WO2016123859A1 - 一种用于汽油的脱硫吸附剂及汽油的脱硫方法 - Google Patents

一种用于汽油的脱硫吸附剂及汽油的脱硫方法 Download PDF

Info

Publication number
WO2016123859A1
WO2016123859A1 PCT/CN2015/075886 CN2015075886W WO2016123859A1 WO 2016123859 A1 WO2016123859 A1 WO 2016123859A1 CN 2015075886 W CN2015075886 W CN 2015075886W WO 2016123859 A1 WO2016123859 A1 WO 2016123859A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
gasoline
adsorbent
fraction
petrol
Prior art date
Application number
PCT/CN2015/075886
Other languages
English (en)
French (fr)
Inventor
赵亮
高金森
徐春明
郝天臻
韩晓娜
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510058264.7A external-priority patent/CN104673376B/zh
Priority claimed from CN201510059630.0A external-priority patent/CN104667861B/zh
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to US14/931,690 priority Critical patent/US10011779B2/en
Publication of WO2016123859A1 publication Critical patent/WO2016123859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds

Definitions

  • the invention relates to a desulfurization adsorbent and a desulfurization method, in particular to a desulfurization adsorbent for gasoline and a desulfurization method for gasoline.
  • catalytic cracking gasoline not only has high sulfur content, but also contains a large amount of The olefin component, more than 90% of the sulfur in commercial gasoline comes from catalytic cracking gasoline, which makes the sulfur content of gasoline in China far exceed the sulfur content of foreign gasoline. Therefore, how to reduce the sulfur content in catalytic cracking gasoline is the key to reduce the sulfur content of commercial gasoline.
  • the desulfurization technology used in the refining industry is divided into hydrodesulfurization and non-hydrodesulfurization technologies, of which hydrodesulfurization is the main desulfurization route.
  • the FCC gasoline selective hydrodesulfurization process (RSDS-I) developed by the Institute of Petrochemical Science in 2001 first cuts FCC gasoline into light and heavy fractions at a cutting temperature of 90 ° C, and then alkalis the light ends.
  • the desulfurization is extracted, and the heavy distillate is selectively hydrodesulfurized by using the main catalyst RSDS-I and the protective agent RGO-2; and the second-generation FCC gasoline selective hydrodesulfurization technology (RSDS-) is improved in the above process.
  • the cut point of the cut and heavy fractions was lowered to 70 ° C, and the second generation hydrogenation catalysts RSDS-21, RSDS-22 were used in the selective hydrodesulfurization section of the heavy fraction.
  • the Prime-G+ process developed by the French Petroleum Institute (IFP) Axens uses a full-fraction pre-hydrogenation, light-weight gasoline cutting and heavy fraction selective hydrodesulfurization process, which sets the cutting temperature to the target value of the sulfur content. 93-149 ° C, and in the full hydrogenation pre-hydrogenation process, using HR845 catalyst to react light sulfide with diolefin to form high-boiling sulfide, so the olefin is not saturated; in addition, in the selective hydrodesulfurization of heavy fraction It is made of two catalysts, HR806 and HR841, and the operation is more flexible.
  • the OCT-M process developed by Sinopec Fushun Petrochemical Research Institute cuts FCC gasoline into two fractions, light and heavy, at a cutting temperature of 90 °C.
  • the light fraction is desulfurized and the heavy fraction is FGH-20/FGH- 11 combined catalysts for selective hydrodesulfurization.
  • HDDS series de-diolefin catalyst developed by Haishunde, HDOS series deep hydrodesulfurization catalyst, HDMS series desulfurization catalyst and corresponding FCC gasoline selective hydrodesulfurization process (CDOS), first FCC gasoline at lower temperature, The dediolefin reaction is carried out under hydrogen conditions, and then the FCC gasoline is cut into two components, light and heavy, and the heavy fraction is subjected to deep hydrodesulfurization, and the hydrogenated heavy fraction and the light fraction are blended to obtain a low sulfur clean gasoline.
  • CDOS FCC gasoline selective hydrodesulfurization process
  • the above-mentioned technology generally has a low yield of light fractions formed by cutting, and a component content of less than 10 ppm is small, and it is difficult to reduce the sulfur content of the light fraction to less than 10 ppm by the method of desulfurization alone, and to produce sulfur content of less than 10 ppm by the sulfur content.
  • octane loss eg, up to 3.0-4.0
  • Non-hydrodesulfurization technology is divided into adsorption desulfurization, oxidative desulfurization, extraction desulfurization, biological desulfurization and other technologies.
  • adsorption desulfurization technologies are studied because it is carried out under normal temperature and normal pressure conditions, and the energy consumption is low, and the octane number is almost No loss is one of the potential deep desulfurization pathways.
  • the IRVAD technology jointly developed by Black&Veatch Pritchard Inc. and Alcoa Industrial Chemicals uses a multi-stage fluidized bed adsorption method to treat liquid hydrocarbons using an alumina matrix-selective solid adsorbent. During the adsorption process, the adsorbent is countercurrent to the liquid hydrocarbon phase. Upon contact, the used adsorbent is regenerated by reaction with a regenerative hot gas stream (eg, hydrogen). The desulfurization rate of this technology can reach more than 90%. However, the selectivity of the adsorbent is not high, the adsorption sulfur capacity is limited, and the regeneration process is relatively complicated.
  • a regenerative hot gas stream eg, hydrogen
  • the S-Zorb process developed by Phillips Petroleum uses a specific adsorbent for desulfurization under hydrogen conditions.
  • the adsorbent uses zinc oxide, silica, and alumina as carriers and supports metals such as Co, Ni, and Cu.
  • a component capable of adsorbing sulfur atoms in the sulfide to remain on the adsorbent, and the hydrocarbon moiety of the sulfide is released back into the process stream to effect the desulfurization process.
  • This process does not produce H 2 S during the reaction, thereby avoiding the re-reaction of H 2 S with the olefin to form a mercaptan.
  • the desulfurization process has relatively harsh operating conditions, the desulfurization reaction temperature is 343-413 ° C, and the pressure is 2.5-2.9 MPa.
  • the above-mentioned adsorption desulfurization agent cannot be preferably used for the selective hydrodesulfurization of the above heavy fraction due to problems such as limited desulfurization depth, limited adsorption sulfur capacity, low selectivity, short life, relatively complicated regeneration process, and severe desulfurization conditions. Therefore, forced It is necessary to develop a gasoline desulfurization method with less octane loss, high desulfurization depth and flexible operation.
  • the invention provides a desulfurization adsorbent for gasoline, which is used for solving the defects of desulfurization depth and adsorption sulfur capacity of the prior art desulfurization adsorbent, low selectivity, short life, relatively complicated regeneration process, severe desulfurization conditions and the like. .
  • the invention also provides a desulfurization method for gasoline, which is used for solving the defects of limited desulfurization depth and large octane loss in the desulfurization method in the prior art.
  • the invention provides a desulfurization adsorbent for gasoline, which is obtained by separately carrying an alkali-treated molecular sieve and activated carbon as a composite carrier supporting an active metal component, wherein the active metal is selected from the group consisting of IA, VIII, IB, IIB and One or more elements of the VIB family.
  • the mass ratio of the molecular sieve to the activated carbon is (20-80): (80-20), preferably (20-60): (80-40).
  • the molecular sieve is of the X type, Y type or ZSM-5 type.
  • the present invention is not strictly limited to the X-type and ZSM-5 type molecular sieves used; the Y-type molecular sieve has a skeleton silicon-aluminum atomic ratio of not less than 3.0 (determined by XRD method). Further, the present invention is not limited to the activated carbon used, and its specific surface may be usually about 1000 m 2 /g.
  • the active metal selected from Group IA of the periodic table is, for example, potassium (K), sodium (Na) or the like; and the active metal selected from Group VIII of the periodic table is, for example, iron (Fe), cobalt (Co), nickel ( Ni) or the like; an active metal selected from Group IB of the periodic table is, for example, copper (Cu), silver (Ag) or the like; an active metal selected from Group IIB of the periodic table is, for example, zinc (Zn) or the like; and is selected from Group VIB of the periodic table.
  • the active metal is, for example, molybdenum (Mo) or the like.
  • the active metal is selected from at least two of Ni, Fe, Ag, Co, Mo, Zn, and K.
  • the loading of Ni on the composite carrier may be 10-30%; the loading of Fe on the composite carrier may be 5-15%; the loading of Ag on the composite carrier may be 5-10%; Co is compounded
  • the loading on the support may be 5-10%; the loading of Mo on the composite support may be 5-10%; the loading of Zn on the composite support may be 5-15%; the loading of K on the composite support Can be 5-15%.
  • the loading is the amount of each active metal supported on the composite support.
  • the active metal is supported on the composite support in an amount of 2 to 30%, preferably 5 to 25%, more preferably 5 to 20%.
  • the loading is the total loading of the active metal.
  • the active metal is K and Ni; further, the loading of K on the composite support is 5-15%, and the loading of Ni on the composite support is 10-25%; further, K and Ni supported on the composite carrier The mass ratio is (0.2-0.5): 1.
  • the active metal is Zn and Fe; further, the loading of Zn on the composite support is 5-15%, and the loading of Fe on the composite support is 8-15%; further
  • the mass ratio of Zn to Fe supported on the composite carrier is (0.5-1):1.
  • the invention also provides a preparation method of the above desulfurization adsorbent, comprising the following steps:
  • the alkali-treated molecular sieve and the activated carbon are proportionally made into a composite carrier;
  • the composite carrier is impregnated with a soluble salt solution of the active metal, and the impregnated material is dried and calcined to obtain the desulfurization adsorbent.
  • the alkali treatment comprises separately mixing the molecular sieve and the activated carbon according to a mass ratio of molecular sieve or activated carbon: alkali:water to (0.1-2):(0.05-2):(4-15), and maintaining 0.
  • the mixture is stirred at a temperature of -120 ° C for 0.1-24 hours and then dried, and the alkali treatment process includes at least one time.
  • the base used in the alkali treatment of the present invention is not critical, and for example, a 0.10-1.0 mol/L NaOH solution can be used.
  • the temperature of the stirring treatment may be 30-100 ° C, and the time may be 1-10 h; further, the temperature of the stirring treatment may be 70-80 ° C, and the time may be 2-4 h.
  • the drying temperature after the stirring treatment may be, for example, 100 to 120 ° C, and the time may be, for example, 5 to 8 hours.
  • the alkali treatment process can be one or two times.
  • the soluble salt solution of the active metal may be, for example, a sulfate solution, a nitrate solution or the like, preferably a sulfate solution.
  • the impregnation may be an equal volume impregnation, which is a conventional impregnation method in the art, for example, the soluble salt solution of the active metal may be added dropwise to the composite carrier under normal temperature and stirring conditions until The composite carrier is polymerized into a spherical shape and then allowed to stand for a while (for example, 1-3 h).
  • the soluble salt solution of the first active metal is first impregnated on the composite carrier, and after washing, drying and calcining, the soluble salt solution of the second active metal is immersed. After washing, drying and calcining, a composite carrier loaded with two active metal components can be obtained.
  • the active metal soluble salt When immersing, the active metal soluble salt can be converted according to the loading requirement of each of the above various active metals on the composite carrier and the total loading requirement of the active metal on the composite carrier (loading two or more active metal components). Dosage.
