WO2016125425A1 - 鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備 - Google Patents

鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備 Download PDF

Info

Publication number
WO2016125425A1
WO2016125425A1 PCT/JP2016/000030 JP2016000030W WO2016125425A1 WO 2016125425 A1 WO2016125425 A1 WO 2016125425A1 JP 2016000030 W JP2016000030 W JP 2016000030W WO 2016125425 A1 WO2016125425 A1 WO 2016125425A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
quenching
spray nozzles
pipe
axis
Prior art date
Application number
PCT/JP2016/000030
Other languages
English (en)
French (fr)
Inventor
啓之 福田
木島 秀夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2017009970A priority Critical patent/MX2017009970A/es
Priority to CN201680008575.5A priority patent/CN107250393B/zh
Priority to BR112017016426-4A priority patent/BR112017016426B1/pt
Priority to EP16746259.7A priority patent/EP3255160B1/en
Priority to JP2016563218A priority patent/JP6098773B2/ja
Priority to US15/544,382 priority patent/US11230747B2/en
Publication of WO2016125425A1 publication Critical patent/WO2016125425A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/035Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material to several spraying apparatus

Definitions

  • the present invention relates to a steel pipe quenching method, a steel pipe quenching apparatus, a steel pipe manufacturing method, and a steel pipe manufacturing facility, in which a heated steel pipe is quenched and quenched.
  • steel pipes for example, seamless steel pipes, ERW steel pipes, etc.
  • satisfactory characteristics for example, strength, toughness, etc.
  • quenching is performed after the steel pipe is manufactured or in the process of manufacturing the steel pipe.
  • a seamless steel pipe production line hot piercing and rolling are performed, and further, rolling is performed in an unrecrystallized temperature range to refine crystal grains and improve toughness.
  • Technology has been developed in which a high-temperature seamless steel pipe is immediately quenched and quenched (hereinafter referred to as direct quenching).
  • direct quenching a technology has been developed in which a high-temperature seamless steel pipe discharged from a production line is cooled to room temperature and then heated again in a heating furnace for quenching.
  • ERW steel pipes are quenched by heating normal temperature ERW steel pipes discharged from the production line in a heating furnace.
  • Patent Document 2 discloses a technology that enables uniform rapid cooling in the circumferential direction of a steel pipe by rapidly cooling the outer surface and the inner surface with cooling water while rotating the heated steel pipe.
  • this technique does not immerse the steel pipe in water, as shown in FIG. 4, the upper part of the inner surface of the steel pipe 1 becomes difficult to come into contact with the cooling water 2, resulting in uneven temperature in the circumferential direction of the steel pipe 1.
  • Variation in quality occurs.
  • FIG. 5 since the end of the steel pipe 1 on the spray nozzle 3 side is not in contact with the cooling water 2 not only on the inner surface but also on the inner surface, the temperature unevenness in the longitudinal direction of the steel pipe 1 occurs. Variation in quality occurs.
  • Patent Document 3 in order to rapidly cool the outer surface of the heated steel pipe, a plurality of spray nozzles are arranged in the circumferential direction of the steel pipe, and a coolant is jetted on the outer surface of the steel pipe, so that the circumferential direction of the steel pipe is increased.
  • a technique that enables uniform rapid cooling is disclosed.
  • a plurality of spray nozzles 3 for injecting the refrigerant are arranged on the same circumference, so that ring-shaped high temperature portions and low temperature portions are alternately generated.
  • Patent Document 4 in order to cool the outer surface of the heated steel pipe, a number of spray nozzles are provided in a spiral header, and cooling water is sprayed on the outer surface of the steel pipe, whereby uniform quenching is performed in the longitudinal direction of the steel pipe. Techniques that enable this are disclosed. However, in this technique, as shown in FIG. 7, since the region for injecting the cooling water is limited, the temperature unevenness of the steel pipe 1 occurs, and as a result, the quality varies. Even if the pitch of the spiral header 4 is shortened in order to expand the area for injecting the cooling water, smooth discharge of the cooling water injected to the outer surface of the steel pipe 1 becomes difficult. As a result, quality variation occurs.
  • the present invention eliminates the problems of the prior art, quenches the steel pipe in the longitudinal direction and the circumferential direction with a simple means, and can obtain a steel pipe with good and uniform quality, which can be quenched. It is an object of the present invention to provide a method, a steel pipe quenching apparatus, a steel pipe manufacturing method, and a steel pipe manufacturing facility.
  • the inventors of the present invention have studied a technique for uniformly cooling the steel pipe in the longitudinal direction and the circumferential direction by injecting cooling water from the spray nozzle onto the outer surface of the steel pipe. It was found that the steel pipe can be uniformly and rapidly cooled by spraying the cooling water while properly arranging the spray nozzles and rotating the steel pipe around the pipe axis.
  • the present invention has been made based on the knowledge.
  • the present invention stops the movement of the steel pipe in the direction parallel to and perpendicular to the pipe axis of the heated steel pipe, and rotates the steel pipe around the pipe axis while spiraling outside the steel pipe at equal intervals.
  • This is a steel pipe quenching method in which cooling water is sprayed from the arranged four or more spray nozzles onto the outer surface of the steel pipe.
  • the number of spray nozzles is preferably 6 or more.
  • the spiral arrangement of spray nozzles is two or more rows. That is, it is preferable to provide two spirals that do not overlap each other. Furthermore, it is preferable that the steel pipe is rotated at a rotation speed of 5 times / minute or more and 300 times / minute or less. Furthermore, it is preferable that the cooling water is sprayed to the outer surface of the steel pipe from spray nozzles positioned on the opposite sides of the pipe axis in a plane perpendicular to the pipe axis of the steel pipe.
  • the present invention also provides two or more rotating rolls for rotating the steel pipe around the tube axis of the heated steel pipe, and the cooling water is sprayed at equal intervals in a spiral manner on the outside of the steel pipe rotated by the rotating roll.
  • a steel pipe quenching apparatus having six or more spray nozzles and two or more headers for supplying cooling water to the spray nozzles.
  • a header is arrange
  • the number of spiral rows in which the spray nozzles are arranged is preferably smaller than n.
  • n since the spray nozzles are arranged on the same circumference as shown in FIG. 6, ring-shaped high temperature portions and low temperature portions are alternately generated.
  • the minimum number of rows of the spiral is 1.
  • the spiral arrangement of the spray nozzles is preferably two or more rows.
  • the spray nozzles are disposed on opposite sides of the tube axis in a plane perpendicular to the tube axis of the steel pipe.
  • the present invention is a method of manufacturing a steel pipe including a step of quenching the steel pipe by the above quenching method.
  • the present invention is a steel pipe manufacturing facility provided with the above quenching apparatus.
  • uniform quenching can be performed in the longitudinal direction and the circumferential direction of the steel pipe by a simple means, and a steel pipe with good and uniform quality can be obtained, so that it has a remarkable industrial effect.
  • FIG. 1 is a diagram schematically showing an example of the arrangement of spray nozzles in a quenching apparatus according to the present invention, where (a) is a cross-sectional view and (b) is a side view. In the side view, only headers and nozzles positioned above and below the steel pipe are shown, and the other headers and nozzles are not shown.
  • FIG. 2 is a diagram schematically showing an example of the arrangement of spray nozzles in the quenching apparatus according to the present invention, where (a) is a cross-sectional view and (b) is a side view. In the side view, only headers and nozzles positioned above and below the steel pipe are shown, and the other headers and nozzles are not shown.
  • FIG. 1 is a diagram schematically showing an example of the arrangement of spray nozzles in a quenching apparatus according to the present invention, where (a) is a cross-sectional view and (b) is a side view. In the side view, only headers and nozzles positioned
  • FIG. 3 is a diagram schematically showing an example in which a steel pipe is rotated by the quenching apparatus shown in FIG. 2, wherein (a) is a sectional view and (b) is a side view. In the side view, only headers and nozzles positioned above and below the steel pipe are shown, and the other headers and nozzles are not shown.
