WO2016124111A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2016124111A1
WO2016124111A1 PCT/CN2016/072757 CN2016072757W WO2016124111A1 WO 2016124111 A1 WO2016124111 A1 WO 2016124111A1 CN 2016072757 W CN2016072757 W CN 2016072757W WO 2016124111 A1 WO2016124111 A1 WO 2016124111A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compressor
seal
back pressure
circumferential groove
Prior art date
Application number
PCT/CN2016/072757
Other languages
English (en)
French (fr)
Inventor
黄幼玲
杨春
曾荡
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510058036.XA external-priority patent/CN105986997B/zh
Priority claimed from CN201520079596.9U external-priority patent/CN204692086U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to KR1020177023783A priority Critical patent/KR101973307B1/ko
Priority to US15/548,302 priority patent/US11105332B2/en
Publication of WO2016124111A1 publication Critical patent/WO2016124111A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/005Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • F04C27/003Radial sealings for working fluid of resilient material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present invention relates to a scroll compressor.
  • a back pressure chamber is provided on the movable scroll side to provide the movable scroll with a back pressure that engages the fixed scroll in the axial direction.
  • an unfavorable working condition such as a liquid hammer
  • the back pressure is lowered to make the movable scroll and the fixed scroll unable to engage in the axial direction, thereby causing the compressor to be abnormal. Work and reduce the operational reliability of the compressor, while causing waste of power consumption.
  • a scroll compressor comprising: a compression mechanism including a fixed scroll and an orbiting scroll, the movable scroll being capable of being in an engaged position and a separated position Displacement axially, in the engaged position, the orbiting scroll and the fixed scroll are axially engaged with each other to form a series of compression chambers for compressing the fluid.
  • the orbiting scroll and the fixed scroll The workpiece is separated in the axial direction; the main bearing seat, the main bearing seat is adapted to support the compression mechanism; the back pressure chamber is formed between the movable scroll and the main bearing seat, and is disposed on the movable scroll or the fixed vortex a communication passage in the rotary member in communication with the at least one compression chamber and adapted to apply a back pressure to the orbiting scroll to bias the movable scroll toward the engaged position; and the first seal The device, the first sealing device is disposed between the back pressure chamber and the suction region of the compression mechanism and is capable of maintaining a seal when the orbiting scroll is axially displaced.
  • the compression chamber in the compression mechanism is always isolated from the back pressure chamber by the first sealing means.
  • the compressor When the compressor is cold-started, it can quickly generate pressure in the back pressure chamber, and the moving and fixed scrolls can be quickly engaged, which is beneficial to speed up the starting speed of the compressor.
  • the compression chambers in the compression mechanism pass through and the pressure is released as the suction pressure.
  • the pressure in the back pressure chamber is not released, when the compression mechanism needs to be re-engaged, the pressure in the back pressure chamber
  • the movable scroll can be quickly moved toward the fixed scroll and form an axial seal, thereby contributing to an increase in efficiency of the compressor and reduction in power consumption.
  • the first sealing means is disposed in the first circumferential groove on one of the movable scroll and the fixed scroll and abuts against the other of the movable scroll and the fixed scroll.
  • the first sealing means is disposed in the first circumferential groove on one of the movable scroll and the main bearing housing and abuts against the other of the movable scroll and the main bearing housing.
  • the position of the first sealing device can be flexibly arranged.
  • the first sealing device comprises a first sealing member disposed in the first circumferential groove and a first elastic member located between the first sealing member and the first circumferential groove, the first elastic member facing A seal applies a biasing force.
  • the first sealing device comprises a first passage and a first seal arranged in the first circumferential groove, the first passage introducing a pressure greater than the suction pressure of the compression mechanism to the first circumferential groove Medium, thereby applying a biasing force to the bottom surface of the first seal.
  • the scroll compressor is a high pressure side compressor, the first passage introducing pressure in the back pressure zone or pressure in the external environment of the compression mechanism into the first circumferential groove.
  • the scroll compressor is a low pressure side compressor and the first passage introduces pressure in the back pressure zone into the first circumferential groove.
  • the first sealing means comprises a first seal embedded in the first circumferential groove, the first seal having a radial dimension that is smaller than a radial dimension of the first circumferential groove.
  • the scroll compressor further includes a second sealing device disposed in the second circumferential groove on one of the axial end surface of the hub of the movable scroll and the main bearing housing, and By the other of the axial end face and the main bearing housing, the second sealing means is capable of maintaining a seal when the orbiting scroll is axially displaced.
  • the second sealing device is disposed between the axial end surface of the hub of the movable scroll and the main bearing housing, so that the first sealing device and the second sealing can be made
  • the position of the device and the cross slip ring are offset in the axial direction, and the cross slip ring can have a large space for adjustment.
  • the second sealing device can be made smaller, it is convenient to enlarge the area of the back pressure chamber, optimize the axial force, and improve the performance of the compressor.
  • the second sealing means comprises a second sealing member disposed in the second circumferential groove and a second elastic member between the second sealing member and the second circumferential groove, the second elastic member being applied to the second sealing member Partial pressure.
  • the scroll vanes of the orbiting scroll and the fixed scroll are in the form of a double scroll.
  • the adjustment range of the seal can be increased, and the design of the force application area of the back pressure zone can be facilitated, thereby further optimizing the axial force of the scroll and being more suitable for a compact structure.
  • Figure 1 shows an axial sectional view of a scroll compressor to which the present invention can be applied
  • Figure 2 is a partial cross-sectional view showing a prior art scroll compressor
  • Figure 3A is a partial cross-sectional view showing a scroll compressor according to a first embodiment of the present invention
  • FIG. 3B and 3C are enlarged views of a portion P1 of Fig. 3A, wherein Fig. 3B shows a state in which the movable scroll is engaged with the fixed scroll, and Fig. 3C shows the movable scroll and the fixed scroll.
  • Figure 3D shows an enlarged view of the portion P2 of Figure 3A
  • FIGS. 4 to 9 are partial cross-sectional views showing a modification of the scroll compressor according to the first embodiment of the present invention.
  • Figures 10A-10H show a comparison of the case of a single-turn vortex with a double-turn vortex
  • Figure 11 shows an axial sectional view showing a scroll compressor according to a second embodiment of the present invention.
  • Figure 12 is a partial cross-sectional view showing a scroll compressor according to a second embodiment of the present invention.
  • Figure 13 is a partial cross-sectional view showing a modification of the scroll compressor according to the second embodiment of the present invention.
  • a scroll compressor (hereinafter also referred to as a compressor) 1 includes a substantially closed casing 10.
  • the housing 10 defines an internal space of the compressor 1.
  • the housing 10 can be constructed from a generally cylindrical body portion 12, a top cover 14, and a bottom cover 16. These components of the housing 10 can be joined to each other, for example, by welding, bolting, or the like, by any suitable method.
  • a fluid inlet fitting 17 for drawing in the working fluid and a fluid outlet fitting 18 for discharging the compressed working fluid may be disposed on the housing 10.
  • a compression mechanism CM capable of compressing the fluid may be disposed within the housing 10.
  • the scroll compressor 1 is of a high pressure side design.
  • a compressor in which a drive mechanism is in a discharge pressure zone is generally referred to as a high pressure side compressor
  • a compressor in which a drive mechanism is in an intake pressure zone ie, a low pressure zone
  • the compression mechanism CM is also in the exhaust pressure zone and the working fluid to be compressed is supplied directly into the suction chamber in the compression mechanism CM.
  • the fluid inlet fitting 17 is sealingly coupled to the compression mechanism CM to supply the compression mechanism CM with the working fluid to be compressed.
  • the drive mechanism 40 for driving the compression mechanism CM may include, for example, a motor composed of the stator 42 and the rotor 43.
  • the stator 42 can be fixed relative to the housing 10 in any suitable manner.
  • the rotor 43 is rotatable in the stator 42 and is provided with a drive shaft 45 therein.
  • the drive shaft 45 is supported by the main bearing housing 50 and the lower bearing housing 60.
  • One end of the drive shaft 45 is formed with an eccentric crank pin 46.
  • the eccentric crank pin 46 is fitted into the hub portion 32 of the movable scroll 30 via the unloading bushing 48 to drive the orbiting scroll 30.
  • a lubricating oil passage 47 (only partially shown) is also formed in the drive shaft 45.
  • One end of the lubricating oil passage 47 (i.e., the lower end of the drive shaft 45) is located in a lubricating oil groove formed on the lower side of the housing 10.
  • a pumping device 49 may be provided at the end of the lubricating oil passage 47.
  • the drive mechanism 40 is disposed in the housing 10.
  • the drive mechanism 40 can also be disposed outside of the housing 10.
  • the compression mechanism CM may include a fixed scroll 20 and an orbiting scroll 30.
  • the fixed scroll 20 can be fixed relative to the housing 10 in any suitable manner, such as by bolts relative to the main bearing housing 50 described later.
  • Figure 2 shows a detailed view of a prior art compression mechanism CM.
  • the communication passage 35 in Fig. 1 is not shown in Fig. 2 due to the cutting position.
  • the fixed scroll 20 may include a fixed scroll end plate 24 and a fixed scroll blade 26 formed on one side of the fixed scroll end plate 24 and located radially outward of the fixed scroll 20
  • the peripheral wall portion 22 may form part of the fixed scroll blade 26.
  • a substantially central portion of the fixed scroll end plate 24 is formed with an exhaust port 28.
