WO2016122259A1 - 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도 - Google Patents

단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도 Download PDF

Info

Publication number
WO2016122259A1
WO2016122259A1 PCT/KR2016/001016 KR2016001016W WO2016122259A1 WO 2016122259 A1 WO2016122259 A1 WO 2016122259A1 KR 2016001016 W KR2016001016 W KR 2016001016W WO 2016122259 A1 WO2016122259 A1 WO 2016122259A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferritin
scfv
fusion protein
nanocluster
protein
Prior art date
Application number
PCT/KR2016/001016
Other languages
English (en)
French (fr)
Inventor
정상전
강효진
고건
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2016122259A1 publication Critical patent/WO2016122259A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to a fusion protein comprising a single chain antibody fragment and ferritin, and more particularly, to a fusion protein in which a single chain antibody fragment (scFv) is combined with a ferritin, which encodes the fusion protein.
  • the present invention relates to a drug carrier comprising a cluster, a diagnostic kit, a protein chip, and an antigen detection method using the nanocluster.
  • Ferritin is a protein that stores iron and is widely present in prokaryotes and eukaryotes. Ferritin has a molecular weight of about 500.000 Da, which is composed of heavy chain and light chain, and has self-assembling ability to form spherical particles. Ferritin is a protein composed of 24 monomers (a single monomer or a heterologous monomer composed of either heavy or light chain) to form a giant spherical tertiary structure. For human ferritin, the outer diameter is about 12 nm and the inner diameter is about 8 nm. . Ferritin is scattered into monomers depending on pH conditions and forms a nanocluster with 24 monomers bound together.
  • nanocluster-shaped ferritin has iron oxide inside, but various inorganic metals such as manganese oxide, cobalt oxide, nickel oxide, indium oxide, iron sulfide, cadmium sulfide, selenium cadmium, and selenium zinc Cases have been reported for the preparation of ferritin.
  • various inorganic metals such as manganese oxide, cobalt oxide, nickel oxide, indium oxide, iron sulfide, cadmium sulfide, selenium cadmium, and selenium zinc Cases have been reported for the preparation of ferritin.
  • a case of synthesizing silver-containing ferritin using a peptide that selectively binds with a metal for example, using a peptide that binds with a metal, has also been reported.
  • ferritin which collects Gd-HPDOTA (gadolinium- [10- (2-hydroxypropyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid), an MRI contrast agent, has also been reported.
  • Gd-HPDOTA gadolinium- [10- (2-hydroxypropyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid
  • the inside and outside of ferritin can introduce various functional groups through molecular biological methods, and the ferritin structure in which various functional groups are introduced can be selectively modified using appropriate functional groups and various physical and chemical It has the advantage of being endowed with properties.
  • the metal ion can be selectively bound and transported with the protein.
  • the protein nanoclusters composed of 24 complexes through self-assembly have 24 uniform formulas, and as a result, one ferritin nanocluster has a very sophisticated form. It can serve as a transporter for transporting two metal ions.
  • the targeted drug delivery system refers to a technology designed to deliver a good therapeutic effect with only a small amount of drugs while at the same time do not expose healthy tissue to the drug by selectively delivering the drug to the treatment site.
  • a targeted drug delivery system By using a targeted drug delivery system, it is possible to maximize the effects of drug treatment by concentrating drugs on specific parts of the human body with diseases, and minimize side effects caused by highly toxic drugs such as anticancer drugs.
  • attempts have been actively made to use a target-oriented drug delivery system for disease diagnosis. More recently, the development of therapnosis (Theragnosis Therapy + diagnosis) technology, which can simultaneously treat and diagnose using a targeted drug delivery system, is being actively developed. In other words, by attaching a molecular imaging probe to the target-oriented drug delivery system and imaging the tracer using non-invasive in vivo imaging, monitoring the treatment process in real time with drug delivery.
  • the technology that can be done is the Terragnosis technology.
  • Antibodies are proteins produced by the immune response of vertebrates and are immunoproteins that specifically recognize and bind to specific sites of an antigen to inactivate or eliminate the action of the antigen.
  • Antibodies have two heavy chains and two light chains, and are basically Y-shaped. The variable region of the light and heavy chains combine to form an antigen binding site, which is a small fragment of a small chain that is artificially linked through a peptide linker, an antibody using a single chain variable fragment (scFv). Research is underway to perform the function of.
