と、欠損に至るまでの切削時間(分)を評価した。
(切削条件)
切削方式:乾式切削
被削材:ねずみ鋳鉄 FC250
切削速度:2800m/min
送り:0.25mm/rev.
切り込み量:ae=20mm、ap=0.3mm
上記の切削条件は、ねずみ鋳鉄の高能率加工に該当する。欠損が生じるまでの切削時間が長いほど、耐欠損性が高く、切削性能に優れていることを示している。結果を表1の「5分加工後熱亀裂本数(本)」、「欠損までの切削時間(分)」欄に示す。なお、「5分加工後熱亀裂本数(本)」欄の「欠損」との記載は、加工開始後5分経過前に欠損が生じたことを示す。
<考察>
試料No.2~試料No.5、試料No.14~試料No.16、試料No.18及び試料No.19の製造条件、及び、得られた立方晶窒化硼素焼結体は実施例に該当する。これらの立方晶窒化硼素焼結体を用いた工具は、ねずみ鋳鉄の高能率加工においても、優れた切削性能を示した。
試料No.1の製造方法により得られた立方晶窒化硼素焼結体は、立方晶窒化硼素粒子の含有割合が65体積%であり、比較例に該当する。従って、試料No.1の製造条件も、比較例に該当する。該立方晶窒化硼素焼結体を用いた工具は、欠損が生じるまでの時間が実施例に比べて短かった。これは、立方晶窒化硼素粒子の割合が70体積%未満であり、cBN粒子同士が骨格構造を取ることができずに切削時にcBN粒子の脱落が発生した為と考えられる。
試料No.6の製造方法により得られた立方晶窒化硼素焼結体は、立方晶窒化硼素粒子の含有割合が99.5体積%であり、比較例に該当する。従って、試料No.6の製造条件も、比較例に該当する。該立方晶窒化硼素焼結体を用いた工具は、欠損が生じるまでの時間が実施例に比べて短かった。これは、立方晶窒化硼素粒子の割合が95体積%を超えており、立方晶窒化硼素粒子間の結合を保持する結合相の割合が小さく、焼結体中に欠陥が多い、また結合材成分によるcBN粒子同士のネックグロスが充分に促進されず、立方晶窒化硼素粒子が脱落しやすかったためと考えられる。
試料No.7~試料No.12の製造条件は、触媒を用いる従来の方法で作製された立方晶窒化硼素粉末を用い、比較例に該当する。試料No.7~試料No.12の焼結体は、立方晶窒化硼素粒子中の触媒元素の含有量が0.002質量%以上であり、比較例に該当する。これらの立方晶窒化硼素焼結体を用いた工具は、5分加工時点で熱亀裂の本数が実施例に比べて多くなっており、欠損までの時間も実施例に比べて短いことが分かる。これは、立方晶窒化硼素粒子中に存在する触媒元素が、加工時の被削材との接点近傍の圧力及び温度条件下で、立方晶窒化硼素から六方晶窒化硼素への相変換を促進し、刃部領域で熱伝導率が低下し、耐熱性が悪化したためと考えられる。
試料No.13の製造条件は、第2工程における保持時間が15分であり、比較例に該当する。試料No.13の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子が、円相当径0.5μm超の立方晶窒化硼素粒子の数基準の割合が45%であり、比較例に該当する。該立方晶窒化硼素焼結体を用いた工具は、欠損が生じるまでの時間が実施例に比べて短かった。これは、円相当径0.5μm超の立方晶窒化硼素粒子の含有割合が小さく、円相当径0.5μm以下の微粒の割合が大きく、靱性及び熱伝導率が低下し、耐欠損性が低下したためと考えられる。
試料No.17の製造条件は、第2工程での保持時間が90分であり、比較例に該当する。試料No.17の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子が、円相当径2μm以上の立方晶窒化硼素粒子を数基準で58%含み、比較例に該当する。該立方晶窒化硼素焼結体を用いた工具は、欠損が生じるまでの時間が実施例に比べて短かった。これは、円相当径2μm以上の立方晶窒化硼素粒子の含有割合が大きいため、強度が低下し、耐欠損性が低下したためと考えられる。
[実施例2:試料No.4、試料No.9、試料No.20~試料No.23]
<立方晶窒化硼素焼結体の作製>
基本的に実施例1と同様の方法で、試料No.4、試料No.9の立方晶窒化硼素焼結体を作製した。試料No.20~試料No.23の立方晶窒化硼素焼結体は、第1工程及び第2工程における各条件を表2の「第1工程」及び「第2工程」欄に示す条件にした以外は、試料No.1と同様の方法で立方晶窒化硼素焼結体を作製した。
Figure 0007047975000002
<測定>
各試料について、実施例1と同様の方法で、立方晶窒化硼素焼結体の組成(立方晶窒化硼素の含有率、結合相の含有率)、結合相の組成、立方晶窒化硼素粒子の粒径、触媒元素の含有量、X線回折スペクトルを測定した。結果を表2に示す。
<評価>
(切削工具の製造および切削性能の評価)
各試料の立方晶窒化硼素焼結体を刃先に用いて、工具形状SNMN120408の工具を作製した。該工具を使用して、下記の切削条件で外径旋削加工を行い、耐摩耗性及び耐欠損性を評価した。
(切削条件)
切削方式:湿式切削
被削材:ダグタイル鋳鉄 FCD700丸棒
切削速度:300m/min
送り:0.2mm/rev.
切り込み量:ap=0.2mm
評価方法:10分間切削を行った際の逃げ面摩耗量(単位:mm)。
上記の切削条件は、ダクタイル鋳鉄の高能率加工に該当する。逃げ面摩耗量が小さいほど、耐摩耗性が高く、切削性能に優れていることを示している。結果を表2の「逃げ面摩耗量(mm)」欄に示す。
<考察>
試料No.4、試料No.20~試料No.23の製造条件、及び、得られた立方晶窒化硼素焼結体は実施例に該当する。これらの立方晶窒化硼素焼結体を用いた工具は、ダクタイル鋳鉄の高能率加工においても、優れた耐摩耗性を示した。中でも、試料No.20及び試料No.21の立方晶窒化硼素焼結体は、(IA+IB+IC)/IDの値が0.05以下であり、耐摩耗性が非常に優れていた。
試料No.9の製造条件は、触媒を用いる従来の方法で作製された立方晶窒化硼素粉末を用い、比較例に該当する。試料No.9の焼結体は、立方晶窒化硼素粒子中の触媒元素の含有量が0.001質量%以上であり、比較例に該当する。該立方晶窒化硼素焼結体を用いた工具は、実施例に比べて逃げ面摩耗量が大きく、耐摩耗性に劣っていた。これは、立方晶窒化硼素粒子中に存在する触媒元素が、加工時の被削材との接点近傍の圧力及び温度条件下で、立方晶窒化硼素から六方晶窒化硼素への相変換を促進し、刃部領域で熱伝導率が低下し、耐熱性が悪化したためと考えられる。
以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (3)