  • the movable scroll 30 may include an orbiting scroll end plate 34, an orbiting scroll blade 36 formed on one side of the orbiting scroll end plate 34, and a hub portion 32 formed on the other side of the orbiting scroll end plate 34. .
  • the vanes of the fixed scroll 20 and the movable scroll 30 are both designed in a single turn.
  • the main bearing housing 50 adapted to support the compression mechanism CM can be fixed relative to the housing 10 by any suitable means.
  • the movable scroll 30 can be driven by the drive mechanism 40 to rotate normally with respect to the fixed scroll 20 (ie, the central axis of the movable scroll 30 rotates around the central axis of the scroll 20 with the radius of gyration Ror_1, but The scroll 30 itself does not rotate about its central axis to achieve compression of the fluid.
  • the translational rotation described above is achieved by a cross slip ring 58 disposed between the fixed scroll 20 and the movable scroll 30.
  • the fixed scroll vane 26 may be engaged with the orbiting scroll vane 36 to form a series of volumes which gradually decrease from the radially outer side toward the radially inner side together with the fixed scroll end plate 24 and the orbiting scroll end plate 34.
  • the chambers C1, C2, and C3 are compressed to compress the fluid.
  • the radially outermost compression chamber C1 is referred to as a low pressure chamber or an intake chamber
  • the intermediate compression chamber C2 is referred to as an intermediate pressure.
  • the cavity, while the radially innermost compression chamber C3 is referred to as a high pressure chamber or a discharge chamber.
  • Exhaust port 28 can be in fluid communication with high pressure chamber C3. It should be understood that the low pressure chamber, the intermediate pressure chamber, and the high pressure chamber are merely for convenience of description, and the pressure inside the compression chamber is gradually increased in the actual compressor, and the number is not limited to three compression chambers.
  • a back pressure chamber is generally disposed between the movable scroll 30 and the main bearing housing, and the back pressure chamber B is formed through A communication passage 35 (see FIG. 1) in the movable scroll 30 (such as the movable scroll end plate 34) communicates with a compression chamber (for example, the intermediate pressure chamber C2), thereby accumulating back pressure in the back pressure chamber B, thereby The fixed scroll 20 and the movable scroll 30 can be reliably engaged with each other under the action of the back pressure.
  • the communication passage may also be formed on the fixed scroll 20 as long as it introduces the pressure in the compression chamber into the back pressure chamber.
  • the back pressure chamber B is disposed on the side of the movable scroll 30 and located in the space inside the main bearing housing 50, and is composed of the main bearing housing 50 and the fixed scroll 20 and the movable vortex
  • the rotary members 30 are constructed in common.
  • a portion of the peripheral wall portion 22 of the fixed scroll 20 is sealingly engaged with the first portion 52 of the main bearing housing 50, for example by providing a gasket therebetween and connecting the two by bolts.
  • Ground engagement to isolate the back pressure chamber B from external pressure in the high pressure side design, the external pressure is high. Since the fixed scroll 20 and the main bearing housing 50 are both fixed members, the sealing engagement between the two is relatively easy to achieve.
  • the sealing surface associated with the orbiting scroll 30 of the back pressure chamber B will be highlighted below.
  • the orbiting scroll 30 and the fixed scroll 20 are in a separated state, at which time the sealing portion Sc cannot isolate the suction chamber C1 and the back pressure chamber B, so that the back pressure chamber It is difficult to establish back pressure in B, and it is difficult to achieve normal compression by vortexing.
  • the vortex may be overturned, and at this time, the seal at the seal portion Sc is also broken, and the intermediate pressure chamber C2 and the low pressure chamber C1 are connected.
  • the pressure in the medium pressure chamber C1 is lowered, the orbiting scroll 30 is separated from the fixed scroll 20, and the mechanical performance of the compressor is lowered.
  • the wear between the orbiting scroll 30 and the fixed scroll 20 adversely affects the seal portion Sc, reducing the reliability of the compressor.
  • the deformed orbiting scroll 30 and the fixed scroll 20 are after being overturned. It is easy to get stuck, so it is not easy to resume normal joint.
  • the small amount of floating requires that the machining accuracy of each relevant part is very high, which increases the difficulty and cost of manufacturing.
  • the sealing portion Sc serves as a double sealing function, that is, it is necessary to provide a sealing surface for the formation of the compression chamber, and to isolate the back pressure chamber B and the compression. Cavity.
  • This seal portion Sc is the most common arrangement in the existing floating scroll compressor, so that many technicians are unaware that it actually acts as a double seal, but this functional coupling makes it impossible to separate The compression chamber is depressurized without affecting the back pressure chamber B.
  • the inventors have realized that the above problem can be well solved if the sealing portion forming the compression chamber is separated from the sealing portion that isolates the back pressure chamber B from the compression chamber.
  • Device 180 isolates back pressure chamber B and the compression chamber.
  • an additional first sealing device 180 is provided to isolate the back pressure chamber B and the compression chamber. As shown in FIGS. 3A, 3B and 3C, the first sealing device 180 is displaceable in the axial direction to accommodate axial floating and tipping of the orbiting scroll 30.
  • the sealing device 180 is embedded in a circumferential groove 182 (as a first circumferential groove) on the movable scroll end plate 34 and includes, for example, an O-ring 184 (as a first seal) and a compression spring 186 (as a An elastic member), the seal ring 184 abuts against the fixed scroll peripheral wall portion 22 by the compression spring 186.
  • the communication passage 35 in the movable scroll end plate 34 introduces the pressure in one of the compression chambers (for example, the intermediate pressure chamber C2) into the back pressure chamber B.
  • the back pressure is accumulated to cause the orbiting scroll 30 and the fixed scroll 20 to be closed, that is, the orbiting scroll end plate 34 and the fixed scroll peripheral wall portion 22 are sealingly engaged at the compression chamber sealing portion Sc.
  • the sealing ring 184 is embedded in the circumferential groove 182, which can reduce the wear of the sealing ring 184 when the movable scroll 30 is rotated.
  • the movable scroll end plate 34 and the fixed scroll end plate 32 are separated at the compression chamber seal portion Sc. See Figure 3C.
  • the pressure in the compression chambers C1, C2, C3 passes through the axial gap between the blades of the movable and fixed scrolls and the end plates and is released by the fluid inlet fitting 17.
  • the compression spring 186 ejects the seal ring 184 such that the seal ring 184 remains against the fixed scroll end plate 24, i.e., the first seal 180 remains sealed.
  • the pressure in the back pressure chamber B can be substantially maintained without leaking to the compression chamber and being released together with the pressure in the compression chamber.
  • the pressure in the back pressure chamber B can quickly move the movable scroll 30 toward the fixed scroll 20 and form a seal at the seal portion Sc.
  • the first sealing device 180 can also accelerate the pressure build-up speed in the back pressure chamber B, thereby facilitating the acceleration of the startup speed of the compressor 100.
  • the back pressure chamber B can always be separated from the compression chamber. Since there is no need to avoid leakage at the compression chamber seal portion Sc, there is no special requirement for the amount of floating of the orbiting scroll 30, and the amount of floating can be designed to be large, whereby the movable scroll 30 and the fixed scroll 20 can be lowered. And the accuracy requirements of the main bearing housing 50, thereby reducing costs. Further, since the amount of floating is large, the compression chamber can be quickly released, and since the movable range of the orbiting scroll 30 is large, it is easy to return to the fixed scroll 20 after the movable scroll 30 is tipped over. The position of the joint is not stuck.
  • the first sealing device 180 is disposed in the circumferential groove 182 on the movable scroll 30 and faces the fixed scroll 20, the prior art It should be understood that, as shown in FIG. 4, the first sealing device 180 may also be disposed in a circumferential groove on the fixed scroll 20 (such as the peripheral wall portion 22 of the fixed scroll) and face the movable scroll. 30 (moving scroll end plate 34). Alternatively, the first sealing device 180 may be disposed at an opposite surface between the movable scroll 30 and the main bearing housing 50, such as on the main bearing housing 50, as shown in FIG. In the case shown in FIG. 5, the radially outer side of the back pressure chamber B is defined by the seal ring 184 of the first sealing device 180.
  • the first sealing device 180 forms a sealing surface that isolates the back pressure chamber B from the compression chamber, while the sealing surface forming the compression chamber is still provided by the compression chamber seal portion Sc.
  • the first seal 180 may also be disposed on the main bearing housing 50 and face the orbiting scroll 32.
  • At least a portion (shown as an axial end surface) of the hub portion 32 of the movable scroll 30 and the second portion 54 of the main bearing housing 50 pass.
  • the second sealing device 190 is directly sealingly engaged.
  • the second sealing device 190 is disposed in a circumferential groove 192 (second circumferential groove) located on one of the axial end surface of the hub portion 32 and the main bearing housing 50 (shown as being disposed on the main bearing housing 50) To isolate the back pressure chamber B from the external high pressure environment.
  • the second sealing device 190 includes a compression spring 196 (second elastic member) supported by the circumferential groove 192 and an O-ring 194 (second seal) supported by the compression spring 196.
  • the seal ring 194 abuts against the other of the hub 32 and the main bearing housing 50 (shown against the hub 32) under the action of the compression spring 196.
  • the second sealing device 190 can be moved or deformed in the axial direction (hereinafter collectively referred to as displacement) to allow axial floating of the orbiting scroll 30, that is, to maintain a seal when the orbiting scroll 30 is displaced.