  • Single chain variable fragments are smaller than general antibodies and thus have a high penetration rate into tissues or cancerous tissues and can be mass-produced in various expression systems, including E. coli, and various molecular biological formulas. Yes, it saves time and money in production.
  • this single chain variable fragment has a short half-life in the human body because of its small size and no Fc region.
  • the reported thyroid stimulating hormone (TSH) -ferritin is expressed in E. coli but has a problem of precipitation and self-assembly. Therefore, a refolding process using an additional strong acid is required. It is time consuming and expensive and can also adversely affect its own functions (selectivity, binding capacity, stability) by denaturing proteins.
  • Nanostructures such as liposomes are widely used as drug carriers, and liposomes are composed mainly of phospholipids, which are components of biological cell membranes, and can trap water-soluble or insoluble (hydrophobic) drugs therein.
  • Liposomes have the advantage of being able to control the composition and surface components in a variety of ways, but high intracellular toxicity and has problems such as loss in the circulation due to phagocytosis of macrophages when injected into the drug.
  • a liposome was prepared by binding PEG to the end of a phospholipid or a stealth liposome coated with a liposome surface with PEG or polysaccharide was developed.
  • nanostructure is a carrier consisting of chained molecules with both hydrophilic and hydrophobic moieties.
  • the hydrophobic moieties are spherical to form a spherical form.
  • poorly soluble drugs are trapped in the core to increase solubility and bioavailability.
  • drug carriers using nanoparticles are selectively accumulated in cancer tissues through an enhanced permeability and retention (EPR) effect, a passive target-oriented method.
  • EPR enhanced permeability and retention
  • cancer tissues are supplied with nutrients and oxygen through neovascularization, and blood vessels formed at this time are formed in a short period of time, and thus have a poor structure unlike normal cells.
  • Loose vascular tissues formed in cancer tissues can accumulate nanoparticles of several tens to hundreds of nanometers in size and can be accumulated around cancer tissues for a long time due to their slow discharge rate. This phenomenon is called EPR (enhanced permeability and retention) effect. do. However, this effect is a passive method using the surrounding cancer environment, it is difficult to always expect a certain effect. Therefore, for more effective targeting, a method of using a drug carrier having an antibody bound to an antigen or a receptor expressed at a target site has been developed. In addition, incorporating selective antibodies into radioisotopes for chemotherapy or various imaging agents used in advanced imaging medicine can reduce systemic side effects, increase the effectiveness of treatment, and increase image accuracy.
  • Chemical covalent bond formation methods currently used as methods for immobilizing antibodies for targeting may be inferior in reproducibility and impair the inherent function of antibodies.
  • biologically-derived drugs if they are accompanied by structural changes in the manufacturing process, require the precise identification of the structural changes, proof of drug efficacy, and toxicity tests to be approved by the KFDA as drugs. Therefore, it is almost impossible to apply a target-oriented drug delivery system using an antibody to a human body without securing reproducibility of antibody immobilization.
  • the present inventors have intensively tried to develop a method for improving the utilization of single-chain antibody fragments (scFv), and as a result, scFv and ferritin-fused fusion proteins form self-assembly to form nanoclusters. In addition, it was confirmed that the formed nanoclusters exhibit the effect of improving the activity of scFv, and completed the present invention.
  • scFv single-chain antibody fragments
  • One object of the present invention is to provide a fusion protein in the form of a single chain antibody fragment (scFv) and ferritin.
  • Another object of the present invention is to provide a polynucleotide encoding the fusion protein.
  • Still another object of the present invention is to provide an expression vector comprising the polynucleotide.
  • Still another object of the present invention is to provide a transformant into which the expression vector is introduced.
  • Still another object of the present invention is to provide a method of culturing the transformant and preparing the fusion protein therefrom.
  • Still another object of the present invention is to provide a nanocluster containing the fusion protein.
  • Still another object of the present invention is to provide a drug delivery system comprising the nanoclusters.
  • Still another object of the present invention is to provide a diagnostic kit including the nanocluster.
  • Still another object of the present invention is to provide a protein chip comprising the nanoclusters.