  1. 70体積%以上98体積%以下の立方晶窒化硼素粒子と、結合相と、を備える立方晶窒化硼素焼結体であって、
    前記結合相は、コバルト化合物、アルミニウム化合物及び炭化タングステンからなる群より選ばれる少なくとも1種の第1化合物、並びに、前記第1化合物由来の固溶体からなる群より選ばれる少なくとも1種、を含み、
    前記立方晶窒化硼素粒子は、円相当径が0.5μm超の立方晶窒化硼素粒子を数基準で50%以上、かつ、円相当径が2μm超の立方晶窒化硼素粒子を数基準で50%以下含み、
    前記立方晶窒化硼素粒子の質量を100質量%とした場合、前記立方晶窒化硼素粒子中のリチウム、マグネシウム、カルシウム、ストロンチウム、ベリリウム及びバリウムの合計含有量は0.001質量%未満であり、
    前記コバルト化合物は、W Co 21 、W CoB 、およびW Co Cからなる群より選ばれる少なくとも1種の化合物であり、
    前記アルミニウム化合物は、AlN、AlB 、およびAl からなる群より選ばれる少なくとも1種の化合物である、立方晶窒化硼素焼結体。
  2. 前記立方晶窒化硼素焼結体のX線回折スペクトルにおいて、圧縮型六方晶窒化硼素由来のピーク強度IA、六方晶窒化硼素由来のピーク強度IB、ウルツ鉱型窒化硼素由来のピーク強度IC及び立方晶窒化硼素由来のピーク強度IDが、下記式Iの関係を示す、
    (IA+IB+IC)/ID≦0.05 式I
    請求項1に記載の立方晶窒化硼素焼結体。
  3. 請求項1又は請求項2に記載の立方晶窒化硼素焼結体の製造方法であって、
    六方晶窒化硼素粉末と結合材粉末とを混合して、混合粉末を得る第1工程と、
    前記混合粉末を、圧力8GPa以上20GPa以下、かつ、温度2300℃以上2500℃以下まで昇圧昇温し、昇圧昇温により到達した最高圧力及び最高温度において30分以上90分未満保持することにより焼結して立方晶窒化硼素焼結体を得る第2工程とを備える、立方晶窒化硼素焼結体の製造方法。
JP2021525839A 2019-12-16 2020-10-29 立方晶窒化硼素焼結体及びその製造方法 Active JP7047975B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019226361 2019-12-16
JP2019226361 2019-12-16
PCT/JP2020/040555 WO2021124701A1 (ja) 2019-12-16 2020-10-29 立方晶窒化硼素焼結体及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2021124701A1 JPWO2021124701A1 (ja) 2021-12-16
JP7047975B2 true JP7047975B2 (ja) 2022-04-05