  • both the first sealing device 180 and the second sealing device 190 are An O-ring is used as the seal, and a compression spring is used as the elastic member, but it should be understood that other shapes of seals and other forms of elastic elements that can be conceived by those skilled in the art can be used.
  • the seal and the resilient member may be an integral resilient seal that is compressed when the orbiting scroll is in the engaged position and automatically elongated to effect the seal when the orbiting scroll is in the disengaged position.
  • the first sealing device can also have other variations. As one of the modifications, as shown in FIG. 6, the first sealing device 180a is embedded in the circumferential groove 182 of the movable scroll end plate 34 and faces the fixed scroll peripheral wall portion 22.
  • the seal 180a also includes an O-ring 184, but unlike the seal 180, the seal 180a does not include the compression spring 186, but rather includes a passage 188 that extends from the back pressure chamber B into the circumferential groove 182.
  • the orbiting scroll 30 is separated from the fixed scroll 20 (the seal portion Sc is separated), and the pressure in the compression chambers C1, C2, C3 is penetrated and released.
  • the pressure in the back pressure chamber B is higher than the pressure in the compression chamber. Therefore, the pressure in the back pressure chamber B is introduced into the circumferential groove 182 through the passage 188, acting on the bottom surface of the seal ring 184, and the seal ring The 184 is ejected toward the fixed scroll 20 (specifically, the peripheral wall portion 22) such that the seal ring 184 abuts against the fixed scroll peripheral wall portion 22, thereby keeping the first seal 180 sealed.
  • the seal of the first seal 180a is capable of substantially maintaining the pressure in the back pressure chamber B without leaking into the compression chamber and being released with the pressure in the compression chamber.
  • the first sealing device 180a also provides a sealing surface independent of the compression chamber sealing portion Sc such that the pressure relief in the compression chamber does not affect the pressure in the back pressure chamber B, achieving the first sealing device 180 with the above The same effect.
  • the passage 188 instead of the spring 186, it is possible to replace the provision of the spring member by machining, thereby saving cost and improving the operational reliability of the sealing device 180a.
  • the first sealing device 180a may also be disposed on the fixed scroll 20 and face the movable scroll 30 as shown in FIG. Therein, the first sealing device 180a also introduces the pressure of the back pressure chamber B into the circumferential groove 182 through the passage 188.
  • the passage 188 of the first sealing device 180a can also be set to a high pressure environment outside the compression mechanism CM, as shown in FIG. Shown.
  • the first sealing means 180a each form a sealing surface that isolates the back pressure chamber B from the compression chamber, while the sealing surface forming the compression chamber is still provided by the compression chamber seal Sc.
  • the passage 188 can be implemented in various forms as long as it introduces a pressure greater than the pressure in the back pressure chamber B into the circumferential groove 182.
  • the first sealing device 180b includes only an O-ring 184 disposed in the circumferential groove 182, wherein the radial and axial dimensions of the circumferential groove 182 are respectively larger than the seal
  • the radial and axial dimensions of the ring 184 enable the seal ring 184 to move within the circumferential groove 182.
  • the fixed scroll 20 and the orbiting scroll 30 are in close contact at the seal portion Sc, and the seal ring 184 is freely retracted into the circumferential groove 182 to avoid wear.
  • the radially inner side of the seal ring 184 of the first sealing device 180b is the suction pressure zone
  • the radially outer side is the back pressure zone B
  • the back pressure zone B has a high pressure. The pressure in the suction pressure zone thus presses the seal ring 184 against the side wall of the circumferential groove 182 (see F1).
  • the pressure of the back pressure zone B can be transmitted to the back surface of the seal ring 184, and the seal ring 184 is pressed against the movable scroll 30 (see F2). That is, when the fixed scroll 20 and the movable scroll 30 are separated, the first sealing device 180b is kept sealed.
  • the orbiting scroll 30 and the fixed scroll 20 of the scroll compressor 100 are not in the form of a single scroll (see Fig. 10A) but in the form of a double scroll (see Fig. 10B). Only an example of the orbiting scroll 30 is shown in Figure 10B, and those skilled in the art will appreciate that the fixed scroll 20 has a matching blade shape.
  • the central axis of the orbiting scroll rotates about the central axis of the scroll with the radius of gyration Ror.
  • the seal ring 184 cannot be exposed from the periphery of the orbiting scroll end plate 34, when the orbiting scroll is moved to the leftmost side (see Fig. 10D), The seal ring 184 cannot enter the chute 33 that houses the cross slip ring 58.
  • the sealing ring can adjust the distance of the DL1 from the current position to the left side, that is, the sealing ring can be arranged in the range At any position within the DL1, the seal ring does not protrude from the periphery of the driven scroll.
  • the sealing ring can adjust the distance of DR1 from the current position to the right side, that is, the sealing ring can be disposed at any position within the range DR1, and the sealing ring does not Enter the chute 33.
  • the sealing ring 184 can adjust the distance of the DL2 from the current position to the left side.
  • the seal ring 184 can be placed at any position within the range DL2, and the seal ring 184 is not exposed from the periphery of the movable scroll.
  • the seal ring 184 can adjust the distance of DR2 from the current position to the right side, that is, the seal ring 184 can be disposed at any position within the range DR2, the seal ring 184 Neither will enter the chute 33.
  • the radius of gyration Ror_2 of the double scroll vortex is approximately half of the radius gyration Ror_1 of the single-turn vortex. Therefore, the range of rotation of the orbiting scroll member 30 is smaller than that of the single-turn scroll, which makes it possible to set the range of the seal ring (i.e., the adjustment range of the seal ring) to become larger. It can be seen from the comparison of FIG. 10E and FIG. 10G and the comparison of FIG. 10F and FIG. 10H that the left side adjustment range of the seal ring is DL2>DL1, and the right side adjustment range is DR2>DR1.
  • the position of the seal ring 184 can affect the area of the back pressure zone B that applies pressure to the movable scroll 30, by increasing the adjustment range of the seal ring, the design of the force application area of the back pressure zone can be facilitated, thereby being further optimized.
  • the axial force of the vortex can be increased.
  • increasing the adjustment range of the sealing ring can correspondingly reduce the size of the end plate of the movable scroll member, making the design more suitable for a compact structure.
  • a scroll compressor 200 according to a second embodiment of the present invention will be described below with reference to Figs. Unlike the first to fourth embodiments described above, the scroll compressor 200 is a low pressure side compressor, that is, the compression mechanism CM is in the suction pressure region, that is, the low pressure region.
  • the scroll compressor 200 includes a generally closed housing 210 with a fixed scroll 220 of the compression mechanism CM sealingly engaged with the housing to separate the interior space of the housing 210 from the low pressure side and the high pressure side.
  • the drive mechanism 240 that drives the compression mechanism CM through the drive shaft 245 (which is supported by the main bearing housing 250 and the lower bearing housing 260) is disposed in the low pressure side, that is, under the suction pressure.
  • the drive mechanism 240 can also be disposed on the outside of the housing 210 for a so-called open compressor design.
  • a fluid inlet fitting 217 for drawing in the working fluid and a fluid outlet fitting 218 for discharging the compressed working fluid may be disposed on the housing 210.
  • the compression mechanism CM of the scroll compressor 200 has substantially the same structure as the compression mechanism CM of the scroll compressor, and includes an orbiting scroll 230 and a fixed scroll 220. That is, the compression mechanism CM of the scroll compressor 100 according to the first embodiment of the present invention can be applied to a low pressure side compressor.
  • a substantially sealed back pressure chamber B is provided in the space inside the movable scroll 230 side and the main bearing housing 250.
  • the back pressure chamber B is composed of a movable scroll 230, a fixed scroll 220, and a main bearing housing 250.
  • the back pressure chamber B communicates with a compression chamber (for example, the medium pressure chamber C2) via a communication passage 235 formed in the movable scroll end plate 234, thereby accumulating back pressure in the back pressure chamber B.
  • the communication passage 235 may also be disposed in the fixed scroll 220.
  • the fixed scroll 220 is also axially sealingly engaged with the orbiting scroll 230 at the compression chamber seal portion Sc, and the description thereof will not be repeated here.
  • the same second sealing device 290 as in the first embodiment is provided, which will be back
  • the pressure chamber B is isolated from the external low pressure environment.
  • the second sealing device 290 is displaceable in the axial direction to allow axial floating of the orbiting scroll 230.
  • the sealing device 290 can have a similar structure to the sealing device 190, for example, disposed in a circumferential groove 292 (second circumferential groove) on one of the axial end faces of the orbiting scroll hub 232 and the main bearing housing 250 Inside, including an O-ring 294 (second sealing ring) and a compression spring 296 (second elastic element), the sealing ring 294 abuts against the axial end surface of the movable scroll hub 232 under the action of the compression spring 296 The other of the main bearing blocks 250.
  • the second sealing means is not disposed at the axial end face of the hub of the movable scroll, but is disposed at the substantially axial position of the orbiting scroll at the axial position Between the main bearing housing and the main bearing housing, such as at the opposite surface of the movable scroll end plate and the main bearing housing.
  • the first sealing means, the second sealing means and the Oldham ring are located at substantially the same axial position, making it difficult to adjust the position of these components, and it is often necessary to design the dimensions of the movable scroll end plates. Large to provide space for arranging these components.
  • the cross slip ring can have a large space for adjustment.
  • it may be disposed on the radially inner side of the first sealing device 280 (described below), in which case the cross slip ring has a small mass and a good dynamic balance.