  • Still another object of the present invention is to provide an antigen detection method using the nanoclusters.
  • the present invention prepares a fusion protein by introducing a sequence of a single chain variable fragment (scFv) into ferritin, and uses it to express 24 antigen recognition sites on the ferritin surface of the antibody, thereby delivering biochips and drugs. It can be used for system, disease diagnosis and treatment development.
  • scFv single chain variable fragment
  • Figure 1 is a schematic diagram showing the manufacturing process of the nanocluster provided by the present invention.
  • Figure 2 is a schematic diagram showing the nanocluster structure formed by the self-assembly and the monomer structure of human-derived ferritin (light chain).
  • Figure 3 is a schematic diagram showing the shape of the nanocluster formed by the self-assembly scFv-ferritin fusion protein.
  • FIG. 4 is a schematic diagram showing the construction of a ferritin platform vector for expression of a scFv-ferritin fusion protein.
  • Figure 5 is an electrophoresis picture showing the expression results of the fusion protein according to the protein expression conditions of the scFv-ferritin fusion protein.
  • Figure 6 is an electrophoresis picture of the sample obtained during the purification of the scFv-ferritin fusion protein.
  • TEM 8 is a transmission electron microscope (TEM) photograph showing the results of confirming the morphology of the scFv-ferritin fusion protein.
  • Figure 9 is an electrophoresis picture showing the scFv-ferritin fusion protein contained in the fraction obtained by eluting the scFv-ferritin fusion protein adsorbed on the Talon resin with elution buffer.
  • FIG. 10 is an electrophoretic image showing scFv-ferritin fusion protein prepared using a solubilization buffer containing various concentrations of urea.
  • 11 is a schematic diagram showing the linker length and order between the heavy chain and the light chain constituting the scFv.
  • the present inventors have conducted various studies to develop a method for improving the utilization of single chain antibody fragments (scFv), attracting attention to ferritin (ferritin) that can form nanoclusters by self-assembly.
  • scFv single chain antibody fragments
  • ferritin ferritin
  • the present inventors have developed a technique for preparing nanoparticles comprising 24 monomers composed of antibody-binding peptide-ferritin fusion proteins and binding various antibodies thereto to improve the utility of antibodies (Korean Patent Registration No. 1477123). number).
  • the desired drug is bound to ferritin to form a primary complex of drug-ferritin form, and the primary complex is again bound to an antibody to form a secondary complex of drug-ferritin-antibody form.
  • the secondary complex may be administered to the patient, and the drug may be delivered to a target site in the patient using the antibody contained in the administered secondary complex.
  • the activity of the antibody contained in the secondary complex can be disturbed by the activity of the intrinsic antibody of the patient, there is a problem that the drug cannot be delivered to the target site when the activity of the antibody is disturbed.
  • the present inventors have attempted to develop a technique for clustering antibodies using ferritin so as not to be disturbed by the patient's intrinsic antibody.
  • the antibody was inhibited by physical interference between antibodies when the general antibody was integrated with ferritin due to its size, single-chain antibody fragments (scFv) were used instead of the general antibody. That is, when using a fusion protein in which scFv and ferritin are combined with the same activity as the antibody, a plurality of scFv forms nanoclusters by ferritin, but the scFv activity was not inhibited.
  • the nanoclusters thus formed have the advantage that the binding capacity of the antibody is increased, as well as the biological half-life in the body. That is, since the nanocluster shows a dense form of 24 scFv, not only does it show better antibody activity than the conventional scFv, but also increases the period of time it can remain in the body due to the large structure in which a large number of scFvs are integrated. .
  • each scFv derived from Herceptin known as a monoclonal antibody to HER2 or Avastin known as a monoclonal antibody to VEGF was prepared, and a fusion protein of the scFv and ferritin-coupled form was obtained, and their structure And activity was analyzed.
  • the fusion protein formed a nanocluster in the form of a combination of 24 monomers by self-assembly activity, scFv bound to the nanocluster is a similar level of binding compared to the circular monoclonal antibody (Herceptin or Avastin) Although the activity was shown, it was confirmed to exhibit a much higher level of binding activity than scFv.