  • the drying of the impregnated material is carried out at 90-120 ° C for 12-24 h, preferably at 110-120 ° C for 18-24 h.
  • the impregnated material is dried and then calcined to be calcined at 450-640 ° C for 4-6 h.
  • the material after drying is cooled to room temperature, firstly heated to 400 ° C at a rate of 6 ° C / min, and then heated to 450-640 at a rate of 3 ° C / min. °C.
  • the present invention also provides a method for regenerating a desulfurization adsorbent according to any one of the above, comprising the steam desulfurization adsorbent to be regenerated sequentially subjected to steam washing, nitrogen drying at 200 to 400 ° C, and nitrogen cooling.
  • the regeneration method comprises the following steps: firstly washing the desulfurization adsorbent to be regenerated with 130-180 ° C water vapor for 1-3 h, and then drying with a nitrogen purge of 200-400 ° C for 10-60 min, and finally drying. Cooling was carried out by purging with nitrogen at room temperature for 10-60 min.
  • the present invention also provides a method for desulfurizing gasoline, comprising: adsorbing and desulfurizing gasoline by using the desulfurization adsorbent according to any one of the above.
  • the gasoline may be first cut into a light gasoline fraction and a heavy gasoline fraction, and then the light gasoline fraction is adsorbed and desulfurized by the desulfurization adsorbent to obtain a desulfurized light gasoline fraction, and the heavy gasoline fraction is obtained. Selective hydrodesulfurization is carried out to obtain a desulfurized heavy gasoline fraction; wherein the light gasoline fraction and the heavy gasoline fraction have a cutting temperature of 70-110 ° C, for example 80-100 ° C.
  • the gasoline may be catalytically cracked gasoline, coker gasoline, etc.; the cutting is to cut the gasoline from low to high according to the distillation range to light and heavy two gasoline fractions.
  • the desulfurized gasoline fraction and the desulfurized heavy gasoline fraction are mixed to obtain a desulfurized gasoline.
  • the adsorptive desulfurization is carried out using a fixed bed atmospheric pressure, and the temperature for controlling the adsorption desulfurization is 20-100 ° C, for example, 30-80 ° C, and the flow rate of the gasoline is 0.3-1 mL / min, for example, 0.5 mL / min.
  • the method for desulfurizing gasoline according to the present invention may further comprise:
  • the selective hydrodesulfurization is carried out after mixing the sulfur-rich component with the heavy gasoline fraction.
  • the method for desulfurizing the gasoline further comprises:
  • the desulfurization adsorbent after adsorption desulfurization is washed with water vapor, dried with nitrogen at 200-400 ° C, and the desulfurized adsorbent after drying is cooled with nitrogen to realize regeneration of the desulfurization adsorbent.
  • the desulfurization adsorbent after adsorbing desulfurization can be washed with water at 130-180 ° C for 1-3 h, then dried by nitrogen-purging at 200-400 ° C for 10-60 min, and finally purged with nitrogen at room temperature. Cooling was carried out for 60 min.
  • the heavy gasoline fraction and the hydrogen are selectively hydrodesulfurized by a selective hydrodesulfurization catalyst to obtain a desulfurized heavy gasoline fraction, wherein the temperature of the selective hydrodesulfurization It is 200-300 ° C, the pressure is 1.5-2.5 MPa, the volume air velocity (heavy gasoline fraction) is 1-5 h -1 , and the hydrogen oil volume ratio is 400-600.
  • the selective hydrodesulfurization catalyst of the present invention can be used for selective hydrodesulfurization of gasoline in the prior art.
  • Conventional catalysts such as RSDS-I, RSDS-21, RSDS-22 catalysts in the RSDS process, HR806 and HR841 catalysts in the Prime-G+ process, FGH-20/FGH-11 combined catalysts in the OCT-M process, CDOS HDOS series deep hydrodesulfurization catalyst in the process.
  • the hydrodesulfurization catalyst is obtained by supporting a living metal component, wherein the support is a molecular sieve (for example, X-type, Y-type or ZSM-5 type) or a metal oxide (for example, trioxide).
  • the active metals include Co and Mo.
  • the total loading of Co and Mo on the support is 5-20%.
  • the mass ratio of Co to Mo supported on the carrier is (0.2-0.6):1.
  • the light gasoline fraction may be subjected to a mercaptan treatment followed by the adsorption desulfurization.
  • the gasoline may also be subjected to a mercaptan treatment and then cut into a light gasoline fraction and a heavy gasoline fraction.
  • the mercaptan treatment may be carried out by a conventional method such as an alkali extraction method or a mercaptan conversion method or the like.
  • the alkali extraction method uses an alkali solution to extract the mercaptan into the alkali solution and removes it.
  • the alkali content in the alkali solution may be 5-50%, and the oil-base volume ratio may be (1-15): 1, the operating temperature. It can be 10-60 ° C;
  • the thiol conversion method is to convert small molecule thiol into other sulfides and can be removed by conventional alkali-free deodorization process, pre-hydrogenation in Prime-G+ process, etc.
  • the alkali deodorization process conditions may be: a reactor operating pressure of 0.2-1.0 MPa, a reaction temperature of 20-60 ° C, a feed space velocity of 0.5-2.0 h -1 , a volume ratio of the air flow to the feed amount of 0.2-1.0, and a catalyst used. Both the cocatalyst and the cocatalyst can be used as catalysts in the art.
  • the desulfurization adsorbent of the present invention uses molecular sieves and activated carbon respectively treated with alkali as a composite carrier, and supports a specific active metal component on the composite carrier, which has high sulfur capacity, good selectivity to sulfur, and high desulfurization depth. It can remove sulfur to 1ppmw (one millionth by mass); in addition, it has a long service life and is environmentally friendly.
  • the desulfurization adsorbent of the present invention has mild process conditions for desulfurization of gasoline, and can be carried out at normal pressure and at a lower temperature, thereby saving energy consumption and reducing operating costs.
  • the desulfurization adsorbent regeneration method of the invention is simple and easy to operate, and the regenerated desulfurization adsorbent does not need hydrogen reduction before use, and is environmentally friendly and economical; in addition, the desulfurization adsorbent can be regenerated many times, and the desulfurization effect can still be maintained after regeneration.
  • the desulfurization method of the present invention after the gasoline is cut into light and heavy gasoline fractions, the desulfurization of the light gasoline fraction and the selective hydrodesulfurization of the heavy gasoline fraction, the method can not only reduce the content of hydrodesulfurization components, It is also possible to achieve deep desulfurization of the gasoline feedstock with little loss of octane number.
  • Example 1 is an adsorption desorption isotherm of ZSM-5 type molecular sieve of Example 1 before and after alkali treatment;
  • Example 2 is a pore size distribution curve of the ZSM-5 type molecular sieve of Example 1 before and after alkali treatment;
  • FIG. 3 is a process flow diagram of a gasoline desulfurization method of Embodiment 7;
  • FIG. 4 is a process flow diagram of a gasoline desulfurization method of Embodiment 8.
  • Example 5 is a process flow diagram of the gasoline desulfurization method of Example 9.
  • the filter cake was filtered and washed with deionized water several times until the pH of the filtrate was about 7, and the obtained filter cake was placed in an oven at 110 ° C for 4 h to prepare an alkali-treated ZSM- Type 5 molecular sieve and alkali treated activated carbon; wherein the adsorption desorption isotherm and pore size distribution curves of ZSM-5 type molecular sieve before and after alkali treatment are shown in Fig. 1 and Fig. 2, respectively.
  • Fig. 1 It can be seen from Fig. 1 that the ZSM-5 molecular sieve before alkali treatment exhibits a type I isotherm characteristic of microporous properties, and the desorption isotherm almost coincides with the adsorption isotherm; while the alkali treated ZSM-5 molecular sieve exhibits obvious characteristics.
  • the type IV isotherm exhibits a continuous adsorption state up to the saturation pressure throughout the measurement pressure range, and the desorption is slowly desorbed with the decrease of the pressure, and the desorption amount suddenly increases when the pressure reaches a certain value.
  • a steep curve is formed, and then coincides with the adsorption isotherm as the pressure continues to decrease, thereby indicating that a large number of mesopores (mesopores) are generated in the alkali treated ZSM-5 molecular sieve.
  • the ZSM-5 molecular sieve before alkali treatment is mainly microporous, has a broad distribution before 2 nm, has a small peak at 3.5 nm, and basically has no pores after 4 nm, using the t-plot method.
  • the calculated average pore diameter is about 2.3 nm; the alkali treated ZSM-5 molecular sieve still has a partial pore distribution before 2 nm, and there is a strong peak around 3.8 nm, and the peak height is almost the ZSM-5 molecular sieve before the alkali treatment. About 11 times, there is a wider pore distribution after 4 nm.
  • the above-mentioned alkali-treated ZSM-5 type molecular sieve and alkali-treated activated carbon were mixed at a mass ratio of 40:60, and then ground into a powder in a mortar, and then dried in an oven at 120 ° C for 6 hours to obtain a composite. Carrier.
  • the composite carrier prepared above is firstly impregnated with a K 2 SO 4 solution, washed, dried and calcined, and then the composite carrier impregnated with the K 2 SO 4 solution is impregnated with NiSO 4 in an equal volume, washed and dried. And after calcination, a desulfurization adsorbent is prepared;
  • the washing, drying and calcining are as follows: after the immersed material is washed with deionized water, dried at 120 ° C for 20 hours, and after the dried material is cooled to room temperature, the temperature is raised to 400 ° C at a rate of 6 ° C / min. The temperature was further raised to 550 ° C at a rate of 3 ° C/min, and calcined at 550 ° C for 4 hours.
  • the loading of K on the composite support is about 5%
  • the loading of Ni on the composite support is about 10%
  • the mass ratio of K to Ni supported on the composite support is 0.5:1.
  • alkali-treated Y-type molecular sieve and alkali-treated activated carbon were mixed at a mass ratio of 20:80, ground in a mortar, and then dried in an oven at 110 ° C for 6 hours to prepare a composite carrier.
  • the composite carrier prepared above is firstly impregnated with ZnSO 4 solution, washed, dried and calcined, and then the composite carrier impregnated with ZnSO 4 solution is impregnated with Fe 2 (SO 4 ) 3 in an equal volume, after washing, After drying and calcining, a desulfurization adsorbent is prepared;
  • the above washing, drying and roasting are specifically: after the immersed material is washed with deionized water, dried at 110 ° C for 24 hours, and after the dried material is cooled to room temperature, the temperature is raised to 400 ° C at a rate of 6 ° C / min. The temperature was further raised to 450 ° C at a rate of 3 ° C / min, and calcined at 450 ° C for 6 hours.
  • the loading of Zn on the composite support is about 10%
  • the loading of Fe on the composite support is about 10%
  • the mass ratio of Zn to Fe supported on the composite support is 1:1.
  • alkali-treated X-type molecular sieve and alkali-treated activated carbon were mixed at a mass ratio of 30:70, ground in a mortar, and then dried in an oven at 120 ° C for 6 hours to prepare a composite carrier.
  • the composite carrier prepared above is firstly impregnated with a K 2 SO 4 solution, washed, dried and calcined, and then the composite carrier impregnated with the K 2 SO 4 solution is impregnated with NiSO 4 in an equal volume, washed and dried. And after calcination, a desulfurization adsorbent is prepared;