  • FIG. 4 is a cross-sectional view schematically showing a conventional example of cooling water flowing through the inside of a steel pipe.
  • FIG. 5 is a cross-sectional view schematically showing a conventional example of cooling water flowing through a steel pipe.
  • FIG. 6 is a side view schematically showing a conventional example in which cooling water is injected onto the outer surface of a steel pipe.
  • FIG. 7 is a side view schematically showing a conventional example in which cooling water is injected onto the outer surface of a steel pipe.
  • FIG. 8 is a side view schematically showing a conventional example in which cooling water is injected onto the outer surface of a steel pipe.
  • FIG. 9 is a diagram schematically showing an example of the equipment configuration when manufacturing a seamless steel pipe.
  • FIG. 10 is a diagram schematically showing an example of the equipment configuration in the case of manufacturing an ERW steel pipe.
  • the steel pipe is not particularly limited, and examples of the steel pipe include a seamless steel pipe, an ERW steel pipe, and a UOE steel pipe.
  • FIG. 1 is a diagram schematically showing an arrangement example of spray nozzles in a steel pipe quenching apparatus according to the present invention, where (a) is a cross-sectional view perpendicular to the tube axis, and (b) is a side view parallel to the tube axis. It is.
  • This example is an example in which the spray nozzles 3 are arranged outside the steel pipe 1 at equal intervals of 45 ° when viewed as a cross section perpendicular to the pipe axis of the steel pipe 1 (see FIG. 1A). These spray nozzles 3 are arranged in a single row of spirals (see FIG. 1B). Therefore, the total number of spray nozzles 3 is 8 or more.
  • FIG. 1B to FIG. 3B some nozzles 3 and headers 2 are illustrated in the longitudinal direction of the steel pipe in order to simply explain the spiral arrangement.
  • the spray nozzle 3 is preferably used so that the cooling water 2 can be sprayed over a range wider than the spray nozzle diameter, and the spray nozzles 3 are preferably arranged so that the spray areas of the cooling water 2 overlap each other in a spiral manner (FIG. 1A )reference).
  • the reason is that if the cooling water 2 injected in a conical shape (including a substantially conical shape in the present invention) is spirally overlapped with each other, a sufficient cooling rate can be secured and the steel pipe 1 is further rotated. This is because uniform cooling can be achieved.
  • the spray nozzle 3 is preferably arranged so that the central axis of the injection port intersects the tube axis of the steel pipe 1 perpendicularly. The reason is that when the cooling water 2 is injected in the tangential direction (see FIG. 8) of the steel pipe 1 or in an oblique direction (not shown), the cooling efficiency is lowered, and it is difficult to secure a sufficient cooling rate. Because.
  • the spray nozzles 3 are arranged on the outside of the steel pipe in a spiral manner at equal intervals. Therefore, the plurality of spray nozzles 3 are arranged in a direction parallel to the tube axis (see FIG. 1B).
  • the spray nozzle 3 By arranging the spray nozzle 3 in a spiral shape, the cooling variation in the circumferential direction of the steel pipe 1 is reduced. Since the warp of the steel pipe 1 caused by the cooling variation in the circumferential direction is dispersed in the circumferential direction, the warp over the entire length can be reduced.
  • the header 4 for supplying the cooling water 2 to those spray nozzles 3 it is preferable to arrange a substantially straight pipe in parallel to the tube axis.
  • the header 4 is arranged in a spiral shape, the resistance of the cooling water 2 flowing in the header 4 increases, and the pressure and flow rate of the cooling water 2 injected from the spray nozzle 3 fluctuate. If the header 4 has a substantially straight tubular shape and is disposed in parallel with the tube axis, it is not necessary to produce a ring-shaped or spiral header, and therefore the installation cost can be kept low. Moreover, the spray nozzle 3 will be arrange
  • the longitudinal pitch of the spray nozzles 3 is shortened, it is possible to secure a gap between the headers 4 as compared with the case where the headers 4 are arranged in a ring shape or a spiral shape. After the water falls, the cooling uniformity in the circumferential direction is further improved.
  • “stopping the steel pipe in a direction parallel to the pipe axis and in a direction perpendicular to the pipe axis at a predetermined position” means that when the steel pipe is rapidly cooled, the steel pipe is moved in the pipe axis direction or a direction perpendicular to the pipe axis. It means that we do not move actively.
  • the vibration of the steel pipe caused by rotating the steel pipe around the pipe axis and the unavoidable and unintentional movement of the steel pipe in the pipe axis direction and the vertical direction that can be caused by this vibration Is stopped at a predetermined position in a direction parallel to the tube axis and in a direction perpendicular thereto.
  • the rotation speed of the steel pipe 1 is preferably 5 times / min or more and 300 times / min or less. From the viewpoint of suppressing the temperature unevenness in the circumferential direction of the steel pipe, the rotation speed is more preferably 10 times / minute or more, further preferably 30 times / minute or more, and more preferably 50 times / minute or more. Even more preferable.
  • the rotational speed is more preferably less than 300 times / minute, and 250 times. / Min or less is more preferable, and 200 times / min or less is even more preferable.
  • FIG. 2 is a diagram schematically showing an example of arrangement of spray nozzles in a steel pipe quenching apparatus according to the present invention, where (a) is a cross-sectional view perpendicular to the tube axis, and (b) is a side view parallel to the tube axis. It is.
  • (a) is a cross-sectional view perpendicular to the tube axis
  • (b) is a side view parallel to the tube axis. It is.
  • six spray nozzles 3 are arranged outside the steel pipe 1 at equal intervals of 60 ° (see FIG. 2 (a)). .
  • These spray nozzles 3 are arranged in two rows of spirals (see FIG. 2B). Therefore, the total number of spray nozzles 3 is 24 or more.
  • the two rows of spirals are in a positional relationship that does not overlap each other. Therefore, the spray nozzles 3 adjacent to each other in the header 4 constitute different spirals.
  • the spiral arrangement By setting the spiral arrangement to two or more rows, the temperature unevenness in the circumferential direction can be further reduced.
  • the spray nozzle 3 for injecting the cooling water 2 in a conical shape is used as already described with reference to FIG.
  • the header 4 for supplying the cooling water 2 to the spray nozzles 3 is preferably arranged in parallel to the tube axis.
  • the spray nozzles are arranged at positions opposite to each other in the plane perpendicular to the pipe axis of the steel pipe, in other words, the spray nozzles are opposed to each other across the pipe axis.
  • the rotation speed of the steel pipe 1 is preferably 5 times / min or more and 300 times / min or less as in the case of FIG. That is, the above-described embodiment described with reference to FIG. 1 can be adopted even in the case of FIG.
  • the spray nozzles 3 are arranged on opposite sides of the pipe axis in a plane perpendicular to the pipe axis of the steel pipe 1 (that is, 180 ° apart from each other about the pipe axis). It is possible to inject cooling water onto the outer surface of the steel pipe 1.
  • FIG. 3 is a diagram schematically showing an example in which a rotating roll is disposed in the steel pipe quenching apparatus shown in FIG. 2 to rotate the steel pipe, where (a) is a cross-sectional view and (b) is a side view.
  • a pair (that is, two) of rotating rolls 5 are disposed in a cross section perpendicular to the tube axis of the steel pipe 1, and the steel pipe 1 is placed on the rotating roll 5.
  • This is an example of rotation (see FIG. 3A). Since it is difficult to place the steel pipe 1 with only one pair of the rotating rolls 5, two or more pairs of rotating rolls 5 are arranged at equal pitches in a direction parallel to the tube axis of the steel pipe 1 (FIG. 3 ( b)).
  • N in the formula is an arbitrary integer. N can be appropriately selected according to the length of the cooling water 2 in the tube axis direction and the rotational ability of the rotary roll 5 to rotate the steel pipe. If N is too large, the rotational capacity required per one rotating roll 5 becomes excessive, and the equipment cost increases. Therefore, N is preferably 5 or less. Moreover, since the rotation of a steel pipe becomes more stable as the number of rotating rolls 5 increases, the lower limit of N is 1.
  • 2 to 32 spray nozzles are preferably arranged at equal intervals, and more preferably 4 to 16 are arranged at equal intervals.
  • the number of spray nozzles may be appropriately selected according to the length of the steel pipe to be cooled.
  • the number of spray nozzles is preferably 8 to 1280.