  • the fusion protein of the present invention which combines scFv and ferritin, does not have post-translational modification as compared to conventional antibodies, while still exhibiting characteristics of scFv that are easy to produce and manipulate. Since the low binding activity to the antigen pointed out as a disadvantage of the conventional scFv improved, it shows the advantage of expanding the utility of scFv.
  • Such a fusion protein in the form of the combination of scFv and ferritin is not known at all, and was first developed by the present inventors.
  • the present invention provides a fusion protein of a single chain antibody fragment (scFv) and ferritin combined form as one embodiment.
  • a "single chain variable fragment (scFv)" is not a general fragment formed from an antibody, but a fragment including a variable region of the light chain and a fragment comprising the variable region of the heavy chain constituting the antibody. It is a fusion protein composed by artificial fusion.
  • the scFv may be in a form in which the heavy chain fragment and the light chain fragment derived from various antibodies such as monoclonal antibody, polyclonal antibody, or the like are sequentially or in reverse order, and the heavy chain fragment and the light chain fragment are 10 to 25 amino acid sequences.
  • the constructed peptide linker may be in an inserted form.
  • the linker used may be a peptide linker consisting of serine (S) and glycine (G), the length of the linker is not particularly limited, in the present invention, SG, SGGGGSGGGG, SGGGGSGGGGSGGGG, SGGGGSGGGGSGGGGSGGGG and the like.
  • the type of scFv is not limited, and any type of scFv may be introduced when amino acid and nucleic acid sequences are known.
  • the antibody that is the source of the scFv binding to the nanoclusters according to the present invention may be a therapeutic antibody, may be an antibody that can be combined with a separate therapeutic or diagnostic agent, the antibody for targeting without a therapeutic effect It may be an antibody which may be simply an antigen-antibody reaction.
  • the therapeutic or diagnostic agent may bind to the antibody, but may be carried by the nanoclusters according to the present invention.
  • therapeutic antibodies have been approved by the FDA and have almost the same properties as IgG present in vivo, and their safety is very high.
  • Therapeutic antibodies are used for a wide range of disease treatments (e.g. transplant rejection, cancer, autoimmune diseases and inflammation, heart disease, infectious infections, etc.) and these antibodies are receptor proteins or antigenic proteins that are specific to the diseased tissue. Because it recognizes and binds, its specificity is very high. Therefore, combining molecular imaging probes or drug carriers with therapeutic antibodies can convert them to terragnosis formulations that can monitor the course of treatment with drug co-effects.
  • a terragnosis agent that can be diagnosed, treated, or simultaneously diagnosed and treated.
  • the present invention forms nanoclusters by fusing single-chain antibody fragments (scFv) to biologically derived ferritin, introduces molecular imaging probes, therapeutic drugs, etc., and then develops a target-oriented terragnosis material.
  • scFv single-chain antibody fragments
  • the scFv may include a peptide linker consisting of 2 to 20 amino acids between the heavy chain fragment and the light chain fragment derived from the monoclonal antibody.
  • the peptide linker used is not particularly limited, but may be a peptide linker consisting of serine (S) and glycine (G) as an example, in the present invention, SG, SGGGGSGGGG, SGGGGSGGGGSGGGG, SGGGGSGGGGSGGGGSGGGG and the like.
  • ferritin is a type of protein that can bind iron ions, has a molecular weight of about 500 kDa, is composed of heavy chains and light chains, and its ability to self-assemble There is a unique characteristic of forming spherical particles.
  • the ferritin can be composed of 24 monomers (a single monomer or a heterologous monomer composed of either heavy or light chains) to form a giant spherical tertiary structure.
  • the outer diameter is about 12 nm and the inner diameter. Is about 8 nm.
  • ferritin may be dispersed into monomers depending on pH conditions, and may form a nanocluster in which 24 monomers are bonded.
  • ferritin may trap various substances in ferritin, and nanocluster-shaped ferritin may contain iron oxide. oxide), but may also include various inorganic metals such as manganese oxide, cobalt oxide, nickel oxide, indium oxide, iron sulfide, cadmium sulfide, selenium cadmium, and selenium zinc.
  • Specific sequencing and protein information of the gene encoding the protein is known from NCBI (GenBank: NM_000146, NM_002032, etc.).
  • a protein expressed from a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 derived from human was used as ferritin.