Family

ID=76477341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021525839A Active JP7047975B2 (ja) 2019-12-16 2020-10-29 立方晶窒化硼素焼結体及びその製造方法

Country Status (5)

Country Link
US (1) US20230013990A1 (ja)
EP (1) EP4079709A4 (ja)
JP (1) JP7047975B2 (ja)
CN (1) CN114845974B (ja)
WO (1) WO2021124701A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563086B (zh) * 2021-08-13 2022-08-30 中国有色桂林矿产地质研究院有限公司 聚晶立方氮化硼复合材料及其制备方法、硼化钨作为聚晶立方氮化硼复合材料粘结相的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP2008208027A (ja) 2008-05-21 2008-09-11 Sumitomo Electric Hardmetal Corp cBN焼結体
JP2015505740A (ja) 2011-12-05 2015-02-26 ダイヤモンド イノベイションズ インコーポレーテッド 焼結された立方晶窒化ホウ素切削工具
WO2016104563A1 (ja) 2014-12-24 2016-06-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2017077829A1 (ja) 2015-11-05 2017-05-11 住友電気工業株式会社 立方晶窒化硼素焼結体工具、これに用いられる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体工具の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521386B (en) * 2000-06-28 2003-02-21 Mitsubishi Heavy Ind Ltd Hexagonal boron nitride film with low dielectric constant, layer dielectric film and method of production thereof, and plasma CVD apparatus
EP2177585B1 (en) * 2003-08-20 2014-11-26 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact
JP4160898B2 (ja) 2003-12-25 2008-10-08 住友電工ハードメタル株式会社 高強度高熱伝導性立方晶窒化硼素焼結体
JP2006137623A (ja) * 2004-11-10 2006-06-01 Tungaloy Corp 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
WO2007057995A1 (ja) * 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. 高品位表面性状加工用cBN焼結体及びcBN焼結体切削工具およびこれを用いた切削加工方法
JP2007145667A (ja) * 2005-11-29 2007-06-14 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体
CN104941520A (zh) * 2006-12-13 2015-09-30 戴蒙得创新股份有限公司 具有提高的机械加工性的研磨压实体
US9346716B2 (en) * 2010-03-12 2016-05-24 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
WO2013150610A1 (ja) * 2012-04-03 2013-10-10 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
US20130291446A1 (en) * 2012-05-02 2013-11-07 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
JP6082650B2 (ja) * 2013-04-26 2017-02-15 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6198142B2 (ja) * 2014-03-26 2017-09-20 三菱マテリアル株式会社 立方晶窒化ホウ素基超高圧焼結材料製切削工具
JP6291986B2 (ja) 2014-04-14 2018-03-14 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP6256169B2 (ja) 2014-04-14 2018-01-10 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
KR20170100600A (ko) * 2014-12-31 2017-09-04 다이아몬드 이노베이션즈, 인크. 마이크로결정질 입방정계 질화 붕소 (CBN) 를 포함하는 다결정질 입방정계 질화 붕소 (PcBN) 및 제조 방법
JP6447197B2 (ja) * 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP2008208027A (ja) 2008-05-21 2008-09-11 Sumitomo Electric Hardmetal Corp cBN焼結体
JP2015505740A (ja) 2011-12-05 2015-02-26 ダイヤモンド イノベイションズ インコーポレーテッド 焼結された立方晶窒化ホウ素切削工具
WO2016104563A1 (ja) 2014-12-24 2016-06-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2017077829A1 (ja) 2015-11-05 2017-05-11 住友電気工業株式会社 立方晶窒化硼素焼結体工具、これに用いられる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体工具の製造方法

Also Published As

Publication number Publication date
CN114845974A (zh) 2022-08-02
CN114845974B (zh) 2023-10-27
EP4079709A4 (en) 2023-01-25
EP4079709A1 (en) 2022-10-26
WO2021124701A1 (ja) 2021-06-24
JPWO2021124701A1 (ja) 2021-12-16
US20230013990A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
KR100630995B1 (ko) 고강도 고열전도성 입방정 질화붕소 소결체
JP6744014B2 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JPWO2017203738A1 (ja) 焼結体およびそれを含む切削工具
JP2022188019A (ja) 立方晶窒化硼素焼結体及びその製造方法
JP2017014084A (ja) 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
JP5059528B2 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP7047975B2 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6291986B2 (ja) 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
US11767268B2 (en) Cubic boron nitride sintered material
WO2022085161A1 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
JP6940110B1 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP7336063B2 (ja) 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
JP7336062B2 (ja) 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
WO2022259510A1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具
WO2022085438A1 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
JP2022142894A (ja) cBN焼結体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7047975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150