  • the steel pipe manufacturing method of the present invention has technical characteristics in the above-described steel pipe quenching process. Therefore, other processes can be appropriately selected in consideration of the conditions and characteristics of the steel pipe to be manufactured.
  • the seamless steel pipe when producing a seamless steel pipe, can be produced by a piercing and rolling process, a drawing and rolling process, a heat treatment process, and the like.
  • the ERW steel pipe can be manufactured by a rewinding process, a forming process, a welding process, a heat treatment process, and the like.
  • the steel pipe manufacturing equipment equipped with the steel pipe quenching apparatus of the present invention by manufacturing a steel pipe using the steel pipe manufacturing equipment equipped with the steel pipe quenching apparatus of the present invention, the steel pipe is cooled more uniformly than before during quenching, which is preferable because the material uniformity of the steel pipe is also improved.
  • the steel pipe manufacturing equipment of the present invention has the technical characteristics of the above-described steel pipe manufacturing apparatus. Therefore, other devices can be appropriately selected in consideration of the conditions and characteristics of the steel pipe to be manufactured.
  • the steel pipe manufacturing apparatus includes a heating furnace, a piercing rolling mill, a stretch rolling mill, a constant diameter rolling mill and the like in addition to the quenching apparatus of the present invention.
  • the steel pipe manufacturing apparatus includes an uncoiler, a forming machine, a welding machine, a heating furnace, etc. in addition to the quenching apparatus of the present invention.
  • a billet heated in a heating furnace is pierced and rolled with a Piercer experimental machine to form a seamless steel pipe (outer diameter 210 mm, inner diameter 130 mm, pipe thickness 40 mm, pipe length 8 m), followed by rapid cooling by injecting cooling water (cooling start temperature 1150). ) And a cooling stop temperature of 850 ° C., a direct quenching simulation experiment was performed.
  • the procedure will be described below.
  • the water density of the cooling water was 1 m 3 / (m 2 ⁇ min) in all cases, and other setting conditions were as shown in Table 1.
  • spray nozzles are arranged in a row of spirals at 90 ° intervals when viewed as a cross section perpendicular to the pipe axis of the steel pipe, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • This is an example of rapid cooling.
  • a total of 112 spray nozzles were disposed.
  • the temperature of the seamless steel pipe was measured using the infrared radiation thermometer (8 places in the circumferential direction, 4 places in the longitudinal direction).
  • the difference between the maximum value and the minimum value is also shown in Table 1 as a temperature deviation.
  • the temperature deviation of Invention Example 1 is 18 ° C. in the longitudinal direction and 17 ° C. in the circumferential direction, and the temperature unevenness is within an allowable range for obtaining uniform characteristics (the temperature deviation in the longitudinal direction is 40 ° C. or less).
  • the acceptable temperature deviation in the circumferential direction was suppressed to 20 ° C. or less.
  • Invention Example 2 when viewed as a cross section perpendicular to the tube axis of the steel pipe, spray nozzles are arranged at intervals of 60 ° and in a row of spirals, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • This is an example of rapid cooling.
  • the temperature deviation after rapid cooling was 14 ° C. in the longitudinal direction and 17 ° C. in the circumferential direction.
  • Invention Example 3 when viewed as a cross section perpendicular to the tube axis of the steel pipe, spray nozzles are arranged at 45 ° intervals and in a row of spirals, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • This is an example of rapid cooling.
  • the temperature deviation after rapid cooling was 12 ° C. in the longitudinal direction and 17 ° C. in the circumferential direction.
  • spray nozzles since spray nozzles were further increased and densely arranged, temperature unevenness in the longitudinal direction was reduced as compared with Invention Example 2.
  • Invention Example 4 when viewed as a cross section perpendicular to the tube axis of the steel pipe, spray nozzles are arranged at intervals of 90 ° and in a row of spirals, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • This is an example of rapid cooling.
  • the temperature deviation after rapid cooling was 14 ° C. in the longitudinal direction and 13 ° C. in the circumferential direction.
  • Invention Example 4 since the number of rotations of the steel pipe was increased, temperature unevenness in the longitudinal direction and the circumferential direction was reduced as compared with Invention Example 1.
  • Invention Example 5 when viewed as a cross section perpendicular to the tube axis of the steel pipe, the spray nozzles were formed in two rows of spirals at 90 ° intervals. The spray nozzles of the spirals are arranged to face the tube axis of the steel pipe in a plane perpendicular to the tube axis, and this is repeated in the longitudinal direction.
  • Invention Example 5 is an example in which cooling water is jetted to the outer surface and rapidly cooled while rotating the steel pipe under such conditions. In other words, this is an example in which the spray nozzle is disposed at a position opposite to the tube axis in a plane perpendicular to the tube axis direction of the steel tube and including the spray nozzle.
  • the temperature deviation after rapid cooling was 14 ° C. in the longitudinal direction and 10 ° C. in the circumferential direction.
  • Inventive example 5 made the arrangement of the spray nozzle more suitable for the two rows of spirals and increased the number of rotations of the steel pipe, so that the warpage after cooling was reduced as compared with inventive example 1.
  • In Invention Example 6 when viewed as a cross section perpendicular to the tube axis of the steel pipe, spray nozzles are arranged at 90 ° intervals and in two rows of spirals, and the spray nozzles of each spiral are perpendicular to the tube axis. It is an example which arrange
  • a total of 112 spray nozzles were arranged so that the roll and cooling water would not interfere.
  • the temperature deviation after rapid cooling was 10 ° C. in the longitudinal direction and 11 ° C. in the circumferential direction.
  • Invention Example 6 since the rotating roll and the cooling water do not interfere with each other, the temperature unevenness in the longitudinal direction is reduced as compared with Invention Example 5.
  • Invention Example 7 when viewed as a cross section perpendicular to the tube axis of a steel pipe, spray nozzles are arranged at intervals of 60 ° and in three rows of spirals, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • This is an example of rapid cooling.
  • the temperature deviation after rapid cooling was 8 ° C in the longitudinal direction and 7 ° C in the circumferential direction.
  • the spray nozzles were increased and densely arranged, and the number of rotations of the steel pipe was increased. Therefore, temperature irregularities in the longitudinal direction and the circumferential direction were reduced as compared with Invention Example 6.
  • Invention Example 8 when viewed as a cross section perpendicular to the tube axis of the steel pipe, spray nozzles are arranged at 45 ° intervals and in four rows of spirals, and cooling water is sprayed to the outer surface while rotating the steel pipe.
  • the temperature deviation after quenching was 5 ° C. in the longitudinal direction and 3 ° C. in the circumferential direction.
  • the spray nozzles were further increased and densely arranged, and the number of rotations of the steel pipe was further increased. Therefore, temperature unevenness in the longitudinal direction and the circumferential direction was reduced as compared with Invention Example 7.
  • Comparative Example 1 is an example (see FIGS. 4 and 5) in which cooling water was poured into the steel pipe to rapidly cool the inner surface.
  • the cooling water does not contact the upper part of the inner surface, and the cooling water does not contact the inner surface of the pipe end on the side where the cooling water flows, so the temperature deviation after the rapid cooling is
  • the longitudinal direction was 150 ° C. and the circumferential direction was 25 ° C., and the temperature unevenness was greatly increased as compared with Invention Examples 1-8.
  • Comparative Example 2 is an example in which spray nozzles are arranged at 45 ° intervals on the same circumference in a cross section perpendicular to the pipe axis of the steel pipe, and arranged in the length direction of the steel pipe to arrange a total of 224 spray nozzles (Fig. 6).
  • the ring-shaped high temperature portion and low temperature portion are alternately generated, so the temperature deviation after the rapid cooling is 48 ° C. in the longitudinal direction and 22 ° C. in the circumferential direction, and the temperature unevenness is increased as compared with Invention Examples 1 to 8. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