  • the ferritin has a partial structure that can have a high local concentration or multi-valency effect when 24 ferritin monomers form a nanocluster, each protein monomer is formed at this symmetry point
  • the same part of (amino acid sequence) is met (see FIG. 2). Therefore, when modifying the protein part forming the symmetry point, three to four formulas meet at the same place.
  • the present inventors introduced scFv to the N-terminus or C-terminus of the ferritin protein so that the scFv is the same point on the ferritin nanocluster surface.
  • a ferritin platform DNA was prepared which can be located at, and various types of scFv can be inserted into the platform DNA.
  • a ferritin nanocluster construct having a novel function was identified by introducing a scFv derived from Herceptin, a breast cancer treatment agent, or Avastin, an angiogenesis inhibitor, and verifying its function. It has been demonstrated that it can be fused with genes and converted into various ScFv nanoclusters.
  • ferritin is not particularly limited as long as the 24 monomers can form a nanocluster by maintaining the self-assembling activity in the state in which scFv is bound, but all may be derived from the same, mixed with different types of ferritin You may.
  • Ferritin may be a microorganism-derived ferritin, such as a bacterium, or an eukaryotic cell-derived ferritin. Preferably human derived ferritin.
  • the ferritin may be a mutein having one or more amino acid residues substituted with cysteines or additionally inserted cysteines in the native amino acid sequence.
  • Cysteine itself has a high affinity with heavy metals, and also includes a highly reactive thiol group can be easily combined with other reactors to facilitate drug introduction using a bond directly or through a linker.
  • the cysteine is the second Ser (serine), the 19th Ser (serine), the 61st Glu (glutamic acid), the 68th Lys (lysine), the 102nd Ala (alanine), the 113th Asp of the human-derived ferritin amino acid sequence.
  • cysteine or amino acid residues containing cysteine or cysteine after substitution of one or more amino acid residues of the 137th Glu (glutamic acid) or after the 1st and 2nd, 161th and 162th or 174th amino acid sequences of Pyrococcus furiosus
  • One or more sequences may be inserted.
  • the inserted sequence may be a single cysteine residue or a GGC sequence, but may be used without limitation as long as it contains one or more cysteines and does not modify the structure of a native protein. Substitution or insertion into the cysteine can be carried out using methods known to those skilled in the art without limitation, but preferably by site-directed mutagenesis.
  • the second Ser (serine), 19th Ser (serine), 102th Ala (alanine), or 113th Asp (aspartic acid) of the human-derived ferritin amino acid sequence may be replaced with one or more cysteines, or amino acids of Pyrococcus furiosus.
  • One or more additional insertions between the first and second amino acids of the sequence may be used to prepare nanoparticles comprising cysteines that are capable of binding to the drug exposed to the outer surface.
  • Glu glutamic acid
  • 68th Lys lysine
  • 137th Glu glutamic acid
  • one or more additional amino acid sequences including cysteine or cysteine may be inserted to prepare nanoparticles comprising cysteine that can bind to the drug exposed on the inner surface.
  • ferritin may further include an amino acid sequence designed for a specific purpose to increase the stability of the targeting sequence, tag, labeled residue, half-life or peptide, wherein some amino acids of the known amino acid sequence may be added, Variant proteins mutated by substitution, deletion, etc. may also be included in the category of ferritin provided by the present invention.
  • the ferritin provided by the present invention may include a polypeptide having a sequence in which at least one amino acid residue differs from a known amino acid sequence.
  • Amino acid exchanges in proteins and polypeptides that do not alter the activity of the molecule as a whole are known in the art.
  • the most commonly occurring exchanges are amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Phe, Ala / Exchange between Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu, Asp / Gly.
  • the protein may include a protein having increased structural stability or increased protein activity against heat, pH, etc. of the protein by variation or modification on the amino acid sequence.
  • a "fusion protein” is known as a protein in which two or more different proteins are bound to one another.
  • the fusion protein may be understood to be limited to a fusion protein in which scFv is bound to ferritin.
  • the scFv may be a fusion protein in a form bound to the N-terminus or C-terminus of ferritin.
  • the fusion protein may be in a form in which scFvs derived from various antibodies are directly bound to ferritin or indirectly through a linker. The length and / or amino acid composition of the linker can be adjusted to control the spacing and orientation between scFvs.