  • it is also possible to arrange it radially outward of the first sealing device 280, at which time the distance between the key and the key is increased, the force on the key is reduced, the wear of the key and the keyway is reduced, and the life is improved. It can be flexibly selected according to the actual application.
  • the second sealing device 290 can be made smaller to facilitate enlargement of the back pressure chamber area. Optimize axial forces and improve compressor performance.
  • the size of the main bearing housing 250 only affects the size of the second sealing device 290, but has less impact on the cross slip ring 258 and the first sealing device 280, making this solution very versatile.
  • the second sealing device 190 may also be disposed between the other portion of the movable scroll 230 and the main bearing housing 250 as long as it is not in the same axial position as at least one of the first sealing device 280 and the Oldham ring. Just fine.
  • the same first sealing device 280 as in the first embodiment is disposed between the movable scroll 230 and the main bearing housing 250, and the first sealing device 280 can be displaced in the axial direction to accommodate the movement.
  • the scroll 230 is axially floated and tipped over.
  • the first sealing device 280 is embedded in the circumferential groove 282 (first circumferential groove) on the main bearing housing 250 and includes, for example, an O-ring 284 (first seal) and a compression spring 286 (first elastic member)
  • the seal ring 284 abuts against the movable scroll end plate 234 by the compression spring 286.
  • the back pressure chamber B can be always separated from the compression chamber. Since it is not necessary to avoid leakage at the compression chamber seal portion Sc, the advantages described above in connection with the scroll compressor 100 can be achieved.
  • the position of the first sealing device 180 in the second embodiment may also be changed, as shown in FIG. 13, which is disposed in the circumferential groove 282 on the movable scroll end plate 234. And abuts against the peripheral wall portion 222 of the fixed scroll 220.
  • the second sealing seal 290 and the first sealing device 280 are both provided with a large space for adjustment, which facilitates optimization of the axial force.
  • first sealing device 280, the second sealing device 290, and the cross slip ring 258 are all staggered in the axial direction, that is, they are not located at the same axial position.
  • the design of the cross-slip ring 258 will no longer be limited by the position and size of the sealing device, with a larger adjustment space for further optimization of the structure.
  • the first sealing device is arranged on the movable scroll, the fixed scroll or the main bearing seat; the first sealing device and the second sealing device are controlled by a compression spring, a passage for introducing a gas pressure or only by a pressure of the back pressure chamber.
  • the seal (the two seals can have different structures); the pressure is introduced from the back pressure zone or the outer high pressure zone; whether the double scroll scroll is used; the compression mechanism is arranged on the high pressure side or the low pressure side, etc., and these features can be combined arbitrarily All combinations are within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机(100, 200),包括:压缩机构(CM),其包括定涡旋件(20, 220)和动涡旋件(30, 230),动涡旋件(30, 230)能够在接合位置和分离位置之间轴向地移位,在接合位置,动涡旋件(30, 230)与定涡旋件(20, 220)在轴向上彼此接合以形成一系列对流体进行压缩的压缩腔(C1、C2、C3),在分离位置,动涡旋件(30, 230)与定涡旋件(20, 220)在轴向上分离;主轴承座(50, 250),其适于支撑压缩机构(CM);背压腔(B),其形成在动涡旋件(30, 230)与主轴承座(50, 250)之间,经由设置在动涡旋件(30, 230)或定涡旋件(20, 220)中的连通通道(35, 235)而与至少一个压缩腔(C2)连通,并且适于向动涡旋件(30, 230)施加背压力以将动涡旋件(30, 230)朝接合位置偏压;以及第一密封装置(180, 180a, 180b, 280),其设置在背压腔(B)与压缩机构(CM)的吸气区域之间并且能够在动涡旋件(30, 230)轴向移位时保持密封。该涡旋压缩机能够提高效率并降低功耗。

Description

涡旋压缩机
本申请要求于2015年2月4日提交的、名称为“涡旋压缩机”的中国发明申请No.201510058036.X和同日提交的名称为“涡旋压缩机”的中国实用新型申请No.201520079596.9的优先权,这些申请的全部内容在此并入本文。
技术领域
本发明涉及一种涡旋压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
已知在具有轴向柔性的涡旋压缩机中,背压腔设置在动涡旋件侧从而为动涡旋件提供使其与定涡旋件在轴向方向上接合的背压力。然而,在这种设计中,在例如液击等不利工况下,存在背压力降低而使动涡旋件和定涡旋件无法在轴向方向上接合的可能性,从而导致压缩机无法正常工作且降低了压缩机的工作可靠性,同时造成功耗的浪费。
因此,需要一种可靠性进一步提高的涡旋压缩机。
发明内容
本发明的一个或多个实施方式的一个目的是提供一种可靠性进一步提高的涡旋压缩机。
为了实现上述目的,根据本发明一个方面,提供了一种涡旋压缩机,包括:压缩机构,压缩机构包括定涡旋件和动涡旋件,动涡旋件能够在接合位置和分离位置之间轴向地移位,在接合位置,动涡旋件与定涡旋件在轴向上彼此接合以形成一系列对流体进行压缩的压缩腔,在分离位置,动涡旋件与定涡旋件在轴向上分离;主轴承座,主轴承座适于支撑压缩机构;背压腔,背压腔形成在动涡旋件与主轴承座之间,经由设置在动涡旋件或定涡旋件中的连通通道而与至少一个压缩腔连通,并且适于向动涡旋件施加背压力以将动涡旋件朝接合位置偏压;以及第一密封 装置,第一密封装置设置在背压腔与压缩机构的吸气区域之间并且能够在动涡旋件轴向移位时保持密封。
在这种涡旋压缩机中,通过第一密封装置而将压缩机构中的压缩腔与背压腔始终保持隔离。当压缩机冷启动时,能够在背压腔中快速地产生压力,使动、定涡旋迅速接合,有利于加快压缩机的启动速度。当压缩机卸载时,压缩机构中的压缩腔之间贯通并且压力释放为吸气压力,此时由于背压腔中的压力不被释放,所以当压缩机构需要再次接合时,背压腔中压力能够迅速地使动涡旋件朝定涡旋件移动并形成轴向密封,从而有助于提高压缩机的效率并降低功耗。