 簡便な手段で、鋼管の長手方向および円周方向に均一な急冷を行ない、良好かつ均一な品質の鋼管を得ることができる焼入れ方法および焼入れ装置を提供する。加熱された鋼管の管軸に平行な方向および垂直な方向への移動を停止し、管軸を中心として鋼管を回転させながら、鋼管の外側に螺旋状に配列した4個以上のスプレーノズルから冷却水を鋼管の外面に噴射する。

Description

鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備
 本発明は、加熱された鋼管を急冷して焼入れを行なう、鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備に関する。
 従来から鋼管(たとえば継目無鋼管、電縫鋼管等)は種々の用途に使用されており、その用途に応じて、満足すべき特性(たとえば強度、靭性等)が規定されている。そして、鋼管の製造ラインには焼入れ装置が併設されており、用途に応じて所定の特性を有する鋼管を得るために、鋼管を製造した後に、あるいは鋼管を製造する過程で、焼入れを行なっている。
 たとえば継目無鋼管の製造ラインでは、熱間で穿孔圧延を行ない、さらに未再結晶温度域で延伸圧延を行なうことによって結晶粒を細粒化して靭性を向上し、引き続き延伸圧延が終了した後に、高温の継目無鋼管を直ちに急冷して焼入れ(以下、直接焼入れという)を行なう技術が開発されている。また、製造ラインから排出された高温の継目無鋼管を常温に冷却した後に、加熱炉で再び加熱して焼入れを行なう技術も開発されている。
 電縫鋼管については、製造ラインから排出された常温の電縫鋼管を加熱炉で加熱して焼入れを行なっている。
 このように様々な焼入れ技術が実用化されているが、いずれも焼入れを行なった後、所定の特性(すなわち強度、靭性等)を得るために、焼戻しを行なっている。
 しかしながら、焼入れ前の鋼管の温度が均一であっても、焼入れにおいて鋼管が均一に急冷されず、温度ムラが発生すると、均一な特性を有する鋼管は得られない。焼入れによって特性のバラツキが生じた鋼管は、その後、焼戻しを行なっても、そのバラツキを解消するのは困難である。
 そこで鋼管の焼入れを行なうにあたって、高温の鋼管を均一に急冷する技術が検討されている。
 たとえば特許文献1には、加熱した鋼管を水中に浸漬させた状態で、鋼管の管軸に平行な方向(鋼管の長手方向)に水流を発生させることによって、鋼管の長手方向に均一な急冷を可能とする技術が開示されている。しかしこの技術は、急冷が終了した鋼管を水中から取り出して、鋼管内部の水を排出する必要がある。つまり急冷が終了した後に、その鋼管を次工程に送給するまでに長時間を要し、排出している間の鋼管内部の水で冷却されてしまうので、次工程の操業に関連して規定される所定の範囲に制御するのは困難である。また、鋼管を把持して水中の所定の位置に浸漬させるための機器(たとえばアーム等)を設置せざるを得ず、焼入れ装置の構成が複雑になるのは避けられない。しかも、鋼管の長手方向に均一な急冷を達成するためには、高速の水流を発生させる必要があるので、設備コストが増大する。
 特許文献2には、加熱した鋼管を回転させながら外面と内面を冷却水で急冷することによって、鋼管の円周方向に均一な急冷を可能とする技術が開示されている。しかしこの技術は、鋼管を水中に浸漬させないので、図4に示すように、鋼管1の内面上部が冷却水2と接触し難くなり、鋼管1の円周方向の温度むらが発生し、その結果、品質のバラツキが生じる。また図5に示すように、鋼管1のスプレーノズル3側の端部は、内面上部のみならず内面下部も冷却水2と接触しないので、鋼管1の長手方向の温度むらが発生し、その結果、品質のバラツキが生じる。
 特許文献3には、加熱した鋼管の外面を急冷するために、鋼管の円周方向に複数個のスプレーノズルを配置して、鋼管の外面に冷媒を噴射することによって、鋼管の円周方向に均一な急冷を可能とする技術が開示されている。しかしこの技術は、図6に示すように、冷媒を噴射する複数個のスプレーノズル3が同一円周上に配置されるので、リング状の高温部と低温部が交互に発生する。
 また、この特許文献3に開示された技術は、鋼管1を長手方向に移動させながら急冷することも可能であるとされているが、鋼管1の温度を大幅に低下させる場合は、鋼管1の搬送速度を減速する、あるいは、ヘッダ4を鋼管1の長手方向に延長させ、それに伴って搬送手段(図示せず)も延伸させることによって、冷却に要する時間を確保する必要がある。ところが、鋼管1の搬送速度を低下すると、鋼管1の進行方向の尾端部が長時間にわたって放熱されて、急冷を開始する温度(以下、冷却開始温度という)の規定値を下回る状態になった後に冷媒を噴射することになり、その結果、品質のバラツキが生じる。一方で、ヘッダ4を延長すると、設備コストが増大する。
 特許文献4には、加熱した鋼管の外面を冷却するために、螺旋状のヘッダに多数のスプレーノズルを設けて、鋼管の外面に冷却水を噴射することによって、鋼管の長手方向に均一な急冷を可能とする技術が開示されている。しかしこの技術は、図7に示すように、冷却水を噴射する領域が限られるので、鋼管1の温度むらが発生し、その結果、品質のバラツキが生じる。冷却水を噴射する領域を拡げるために螺旋状のヘッダ4のピッチを短くしても、鋼管1の外面に噴射した冷却水の円滑な排出が困難になるので、やはり温度むらが発生し、その結果、品質のバラツキが生じる。
特許第5071537号公報 特許第3624680号公報 特開2005-298861号公報 特開昭54-18411号公報
 本発明は、従来の技術の問題点を解消し、簡便な手段で、鋼管の長手方向および円周方向に均一な急冷を行ない、良好かつ均一な品質の鋼管を得ることができる、鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備を提供することを目的とする。
 本発明者らは、スプレーノズルから鋼管の外面に冷却水を噴射して、鋼管の長手方向および円周方向に均一な急冷を行なう技術について検討した。そして、スプレーノズルを適正に配列し、かつ管軸を中心として鋼管を回転させながら冷却水を噴射すれば、鋼管を均一に急冷できることが分かった。
 本発明は、その知見に基づいてなされたものである。
 すなわち本発明は、加熱された鋼管の管軸に平行な方向および垂直な方向への鋼管の移動を停止し、管軸を中心として鋼管を回転させながら、鋼管の外側に螺旋状に等間隔で配列した4個以上のスプレーノズルから冷却水を鋼管の外面に噴射する鋼管の焼入れ方法である。この焼入れ方法において、スプレーノズルは6個以上であることが好ましい。
 本発明の焼入れ方法においては、スプレーノズルの螺旋状の配列を2列以上とすることが好ましい。すなわち、互いに重ならない2つの螺旋を設けることが好ましい。さらに、鋼管が回転速度5回/分以上かつ300回/分以下で回転することが好ましい。さらに、鋼管の管軸に垂直な面内で、管軸に対して互いに反対側に位置させたスプレーノズルから冷却水を鋼管の外面に噴射することが好ましい。
 また本発明は、加熱された鋼管の管軸を中心として鋼管を回転させる2個以上の回転ロールと、回転ロールによって回転する鋼管の外側に螺旋状に等間隔で配列されて冷却水を噴射する6個以上のスプレーノズルと、スプレーノズルに冷却水を供給する2個以上のヘッダと、を有する鋼管の焼入れ装置である。
 本発明の焼入れ装置においては、ヘッダが管軸に平行に配設され、かつヘッダにスプレーノズルが等ピッチPSN(mm)で取付けられることが好ましい。すなわち、管軸方向に伸びる複数のヘッダが鋼管の外側に等間隔で配されており、螺旋状に配されたスプレーノズルのうち、管軸に平行な方向に隣接するスプレーノズルは、同一のヘッダに取り付けられていることが好ましい。また、鋼管の管軸に垂直な断面として見た場合にスプレーノズルをn個(n方向)配置する場合において、スプレーノズルを配置する螺旋の列数はnより小さいことが好ましい。nと同じ場合には、図6のようにスプレーノズルが同一円周上に配置されるので、リング状の高温部と低温部が交互に発生してしまう。なお、螺旋の最小の列数は1である。さらに、回転ロールが鋼管の管軸に平行な方向に等ピッチPRL(mm)でスプレーノズルの間に配設され、かつPRL値が任意の整数Nに対してPRL=N×PSNを満足することが好ましい。さらに、前記スプレーノズルの螺旋状の配列を2列以上とすることが好ましい。さらに、鋼管の管軸に垂直な面内で、前記スプレーノズルが前記管軸に対して互いに反対側に配置されていることが好ましい。
 また、本発明は、上記の焼入れ方法により鋼管を焼入れる工程を含む鋼管の製造方法である。
 また、本発明は、上記の焼入れ装置を備えた鋼管の製造設備である。
 本発明によれば、簡便な手段で、鋼管の長手方向および円周方向に均一な急冷を行ない、良好かつ均一な品質の鋼管を得ることができるので、産業上格段の効果を奏する。