  • the washing, drying and calcining are as follows: after the immersed material is washed with deionized water, dried at 120 ° C for 18 hours, and after the dried material is cooled to room temperature, the temperature is raised to 400 ° C at a rate of 6 ° C / min. The temperature was further raised to 640 ° C at a rate of 3 ° C/min, and calcined at 640 ° C for 5 hours.
  • the loading of K on the composite support is about 5%
  • the loading of Ni on the composite support is about 15%
  • the mass ratio of K to Ni supported on the composite support is 0.3:1.
  • the obtained ZSM-5 type molecular sieve and the activated carbon are respectively subjected to the above steps once (that is, twice by alkali treatment) to obtain an alkali-treated ZSM-5 type molecular sieve and an alkali-treated activated carbon; ZSM-5 type molecular sieve and activated carbon.
  • the specific surface area and pore size distribution are shown in Table 3.
  • the above-mentioned alkali-treated ZSM-5 type molecular sieve and alkali-treated activated carbon were mixed at a mass ratio of 20:80, and then ground into a powder in a mortar, and then dried in an oven at 100 ° C for 8 hours to obtain a composite. Carrier.
  • the composite carrier prepared above is firstly impregnated with ZnSO 4 solution, washed, dried and calcined, and then the composite carrier impregnated with ZnSO 4 solution is impregnated with Fe 2 (SO 4 ) 3 , washed and dried. And after calcination, a desulfurization adsorbent is prepared;
  • the washing, drying and calcining are as follows: after the immersed material is washed with deionized water, dried at 120 ° C for 20 hours, and after the dried material is cooled to room temperature, the temperature is raised to 400 ° C at a rate of 6 ° C / min. The temperature was further raised to 600 ° C at a rate of 3 ° C / min, and calcined at 600 ° C for 6 hours.
  • the loading of Zn on the composite support is about 5%
  • the loading of Fe on the composite support is about 10%
  • the mass ratio of Zn to Fe supported on the composite support is 0.5:1.
  • the alkali treated ZSM-5 type molecular sieve was prepared according to the method of Example 1, the alkali treated ZSM-5 type molecular sieve was uniformly impregnated by the K 2 SO 4 solution and the NiSO 4 solution according to the method of Example 1, and Washing, drying, and roasting to obtain a desulfurization adsorbent.
  • the alkali-treated activated carbon was prepared according to the method of Example 1, the alkali-treated activated carbon was uniformly impregnated with K 2 SO 4 solution and NiSO 4 solution according to the method of Example 1, and washed, dried, and calcined. Desulfurization adsorbent.
  • the ZSM-5 type molecular sieve of Example 1 (not treated with alkali) and activated carbon (not treated with alkali) were directly mixed at a mass ratio of 40:60, placed in a mortar for grinding, and then placed in an oven at 120 ° C. After drying for 6 h, a composite carrier was obtained.
  • the composite support was subjected to an equal volume impregnation using the K 2 SO 4 solution and the NiSO 4 solution according to the method of Example 1, and washed, dried, and calcined to obtain a desulfurization adsorbent.
  • the desulfurization adsorbents prepared in the above Examples 1-4 and Comparative Examples 1-3 were respectively packed in a fixed bed reactor, and a certain catalytic cracked gasoline was used as a raw material (the composition thereof is shown in Table 4) at a temperature of 30 ° C and Under normal pressure conditions, the adsorption desulfurization test was carried out for 10 hours at a flow rate of 0.5 mL/min. The results of the adsorption desulfurization test are shown in Table 5.
  • the sulfur capacity is 1 g of desulfurization adsorbent to reduce the total sulfur content in the gasoline to less than 10 ppmw.
  • the desulfurization agent prepared by the invention has high desulfurization depth, and the sulfur in the raw gasoline can be reduced to less than 1 ppmw in the adsorption desulfurization for 4-5 hours, and the service life is up to about 8 hours; in addition, the adsorption desulfurization agent has a large sulfur capacity. In particular, the selectivity to thiophene and its derivatives is good.
  • the service life of the adsorbing desulfurizing agent is greatly shortened; when the alkali treated activated carbon is used as the carrier alone, the adsorption desulfurizing agent has low selectivity to sulfur; When molecular sieves and activated carbon are used as composite carriers, the sulfur capacity is small and the service life is short.
  • the desulfurization adsorbent of the embodiment 1-4 is desulfurized according to the method of the embodiment 5 to pass through the sulfur capacity (ie, the adsorbent failure) as the desulfurization adsorbent to be regenerated, and the desulfurization adsorbent to be regenerated is first washed by steam purging. Then, it was dried by nitrogen purge, and finally cooled by a nitrogen purge at room temperature.
  • the regeneration process parameters are shown in Table 6.
  • the desulfurized adsorbent after the regeneration was repeatedly subjected to adsorption desulfurization and regeneration according to the method of Example 5.
  • the desulfurization adsorbent after performing three adsorption desulfurization and three regenerations was carried out, and the adsorption desulfurization was carried out according to the method of Example 5.
  • the results of the adsorption desulfurization test are shown in Table 7.
  • the desulfurization adsorbent of the present invention After the regeneration of the desulfurization adsorbent of the present invention by the above regeneration method, the desulfurization adsorbent can still maintain a high sulfur capacity and a good desulfurization effect.
  • the ZSM-5 type molecular sieve (carrier) is firstly impregnated with CoSO 4 solution, washed, dried and calcined, then the aqueous solution of (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O is used to impregnate the CoSO 4 solution.
  • the ZSM-5 type molecular sieve is subjected to an equal volume impregnation, and after washing, drying and calcination, a selective hydrodesulfurization catalyst is prepared; wherein the specific operations of washing, drying and calcination are as described in Example 1.
  • the selective hydrodesulfurization catalyst prepared above has a total specific surface area of about 356 m 2 /g, a total pore volume of about 0.315 cm 3 ⁇ g -1 , a loading of Co on the support of about 5%, and a Mo on the support.
  • the loading was about 10%, and the mass ratio of Co to Mo supported on the carrier was 0.5:1.
  • the catalytic gasoline produced by catalytic cracking of Daqing atmospheric heavy oil is used as raw material (the composition is shown in Table 8), and the process of desulfurizing the gasoline raw material is shown in Fig. 3.
  • the gasoline feedstock was cut into a light gasoline fraction and a heavy gasoline fraction, wherein the light and heavy gasoline fractions were cut at a temperature of 100 °C.
  • the desulfurization adsorbent prepared in Example 1 was packed in a fixed bed reactor, and the light gasoline fraction was adsorbed and desulfurized at a flow rate of 30 ° C and a normal pressure at a flow rate of 0.5 mL/min to obtain a desulfurized light gasoline fraction; Further, after the adsorption desulfurization, the desulfurization adsorbent after adsorption and desulfurization is purged with water at 150 ° C for 3 hours for washing, the sulfur-rich component is collected, and the sulfur-rich component is incorporated into the heavy gasoline fraction for the next step.
  • the selective hydrodesulfurization catalyst prepared above is packed in a fixed bed reactor, and has a reaction temperature of 260 ° C, a reaction pressure of 1.8 MPa, a volumetric space velocity of 3.0 h -1 , and a hydrogen oil volume ratio of 500.
  • the heavy gasoline fraction of the sulfur-rich component is subjected to selective hydrodesulfurization to obtain a desulfurized heavy gasoline fraction.
  • the desulfurized heavy gasoline fraction was mixed with the desulfurized light gasoline fraction to obtain desulfurized gasoline, and the composition thereof is shown in Table 8.
  • the gasoline desulfurization method of the present embodiment can not only reduce the sulfur content in the gasoline raw material to less than 10 ppm, but also control the olefin content to 24% or less and the octane number (RON) loss is only 0.5.
  • a selective hydrodesulfurization catalyst was prepared according to the method of Example 7, except that the loading of Co on the support was about 2%, the loading of Mo on the support was about 8%, and the supported Co and Mo were supported.
  • the mass ratio is 0.25:1.
  • the gasoline raw material was fractionated into a light gasoline fraction and a heavy gasoline fraction, and the cut temperature of the light and heavy gasoline fraction was 80 °C.
  • the light gasoline fraction is contacted with the alkali solution for desulfurization, wherein the alkali used is a 20% by mass NaOH solution, the volume ratio of the light gasoline fraction to the NaOH solution is 5:1, and the operating temperature is 30.
  • the mercaptan light gasoline fraction is withdrawn and the oil is withdrawn, and the extracted oil is combined into the heavy gasoline fraction for the next step.
  • the desulfurization adsorbent prepared in Example 2 was packed in a fixed bed reactor, and the desulfurized light gasoline fraction was adsorbed and desulfurized at a flow rate of 30 ° C and a normal pressure at a flow rate of 0.3 mL/min to obtain a desulfurized light gasoline.
  • the desulfurization adsorbent after adsorption and desulfurization is washed with water vapor at 180 ° C for 1 hour for washing, the sulfur-rich component is collected, and the sulfur-rich component is incorporated into the heavy gasoline fraction for the next step.
  • the selective hydrodesulfurization catalyst prepared above is packed in a fixed bed reactor, and has a reaction temperature of 300 ° C, a reaction pressure of 1.5 MPa, a volume space velocity of 4.0 h -1 , and a hydrogen oil volume ratio of 600.
  • the heavy gasoline fraction from which the oil and the sulfur-rich component are withdrawn is subjected to hydrodesulfurization to obtain a desulfurized heavy gasoline fraction.
  • the desulfurized heavy gasoline fraction was mixed with the desulfurized light gasoline fraction to obtain desulfurized gasoline, and the composition thereof is shown in Table 9.
  • the gasoline desulfurization method of the present embodiment can not only reduce the sulfur content in the gasoline raw material to less than 10 ppm, but also control the olefin content to be less than 24%, and the octane loss is only 0.7.
  • the mercaptan feedstock is subjected to mercaptan treatment using a mercaptan conversion method (alkali-free deodorization process), wherein the operating pressure of the control reactor is about 0.5 MPa, the reaction temperature is about 40 ° C, and the feed space velocity is 1.0 h -1 .
  • the volume ratio of the air flow to the feed amount is about 0.5, and the mercaptan gasoline is charged.
  • the mercaptan gasoline feedstock was cut into light gasoline fractions and heavy gasoline fractions, and the cut temperature of the light and heavy gasoline fractions was 80 °C.
  • the desulfurization adsorbent prepared in Example 4 was packed in a fixed bed reactor, and the light gasoline fraction was adsorbed and desulfurized at a flow rate of 30 ° C and a normal pressure at a flow rate of 0.8 mL/min to obtain a desulfurized light gasoline fraction; After the adsorption desulfurization, the desulfurization adsorbent after adsorption and desulfurization is purged with water at 160 ° C for 2 h for washing, the sulfur-rich component is collected, and the sulfur-rich component is incorporated into the heavy gasoline fraction for the next step.
  • the selective hydrodesulfurization catalyst prepared in Example 7 was packed in a fixed bed reactor at a reaction temperature of 300 ° C, a reaction pressure of 2.5 MPa, a volume space velocity of 2.0 h -1 , and a hydrogen oil volume ratio of 400.
  • the heavy gasoline fraction combined with the sulfur-rich component is subjected to hydrodesulfurization to obtain a desulfurized heavy gasoline fraction.
  • the desulfurized heavy gasoline fraction was mixed with the desulfurized light gasoline fraction to obtain a desulfurized gasoline, and the composition thereof is shown in Table 10.
  • the gasoline desulfurization method of the present embodiment can not only reduce the sulfur content in the gasoline raw material to less than 10 ppm, but also control the olefin content to be below 24%, and the octane loss is only 0.6.