可选地,第一密封装置设置在位于动涡旋件和定涡旋件中的一个上的第一周向凹槽中,并且抵靠动涡旋件和定涡旋件中的另一个。或者,第一密封装置设置在位于动涡旋件和主轴承座中的一个上的第一周向凹槽中,并且抵靠动涡旋件和主轴承座中的另一个。
在这种涡旋压缩机中,能够灵活布置第一密封装置的位置。
可选地,第一密封装置包括布置在第一周向凹槽中的第一密封件和位于第一密封件与第一周向凹槽之间的第一弹性元件,第一弹性元件向第一密封件施加偏压力。
在这种涡旋压缩机中,能够确保第一密封装置在动涡旋件移动时保持密封。
可选地,第一密封装置包括第一通道和布置在第一周向凹槽中的第一密封件,第一通道将比压缩机构的吸气压力大的压力引入到第一周向凹槽中,从而向第一密封件的底面施加偏压力。
可选地,涡旋压缩机是高压侧压缩机,第一通道将背压区中的压力或压缩机构的外部环境中的压力引入到第一周向凹槽中。或者,涡旋压缩机是低压侧压缩机,第一通道将背压区中的压力引入到第一周向凹槽中。
通过采用机加工代替弹性元件,能够减少零件的数量并节省成本。
可选地,第一密封装置包括嵌入在第一周向凹槽中的第一密封件,第一密封件的径向尺寸小于第一周向凹槽的径向尺寸。
通过采用简单的密封件,能够减少零件的数量并节省成本。
可选地,涡旋压缩机还包括第二密封装置,第二密封装置设置在位于动涡旋件的毂部的轴向端面和主轴承座中的一个上的第二周向凹槽中,并且抵靠轴向端面和主轴承座中的另一个,第二密封装置能够在动涡旋件轴向移位时保持密封。
当涡旋压缩机为低压侧式涡旋压缩机时,将第二密封装置布置在动涡旋件的毂部的轴向端面与主轴承座之间,能够使得第一密封装置、第二密封装置和十字滑环的位置在轴向上错开,十字滑环可以有较大的空间进行调整。另外,能够将第二密封装置做得更小,便于扩大背压腔面积,优化轴向力,提高压缩机性能。
可选地,第二密封装置包括布置在第二周向凹槽中的第二密封件和位于第二密封件与第二周向凹槽之间的第二弹性元件,第二弹性元件向第二密封件施加偏压力。
可选地,动涡旋件和定涡旋件的涡旋叶片呈双涡圈形式。
通过采用双涡圈形式,能够增大密封件的调整范围,能够有利于背压区施力面积的设计,从而能够进一步优化涡旋的轴向力,并更加适用于结构比较紧凑的场合。
附图说明
通过以下参照附图的描述,本发明的一个或几个实施方式的特征和优点将变得更加容易理解,其中:
图1示出了能够应用本发明的涡旋压缩机的轴向剖面图;
图2示出了现有技术的涡旋压缩机中的局部剖面图;
图3A示出了根据本发明第一实施方式的涡旋压缩机的局部剖面图;
图3B和图3C示出了图3A中P1部分的放大图,其中图3B示出了动涡旋件与定涡旋件相接合的状态,图3C示出了动涡旋件与定涡旋件相分离的状态;
图3D示出了图3A中P2部分的放大图;
图4至图9示出了根据本发明第一实施方式的涡旋压缩机的变型的局部剖面图;
图10A-10H示出了单圈涡旋与双圈涡旋的情况的对比;
图11示出了示出了根据本发明第二实施方式的涡旋压缩机的轴向剖面图;
图12示出了根据本发明第二实施方式的涡旋压缩机的局部剖面图;
图13示出了根据本发明第二实施方式的涡旋压缩机的变型的局部剖面图。
具体实施方式
下面对优选实施方式的描述仅仅是示范性的,而绝不是对本发明及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
下面将参照图1描述能够应用本发明的涡旋压缩机1的基本构造和工作原理。
如图1和2所示,涡旋压缩机(下文中也称之为压缩机)1包括大致封闭的壳体10。壳体10限定了压缩机1的内部空间。在图中的示例中,壳体10可以由大致圆筒形的本体部12、顶盖14、和底盖16构成。壳体10的这些部件例如可以通过焊接、螺栓连接等任何合适的方法彼此连接在一起。
壳体10上可以设置用于吸入工作流体的流体入口配件17和用于排出压缩后的工作流体的流体出口配件18。在壳体10内可以设置能够对流体进行压缩的压缩机构CM。在图1所示的示例中,涡旋压缩机1为高压侧设计。本领域中,通常将驱动机构处于排气压力区(即高压区)的压缩机称为高压侧式压缩机,而将驱动机构处于吸气压力区(即低压区)的压缩机称为低压侧式压缩机。
在图中示出的设计中,压缩机构CM也处于排气压力区,而待压缩的工作流体直接供应到压缩机构CM内的吸气腔中。具体地,流体入口配件17与压缩机构CM密封地连接从而为压缩机构CM供应待压缩的工作流体。
用于驱动压缩机构CM的驱动机构40例如可以包括由定子42和转子43构成的马达。定子42可以采用任何合适的方式相对于壳体10固定。转子43能够在定子42中旋转并且其中设置有驱动轴45。驱动轴45由主轴承座50和下轴承座60支撑。驱动轴45的一端形成有偏心曲柄销46。偏心曲柄销46经由卸载衬套48配合在动涡旋件30的毂部32中以驱动动涡旋件30。驱动轴45中还形成有润滑油通道47(仅局部示出)。该润滑油通道47的一端(即驱动轴45的下端)位于壳体10下侧形成的润滑油槽中。在润滑油通道47的该端可以设置泵油装置49。
在本示例中,驱动机构40设置在壳体10中。但是本领域技术人员应该理解,对于所谓的开放式压缩机设计而言,驱动机构40也可以设置在壳体10的外侧。
在如图所示的示例中,压缩机构CM可以包括定涡旋件20和动涡旋件30。定涡旋件20可以以任何合适的方式相对于壳体10固定,例如通过螺栓相对于后面描述的主轴承座50固定。
图2示出了现有技术的压缩机构CM的细节图。由于剖切位置的原因,图2中未示出图1中的连通通道35。如图2所示,定涡旋件20可以包括定涡旋件端板24和形成在定涡旋件端板24一侧的定涡旋件叶片26以及位于定涡旋件20径向最外侧的周壁部22。周壁部22可以构成定涡旋件叶片26的一部分。定涡旋件端板24的大致中央的部分形成有排气口28。动涡旋件30可以包括动涡旋件端板34、形成在动涡旋件端板34一侧的动涡旋件叶片36和形成在动涡旋件端板34另一侧的毂部32。在示例中,定涡旋件20和动涡旋件30的叶片均为单圈设计。适于支撑压缩机构CM的主轴承座50可以通过任何合适的方式相对于壳体10固定。动涡旋件30能够被驱动机构40驱动而相对于定涡旋件20平动转动(即,动涡旋件30的中心轴线以回转半径Ror_1绕定涡旋件20的中心轴线旋转,但是动涡旋件30本身不会绕自身的中心轴线旋转)以实现流体的压缩。上述平动转动通过定涡旋件20和动涡旋件30之间设置的十字滑环58来实现。
定涡旋件叶片26可以与动涡旋件叶片36相互接合以与定涡旋件端板24和动涡旋件端板34一起构成一系列体积从径向外侧向径向内侧逐渐减小的压缩腔C1、C2和C3等以对流体进行压缩。由此,径向最外侧的压缩腔C1称为低压腔或吸气腔,中间的压缩腔C2称为中间压力 腔,而径向最内侧的压缩腔C3称为高压腔或排出腔。排气口28可以与高压腔C3流体连通。应当理解,低压腔、中间压力腔和高压腔仅仅是为了描述方便,在实际的压缩机中这些压缩腔内部的压力是逐渐升高的,并且数量也不局限于三个压缩腔。
在压缩机1的正常工作中,定涡旋件20和动涡旋件30必须在轴向方向上彼此接合才能对工作流体进行压缩。另外,为了给涡旋组件提供一定的轴向柔性以增加压缩机的可靠性和安全性,通常在动涡旋件30中与主轴承座之间设置背压腔,背压腔B经由形成在动涡旋件30(如动涡旋件端板34)中的连通通道35(见图1)与压缩腔(例如中压腔C2)连通,由此在背压腔B中积聚背压力,从而使得定涡旋件20和动涡旋件30能够在背压力的作用下彼此可靠接合。应当理解,连通通道也可以形成在定涡旋件20上,只要其将压缩腔中的压力引入到背压腔中即可。
在图1和2所示的压缩机设计中,背压腔B设置在动涡旋件30侧并且位于主轴承座50内的空间中,由主轴承座50与定涡旋件20和动涡旋件30共同构成。
其中,参见图2,定涡旋件20的周壁部22的一部分与主轴承座50的第一部分52密封地接合,例如通过在二者之间设置密封垫并通过螺栓将二者进行连接而密封地接合,以将背压腔B与外部压力(在高压侧设计中,外部压力为高压)隔绝开。由于定涡旋件20与主轴承座50都是固定件,因此二者之间的密封接合较容易实现。下面将着重讨论背压腔B的与动涡旋件30相关的密封面。
由于压缩机构CM与驱动机构40整体均处于高压侧,所以在动涡旋件30的毂部32内也存在高压。由此,在压缩机的正常运转过程中,背压腔B中的背压力与毂部32内的压力形成的合力大于压缩腔C1、C2和C3中的工作流体的压力形成的合力,由此使得动涡旋件30与定涡旋件20在密封部Sc处在轴向方向上彼此接合,动涡旋件30处于接合位置。
而当例如在压缩机处于液击等工况下时,压缩腔C1、C2和C3中的工作流体的压力形成的合力(在图中为向下方向)将大于背压腔B中的背压力与毂部32内的压力形成的合力(在图中为向上方向),由此动 涡旋件30与定涡旋件20在密封部Sc处在轴向方向上彼此分开预定距离(也称为浮动量),从而使各个压缩腔连通并泄压,由此保护了压缩机构不被破坏。
然而,当在上述情况下压缩机构需要重新接合时,动涡旋件30和定涡旋件20处于分离状态,此时密封部Sc无法隔离吸气腔C1和背压腔B,使背压腔B中难以建立起背压,涡旋较难实现正常的压缩。另外,在压缩机的运行中,由于压缩腔中的压力变化或波动,涡旋有可能发生倾覆,此时也会导致在密封部Sc的密封被破坏,中压腔C2和低压腔C1连通,导致中压腔C1中压力降低,动涡旋件30与定涡旋件20分离,压缩机机械性能下降。同时,在动涡旋件30倾覆时,动涡旋件30与定涡旋件20之间的磨损会对密封部Sc产生不利影响,降低压缩机的可靠性。
因此,在现有技术中,为了减少在密封部Sc处的泄漏,需要将动涡旋件的浮动量设计得很小,使得能够在启动时尽快建立起背压并避免涡旋的大幅度倾覆。然而,将浮动量设计得很小会遇到很多其它问题,例如,当遇到液击等异常工况时,较小的浮动量可能导致动涡旋件30和定涡旋件20的分离程度不够,即,不能够充分地泄压。另外,由于压缩机构CM中的温度变化,动涡旋件30和定涡旋件20可能发生微小变形,当浮动量很小时,变形后的动涡旋件30和定涡旋件20在倾覆后容易卡死,从而不容易恢复正常接合。另外,较小的浮动量要求各个相关零件的加工精度都非常高,这提高了制造的难度和成本。
为此,发明人开创性地发现,在这种涡旋压缩机中,密封部Sc起到了双重密封作用,即,既要为压缩腔的形成提供密封面、又要隔绝背压腔B和压缩腔。这种密封部Sc是现有的浮动动涡旋式压缩机中最常见的布置方式,以至于很多技术人员意识不到其实际上起到了双重密封作用,但这种功能上的耦合导致无法单独将压缩腔泄压而不影响背压腔B。发明人意识到,如果将形成压缩腔的密封部与隔绝背压腔B和压缩腔的密封部相分离,则能够很好地解决以上问题。
具体地,设想了仅保留密封部Sc的为压缩腔进行密封的功能(即,作为压缩腔密封部Sc),而剥离其隔绝背压腔B和压缩腔的功能,并采用额外的第一密封装置180来隔绝背压腔B和压缩腔。
下面将参照图3A-3D描述根据本发明第一实施方式的高压侧涡旋压缩机100在背压腔的密封方面的改进。在图中仅示出该涡旋压缩机100与以上涡旋压缩机1不同的部位,且与涡旋压缩机1相同的元件将由相同的附图标记指代,且不再进行详细描述。以下将着重描述与涡旋压缩机100不同的部件,它们分别由以1开头的相应的附图标记指代。