図1は、本発明に係る焼入れ装置のスプレーノズルの配置の例を模式的に示す図であり、(a)は断面図、(b)は側面図である。なお、側面図においては、鋼管の上下に位置するヘッダおよびノズルのみ表示し、他のヘッダおよびノズルは図示を省略してある。 図2は、本発明に係る焼入れ装置のスプレーノズルの配置の例を模式的に示す図であり、(a)は断面図、(b)は側面図である。なお、側面図においては、鋼管の上下に位置するヘッダおよびノズルのみ表示し、他のヘッダおよびノズルは図示を省略してある。 図3は、図2に示す焼入れ装置にて鋼管を回転させる例を模式的に示す図であり、(a)は断面図、(b)は側面図である。なお、側面図においては、鋼管の上下に位置するヘッダおよびノズルのみ表示し、他のヘッダおよびノズルは図示を省略してある。 図4は、鋼管の内部を流通する冷却水の従来の例を模式的に示す断面図である。 図5は、鋼管の内部を流通する冷却水の従来の例を模式的に示す断面図である。 図6は、鋼管の外面に冷却水を噴射する従来の例を模式的に示す側面図である。なお、側面図においては、鋼管の上下に位置するヘッダおよびノズルのみ表示し、他のヘッダおよびノズルは図示を省略してある。 図7は、鋼管の外面に冷却水を噴射する従来の例を模式的に示す側面図である。 図8は、鋼管の外面に冷却水を噴射する従来の例を模式的に示す側面図である。 図9は、継目無鋼管を製造する場合の設備構成の例を模式的に示す図である。 図10は、電縫鋼管を製造する場合の設備構成の例を模式的に示す図である。
 本発明において鋼管は特に限定されず、鋼管には、例えば、継目無鋼管、電縫鋼管、UOE鋼管等がある。
 図1は、本発明に係る鋼管の焼入れ装置についてスプレーノズルの配置例を模式的に示す図であり、(a)は管軸に垂直な断面図、(b)は管軸に平行な側面図である。この例は、鋼管1の管軸に垂直な断面として見た場合にスプレーノズル3を45°の等間隔で、鋼管1の外側に配置する例である(図1(a)参照)。そして、それらのスプレーノズル3は、1列の螺旋状に配列されている(図1(b)参照)。したがってスプレーノズル3の総数は、8個以上である。図1~3の(b)では、螺旋状の配列を簡便に説明するため、鋼管の長手方向において一部のノズル3およびヘッダ2を図示している。
 スプレーノズル3は、その噴射口径よりも広い範囲に冷却水2を噴射できるものを使用し、かつ冷却水2の噴射領域が螺旋状に互いに重複するように配列することが好ましい(図1(a)参照)。その理由は、円錐状(本発明では略円錐状をも含む)に噴射される冷却水2を螺旋状に互いに重複させれば、十分な冷却速度を確保できるとともに、さらに鋼管1を回転させることによって、均一に急冷することが可能となるからである。
 スプレーノズル3は、その噴射口の中心軸が、鋼管1の管軸に対して垂直に交差するように配置することが好ましい。その理由は、冷却水2を鋼管1の接線方向(図8参照)、あるいは斜め方向(図示せず)に噴射すると、冷却効率が低下して、十分な冷却速度を確保し難くなるおそれがあるからである。
 既に説明した通り、スプレーノズル3は、鋼管の外側に螺旋状に等間隔で配置する。したがって、複数のスプレーノズル3が管軸に平行な方向に配列される(図1(b)参照)。スプレーノズル3を螺旋状に配置することで、鋼管1の周方向における冷却バラツキが小さくなる。この周方向における冷却バラツキに起因する鋼管1の反りが周方向に分散されるため、全長にわたる反りを低減することが可能となる。それらのスプレーノズル3に冷却水2を供給するためのヘッダ4は、略直管状のものを管軸に平行に配設することが好ましい。その理由は、ヘッダ4を螺旋状に配設すると、ヘッダ4内を流れる冷却水2の抵抗が増大して、スプレーノズル3から噴射される冷却水2の圧力や流量が変動するからである。ヘッダ4を略直管状として管軸に平行に配設すれば、リング状や螺旋状のヘッダを作製する必要がないため、設置コストも低く抑えることが可能となる。また、スプレーノズル3は管軸と平行な方向に等間隔で配置することになり、鋼管長手方向に対して均一に急冷することが可能となる。また、スプレーノズル3の長手方向ピッチを短くした場合でも、ヘッダ4をリング状や螺旋状に配置する場合と比較して、それぞれのヘッダ4の隙間を確保することが可能であり、これにより冷却した後の水が下方に落下し、周方向の冷却の均一性がより向上する。
 このようにして、鋼管1を所定の位置で、管軸に平行な方向および垂直な方向への移動を停止し、管軸を中心にして回転させながら急冷することが可能となる。その結果、鋼管1を全長同時に冷却することが可能となる。また、過剰な長さのヘッダや搬送手段を設置する必要がなくなり、簡便な手段で、鋼管1の長手方向および円周方向に均一な急冷を行なうことができる。なお、本発明において、「鋼管を所定の位置で、管軸に平行な方向および垂直な方向への移動を停止し」とは、鋼管を急冷するときに、鋼管を管軸方向や垂直な方向に積極的に動かすことはしない、ということを意味する。管軸を中心として鋼管を回転することにより発生する鋼管の振動や、この振動に起因して発生しうる、管軸方向や垂直な方向への鋼管の不可避的で意図せぬ移動は、「鋼管を所定の位置で、管軸に平行な方向および垂直な方向への移動を停止し」という状態に含まれるものである。
 鋼管1の回転速度が小さ過ぎると、鋼管の周方向の温度むらを解消するのが困難になるおそれがある。一方、回転速度が大き過ぎると、鋼管1が焼入れ装置から飛び出すおそれがある。したがって、鋼管1の回転速度は5回/分以上かつ300回/分以下が好ましい。鋼管の周方向の温度むらを抑制する観点からは、回転速度は10回/分以上であることがより好ましく、30回/分以上であることが更に好ましく、50回/分以上であることがいっそう好ましい。鋼管が管軸を中心として回転する際の過度の振動を抑制し、鋼管が焼入れ装置から飛び出す可能性をさらに小さくする観点から、回転数は300回/分未満であることがより好ましく、250回/分以下であることがさらに好ましく、200回/分以下であることがいっそう好ましい。
 図2は、本発明に係る鋼管の焼入れ装置についてスプレーノズルの配置例を模式的に示す図であり、(a)は管軸に垂直な断面図、(b)は管軸に平行な側面図である。この例は、鋼管1の管軸に垂直な断面として見た場合に6個のスプレーノズル3を60°の等間隔で、鋼管1の外側に配置する例である(図2(a)参照)。そして、それらのスプレーノズル3は、2列の螺旋状に配列されている(図2(b)参照)。したがってスプレーノズル3の総数は、24個以上である。図2では、2列の螺旋は互いに重なり合わない位置関係となっている。よって、ヘッダ4において隣接するスプレーノズル3は、交互に異なる螺旋を構成している。螺旋状の配列を2列以上とすることで、円周方向の温度ムラをより低減できる。
 図2に示すようにスプレーノズル3を配列した焼入れ装置においても、既に図1を参照して説明した通り、円錐状に冷却水2を噴射するスプレーノズル3を使用し、その噴射口の中心軸が、鋼管1の管軸に対して垂直に交差するように配置することが好ましい。それらのスプレーノズル3に冷却水2を供給するためのヘッダ4は、管軸に平行に配設することが好ましい。さらに、鋼管の管軸に垂直な面内で、スプレーノズルが管軸に対して互いに反対側の位置に配置されていること、言い換えれば、スプレーノズルが管軸を挟んで対向して対をなすことが、周方向の冷却均一性を向上させて鋼管の長手方向の反りを低減させる観点から好ましい。さらに鋼管1を回転させながら急冷するにあたり、前述の図1場合と同様、鋼管1の回転速度は5回/分以上かつ300回/分以下が好ましい。即ち、図1を用いて説明した上述の実施形態を図2の場合でも採用可能である。なお、図2では、鋼管1の管軸に垂直な面内で、管軸に対して互いに反対側に配置されている(すなわち、管軸を中心にして互いに180°離れている)スプレーノズル3から冷却水を鋼管1の外面に噴射することが可能である。
 図3は、図2に示す鋼管の焼入れ装置に回転ロールを配設して、鋼管を回転させる例を模式的に示す図であり、(a)は断面図、(b)は側面図ある。この例は、鋼管1の管軸に垂直な断面内に1対(すなわち2個)の回転ロール5を配設して、その回転ロール5上に鋼管1を載置することによって、鋼管1を回転させる例である(図3(a)参照)。その回転ロール5が1対のみでは鋼管1を載置することが困難であるから、鋼管1の管軸に平行な方向に2対以上の回転ロール5を等ピッチで配設する(図3(b)参照)。
 その回転ロール5のピッチをPRL(mm)とし、ヘッダ4に配設されるスプレーノズル3のピッチをPSN(mm)として、下記(1)式を満足するように回転ロール5を配設することが好ましい。(1)式中のNは、任意の整数である。Nは、冷却水2の管軸方向の長さや回転ロール5が鋼管を回転させる回転能力に応じて、適宜選択することができる。Nが大きすぎると回転ロール5一個あたりに要求される回転能力が過大となり、設備コストが増加するため、Nは5以下とすることが好ましい。また、回転ロール5が多いほど、鋼管の回転が安定するので、Nの下限は1である。
RL=N×PSN   ・・・(1)
 回転ロール5のピッチPRLとスプレーノズル3のピッチをPSNが(1)式を満足することによって、図3(b)に示すように、冷却水2の噴射領域が重複する位置に回転ロール5が配設可能となる。図3(b)で示す配設は、スプレーノズル3のピッチPSNの中央にロール5が位置している。その結果、冷却水2が回転ロール5と干渉することなく円滑に流れるので、温度ムラを防止する効果が一層向上する。
 図1に示す鋼管の焼入れ装置に回転ロールを配設する場合(図示せず)も、回転ロール5のピッチPRLとスプレーノズル3のピッチPSNが(1)式を満足するように配設することが好ましい。