  • fusion proteins may form spherical nanoclusters by self-assembly, the diameter of the nanoclusters may be 10 to 30 nm.
  • the fusion protein it is possible to induce the formation of nanoclusters having strong antigen-binding ability through self-assembly only through the expression and purification of proteins.
  • the fusion protein in which scFv is fused to the N- or C-terminus of ferritin may be formed by the fusion protein since 3-4 scFv may be located at a specific site of ferritin. Nanoclusters that can be bound to one or more antigens through three to four scFv bound to a ferritin specific site.
  • a fermentin platform vector for preparing a single chain variable fragment (scFv) -ferritin fusion protein is prepared (Example 1), and Herceptin using the prepared platform vector.
  • scFv-ferritin fusion protein As a result of preparing the derived scFv-ferritin fusion protein and analyzing its properties, it was confirmed that the purified scFv-ferritin fusion protein formed an aggregate structure of 24 monomers to form a globular shape as a whole (FIG. 8).
  • the ferritin fusion protein was confirmed that the scFv-ferritin fusion protein is relatively higher than Herceptin and Herceptin-derived scFv in terms of affinity for the antigen HER2 (Table 1).
  • the Avastin-derived scFv-ferritin fusion protein was prepared and analyzed.
  • the scFv-ferritin fusion protein was relatively lower than avastin in terms of affinity for VEGF. It was confirmed that, but exhibits a relatively higher level than the Avastin-derived scFv (Table 4).
  • the present invention provides a polynucleotide comprising a nucleotide sequence encoding the fusion protein.
  • the base sequence constituting the polynucleotide is a base sequence capable of encoding the amino acid sequence of the fusion protein or various amino acid sequences that can be added to the N-terminal or C-terminal of the amino acid sequence
  • the base sequence may be in the form added to the 5'-end or 3'-end of the base sequence capable of encoding the amino acid sequence.
  • a polynucleotide including a nucleotide sequence showing homology with the nucleotide sequence may also be included in the scope of the polynucleotide provided in the present invention. It may be preferably a polynucleotide comprising a nucleotide sequence showing at least 80% homology, more preferably a polynucleotide comprising a nucleotide sequence showing at least 90% homology, most preferably For example, it may be a polynucleotide including a nucleotide sequence showing 95% or more homology.
  • the polynucleotide may be mutated by one or more bases substituted, deleted, inserted, or a combination thereof.
  • synthetic methods well known in the art may be used, for example, those described in Engels and Uhlmann, Angew Chem Int Ed Eng., 37: 73-127, 1988. , Triester, phosphite, phosphoramidite and H-phosphate methods, PCR and other autoprimer methods, oligonucleotide synthesis on a solid support, and the like.
  • the present invention provides an expression vector comprising the polynucleotide.
  • an "expression vector” may be a gene construct including a gene insert to express a target protein in an appropriate host cell, and including an essential regulatory element operably linked to express the gene insert.
  • the expression vector includes expression control elements such as initiation codon, termination codon, promoter, operator, etc.
  • the initiation codon and termination codon are generally considered to be part of the nucleotide sequence encoding the polypeptide and when the gene construct is administered, Must be functional and can be included in the coding sequence and in frame.
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector is capable of autonomous replication in the host, and may be composed of a promoter, a ribosomal binding sequence, the nucleic acid of the present invention, and a transcription termination sequence.
  • the promoter may be used as long as it allows expression of the nucleic acid of the present invention in a host such as E. coli.
  • E. coli or phage-derived promoters such as, for example, trp promoter, lac promoter, PL promoter or PR promoter; E. coli infected phage-derived promoters such as the T7 promoter can be used.
  • Artificially modified promoters can also be used, such as the tac promoter.
  • operably linked means a state in which a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest are functionally linked to perform a general function.
  • a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence.
  • Operative linkage with expression vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can employ enzymes commonly known in the art.
  • the expression vector may include a signal sequence for the discharge of the fusion protein in order to facilitate the separation of the protein from the cell culture.
  • Specific initiation signals may also be required for efficient translation of inserted nucleic acid sequences. These signals include ATG start codons and contiguous sequences.
  • an exogenous translational control signal must be provided that can include an ATG start codon. These exogenous translational control signals and initiation codons can be various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translation enhancing factors.