在本实施方式中,设置了额外的第一密封装置180来隔绝背压腔B和压缩腔。如图3A、3B和3C所示,第一密封装置180能够在轴向方向上移位以适应动涡旋件30的轴向浮动以及倾覆。密封装置180嵌入到动涡旋件端板34上的周向凹槽182(作为第一周向凹槽)中,并且例如包括O形密封圈184(作为第一密封件)和压缩弹簧186(作为第一弹性元件),密封圈184在压缩弹簧186的作用下抵靠定涡旋件周壁部22。
在涡旋压缩机100的工作过程中,如图3B所示,动涡旋件端板34中的连通通道35将其中一个压缩腔(例如中压腔C2)中的压力引入到背压腔B中以积聚背压力,使得动涡旋件30与定涡旋件20闭合,即,动涡旋件端板34与定涡旋件周壁部22在压缩腔密封部Sc处密封地接合。同时,密封圈184嵌入在周向凹槽182内,这样能够减轻动涡旋件30平转时密封圈184的磨损。
而在压缩机100停机或发生异常等情况下、动涡旋件30与定涡旋件20分离时,动涡旋件端板34与定涡旋件端板32在压缩腔密封部Sc处分离,参见图3C。通过密封部Sc的分离,压缩腔C1、C2、C3中的压力通过动、定涡旋件的叶片与端板之间的轴向缝隙而贯通并且通过流体入口配件17释放。但与此同时,压缩弹簧186将密封圈184顶出,使得密封圈184保持抵靠定涡旋件端板24,即,第一密封装置180保持密封。通过第一密封装置180保持密封,能够基本保持背压腔B中的压力,而不会泄露至压缩腔并随压缩腔中的压力一起释放。当在这种情况下需要使压缩机构再次接合时,背压腔B中压力能够迅速地使动涡旋件30朝定涡旋件20移动并在密封部Sc处形成密封。
另外,当压缩机100在正常停机后冷启动时,第一密封装置180也能够加快背压腔B中的压力建立速度,从而有利于加快压缩机100的启动速度。
可见,通过设置第一密封装置180,能够使背压腔B始终与压缩腔分离。由于不需要避免压缩腔密封部Sc处的泄漏,所以对动涡旋件30的浮动量没有特殊要求,浮动量可以设计得较大,由此能够降低动涡旋件30、定涡旋件20以及主轴承座50的精度要求,从而降低成本。并且,由于浮动量较大,所以能够快速地使压缩腔泄压,并且由于动涡旋件30的可动范围较大,所以在动涡旋件30倾覆后容易恢复到与定涡旋件20接合的位置而不会卡死。
虽然在以上描述的高压侧涡旋压缩机的第一实施方式中,第一密封装置180设置在位于动涡旋件30上的周向凹槽182中并面对定涡旋件20,但本领域技术人员应当理解,如图4所示,该第一密封装置180也可以设置在位于定涡旋件20(如定涡旋件的周壁部22)上的周向凹槽中,并面对动涡旋件30(动涡旋端板34)。或者,第一密封装置180可以设置在动涡旋件30与主轴承座50之间的相对表面处,如设置在主轴承座50上,如图5所示。在图5所示的情况中,背压腔B的径向外侧由第一密封装置180的密封圈184限定。即,第一密封装置180形成隔绝背压腔B和压缩腔的密封面,而形成压缩腔的密封面仍由压缩腔密封部Sc提供。虽然没有示出,但也设想了第一密封装置180还可以设置在主轴承座50上并面对动涡旋件32。这些变型都能够实现与以上第一密封装置180相同的技术效果,在此将不再赘述。
另外,在第一实施方式中,如图3A、3D所示,动涡旋件30的毂部32的至少一部分(图中示出为轴向端面)与主轴承座50的第二部分54通过第二密封装置190直接密封地接合。
第二密封装置190设置在位于毂部32的轴向端面和主轴承座50中的一者上(图中示出为设置在主轴承座50上)的周向凹槽192(第二周向凹槽)中,以将背压腔B与外部的高压环境隔绝开。参见图3D,第二密封装置190包括由周向凹槽192支撑的压缩弹簧196(第二弹性元件)和由压缩弹簧196支撑的O形密封圈194(第二密封件)。密封圈194在压缩弹簧196的作用下抵靠毂部32和主轴承座50中的另一者(图中示出为抵靠毂部32)。该第二密封装置190能够在轴向方向上移动或变形(以下将统称为移位)以允许动涡旋件30的轴向浮动,即,在动涡旋件30移位时保持密封。
虽然在以上描述中,对于第一密封装置180和第二密封装置190均 使用O形密封圈作为密封件,使用压缩弹簧作为弹性元件,但是应当理解,也可以使用本领域技术人员所能够想到的其它形状的密封件和其它形式的弹性元件。或者,密封件和弹性元件可以是一体的弹性密封件,其在动涡旋件处于接合位置时受到压缩,而在动涡旋件处于分离位置时自动伸长以实现密封。
第一密封装置还可以具有其它变型。作为其中一种变型,如图6所示,第一密封装置180a嵌入在动涡旋件端板34的周向凹槽182中并面向定涡旋件周壁部22。密封装置180a同样包括O形密封圈184,但与密封装置180不同的是,密封装置180a不包括压缩弹簧186,而是包括从背压腔B中延伸到周向凹槽182中的通道188。
如以上所述,在压缩机100停机或发生异常等情况下,动涡旋件30与定涡旋件20分离(密封部Sc分离),压缩腔C1、C2、C3中的压力贯通并释放,此时背压腔B中的压力会高于压缩腔中的压力,因此,背压腔B中的压力通过通道188引入到周向凹槽182中,作用在密封圈184的底面上,并将密封圈184朝向定涡旋件20(具体地,周壁部22)顶出,使得密封圈184抵靠于定涡旋件周壁部22,从而保持第一密封装置180密封。第一密封装置180a的密封能够基本保持背压腔B中的压力,而不会泄露至压缩腔并随压缩腔中的压力一起释放。由此,第一密封装置180a也提供了与压缩腔密封部Sc相独立的密封面,使得压缩腔中的卸压不会影响背压腔B中的压力,实现与以上的第一密封装置180相同的效果。此外,通过使用通道188代替弹簧186,能够在通过机加工代替设置弹簧零件,从而节省成本并提高密封装置180a的工作可靠性。
第一密封装置180a也可以设置在定涡旋件20上并面对动涡旋件30,如图7所示。其中,第一密封装置180a也通过通道188将背压腔B的压力引入到周向凹槽182中。另外,由于涡旋压缩机100为高压侧压缩机,压缩机构CM整体处于高压环境中,所以也可以将第一密封装置180a的通道188设置成通向压缩机构CM外的高压环境,如图8所示。在这些情况下,第一密封装置180a均形成隔绝背压腔B和压缩腔的密封面,而形成压缩腔的密封面仍由压缩腔密封部Sc提供。通过以上举例可以理解,通道188可以有多种实现形式,只要其将比背压腔B中的压力大的压力引入到周向凹槽182中即可。
作为第一密封装置的另一变型,如图9所示,第一密封装置180b仅包括设置在周向凹槽182中的O形密封圈184,其中周向凹槽182的径向和轴向尺寸分别大于密封圈184的径向和轴向尺寸,使得密封圈184能够在周向凹槽182中移动。
在压缩机100的工作过程中,定涡旋件20和动涡旋件30在密封部Sc处紧密贴合,密封圈184自由地缩回到周向凹槽182中,从而避免发生磨损。当出现异常情况、动涡旋件30处于分离位置时,第一密封装置180b的密封圈184的径向内侧为吸气压力区,径向外侧为背压区B,背压区B的压力高于吸气压力区的压力,因此将密封圈184压靠在周向凹槽182的侧壁上(参见F1)。并且,背压区B的压力能够传递到密封圈184的背面,将密封圈184压抵于动涡旋件30(参见F2)。即,当定涡旋件20和动涡旋件30分离时,第一密封装置180b保持密封。
由此,这些变型都能够实现与以上第一密封装置180相同的技术效果,在此将不再赘述。
优选地,涡旋压缩机100的动涡旋件30和定涡旋件20并非单涡圈形式(见图10A),而是呈双涡圈形式(见图10B)。图10B中仅示出了动涡旋件30的示例,本领域技术人员能够理解定涡旋件20具有匹配的叶片形状。
在压缩机构CM的工作过程中,动涡旋件的中心轴线以回转半径Ror绕定涡旋件的中心轴线旋转。当动涡旋件运行到最右边时(见图10C),要求密封圈184不能从动涡旋件端板34的周缘露出,当动涡旋件运行到最左边(见图10D)时,要求密封圈184不能进入到容纳十字滑环58的滑槽33中。
对于回转半径为Ror_1的单圈涡旋,当动涡旋件运行到最右边时,参见图10E,密封圈能够从当前位置起向左侧调整DL1的距离,即,能够将密封圈布置在范围DL1内的任意位置,密封圈都不会从动涡旋件的周缘露出。当动涡旋件运行到最左边时,参见图10F,密封圈能够从当前位置起向右侧调整DR1的距离,即,能够将密封圈布置在范围DR1内的任意位置,密封圈都不会进入滑槽33中。
而对于回转半径为Ror_2的双涡圈涡旋,当动涡旋件运行到最右边时,参见图10G,密封圈184能够从当前位置起向左侧调整DL2的距 离,即,能够将密封圈184布置在范围DL2内的任意位置,密封圈184都不会从动涡旋件的周缘露出。当动涡旋件运行到最左边时,参见图10H,密封圈184能够从当前位置起向右侧调整DR2的距离,即,能够将密封圈184布置在范围DR2内的任意位置,密封圈184都不会进入滑槽33中。
在型线展角相等的情况下,双涡圈涡旋的回转半径Ror_2大约是单圈涡旋的回转半径Ror_1的一半。因此,与单圈涡旋相比,动涡旋件件30的回转范围较小,这使得能够设置密封圈的范围(即密封圈的调整范围)变得更大。通过图10E和图10G的对比以及图10F与图10H的对比能够看出,密封圈的左侧调整范围DL2>DL1,右侧调整范围DR2>DR1。
由于密封圈184的位置能够影响背压区B的向动涡旋件30施加压力的面积,因此通过增大密封圈的调整范围,能够有利于背压区施力面积的设计,从而能够进一步优化涡旋的轴向力。另外,增大密封圈的调整范围能够对应地减小动涡旋件件的端板尺寸,使得该设计更加适用于结构比较紧凑的场合。
下面将参照图11和11描述根据本发明第二实施方式的涡旋压缩机200。与上述第一至第四实施方式不同,涡旋压缩机200是低压侧式压缩机,即,压缩机构CM处于吸气压力区,即低压区。
涡旋压缩机200包括大致封闭的壳体210,压缩机构CM的定涡旋件220与壳体之间密封地接合以将壳体210的内部空间分隔出低压侧和高压侧。通过驱动轴245(其主轴承座250和下轴承座260支承)驱动压缩机构CM的驱动机构240设置在低压侧中,即处于吸气压力下。本领域技术人员理解,对于所谓的开放式压缩机设计而言,驱动机构240也可以设置在壳体210的外侧。壳体210上可以设置用于吸入工作流体的流体入口配件217和用于排出压缩后的工作流体的流体出口配件218。
涡旋压缩机200的压缩机构CM的结构与涡旋压缩机的压缩机构CM基本相同,并包括动涡旋件230和定涡旋件220。即,根据本发明第一实施方式的涡旋压缩机100的压缩机构CM能够应用于低压侧式压缩机。
在涡旋压缩机200中,在动涡旋件230侧、主轴承座250内的空间中设置有大致密闭的背压腔B。背压腔B由动涡旋件230、定涡旋件220以及主轴承座250共同构成。背压腔B经由形成在动涡旋件端板234中的连通通道235与压缩腔(例如中压腔C2)连通,由此在背压腔B中积聚背压力。应当理解,连通通道235也可以设置在定涡旋件220中。
定涡旋件220同样在压缩腔密封部Sc处与动涡旋件230轴向地密封接合,在此将不再重复描述。