 本発明では、鋼管の管軸に垂直な断面において、スプレーノズルが2~32個等間隔に配置されることが好ましく、4~16個等間隔に配置されることがより好ましい。
 本発明において、スプレーノズルの数は冷却する鋼管の長さにあわせて適宜選択すればよい。例えば、鋼管の長さが4~8mの場合、スプレーノズルは8~1280個とすることが好ましい。
 本発明の鋼管の焼入れ方法を用いて鋼管を製造することにより、焼入れ時に鋼管が従来よりも均一に冷却されるので、鋼管の材質均一性も向上して好ましい。
 本発明の鋼管の製造方法は、上述した鋼管の焼入れ工程に技術的特徴がある。そのため、他の工程は製造する鋼管の条件や特性等を考慮の上、適宜選択可能である。
 例えば、継目無鋼管を製造する場合、穿孔圧延工程、延伸圧延工程、熱処理工程等により継目無鋼管を製造できる。
 また、例えば、電縫鋼管を製造する場合、巻き戻し工程、成形工程、溶接工程、熱処理工程等により電縫鋼管を製造できる。
 また、本発明の鋼管の焼入れ装置を備えた鋼管の製造設備を用いて鋼管を製造することにより、焼入れ時に鋼管が従来よりも均一に冷却されるので、鋼管の材質均一性も向上して好ましい。本発明の鋼管の製造設備は、上述した鋼管の製造装置に技術的特徴がある。そのため、他の装置は製造する鋼管の条件や特性等を考慮の上、適宜選択可能である。
 例えば、継目無鋼管を製造する場合、図9に示すように鋼管の製造装置は本発明の焼入れ装置の他に、加熱炉、穿孔圧延機、延伸圧延機、定径圧延機等を備える。
 また、例えば、電縫鋼管を製造する場合、図10に示すように鋼管の製造装置は本発明の焼入れ装置の他に、アンコイラー、成形機、溶接機、加熱炉等を備える。
 以下、本発明の実施例を説明する。本発明の技術的範囲は以下の実施例に限定されない。
 加熱炉で加熱したビレットをピアサーの実験機で穿孔圧延して継目無鋼管(外径210mm、内径130mm、管厚40mm、管長8m)とし、引き続き、冷却水を噴射して急冷(冷却開始温度1150℃、冷却停止温度850℃)することによって、直接焼入れのシミュレーション実験を行なった。
 以下に、その手順について説明する。なお冷却水の水量密度は、いずれも1m/(m・分)とし、その他の設定条件は表1に示す通りとした。
Figure JPOXMLDOC01-appb-T000001
 発明例1は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを90°間隔で、かつ1列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は10回/分とし、かつ回転ロールのピッチPRLとスプレーノズルのピッチPSN(=300mm)が(1)式を満足しない(すなわち回転ロールと冷却水が干渉する)ようにし、スプレーノズルを合計112個配設した。そして、急冷を停止した後、赤外線放射温度計を用いて継目無鋼管の温度を測定(円周方向8ケ所、長手方向4ケ所)した。その最大値と最小値との差を、温度偏差として表1に併せて示す。表1に示す通り、発明例1の温度偏差は長手方向18℃、円周方向17℃であり、温度ムラは均一な特性を得るための許容範囲内(長手方向の温度偏差は40℃以下が合格、円周方向の温度偏差は20℃以下が合格)に抑えられた。
 発明例2は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを60°間隔で、かつ1列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は10回/分とし、かつ回転ロールのピッチPRLとスプレーノズルのピッチPSN(=300mm)が(1)式を満足しないようにし、スプレーノズルを合計168個配設した。その結果、急冷した後の温度偏差は長手方向14℃、円周方向17℃となった。発明例2は、スプレーノズルを増やしたので、発明例1よりも長手方向の温度ムラが減少した。
 発明例3は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを45°間隔で、かつ1列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は10回/分とし、かつ回転ロールのピッチPRLとスプレーノズルのピッチPSN(=300mm)が(1)式を満足しないようにし、スプレーノズルを合計224個配設した。その結果、急冷した後の温度偏差は長手方向12℃、円周方向17℃となった。発明例3は、スプレーノズルをさらに増やして緻密に配置したので、発明例2よりも長手方向の温度ムラが減少した。
 発明例4は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを90°間隔で、かつ1列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は30回/分とし、かつ回転ロールのピッチPRLとスプレーノズルのピッチPSN(=300mm)が(1)式を満足しないようにし、スプレーノズルを合計112個配設した。その結果、急冷した後の温度偏差は長手方向14℃、円周方向13℃となった。発明例4は、鋼管の回転数を増加したので、発明例1よりも長手方向と円周方向の温度ムラが減少した。
 発明例5は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを90°間隔で、かつ2列の螺旋状とした。各螺旋のお互いのスプレーノズルが、管軸に垂直な面内で、鋼管の管軸に対して対向するように配置し、長手方向でこれを繰り返している。発明例5は、このような条件において鋼管を回転させながら外面に冷却水を噴射して急冷した例である。言い換えれば、鋼管の管軸方向に垂直で、かつ、スプレーノズルを含む面内で、スプレーノズルが管軸に対して反対側の位置に配置された例である。鋼管の回転数は30回/分とし、かつ回転ロールのピッチPRLとスプレーノズルのピッチPSN(=300mm)が(1)式を満足しないようにし、スプレーノズルを合計112個配設した。その結果、急冷した後の温度偏差は長手方向14℃、円周方向10℃となった。発明例5は、2列の螺旋についてスプレーノズルの配置をより適切にし、かつ鋼管の回転数を増加したため、発明例1よりも冷却後の反りが減少した。
 発明例6は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを90°間隔で、かつ2列の螺旋状に配置して、各螺旋のお互いのスプレーノズルが、管軸に垂直な面内で、鋼管の管軸に対して対向するように配置し、長手方向でこれを繰り返している例である。鋼管の回転数は30回/分とし、かつ鋼管を回転させるための回転ロールのピッチPRL(=900mm)とスプレーノズルのピッチPSN(=300mm)が(1)式を満足する(すなわち回転ロールと冷却水が干渉しない)ようにし、スプレーノズルを合計112個配設した。その結果、急冷した後の温度偏差は長手方向10℃、円周方向11℃となった。発明例6は、回転ロールと冷却水が干渉しないので、発明例5よりも長手方向の温度ムラが減少した。
 発明例7は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを60°間隔で、かつ3列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は60回/分とし、かつ回転ロールのピッチPRL(=1200mm)とスプレーノズルのピッチPSN(=300mm)が(1)式を満足するようにし、スプレーノズルを合計168個配設した。その結果、急冷した後の温度偏差は長手方向8℃、円周方向7℃となった。発明例7は、スプレーノズルを増やして緻密に配置し、かつ鋼管の回転数を増加したので、発明例6よりも長手方向と円周方向の温度ムラが減少した。
 発明例8は、鋼管の管軸に垂直な断面として見た場合にスプレーノズルを45°間隔で、かつ4列の螺旋状に配置して、鋼管を回転させながら外面に冷却水を噴射して急冷した例である。鋼管の回転数は200回/分とし、かつ回転ロールのピッチPRL(=1200mm)とスプレーノズルのピッチPSN(=300mm)が(1)式を満足するようにし、スプレーノズルを合計224個配設した。その結果、急冷した後の温度偏差は長手方向5℃、円周方向3℃となった。発明例8は、スプレーノズルをさらに増やして緻密に配置し、かつ鋼管の回転数をさらに増加したので、発明例7よりも長手方向と円周方向の温度ムラが減少した。
 比較例1は、鋼管の内部に冷却水を流し込んで、内面を急冷した例(図4、5参照)である。この例では鋼管を回転させたにも関わらず、内面上部に冷却水が接触せず、かつ冷却水が流入する側の管端部内面に冷却水が接触しないので、急冷した後の温度偏差は長手方向150℃、円周方向25℃となり、発明例1~8よりも温度ムラが大幅に増大した。
 比較例2は、鋼管の管軸に垂直な断面の同一円周上にスプレーノズルを45°間隔で配置し、これを鋼管長さ方向に並べ、合計224個のスプレーノズルを配置した例(図6参照)である。この例では、リング状の高温部と低温部が交互に発生するので、急冷した後の温度偏差は長手方向48℃、円周方向22℃となり、発明例1~8よりも温度ムラが増大した。
 1 鋼管
 2 冷却水
 3 スプレーノズル
 4 ヘッダ
 5 回転ロール