Abstract

本发明提供一种用于汽油的脱硫吸附剂及汽油的脱硫方法。本发明的脱硫吸附剂,由分别经碱处理的分子筛和活性炭作为复合载体负载活性金属成分而得到,其中,活性金属选自周期表IA、IIA、VIII、IB、IIB和VIB族中的一种或多种元素。本发明的脱硫方法,利用该脱硫吸附剂对汽油进行吸附脱硫,特别是其先将汽油切割为轻汽油馏分和重汽油馏分,然后利用该脱硫吸附剂对对轻汽油馏分进行吸附脱硫,并且对重汽油馏分进行选择性加氢脱硫;其中,轻汽油馏分与重汽油馏分的切割温度为70-110℃。本发明的脱硫吸附剂硫容大、使用寿命长、再生方法简单;本发明的脱硫方法不仅能够实现汽油的深度脱硫,并且辛烷值损失小。

Description

一种用于汽油的脱硫吸附剂及汽油的脱硫方法 技术领域
本发明涉及一种脱硫吸附剂和脱硫方法,特别是涉及一种用于汽油的脱硫吸附剂及汽油的脱硫方法。
背景技术
我国商品汽油中有70%左右是来自重油催化裂化(FCC)过程,由于重油原料含有大量的硫、氮、氧杂原子化合物和胶质沥青质,催化裂化汽油不仅硫含量高,还含有大量的烯烃组分,商品汽油中90%以上的硫来自于催化裂化汽油,这使得我国汽油的硫含量要远远超出国外汽油的硫含量。因此,如何降低催化裂化汽油中硫含量是降低商品汽油硫含量的关键。特别是2018年1月1日全国即将实行的国五汽油质量标准中规定汽油含硫量不高于10ppm,烯烃含量不高于24%,探索和推广汽油深度脱硫技术成为炼油工业的迫切需要。
炼油行业采用的脱硫技术分为加氢脱硫和非加氢脱硫技术,其中加氢脱硫是现在的主要脱硫途径。例如,石油化工科学研究院于2001年开发的FCC汽油选择性加氢脱硫工艺(RSDS-Ⅰ),先在90℃的切割温度下将FCC汽油切割成轻、重馏分,然后对轻馏分进行碱抽提脱硫醇,并采用主催化剂RSDS-Ⅰ和保护剂RGO-2对重馏分进行选择性加氢脱硫;而在对上述工艺进行改进的第二代FCC汽油选择性加氢脱硫技术(RSDS-Ⅱ)将切、重馏分的切割点降至70℃,并且在重馏分选择性加氢脱硫部分采用第二代加氢催化剂RSDS-21、RSDS-22。
法国石油研究院(IFP)Axens公司开发的Prime-G+工艺,采用全馏分预加氢、轻重汽油切割和重馏分选择性加氢脱硫的工艺流程,其根据硫含量的目标值将切割温度设为93-149℃,并且在全馏分预加氢过程中,采用HR845催化剂将轻硫化物与二烯烃作用形成高沸点的硫化物,因此烯烃没有被饱和;此外,在重馏分选择性加氢脱硫中采用HR806和HR841两种催化剂进行,操作更加灵活。
中国石化抚顺石油化工研究院开发的OCT-M工艺在90℃的切割温度下将FCC汽油切割为轻、重两个馏分,其中对轻馏分进行脱硫醇,对重馏分采用FGH-20/FGH-11组合催化剂进行选择性加氢脱硫。
海顺德开发出的HDDO系列脱双烯烃催化剂、HDOS系列深度加氢脱硫催化剂、HDMS系列脱硫醇催化剂以及相应的FCC汽油选择性加氢脱硫工艺(CDOS),先将FCC汽油在较低温度、临氢条件下进行脱二烯烃反应,然后将FCC汽油切割为轻、重两个组分,并对重馏分进行深度加氢脱硫,加氢后的重馏分与轻馏分调和而得到低硫清洁汽油。
上述技术普遍存在切割所形成的轻馏分的产量较低,并且小于10ppm的组分含量较少,仅依靠脱硫醇方式难以使轻馏分的硫含量降至10ppm以下;而在生产硫含量小于10ppm的汽油产品时,大部分轻馏分仍需要加氢脱硫,因而全馏分汽油的辛烷值损失量较高(例如高达3.0-4.0)。此外,即使依靠加氢脱硫方式使硫含量小于10ppm,也存在投资和操作费用高,在脱除硫化物的同时使大量的烯烃进行饱和,既增加了氢耗,也使汽油的辛烷值大幅降低等缺陷。
非加氢脱硫技术又分为吸附脱硫、氧化脱硫、萃取脱硫、生物脱硫等技术,目前研究非常广泛的吸附脱硫技术,因为其在常温常压的条件下进行,能耗低,辛烷值几乎不损失,是有潜力的深度脱硫途径之一。
由Black&Veatch Pritchard Inc.与Alcoa Industrial Chemicals联合开发的IRVAD技术采用多级流化床吸附方式,使用氧化铝基质选择性固体吸附剂处理液体烃类,在吸附过程中,吸附剂逆流与液体烃类相接触,使用过的吸附剂逆向与再生热气流(例如氢气)反应得以再生。该技术的脱硫率可达90%以上,然而该吸附剂选择性不高,吸附硫容有限,并且再生过程相对复杂。
Phillips石油公司研发的S-Zorb工艺是在临氢的条件下采用一种特定的吸附剂进行脱硫,该吸附剂以氧化锌、二氧化硅、氧化铝作为载体并且负载Co、Ni、Cu等金属组分,其能够吸附硫化物中的硫原子,使之保留在吸附剂上,而硫化物的烃结构部分则被释放回工艺物流中,从而实现脱硫过程。该工艺在反应过程中不产生H2S,从而避免了H2S与烯烃再次反应生成硫醇。然而,该脱硫技术工艺操作条件相对苛刻,脱硫反应的温度为343-413℃,压力为2.5-2.9MPa。
上述吸附脱硫剂因脱硫深度和吸附硫容有限、选择性低、寿命较短、再生工艺相对复杂、脱硫条件苛刻等问题而无法较好地用于上述重馏分的选择性加氢脱硫。因此,迫 切需要开发一种辛烷值损失少、脱硫深度高且操作灵活方便的汽油脱硫方法。
发明内容
本发明提供一种用于汽油的脱硫吸附剂,用于解决现有技术中的脱硫吸附剂脱硫深度和吸附硫容有限、选择性低、寿命较短、再生工艺相对复杂、脱硫条件苛刻等缺陷。
本发明还提供一种汽油的脱硫方法,用于解决现有技术中的脱硫方法脱硫深度有限、辛烷值损失大等缺陷。
本发明提供一种用于汽油的脱硫吸附剂,由分别经碱处理的分子筛和活性炭作为复合载体负载活性金属成分而得到,其中,所述活性金属选自周期表IA、VIII、IB、IIB和VIB族中的一种或多种元素。
本发明所述复合载体中,分子筛与活性炭的质量比为(20-80):(80-20),优选为(20-60):(80-40)。
进一步地,所述分子筛的类型为X型、Y型或ZSM-5型。本发明对所采用X型和ZSM-5型分子筛无严格限制;所述Y型分子筛的骨架硅铝原子比不小于3.0(XRD法测定)。此外,本发明对所采用的活性炭无严格限制,其比表面通常可为1000m2/g左右。
在本发明中,选自周期表IA族的活性金属例如为钾(K)、钠(Na)等;选自周期表VIII族的活性金属例如为铁(Fe)、钴(Co)、镍(Ni)等;选自周期表IB族的活性金属例如为铜(Cu)、银(Ag)等;选自周期表IIB族的活性金属例如为锌(Zn)等;选自周期表VIB族的活性金属例如为钼(Mo)等。
进一步地,所述活性金属选自Ni、Fe、Ag、Co、Mo、Zn和K中的至少2种。其中,Ni在复合载体上的负载量可为10-30%;Fe在复合载体上的负载量可为5-15%;Ag在复合载体上的负载量可为5-10%;Co在复合载体上的负载量可为5-10%;Mo在复合载体上的负载量可为5-10%;Zn在复合载体上的负载量可为5-15%;K在复合载体上的负载量可为5-15%。该负载量为每种活性金属各自在复合载体上的负载量。
进一步地,所述活性金属在复合载体上的负载量为2-30%,优选为5-25%,进一步优选为5-20%。在复合载体上负载两种以上活性金属时,所述负载量为活性金属的总负载量。
在一实施方式中,所述活性金属为K和Ni;进一步地,K在复合载体上的负载量为5-15%,Ni在复合载体上的负载量为10-25%;更进一步地,复合载体上负载的K与Ni 的质量比为(0.2-0.5):1。
在另一实施方式中,所述活性金属为Zn和Fe;进一步地,Zn在复合载体上的负载量为5-15%,Fe在复合载体上的负载量为8-15%;更进一步地,复合载体上负载的Zn与Fe的质量比为(0.5-1):1。
本发明还提供一种上述的脱硫吸附剂的制备方法,包括以下步骤:
将分别经碱处理的分子筛和活性炭按比例制成复合载体;
将所述复合载体用所述活性金属的可溶性盐溶液进行浸渍,将浸渍后的物料干燥后焙烧,得到所述脱硫吸附剂。
在一实施方式中,所述碱处理包括分别对分子筛和活性炭按照分子筛或活性炭:碱:水为(0.1-2):(0.05-2):(4-15)的质量比混合,并维持0-120℃的温度条件下搅拌处理0.1-24h后干燥,且所述碱处理过程包括至少一次。
本发明对碱处理所采用的碱无严格限制,例如可以采用0.10-1.0mol/L的NaOH溶液。进一步地,搅拌处理的温度可以为30-100℃,时间可以为1-10h;更进一步地,搅拌处理的温度可以为70-80℃,时间可以为2-4h。所述搅拌处理后的干燥的温度例如可以为100-120℃,时间例如可以为5-8h。所述碱处理过程可以为一次或两次。
在本发明中,所述活性金属的可溶性盐溶液例如可以为硫酸盐溶液、硝酸盐溶液等,优选为硫酸盐溶液。所述浸渍可以为等体积浸渍,其为本领域常规的浸渍方式,具体操作例如可以为:在常温和搅拌的条件下,向所述复合载体中滴加所述活性金属的可溶性盐溶液,直至复合载体聚合成球状,然后静置一段时间(例如1-3h)。特别是,在复合载体上负载两种活性金属成分时,先在所述复合载体上浸渍第一活性金属的可溶性盐溶液,经洗涤、干燥和焙烧后,再浸渍第二活性金属的可溶性盐溶液,经洗涤、干燥和焙烧,即可制得负载两种活性金属成分的复合载体。