参见图12,在涡旋压缩机200中,在动涡旋件230的毂部232与主轴承座250的相对表面处设置有与第一实施方式中相同的第二密封装置290,其将背压腔B与外部的低压环境隔绝开。第二密封装置290能够在轴向方向上移位以允许动涡旋件230的轴向浮动。该密封装置290可以具有与密封装置190类似的结构,例如,其设置在位于动涡旋件毂部232的轴向端面与主轴承座250中的一者上的周向凹槽292(第二周向凹槽)内,包括O形密封圈294(第二密封圈)和压缩弹簧296(第二弹性元件),密封圈294在压缩弹簧296的作用下抵靠动涡旋件毂部232的轴向端面与主轴承座250中的另一者。
在低压侧的某些现有设计中,第二密封装置并非布置在动涡旋件的毂部的轴向端面处,而是在与十字滑环大致同一轴向位置处布置在动涡旋件与主轴承座之间,如布置在动涡旋件端板与主轴承座的相对表面处。在这种情况下,第一密封装置、第二密封装置以及十字滑环位于大致同一轴向位置处,使得难以调整这些部件的位置,并且常常必须将动涡旋件端板的尺寸设计得较大以提供布置这些部件的空间。
在本实施方式中,通过将第二密封装置290布置成在轴向上与第一密封装置280以及十字滑环258错开,十字滑环可以有较大的空间进行调整。例如,可以将其布置在第一密封装置280(以下将描述)的径向内侧,此时十字滑环质量较小,动平衡较好。也可以将其布置在第一密封装置280的径向外侧,此时键与键之间的距离增大,减少了键上的受力,降低键和键槽的磨损,提高其寿命。可以根据实际应用而灵活地选择。
另外,通过将第二密封装置290布置在动涡旋件230的毂部232的轴向端面处,能够将第二密封装置290做得更小,便于扩大背压腔面积, 优化轴向力,提高压缩机性能。
并且,主轴承座250的大小仅会影响第二密封装置290的尺寸,但对于十字滑环258和第一密封装置280的影响较小,使得这种方案的适应性非常广。
应当理解,第二密封装置190也可以布置在动涡旋件230的其它部位与主轴承座250之间,只要其与第一密封装置280和十字滑环中的至少一个不位于同一轴向位置即可。
如图12所示,动涡旋件230与主轴承座250之间设置有与第一实施方式中相同的第一密封装置280,第一密封装置280能够在轴向方向上移位以适应动涡旋件230的轴向浮动以及倾覆。第一密封装置280嵌入到主轴承座250上的周向凹槽282(第一周向凹槽)中,并且例如包括O形密封圈284(第一密封件)和压缩弹簧286(第一弹性元件),密封圈284在压缩弹簧286的作用下抵靠动涡旋端板234。
可见,通过设置第一密封装置280,能够使背压腔B始终与压缩腔分离。由于不需要避免压缩腔密封部Sc处的泄漏,所以能够实现与以上结合涡旋压缩机100所描述的优点。
与第一实施方式中的情况类似,第二实施方式中的第一密封装置180的位置也可以改变,如图13所示,其设置在位于动涡旋端板234上的周向凹槽282中,并抵靠定涡旋件220的周壁部222。通过这种布置,使得第二密封密封装置290和第一密封装置280都有较大的空间进行调整,便于轴向力的优化。
另外,第一密封装置280,第二密封装置290以及十字滑环258在轴向方向上均错开,即,均不位于同一轴向位置。这样,十字滑环258的设计将不再受限于密封装置的位置和尺寸,其调整空间更大,便于结构的进一步优化。
虽然以上已经结合本发明的多个实施方式描述了本发明,但是应当理解,在兼容的情况下,结合某一个实施方式所描述的技术特征能够与结合其它实施方式所描述的技术特征相结合,例如,第一密封装置布置在动涡旋件、定涡旋件还是主轴承座上;第一密封装置和第二密封装置采用压缩弹簧、引入气体压力的通道还是仅通过背压腔压力控制的单独 密封件(两个密封装置可以具有不同结构);从背压区还是外部高压区引入压力;是否采用双涡圈涡旋;压缩机构布置在高压侧或低压侧等等,这些特征均能够任意组合且所有组合均落在本发明的范围内。
尽管在此已详细描述本发明的各种实施方式,但是应该理解本发明并不局限于这里详细描述和示出的具体实施方式,在不偏离本发明的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本发明的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (12)

  1. 一种涡旋压缩机(100;200),包括:
    压缩机构(CM),所述压缩机构(CM)包括定涡旋件(20;220)和动涡旋件(30;230),所述动涡旋件(30;230)能够在接合位置和分离位置之间轴向地移位,在所述接合位置,所述动涡旋件(30;230)与所述定涡旋件(20;220)在轴向上彼此接合以形成一系列对流体进行压缩的压缩腔(C1;C2;C3),在所述分离位置,所述动涡旋件(30;230)与所述定涡旋件(20;220)在轴向上分离;
    主轴承座(50;250),所述主轴承座(50;250)适于支撑所述压缩机构(CM);
    背压腔(B),所述背压腔(B)形成在所述动涡旋件(30;230)与所述主轴承座(50;250)之间,经由设置在所述动涡旋件(30;230)或所述定涡旋件(20;220)中的连通通道(35;235)而与至少一个压缩腔(C2)连通,并且适于向所述动涡旋件(30;230)施加背压力以将所述动涡旋件(30;230)朝所述接合位置偏压;以及
    第一密封装置(180;180a;180b;280),所述第一密封装置(180;180a;180b;280)设置在所述背压腔(B)与所述压缩机构(CM)的吸气区域之间并且能够在所述动涡旋件(30;230)轴向移位时保持密封。
  2. 根据权利要求1所述的涡旋压缩机(100;200),其中,所述第一密封装置(180;180a;180b;280)设置在位于所述动涡旋件(30;230)和所述定涡旋件(20;220)中的一个上的第一周向凹槽(182;282)中,并且抵靠所述动涡旋件(30;230)和所述定涡旋件(20;220)中的另一个。
  3. 根据权利要求1所述的涡旋压缩机(100;200),其中,所述第一密封装置(180;180a;180b;280)设置在位于所述动涡旋件(30;230)和所述主轴承座(50;250)中的一个上的第一周向凹槽(182;282)中,并且抵靠所述动涡旋件(30;230)和所述主轴承座(50;250)中的另一个。
  4. 根据权利要求2或3所述的涡旋压缩机(100;200),其中,所述第一密封装置(180;180a;180b;280)包括布置在所述第一周向凹槽(182;282)中的第一密封件(184;284)。
  5. 根据权利要求4所述的涡旋压缩机(100;200),其中,所述第一密封装置(180;280)还包括位于所述第一密封件(184;284)与第一所述周向凹槽(182;282)之间的第一弹性元件(186;286),所述第一弹性元件(186;286)向所述第一密封件(184;284)施加偏压力。
  6. 根据权利要求4所述的涡旋压缩机(100;200),其中,所述第一密封件(184;284)的径向尺寸小于所述第一周向凹槽(182;284)的径向尺寸。
  7. 根据权利要求4所述的涡旋压缩机(100;200),其中,所述第一密封装置(180a)还包括第一通道(188),所述第一通道(188)将比所述压缩机构(CM)的吸气压力大的压力引入到所述第一周向凹槽(182)中,从而向所述第一密封件(184)的底面施加偏压力。
  8. 根据权利要求7所述的涡旋压缩机(100),其中,所述涡旋压缩机是高压侧压缩机,所述第一通道(188)将所述背压区(B)中的压力或所述压缩机构(CM)的外部环境中的压力引入到所述第一周向凹槽(182)中。
  9. 根据权利要求7所述的涡旋压缩机(200),其中,所述涡旋压缩机是低压侧压缩机,所述第一通道将所述背压区(B)中的压力引入到所述第一周向凹槽中。
  10. 根据权利要求1至3中的任一项所述的涡旋压缩机(100;200),其中,所述涡旋压缩机还包括第二密封装置(190;290),所述第二密封装 置(190;290)设置在位于所述动涡旋件(30;230)的毂部(32;132)的轴向端面和所述主轴承座(50;250)中的一个上的第二周向凹槽(192;292)中,并且抵靠所述轴向端面和所述主轴承座(50;250)中的另一个,所述第二密封装置(190;292)能够在所述动涡旋件(30;230)轴向移位时保持密封。
  11. 根据权利要求10所述的涡旋压缩机(100;200),其中,所述第二密封装置(190;290)包括布置在所述第二周向凹槽(192;292)中的第二密封件(194;294)和位于所述第二密封件(194;294)与所述第二周向凹槽(192;292)之间的第二弹性元件(196;296),所述第二弹性元件(196;296)向所述第二密封件(194;294)施加偏压力。
  12. 根据权利要求1至3中的任一项所述的涡旋压缩机(100;200),其中,所述动涡旋件(30;230)和所述定涡旋件(20;220)的涡旋叶片呈双涡圈形式。
PCT/CN2016/072757 2015-02-04 2016-01-29 涡旋压缩机 WO2016124111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177023783A KR101973307B1 (ko) 2015-02-04 2016-01-29 스크롤 압축기
US15/548,302 US11105332B2 (en) 2015-02-04 2016-01-29 Scroll compressor having stable back pressure chamber with sealing members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510058036.X 2015-02-04
CN201510058036.XA CN105986997B (zh) 2015-02-04 2015-02-04 涡旋压缩机
CN201520079596.9 2015-02-04
CN201520079596.9U CN204692086U (zh) 2015-02-04 2015-02-04 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2016124111A1 true WO2016124111A1 (zh) 2016-08-11

Family

ID=56563454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072757 WO2016124111A1 (zh) 2015-02-04 2016-01-29 涡旋压缩机

Country Status (3)

Country Link
US (1) US11105332B2 (zh)
KR (1) KR101973307B1 (zh)
WO (1) WO2016124111A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107762850A (zh) * 2016-08-22 2018-03-06 苏州英华特涡旋技术有限公司 低压式涡旋压缩机的浮动密封结构及低压式涡旋压缩机