Claims (11)

  1.  加熱された鋼管の管軸に平行な方向および垂直な方向への鋼管の移動を停止し、前記管軸を中心として前記鋼管を回転させながら、前記鋼管の外側に螺旋状に等間隔で配列した4個以上のスプレーノズルから冷却水を前記鋼管の外面に噴射する鋼管の焼入れ方法。
  2.  前記スプレーノズルの螺旋状の配列を2列以上とする請求項1に記載の鋼管の焼入れ方法。
  3.  鋼管の管軸に垂直な面内で、管軸に対して互いに反対側に位置させたスプレーノズルから冷却水を前記鋼管の外面に噴射する請求項2に記載の鋼管の焼入れ方法。
  4.  前記鋼管が、回転速度5回/分以上かつ300回/分以下で回転する請求項1から3のいずれかに記載の鋼管の焼入れ方法。
  5.  加熱された鋼管の管軸を中心として前記鋼管を回転させる2個以上の回転ロールと、該回転ロールによって回転する前記鋼管の外側に螺旋状に等間隔で配列されて冷却水を噴射する6個以上のスプレーノズルと、該スプレーノズルに前記冷却水を供給する2個以上のヘッダと、を有する鋼管の焼入れ装置。
  6.  前記ヘッダが前記管軸に平行に配設され、かつ前記ヘッダに前記スプレーノズルが等ピッチPSN(mm)で取付けられる請求項5に記載の鋼管の焼入れ装置。
  7.  前記回転ロールが前記鋼管の前記管軸に平行な方向に等ピッチPRL(mm)で前記スプレーノズルの間に配設され、かつ該PRL値が任意の整数Nに対してPRL=N×PSNを満足する請求項6に記載の鋼管の焼入れ装置。
  8.  前記スプレーノズルの螺旋状の配列を2列以上とする請求項5から7のいずれかに記載の鋼管の焼入れ装置。
  9.  鋼管の管軸に垂直な面内で、前記スプレーノズルを前記管軸に対して互いに反対側に位置させた請求項8に記載の鋼管の焼入れ装置。
  10.  請求項1から4のいずれかに記載の鋼管の焼入れ方法により鋼管を焼入れる工程を含む、鋼管の製造方法。
  11.  請求項5から9のいずれかに記載の焼入れ装置を備えた鋼管の製造設備。
PCT/JP2016/000030 2015-02-06 2016-01-06 鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備 WO2016125425A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2017009970A MX2017009970A (es) 2015-02-06 2016-01-06 Metodo para templar tuberia de acero, aparato para templar tuberia de acero, metodo de fabricacion de tuberia de acero e instalacion para la fabricacion de tuberia de acero.
CN201680008575.5A CN107250393B (zh) 2015-02-06 2016-01-06 钢管的淬火方法、钢管的淬火装置、钢管的制造方法及钢管的制造设备
BR112017016426-4A BR112017016426B1 (pt) 2015-02-06 2016-01-06 Método para têmpera de tubo de aço, aparelho para têmpera de tubo de aço, método para fabricação de tubo de aço e instalação para fabricação de tubo de aço
EP16746259.7A EP3255160B1 (en) 2015-02-06 2016-01-06 Steel pipe quenching method, steel pipe quenching apparatus, steel pipe production method, and steel pipe production equipment
JP2016563218A JP6098773B2 (ja) 2015-02-06 2016-01-06 鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備
US15/544,382 US11230747B2 (en) 2015-02-06 2016-01-06 Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-022230 2015-02-06
JP2015022230 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125425A1 true WO2016125425A1 (ja) 2016-08-11