浸渍时,可根据上述各种活性金属各自在复合载体上的负载量要求以及活性金属在复合载体上的总负载量要求(负载两种以上活性金属成分)换算各活性金属可溶性盐在浸渍时的用量。
进一步地,对浸渍后的物料的干燥为在90-120℃下干燥12-24h,优选为在110-120℃下干燥18-24h。对浸渍后的物料干燥后进行焙烧为在450-640℃焙烧4-6h。
进一步地,所述对浸渍后的物料干燥后进行焙烧时,包括将干燥后的物料冷却至室温,先以6℃/min速度升温至400℃,再以3℃/min速度升温至450-640℃。
本发明还提供一种上述任一所述的脱硫吸附剂的再生方法,包括对待再生的所述脱硫吸附剂顺序进行水蒸气洗涤、200-400℃的氮气干燥,和氮气冷却。
进一步地,所述的再生方法,包括对待再生的所述脱硫吸附剂先采用130-180℃水蒸气吹扫1-3h进行洗涤,然后采用200-400℃氮气吹扫10-60min进行干燥,最后采用室温的氮气吹扫10-60min进行冷却。
本发明还提供一种汽油的脱硫方法,包括:利用上述任一项所述的脱硫吸附剂对汽油进行吸附脱硫。
在一实施方式中,可以先将汽油切割为轻汽油馏分和重汽油馏分,然后利用所述脱硫吸附剂对所述轻汽油馏分进行吸附脱硫,得到脱硫轻汽油馏分,并且对所述重汽油馏分进行选择性加氢脱硫,得到脱硫重汽油馏分;其中,轻汽油馏分与重汽油馏分的切割温度为70-110℃,例如80-100℃。
在本发明中,所述汽油可以为催化裂化汽油、焦化汽油等;所述切割是将汽油按照馏程从低到高切割为轻、重两个汽油馏分。此外,将所述脱硫轻汽油馏分和脱硫重汽油馏分混合,即可制得脱硫汽油。
进一步地,所述吸附脱硫是利用固定床常压进行,并且控制吸附脱硫的温度为20-100℃,例如30-80℃,汽油的流速为0.3-1mL/min,例如0.5mL/min。
本发明的汽油的脱硫方法,还可以包括:
采用水蒸气对吸附脱硫后的脱硫吸附剂进行洗涤,收取富硫组分;
将所述富硫组分与所述重汽油馏分混合后进行所述选择性加氢脱硫。
进一步地,所述汽油的脱硫方法还包括:
采用水蒸气对吸附脱硫后的脱硫吸附剂进行洗涤后采用200-400℃的氮气进行干燥,并采用氮气对干燥后的脱硫吸附剂进行冷却,实现对脱硫吸附剂的再生。
具体地,可以采用130-180℃水蒸气吹扫吸附脱硫后的脱硫吸附剂1-3h进行洗涤,然后采用200-400℃氮气吹扫10-60min进行干燥,最后采用室温的氮气吹扫10-60min进行冷却。
本发明的汽油脱硫方法中,将所述重汽油馏分、氢气在选择性加氢脱硫催化剂的作用下进行选择性加氢脱硫,得到脱硫重汽油馏分,其中,所述选择性加氢脱硫的温度为200-300℃,压力为1.5-2.5MPa,体积空速(重汽油馏分)为1-5h-1,氢油体积比为400-600。
本发明所述的选择性加氢脱硫催化剂可以为现有技术中对汽油进行选择性加氢脱硫 的常规催化剂,例如RSDS工艺中的RSDS-Ⅰ、RSDS-21、RSDS-22催化剂,Prime-G+工艺中的HR806和HR841催化剂,OCT-M工艺中的FGH-20/FGH-11组合催化剂,CDOS工艺中的HDOS系列深度加氢脱硫催化剂等。
在一实施方式中,所述加氢脱硫催化剂由载体负载活性金属成分而得到,其中,所述载体为分子筛(例如X型、Y型或ZSM-5型)或金属氧化物(例如三氧化二铝),所述活性金属包括Co和Mo。进一步地,Co和Mo在所述载体上的总负载量为5-20%。更进一步地,载体上负载的Co与Mo的质量比为(0.2-0.6):1。
在一实施方式中,可以对所述轻汽油馏分进行脱硫醇处理后再进行所述吸附脱硫。
在另一实施方式中,还可以对所述汽油进行脱硫醇处理后再切割为轻汽油馏分和重汽油馏分。
进一步地,可以采用常规方法进行所述脱硫醇处理,例如碱抽提法或硫醇转化法等。碱抽提法使用碱液将硫醇抽提到碱液中而脱除,碱液中碱的质量含量可为5-50%,油碱体积比可为(1-15):1,操作温度可为10-60℃;硫醇转化法是将小分子硫醇转化为其它硫化物而脱除,可以采用常规的无碱脱臭工艺、Prime-G+工艺中的预加氢等方式进行,其中无碱脱臭工艺条件可以为:反应器操作压力0.2-1.0MPa,反应温度20-60℃,进料空速0.5-2.0h-1,空气流量与进料量的体积比为0.2-1.0,所用催化剂及助催化剂均可以为本领域常用的催化剂。
本发明的实施,至少具有以下优势:
1、本发明的脱硫吸附剂采用分别经碱处理的分子筛和活性炭作为复合载体,并且在该复合载体上负载特定的活性金属成分,不仅硫容大、对硫的选择性好、而且脱硫深度高,可将硫脱至1ppmw(按质量计的百万分之一);此外使用寿命长,对环境较为友好。
2、本发明的脱硫吸附剂在对汽油进行脱硫时工艺操作条件温和,可在常压和较低温度下进行,从而节约了能耗,降低了操作成本。
3、本发明的脱硫吸附剂再生方法简单、易于操作,再生的脱硫吸附剂在使用前无需氢气还原,环保经济;此外脱硫吸附剂可多次再生,并且再生后仍然能够维持良好的脱硫效果。
4、本发明的脱硫方法将汽油切割为轻、重汽油馏分后,对轻汽油馏分进行吸附脱硫、对重汽油馏分进行选择性加氢脱硫,该方式不仅可减少加氢脱硫的组分含量,还能够实现对汽油原料的深度脱硫,并且辛烷值几乎不损失。
附图说明
图1为实施例1的ZSM-5型分子筛在碱处理前后的吸附脱附等温线;
图2为实施例1的ZSM-5型分子筛在碱处理前后的孔径分布曲线;
图3为实施例7的汽油脱硫方法的工艺流程图;
图4为实施例8的汽油脱硫方法的工艺流程图;
图5为实施例9的汽油脱硫方法的工艺流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1、制备经碱处理的分子筛和活性炭
将两份500mL浓度为0.3mol/L的NaOH溶液水浴升温至70℃左右后,分别向其中加入25g的ZSM-5型分子筛和25g的活性炭,搅拌200分钟左右后,立即将混合物用冰浴降至常温,过滤并用去离子水过滤洗涤滤饼多次,直至滤出液的pH值为7左右后,将所得滤饼置于110℃的烘箱中干燥4h,分别制得经碱处理的ZSM-5型分子筛和经碱处理的活性炭;其中,ZSM-5型分子筛在碱处理前后的吸附脱附等温线和孔径分布曲线分别见图1和图2。
此外,采用ASAP2000型自动物理吸附仪测定ZSM-5型分子筛和活性炭的比表面积及孔径分布,结果如表1所示。
表1 ZSM-5型分子筛和活性炭的比表面积及孔径
Figure PCTCN2015075886-appb-000001
由图1可知:碱处理前的ZSM-5分子筛表现出微孔性质特有的I型等温线,其脱附等温线几乎与吸附等温线重合;而碱处理后的ZSM-5分子筛表现出特征明显的IV型等温线,其在整个测量压力范围内呈现持续的吸附状态直至饱和压力,而脱附时先随着压力的减小缓慢脱附,当压力达到某一值时脱附量突然增加,形成较为陡峭的变化曲线,然后随着压力的继续降低而与吸附等温线重合,由此说明碱处理后的ZSM-5分子筛中产生了大量介孔(中孔)。
由图2可知,碱处理前的ZSM-5分子筛主要以微孔为主,在2nm之前有较宽的分布,在3.5nm处有一个小峰,4nm之后基本上没有孔出现,使用t-plot方法计算得到的平均孔径为2.3nm左右;碱处理后的ZSM-5分子筛在2nm之前仍有部分微孔分布,而在3.8nm左右有一处强峰,峰高几乎为碱处理前ZSM-5分子筛的11倍左右,在4nm之后也有较为宽泛的孔分布。
同时,表1结果表明:经碱处理的ZSM-5型分子筛中孔体积和平均孔径显著增大,说明大量微孔转变为中孔,从而形成介孔和微孔复合孔结构;经碱处理的活性炭的总比表面积、总孔体积、中孔体积和平均孔径均有所增加。
2、制备复合载体
将上述经碱处理的ZSM-5型分子筛和经碱处理的活性炭按照质量比40:60混合后,置于研钵中研磨成粉状,随后置于120℃的烘箱中干燥6h,制得复合载体。
3、制备脱硫吸附剂
先采用K2SO4溶液对上述制备的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,再采用NiSO4对已浸渍K2SO4溶液的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,制得脱硫吸附剂;
上述洗涤、干燥和焙烧具体为:将浸渍后的物料用去离子水洗涤后,120℃干燥20小时,将干燥后的物料冷却至室温后,先以6℃/min的速度升温至400℃,再以3℃/min的速度升温至550℃,在550℃下焙烧4小时。
上述制备的脱硫吸附剂中,K在复合载体上的负载量约为5%,Ni在复合载体上的负载量约为10%,并且复合载体上负载的K与Ni的质量比为0.5:1。