WO2018196485A1 (zh) * 2017-04-28 2018-11-01 上海海立新能源技术有限公司 一种立式压缩机
KR101917705B1 (ko) * 2017-04-19 2018-11-13 엘지전자 주식회사 전동식 압축기
US20210285444A1 (en) * 2020-03-12 2021-09-16 Samsung Electronics Co., Ltd. Scroll compressor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988433B2 (en) 2009-04-07 2011-08-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US9115718B2 (en) 2013-01-22 2015-08-25 Emerson Climate Technologies, Inc. Compressor bearing and unloader assembly
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10801495B2 (en) * 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11015598B2 (en) 2018-04-11 2021-05-25 Emerson Climate Technologies, Inc. Compressor having bushing
US11002276B2 (en) * 2018-05-11 2021-05-11 Emerson Climate Technologies, Inc. Compressor having bushing
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
KR102191123B1 (ko) * 2019-01-18 2020-12-16 엘지전자 주식회사 전동식 압축기
DE102019124516A1 (de) * 2019-09-12 2021-03-18 Hanon Systems Positionieranordnung
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021752A (ja) * 2000-07-05 2002-01-23 Fujitsu General Ltd スクロール圧縮機
JP2009024663A (ja) * 2007-07-23 2009-02-05 Sanden Corp スクロール型流体機械
JP2009162083A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 圧縮機
CN101550933A (zh) * 2008-03-31 2009-10-07 日立空调·家用电器株式会社 涡旋压缩机
JP2010144522A (ja) * 2008-12-16 2010-07-01 Panasonic Corp スクロール圧縮機
DE10341104B4 (de) * 2002-09-09 2011-02-24 Nippon Soken, Inc., Nishio-shi Spiralkompressor
CN102985696A (zh) * 2010-07-06 2013-03-20 三电有限公司 涡旋式压缩机
CN204692086U (zh) * 2015-02-04 2015-10-07 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415317A (en) * 1981-02-09 1983-11-15 The Trane Company Wrap element and tip seal for use in fluid apparatus of the scroll type
JPS6411160A (en) * 1987-07-03 1989-01-13 Toshiba Silicone Organopolysiloxane composition
MY126636A (en) * 1994-10-24 2006-10-31 Hitachi Ltd Scroll compressor
US6086342A (en) * 1997-08-21 2000-07-11 Tecumseh Products Company Intermediate pressure regulating valve for a scroll machine
US6139295A (en) * 1998-06-22 2000-10-31 Tecumseh Products Company Bearing lubrication system for a scroll compressor
JP2000087880A (ja) * 1998-09-08 2000-03-28 Tokico Ltd スクロール式流体機械
KR100469461B1 (ko) * 2002-08-28 2005-02-02 엘지전자 주식회사 스크롤 압축기의 용량 가변 장치
GB0319513D0 (en) * 2003-08-19 2003-09-17 Boc Group Plc Scroll compressor and scroll wall arrangement therefor
JP4329528B2 (ja) * 2003-12-19 2009-09-09 株式会社豊田自動織機 スクロールコンプレッサ
KR100565259B1 (ko) 2004-10-12 2006-03-30 엘지전자 주식회사 스크롤 압축기의 배압장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021752A (ja) * 2000-07-05 2002-01-23 Fujitsu General Ltd スクロール圧縮機
DE10341104B4 (de) * 2002-09-09 2011-02-24 Nippon Soken, Inc., Nishio-shi Spiralkompressor
JP2009024663A (ja) * 2007-07-23 2009-02-05 Sanden Corp スクロール型流体機械
JP2009162083A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 圧縮機
CN101550933A (zh) * 2008-03-31 2009-10-07 日立空调·家用电器株式会社 涡旋压缩机
JP2010144522A (ja) * 2008-12-16 2010-07-01 Panasonic Corp スクロール圧縮機
CN102985696A (zh) * 2010-07-06 2013-03-20 三电有限公司 涡旋式压缩机
CN204692086U (zh) * 2015-02-04 2015-10-07 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107762850A (zh) * 2016-08-22 2018-03-06 苏州英华特涡旋技术有限公司 低压式涡旋压缩机的浮动密封结构及低压式涡旋压缩机
KR101917705B1 (ko) * 2017-04-19 2018-11-13 엘지전자 주식회사 전동식 압축기
WO2018196485A1 (zh) * 2017-04-28 2018-11-01 上海海立新能源技术有限公司 一种立式压缩机
US20210285444A1 (en) * 2020-03-12 2021-09-16 Samsung Electronics Co., Ltd. Scroll compressor
US11815090B2 (en) * 2020-03-12 2023-11-14 Samsung Electronics Co., Ltd. Scroll compressor

Also Published As

Publication number Publication date
US20180023570A1 (en) 2018-01-25
KR20170108090A (ko) 2017-09-26
KR101973307B1 (ko) 2019-04-26
US11105332B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2016124111A1 (zh) 涡旋压缩机
US11635078B2 (en) Compressor having capacity modulation assembly
US9976554B2 (en) Capacity-modulated scroll compressor
US9127677B2 (en) Compressor with capacity modulation and variable volume ratio
US8313318B2 (en) Compressor having capacity modulation system
KR101480964B1 (ko) 압축기 실링 장치
CN106662104B (zh) 容量调节的涡旋压缩机
US20090068048A1 (en) Compressor Sealing Arrangement
WO2015085823A1 (zh) 涡旋压缩机
JP2005036801A (ja) スクロール式圧縮機
CN204692086U (zh) 涡旋压缩机
KR102549777B1 (ko) 스크롤 압축기
EP3032103B1 (en) Scroll compressor
CN105986997B (zh) 涡旋压缩机
CN209743154U (zh) 电动式压缩机装置
CN104712556B (zh) 涡旋压缩机
KR101727498B1 (ko) 분리식 선회스크롤을 갖는 스크롤 압축기
WO2022152228A1 (zh) 涡旋压缩机
KR20120081489A (ko) 분리식 선회스크롤을 갖는 스크롤 압축기
KR20200093492A (ko) 전동식 컴프레서 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177023783

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746106

Country of ref document: EP

Kind code of ref document: A1