Family

ID=56563782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000030 WO2016125425A1 (ja) 2015-02-06 2016-01-06 鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備

Country Status (8)

Country Link
US (1) US11230747B2 (ja)
EP (1) EP3255160B1 (ja)
JP (1) JP6098773B2 (ja)
CN (1) CN107250393B (ja)
AR (1) AR103621A1 (ja)
BR (1) BR112017016426B1 (ja)
MX (1) MX2017009970A (ja)
WO (1) WO2016125425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123945A1 (ja) * 2017-12-19 2019-06-27 Jfeスチール株式会社 鋼管の冷却方法および鋼管の冷却装置ならびに鋼管の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019205724A1 (de) * 2019-04-18 2020-10-22 Sms Group Gmbh Kühlvorrichtung für nahtlose Stahlrohre
CN115532855B (zh) * 2022-10-10 2024-01-09 江苏东方成套设备制造集团有限公司 一种连续穿水冷却装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748620A (ja) * 1993-08-03 1995-02-21 Fuji Denshi Kogyo Kk 棒状ワークの高周波移動焼入方法および装置
WO2012127811A1 (ja) * 2011-03-18 2012-09-27 住友金属工業株式会社 鋼管の焼入方法
JP2015067838A (ja) * 2013-09-26 2015-04-13 富士電子工業株式会社 熱処理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776230A (en) * 1951-10-22 1957-01-01 United States Steel Corp Method and apparatus for quenching pipe
US2879192A (en) * 1957-03-07 1959-03-24 Gogan Joseph Method and apparatus for differential quenching
US3189490A (en) * 1962-11-05 1965-06-15 United States Steel Corp Method and apparatus for quenching pipe
US3407099A (en) * 1965-10-22 1968-10-22 United States Steel Corp Method and apparatus for spraying liquids on the surface of cylindrical articles
US3671028A (en) * 1971-01-18 1972-06-20 Midland Ross Corp Quench system for pipes
US3889507A (en) * 1973-11-15 1975-06-17 Bethlehem Steel Corp Apparatus for cooling a steel member while being rolled on a continuous hot-rolling mill
US3997376A (en) * 1974-06-19 1976-12-14 Midland-Ross Corporation Spray mist cooling method
DE2704127A1 (de) * 1977-01-28 1978-08-03 Mannesmann Ag Verfahren und anlage zum schnellkuehlen von rund- und brammenstraengen
JPS5418411A (en) * 1977-07-11 1979-02-10 Kawasaki Steel Co Steel quenching apparatus
SE437675B (sv) * 1981-05-14 1985-03-11 Asea Ab Kylanordning for avlanga kroppar
US4834344A (en) * 1987-02-20 1989-05-30 Surface Combustion, Inc. Apparatus for inside-outside tube quenching
JP3624680B2 (ja) 1998-03-24 2005-03-02 住友金属工業株式会社 鋼管の内外面の冷却方法および内外面冷却装置
JP2005298861A (ja) 2004-04-08 2005-10-27 Nippon Steel Corp 鋼管の冷却方法および冷却装置
JP5071537B2 (ja) 2010-09-02 2012-11-14 住友金属工業株式会社 鋼管の焼入れ方法およびそれを用いた鋼管の製造方法
EP3189167B1 (en) * 2014-09-01 2019-08-28 SMS group S.p.A. Apparatus and method for quenching rods and tubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748620A (ja) * 1993-08-03 1995-02-21 Fuji Denshi Kogyo Kk 棒状ワークの高周波移動焼入方法および装置
WO2012127811A1 (ja) * 2011-03-18 2012-09-27 住友金属工業株式会社 鋼管の焼入方法
JP2015067838A (ja) * 2013-09-26 2015-04-13 富士電子工業株式会社 熱処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123945A1 (ja) * 2017-12-19 2019-06-27 Jfeスチール株式会社 鋼管の冷却方法および鋼管の冷却装置ならびに鋼管の製造方法
US11441203B2 (en) 2017-12-19 2022-09-13 Jfe Steel Corporation Method for quenching steel pipe, equipment for quenching steel pipe, and method for manufacturing steel pipe

Also Published As

Publication number Publication date
EP3255160A4 (en) 2018-01-10
CN107250393B (zh) 2020-04-03
JPWO2016125425A1 (ja) 2017-04-27
BR112017016426B1 (pt) 2021-08-03
JP6098773B2 (ja) 2017-03-22
US20170349965A1 (en) 2017-12-07
US11230747B2 (en) 2022-01-25
BR112017016426A2 (ja) 2018-04-10
AR103621A1 (es) 2017-05-24
EP3255160B1 (en) 2019-10-02
EP3255160A1 (en) 2017-12-13
CN107250393A (zh) 2017-10-13
MX2017009970A (es) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6098773B2 (ja) 鋼管の焼入れ方法、鋼管の焼入れ装置、鋼管の製造方法および鋼管の製造設備
US10422014B2 (en) Heat-treatment device and heat-treatment method
JP4338282B2 (ja) 高温加熱された長尺鋼管の均一冷却装置および冷却方法
JP6628008B2 (ja) 鋼管の冷却方法および鋼管の冷却装置ならびに鋼管の製造方法
JP2005246401A (ja) 鋼線材の制御冷却方法
JP2008261018A (ja) 鋼管の冷却方法及び冷却装置
JP4924538B2 (ja) 熱延鋼板の製造装置及び製造方法
KR100815922B1 (ko) 선재의 균일 냉각을 위한 선재 냉각 장치의 롤러 배열방법
TW201718879A (zh) 金屬材熱處理方法
KR101028801B1 (ko) 고강도 선재 제조 장치 및 제조 방법
KR101977466B1 (ko) 스트립 냉각장치
JP2005238252A (ja) H形鋼の冷却方法及び冷却装置
JP7381840B2 (ja) H形鋼の冷却装置
JP6365206B2 (ja) 熱間曲げ加工部材の製造装置および製造方法
JP5631026B2 (ja) 長尺鋼材の焼戻し後の連続冷却方法およびその装置
KR101289181B1 (ko) 선재코일 냉각장치
KR20030086878A (ko) 선재 균일 냉각 장치 및 균일 냉각 방법
KR101988284B1 (ko) 소재처리장치
JPS5923819A (ja) 管材の冷却方法
JPS5923820A (ja) 鋼管熱処理方法
JPH06192740A (ja) 厚肉鋳鋼管の熱処理方法
JPH0349970B2 (ja)
JPH07113124A (ja) 線材の熱処理方法
JP2014133250A (ja) 線材の製造ライン及び線材冷却装置
KR20030042961A (ko) 고탄소강 선재 균일 냉각 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563218

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016746259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15544382

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009970

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017016426

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017016426

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170731