实施例2
1、制备经碱处理的分子筛和活性炭
将两份500mL浓度为0.2mol/L的NaOH溶液水浴升温至80℃左右后,分别向其中加入25g的Y型分子筛和25g的活性炭,搅拌120分钟左右后,立即将混合物用冰浴降至常温,过滤并用去离子水过滤洗涤滤饼多次,直至滤出液的pH值为7左右后,将所得滤饼置于120℃的烘箱中干燥3h,分别制得经碱处理的Y型分子筛和经碱处理的活性炭;Y型分子筛和活性炭的比表面积及孔径分布如表2所示。
表2Y型分子筛和活性炭的比表面积及孔径
Figure PCTCN2015075886-appb-000002
2、制备复合载体
将上述经碱处理的Y型分子筛和经碱处理的活性炭按照质量比20:80混合后,置于研钵中研磨成粉状,随后置于110℃的烘箱中干燥6h,制得复合载体。
3、制备脱硫吸附剂
先采用ZnSO4溶液对上述制备的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,再采用Fe2(SO4)3对已浸渍ZnSO4溶液的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,制得脱硫吸附剂;
上述洗涤、干燥和焙烧具体为:将浸渍后的物料用去离子水洗涤后,110℃干燥24小时,将干燥后的物料冷却至室温后,先以6℃/min的速度升温至400℃,再以3℃/min的速度升温至450℃,在450℃下焙烧6小时。
上述制备的脱硫吸附剂中,Zn在复合载体上的负载量约为10%,Fe在复合载体上的负载量约为10%,并且复合载体上负载的Zn与Fe的质量比为1:1。
实施例3
1、制备经碱处理的分子筛和活性炭
将两份500mL浓度为0.3mol/L的NaOH溶液水浴升温至80℃左右后,分别向其中加入25g的X型分子筛和25g的活性炭,搅拌180分钟左右后,立即将混合物用冰浴降至常温,过滤并用去离子水过滤洗涤滤饼多次,直至滤出液的pH值为7左右后,将所得 滤饼置于100℃的烘箱中干燥6h,分别制得经碱处理的X型分子筛和经碱处理的活性炭。
2、制备复合载体
将上述经碱处理的X型分子筛和经碱处理的活性炭按照质量比30:70混合后,置于研钵中研磨成粉状,随后置于120℃的烘箱中干燥6h,制得复合载体。
3、制备脱硫吸附剂
先采用K2SO4溶液对上述制备的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,再采用NiSO4对已浸渍K2SO4溶液的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,制得脱硫吸附剂;
上述洗涤、干燥和焙烧具体为:将浸渍后的物料用去离子水洗涤后,120℃干燥18小时,将干燥后的物料冷却至室温后,先以6℃/min的速度升温至400℃,再以3℃/min的速度升温至640℃,在640℃下焙烧5小时。
上述制备的脱硫吸附剂中,K在复合载体上的负载量约为5%,Ni在复合载体上的负载量约为15%,并且复合载体上负载的K与Ni的质量比为0.3:1。
实施例4
1、制备经碱处理的分子筛和活性炭
将两份500mL浓度为0.2mol/L的NaOH溶液水浴升温至70℃左右后,分别向其中加入25g的ZSM-5型分子筛和25g的活性炭,搅拌90分钟左右后,立即将混合物用冰浴降至常温,过滤并用去离子水过滤洗涤滤饼多次,直至滤出液的pH值为7左右后,将所得滤饼置于120℃的烘箱中干燥3h;
将得到的ZSM-5型分子筛和的活性炭分别重复上述步骤一次(即碱处理两次),制得经碱处理的ZSM-5型分子筛和经碱处理的活性炭;ZSM-5型分子筛和活性炭的比表面积及孔径分布如表3所示。
表3 ZSM-5型分子筛和活性炭的比表面积及孔径
Figure PCTCN2015075886-appb-000003
2、制备复合载体
将上述经碱处理的ZSM-5型分子筛和经碱处理的活性炭按照质量比20:80混合后,置于研钵中研磨成粉状,随后置于100℃的烘箱中干燥8h,制得复合载体。
3、制备脱硫吸附剂
先采用ZnSO4溶液对上述制备的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,再采用Fe2(SO4)3对浸渍ZnSO4溶液的复合载体进行等体积浸渍,经洗涤、干燥和焙烧后,制得脱硫吸附剂;
上述洗涤、干燥和焙烧具体为:将浸渍后的物料用去离子水洗涤后,120℃干燥20小时,将干燥后的物料冷却至室温后,先以6℃/min的速度升温至400℃,再以3℃/min的速度升温至600℃,在600℃下焙烧6小时。
上述制备的脱硫吸附剂中,Zn在复合载体上的负载量约为5%,Fe在复合载体上的负载量约为10%,并且复合载体上负载的Zn与Fe的质量比为0.5:1。
对比例1
按照实施例1方法制备经碱处理的ZSM-5型分子筛后,按照实施例1方法先后采用K2SO4溶液和NiSO4溶液对该经碱处理的ZSM-5型分子筛进行等体积浸渍,并洗涤、干燥、焙烧,制得脱硫吸附剂。
对比例2
按照实施例1方法制备经碱处理的活性炭后,按照实施例1方法先后采用K2SO4溶液和NiSO4溶液对该经碱处理的活性炭进行等体积浸渍,并洗涤、干燥、焙烧,制得脱硫吸附剂。
对比例3
直接将实施例1的ZSM-5型分子筛(未经碱处理)和活性炭(未经碱处理)按照质量比40:60混合后,置于研钵中进行研磨,随后置于120℃的烘箱中干燥6h,制得复合载体。
按照实施例1方法先后采用K2SO4溶液和NiSO4溶液对该复合载体进行等体积浸渍,并洗涤、干燥、焙烧,制得脱硫吸附剂。
实施例5
分别将上述实施例1-4和对比例1-3制备的脱硫吸附剂填装于固定床反应器中,以某一催化裂化汽油为原料(其组成见表4),在温度为30℃以及常压条件下,以0.5mL/min的流速分别实施连续10小时的吸附脱硫试验,吸附脱硫试验结果见表5,其中硫容为1g脱硫吸附剂将汽油中的总含硫量降至10ppmw以下时所脱除的总硫量(以克计),例如硫容为0.514时,代表1g脱硫吸附剂将汽油中的总含硫量降至10ppmw以下时所脱除的总硫量为0.514g。
表4原料汽油的组成
Figure PCTCN2015075886-appb-000004
表5脱硫吸附剂的吸附脱硫试验结果
Figure PCTCN2015075886-appb-000005
Figure PCTCN2015075886-appb-000006
由表5结果可知:
1、本发明制备的吸附脱硫剂脱硫深度高,在吸附脱硫4-5小时即可将原料汽油中的硫降至1ppmw以下,并且使用寿命长达8h左右;此外,其吸附脱硫剂硫容大,特别是对噻吩及其衍生物的选择性好。
2、单独采用经碱处理的分子筛作为载体时,吸附脱硫剂的使用寿命大大缩短;单独采用经碱处理的活性炭作为载体时,吸附脱硫剂对硫的选择性低;而以未经碱处理的分子筛和活性炭作为复合载体时,硫容较小,且使用寿命短。
实施例6
以实施例1-4的脱硫吸附剂按照实施例5方法脱硫至穿透硫容(即吸附剂失效)作为待再生的脱硫吸附剂,对待再生的脱硫吸附剂先采用水蒸气吹扫进行洗涤,然后采用氮气吹扫进行干燥,最后采用室温的氮气吹扫进行冷却,再生工艺参数见表6。
再生后的脱硫吸附剂按照实施例5方法重复进行吸附脱硫和再生,采用实施三次吸附脱硫以及再生三次后的脱硫吸附剂,按照实施例5方法进行吸附脱硫,吸附脱硫试验结果见表7。
表6脱硫吸附剂的再生工艺参数
Figure PCTCN2015075886-appb-000007
Figure PCTCN2015075886-appb-000008
表7脱硫吸附剂再生三次后的吸附脱硫试验结果
Figure PCTCN2015075886-appb-000009
由表7结果可知:
采用上述再生方法对本发明的脱硫吸附剂进行多次再生后,脱硫吸附剂仍然能够维持较高的硫容和良好的脱硫效果。
实施例7
1、制备选择性加氢脱硫催化剂
先采用CoSO4溶液对ZSM-5型分子筛(载体)进行等体积浸渍,经洗涤、干燥和焙烧后,再采用(NH4)6Mo7O24·4H2O的水溶液对已浸渍CoSO4溶液的ZSM-5型分子筛进行等体积浸渍,经洗涤、干燥和焙烧后,制得选择性加氢脱硫催化剂;其中,洗涤、干燥和焙烧的具体操作参见实施例1。
上述制备的选择性加氢脱硫催化剂的总比表面为356m2/g左右,总孔体积为0.315cm3·g-1左右,Co在载体上的负载量约为5%,Mo在载体上的负载量约为10%,并且载体上负载的Co与Mo的质量比为0.5:1。
2、汽油脱硫
以大庆常压重油经过催化裂化生产出的催化汽油为原料(其组成见表8),对该汽油原料进行脱硫的工艺流程如图3所示。
首先,将该汽油原料切割为轻汽油馏分和重汽油馏分,其中轻、重汽油馏分的切割温度为100℃。
将实施例1制备的脱硫吸附剂填装于固定床反应器中,在温度为30℃以及常压条件下,以0.5mL/min的流速对轻汽油馏分进行吸附脱硫,得到脱硫轻汽油馏分;并且,在吸附脱硫后,采用150℃的水蒸气吹扫吸附脱硫后的脱硫吸附剂3h进行洗涤,收取富硫组分,将该富硫组分并入重汽油馏分进行下一步骤。
将上述制备的选择性加氢脱硫催化剂填装于固定床反应器中,在反应温度260℃、反应压力1.8MPa、体积空速3.0h-1、氢油体积比为500的条件下对合并有富硫组分的重汽油馏分进行选择性加氢脱硫,得到脱硫重汽油馏分。将脱硫重汽油馏分与脱硫轻汽油馏分混合,制得脱硫汽油,其组成见表8。
表8脱硫前后汽油的组成
Figure PCTCN2015075886-appb-000010
Figure PCTCN2015075886-appb-000011
由表8可知:
本实施例的汽油脱硫方法,不仅能够将汽油原料中的硫含量降至10ppm以下,同时还能够将烯烃含量控制在24%以下,并且辛烷值(RON)损失仅0.5。
实施例8
1、制备选择性加氢脱硫催化剂
按照实施例7方法制备选择性加氢脱硫催化剂,不同的是,控制Co在载体上的负载量约为2%,Mo在载体上的负载量约为8%,并且载体上负载的Co与Mo的质量比为0.25:1。
2、汽油脱硫
以大庆的催化汽油为原料(其组成见表9),对该汽油原料进行脱硫的工艺流程如图4所示。
首先,将该汽油原料分馏为轻汽油馏分和重汽油馏分,轻、重汽油馏分的切割温度为80℃。
在抽提系统中使轻汽油馏分与碱溶液接触进行脱硫醇处理,其中所采用的碱为质量含量20%的NaOH溶液,轻汽油馏分与NaOH溶液的体积比为5:1,操作温度为30℃,收取脱硫醇轻汽油馏分和抽出油,将该抽出油并入重汽油馏分进行下一步骤。
将实施例2制备的脱硫吸附剂填装于固定床反应器中,在温度为30℃以及常压条件下,以0.3mL/min的流速对脱硫醇轻汽油馏分进行吸附脱硫,得到脱硫轻汽油馏分;吸附脱硫后,采用180℃的水蒸气吹扫吸附脱硫后的脱硫吸附剂1h进行洗涤,收取富硫组分,将该富硫组分并入重汽油馏分进行下一步骤。
将上述制备的选择性加氢脱硫催化剂填装于固定床反应器中,在反应温度300℃、反应压力1.5MPa、体积空速4.0h-1、氢油体积比为600的条件下对合并有抽出油和富硫组分的重汽油馏分进行加氢脱硫,得到脱硫重汽油馏分。将脱硫重汽油馏分与脱硫轻汽油馏分混合,制得脱硫汽油,其组成见表9。
表9脱硫前后汽油的组成
Figure PCTCN2015075886-appb-000012
由表9可知:
本实施例的汽油脱硫方法,不仅能够将汽油原料中的硫含量降至10ppm以下,同时还能够将烯烃含量控制在24%以下,并且辛烷值损失仅0.7。
实施例9
以济南的催化汽油为原料(其组成见表10),对该汽油原料进行脱硫的工艺流程如图5所示。
首先,采用硫醇转化法(无碱脱臭工艺)对汽油原料进行脱硫醇处理,其中控制反应器的操作压力为0.5MPa左右,反应温度为40℃左右,进料空速为1.0h-1,空气流量与进料量的体积比为0.5左右,收取脱硫醇汽油。
将该脱硫醇汽油原料切割为轻汽油馏分和重汽油馏分,轻、重汽油馏分的切割温度为80℃。
将实施例4制备的脱硫吸附剂填装于固定床反应器中,在温度为30℃以及常压条件下,以0.8mL/min的流速对轻汽油馏分进行吸附脱硫,得到脱硫轻汽油馏分;吸附脱硫后,采用160℃的水蒸气吹扫吸附脱硫后的脱硫吸附剂2h进行洗涤,收取富硫组分,将该富硫组分并入重汽油馏分进行下一步骤。
将实施例7制备的选择性加氢脱硫催化剂填装于固定床反应器中,在反应温度300℃、反应压力2.5MPa、体积空速2.0h-1、氢油体积比为400的条件下对合并富硫组分的重汽油馏分进行加氢脱硫,得到脱硫重汽油馏分。将脱硫重汽油馏分与脱硫轻汽油馏 分混合,制得脱硫汽油,其组成见表10。
表10脱硫前后汽油的组成
Figure PCTCN2015075886-appb-000013
由表10可知:
本实施例的汽油脱硫方法,不仅能够将汽油原料中的硫含量降至10ppm以下,同时还能够将烯烃含量控制在24%以下,并且辛烷值损失仅0.6。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种用于汽油的脱硫吸附剂,其特征在于,由分别经碱处理的分子筛和活性炭作为复合载体负载活性金属成分而得到,其中,所述活性金属选自周期表IA、VIII、IB、IIB和VIB族中的一种或多种元素。
  2. 根据权利要求1所述的脱硫吸附剂,其特征在于,所述复合载体中,分子筛与活性炭的质量比为(20-80):(80-20)。
  3. 根据权利要求1或2所述的脱硫吸附剂,其特征在于,所述分子筛的类型为X型、Y型或ZSM-5型。
  4. 根据权利要求1-3任一项所述的脱硫吸附剂,其特征在于,所述活性金属选自Ni、Fe、Ag、Co、Mo、Zn和K中的至少2种。
  5. 根据权利要求1或4所述的脱硫吸附剂,其特征在于,所述活性金属在复合载体上的负载量为2-30%。
  6. 权利要求1-5任一项所述的脱硫吸附剂的制备方法,其特征在于,包括以下步骤:
    将分别经碱处理的分子筛和活性炭按比例制成复合载体;
    将所述复合载体用所述活性金属的可溶性盐溶液进行浸渍,将浸渍后的物料干燥后焙烧,得到所述脱硫吸附剂。
  7. 根据权利要求6所述的制备方法,其特征在于,所述碱处理包括分别对分子筛和活性炭按照分子筛或活性炭:碱:水为(0.1-2):(0.05-2):(4-15)的质量比混合,并维持0-120℃的温度条件下搅拌处理0.1-24h后干燥,且所述碱处理过程包括至少一次。
  8. 根据权利要求6所述的制备方法,其特征在于,对浸渍后的物料干燥后进行焙烧为在450-640℃焙烧4-6h。
  9. 根据权利要求6或8所述的制备方法,其特征在于,所述对浸渍后的物料干燥后进行焙烧时,包括将干燥后的物料冷却至室温,先以6℃/min速度升温至400℃,再以3℃/min速度升温至450-640℃。
  10. 权利要求1-5任一项所述的脱硫吸附剂的再生方法,其特征在于,包括对待再生的所述脱硫吸附剂顺序进行水蒸气洗涤、200-400℃的氮气干燥,和氮气冷却。
  11. 一种汽油的脱硫方法,其特征在于,包括:利用权利要求1-5任一项所述的脱硫吸附剂对汽油进行吸附脱硫。
  12. 根据权利要求11所述的脱硫方法,其特征在于,先将汽油切割为轻汽油馏分和 重汽油馏分,然后利用所述脱硫吸附剂对所述轻汽油馏分进行吸附脱硫,得到脱硫轻汽油馏分,并且对所述重汽油馏分进行选择性加氢脱硫,得到脱硫重汽油馏分;其中,轻汽油馏分与重汽油馏分的切割温度为70-110℃。
  13. 根据权利要求11或12所述的脱硫方法,其特征在于,所述吸附脱硫是利用固定床常压进行,并且控制吸附脱硫的温度为20-100℃,汽油的流速为0.3-1mL/min。
  14. 根据权利要求12或13所述的脱硫方法,其特征在于,还包括:
    采用水蒸气对吸附脱硫后的脱硫吸附剂进行洗涤,收取富硫组分;
    将所述富硫组分与所述重汽油馏分混合后进行所述选择性加氢脱硫。
  15. 根据权利要求12或14所述的脱硫方法,其特征在于,还包括:
    采用水蒸气对吸附脱硫后的脱硫吸附剂进行洗涤后采用200-400℃的氮气进行干燥,并采用氮气对干燥后的脱硫吸附剂进行冷却,实现对脱硫吸附剂的再生。
  16. 根据权利要求12所述的脱硫方法,其特征在于,将所述重汽油馏分、氢气在选择性加氢脱硫催化剂的作用下进行选择性加氢脱硫,得到脱硫重汽油馏分,其中,所述选择性加氢脱硫的温度为200-300℃,压力为1.5-2.5MPa,体积空速为1-5h-1,氢油体积比为400-600。
  17. 根据权利要求16所述的脱硫方法,其特征在于,所述加氢脱硫催化剂由载体负载活性金属成分而得到,其中,所述载体为分子筛或金属氧化物,所述活性金属包括Co和Mo。
  18. 根据权利要求17所述的汽油脱硫方法,其特征在于,Co和Mo在所述载体上的总负载量为5-20%。
  19. 根据权利要求12所述的汽油脱硫方法,其特征在于,对所述轻汽油馏分进行脱硫醇处理后再进行所述吸附脱硫。
  20. 根据权利要求12所述的汽油脱硫方法,其特征在于,对所述汽油进行脱硫醇处理后再切割为轻汽油馏分和重汽油馏分。
PCT/CN2015/075886 2015-02-04 2015-04-03 一种用于汽油的脱硫吸附剂及汽油的脱硫方法 WO2016123859A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/931,690 US10011779B2 (en) 2015-02-04 2015-11-03 Adsorbent for desulfurization of gasoline and method for desulfurization of gasoline

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2015100596300 2015-02-04
CN201510058264.7A CN104673376B (zh) 2015-02-04 2015-02-04 一种汽油脱硫方法
CN201510059630.0A CN104667861B (zh) 2015-02-04 2015-02-04 一种用于汽油的脱硫吸附剂及汽油的脱硫方法
CN2015100582647 2015-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/931,690 Continuation US10011779B2 (en) 2015-02-04 2015-11-03 Adsorbent for desulfurization of gasoline and method for desulfurization of gasoline

Publications (1)

Publication Number Publication Date
WO2016123859A1 true WO2016123859A1 (zh) 2016-08-11

Family

ID=56563359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075886 WO2016123859A1 (zh) 2015-02-04 2015-04-03 一种用于汽油的脱硫吸附剂及汽油的脱硫方法

Country Status (1)

Country Link
WO (1) WO2016123859A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144318A (zh) * 2018-02-01 2018-06-12 南京英斯派工程技术有限公司 一种伴生气脱硫系统
CN112642397A (zh) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 复合材料及其制备方法和应用
CN112812864A (zh) * 2021-02-10 2021-05-18 于向真 一种S-Zorb工艺辛烷值助剂及其制备方法
CN112892465A (zh) * 2019-11-19 2021-06-04 中国石油天然气股份有限公司 一种催化裂化轻汽油脱硫吸附剂及其制备方法
CN113527100A (zh) * 2021-07-16 2021-10-22 昆山市精细化工研究所有限公司 一种医药中间体脱硫剂及其制备方法
CN114146564A (zh) * 2020-09-08 2022-03-08 中国石油化工股份有限公司 一种干法脱硫剂的再生方法
CN114433003A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种脱硫吸附剂及其制备方法和应用
CN115178234A (zh) * 2022-06-15 2022-10-14 宁波晶赛新材料技术有限公司 一种复合型多级孔催化-吸附材料及其制备方法
CN115532223A (zh) * 2021-06-29 2022-12-30 中国石油化工股份有限公司 脱除噻吩硫的吸附剂及其制备方法与应用
CN117504948A (zh) * 2024-01-08 2024-02-06 成都达奇科技股份有限公司 脱硫催化剂再生方法和脱硫催化剂再生液的资源回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050061712A1 (en) * 2003-07-25 2005-03-24 Alexandre Nicolaos Process for desulphurizing a hydrocarbon feed by adsorption/desorption
US20080289496A1 (en) * 2004-10-07 2008-11-27 Poshusta Joseph C Method for removing sulfur or other contaminant species from hydrocarbon fuels or other fuels
CN102764630A (zh) * 2012-06-26 2012-11-07 长春工业大学 脱除柴油中苯并噻吩的吸附剂及其制备方法
CN104277874A (zh) * 2013-07-12 2015-01-14 中国石油天然气股份有限公司 一种裂化汽油吸附脱硫的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050061712A1 (en) * 2003-07-25 2005-03-24 Alexandre Nicolaos Process for desulphurizing a hydrocarbon feed by adsorption/desorption
US20080289496A1 (en) * 2004-10-07 2008-11-27 Poshusta Joseph C Method for removing sulfur or other contaminant species from hydrocarbon fuels or other fuels
CN102764630A (zh) * 2012-06-26 2012-11-07 长春工业大学 脱除柴油中苯并噻吩的吸附剂及其制备方法
CN104277874A (zh) * 2013-07-12 2015-01-14 中国石油天然气股份有限公司 一种裂化汽油吸附脱硫的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE , MING ET AL.: "Application of Activated Charcoal Desulphurizer in Fcc Gasoline Petreating", PETROLEUM REFINERY ENGINEERING, vol. 32, no. 7, 31 July 2002 (2002-07-31), pages 43 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144318B (zh) * 2018-02-01 2023-12-19 南京佳华科技股份有限公司 一种伴生气脱硫系统
CN108144318A (zh) * 2018-02-01 2018-06-12 南京英斯派工程技术有限公司 一种伴生气脱硫系统
CN112642397B (zh) * 2019-10-11 2023-06-16 中国石油化工股份有限公司 复合材料及其制备方法和应用
CN112642397A (zh) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 复合材料及其制备方法和应用
CN112892465A (zh) * 2019-11-19 2021-06-04 中国石油天然气股份有限公司 一种催化裂化轻汽油脱硫吸附剂及其制备方法
CN112892465B (zh) * 2019-11-19 2023-07-25 中国石油天然气股份有限公司 一种催化裂化轻汽油脱硫吸附剂及其制备方法
CN114146564B (zh) * 2020-09-08 2023-10-10 中国石油化工股份有限公司 一种干法脱硫剂的再生方法
CN114146564A (zh) * 2020-09-08 2022-03-08 中国石油化工股份有限公司 一种干法脱硫剂的再生方法
CN114433003A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种脱硫吸附剂及其制备方法和应用
CN114433003B (zh) * 2020-10-16 2023-08-04 中国石油化工股份有限公司 一种脱硫吸附剂及其制备方法和应用
CN112812864B (zh) * 2021-02-10 2022-10-21 于向真 一种S-Zorb工艺辛烷值助剂及其制备方法
CN112812864A (zh) * 2021-02-10 2021-05-18 于向真 一种S-Zorb工艺辛烷值助剂及其制备方法
CN115532223A (zh) * 2021-06-29 2022-12-30 中国石油化工股份有限公司 脱除噻吩硫的吸附剂及其制备方法与应用
CN115532223B (zh) * 2021-06-29 2024-01-16 中国石油化工股份有限公司 脱除噻吩硫的吸附剂及其制备方法与应用
CN113527100A (zh) * 2021-07-16 2021-10-22 昆山市精细化工研究所有限公司 一种医药中间体脱硫剂及其制备方法
CN115178234A (zh) * 2022-06-15 2022-10-14 宁波晶赛新材料技术有限公司 一种复合型多级孔催化-吸附材料及其制备方法
CN115178234B (zh) * 2022-06-15 2023-09-22 宁波晶赛新材料技术有限公司 一种复合型多级孔催化-吸附材料及其制备方法
CN117504948A (zh) * 2024-01-08 2024-02-06 成都达奇科技股份有限公司 脱硫催化剂再生方法和脱硫催化剂再生液的资源回收方法

Similar Documents

Publication Publication Date Title
WO2016123859A1 (zh) 一种用于汽油的脱硫吸附剂及汽油的脱硫方法
US10596555B2 (en) Catalyst to attain low sulfur gasoline
CN102343249B (zh) 一种烃油脱硫吸附剂及其制备方法和应用
US10011779B2 (en) Adsorbent for desulfurization of gasoline and method for desulfurization of gasoline
CN102430412B (zh) 一种催化裂化汽油高选择性吸附脱硫剂的制备方法
CN102294222A (zh) 一种烃油脱硫吸附剂及其制备方法和应用
US10266778B2 (en) Method for upgrading fluid catalytic cracking gasoline
BRPI0802431B1 (pt) processo de remoção de compostos de silício de correntes de hidrocarbonetos
CN103240117B (zh) 一种汽油脱硫催化剂及其制备方法和汽油脱硫方法
WO2017166046A1 (zh) 基于氧化铝晶面调控的轻质烃类脱硫醇催化剂及其制法
US20100294698A1 (en) Deep desulfurization process
CN103721668B (zh) 一种汽油超深度脱硫吸附剂及其应用
CN104673378B (zh) 一种脱硫汽油的生产方法
CN104673376B (zh) 一种汽油脱硫方法
JP2004010893A (ja) 第8族元素およびタングステンを含む触媒の存在下に、硫黄化合物およびオレフィンを含む留分を水素化脱硫するための方法
CN104673379B (zh) 一种汽油深度脱硫方法
CN106701177B (zh) 一种超清洁汽油的生产方法
WO2016123861A1 (zh) 一种催化裂化汽油的提质方法
WO2016123860A1 (zh) 一种汽油深度脱硫方法
TWI739933B (zh) 一種汽油的處理方法
CN107159096A (zh) 催化裂化汽油吸附脱硫剂及其制备方法与应用
CN115340884A (zh) 一种生产清洁汽油的方法
CN102343250A (zh) 一种烃油脱硫吸附剂及其制备方法和应用
US11041131B2 (en) Process for treating gasoline
US9683183B2 (en) Method for deep desulfurization of gasoline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880814

Country of ref document: EP

Kind code of ref document: A1