  • the expression vector may further include a protein tag that can be removed using an endopeptidase, in order to facilitate the detection of the fusion protein.
  • the term "tag” refers to a molecule that exhibits quantifiable activity or properties, and refers to a polypeptide fluorescent substance such as a chemical fluorescent substance such as fluorescein, fluorescent protein (GFP) or related proteins. It may be a fluorescent molecule including; It may be an epitope tag such as a Myc tag, a flag tag, a histidine tag, a leucine tag, an IgG tag, a straptavidin tag, or the like. In particular, when an epitope tag is used, a peptide tag preferably consisting of 6 or more amino acid residues, more preferably 8 to 50 amino acid residues, may be used.
  • the expression vector is not particularly limited as long as it can produce the fusion protein provided by the present invention by expressing the polynucleotide, mammalian cells (eg, humans, monkeys, rabbits, rats, hamsters, mice). Cells, etc.), plant cells, yeast cells, insect cells or eukaryotic or prokaryotic cells including bacterial cells (e.g., E. coli, etc.), may be a vector capable of replicating and / or expressing the polynucleotides.
  • mammalian cells eg, humans, monkeys, rabbits, rats, hamsters, mice.
  • Cells, etc. plant cells
  • yeast cells insect cells or eukaryotic or prokaryotic cells including bacterial cells
  • bacterial cells e.g., E. coli, etc.
  • the host cell is operably linked to an appropriate promoter for expression of the polynucleotide, and may be a vector including at least one selection marker, more preferably a commercially developed plasmid (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E.
  • an appropriate promoter for expression of the polynucleotide may be a vector including at least one selection marker, more preferably a commercially developed plasmid (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E.
  • coli derived plasmids pYG601BR322, pBR325, pUC118 and pUC119
  • Bacillus subtilis Bacillus subtilis (B acillus subtilis) -derived plasmids (pUB110 and pTP5)
  • yeast-derived plasmids yeast-derived plasmids
  • ⁇ -phage Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11 and ⁇ ZAP
  • retroviruses adenoviruses Virus (adenovirus), vaccinia virus (vaccinia virus), baculovirus (baculovirus) and the like. Since the expression vector is expressed differently depending on the host cell expression amount and formula, it is preferable to select the host cell most suitable for the purpose.
  • the present invention provides a transformant in which the expression vector is introduced into a host cell.
  • the transformant provided by the present invention is produced by introducing and transforming the expression vector provided by the present invention into a host cell, and expresses the polynucleotide included in the expression vector to be used to produce the fusion protein of the present invention. Can be.
  • the host cell into which the expression vector provided in the present invention can be introduced is not particularly limited as long as it can produce the peptide by expressing the polynucleotide, but not limited to E. coli, Streptomyces, Salmonella typhimurium Bacterial cells such as; Yeast cells, such as Saccharomyces cerevisiae and ski-irradiated caromyces pombe; Fungal cells such as Pchia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NSO, 293, bow melanoma cells; Or plant cells.
  • E. coli, Streptomyces, Salmonella typhimurium Bacterial cells such as; Yeast cells, such as Saccharomyces cerevisiae and ski-irradiated caromyces pombe; Fungal cells such as Pchia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; Animal
  • the transformation can be carried out by a variety of methods, as long as it is possible to produce the fusion protein of the present invention exhibiting the effect of improving a variety of cellular activities to a high level, CaCl2 precipitation, Hanahan method, electroporation method, calcium phosphate precipitation method, plasma fusion method, agitation method using silicon carbide fibers, agrobacterial mediated traits that increased efficiency by using reducing agent called DMSO (dimethyl sulfoxide) for CaCl2 precipitation method Conversion methods, transformation methods with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation methods and the like can be used.
  • DMSO dimethyl sulfoxide
  • the present invention provides a method for producing a fusion protein of the present invention using the transformant.
  • the method for producing a fusion protein of the present invention comprises the steps of (a) culturing the transformant to obtain a culture; And (b) recovering the fusion protein of the present invention from the culture.
  • the method for producing a fusion protein of the present invention comprises the steps of: (a) cloning a polynucleotide encoding the fusion protein of the present invention to obtain an expression vector; (b) introducing the obtained expression vector into a host cell to obtain a transformant; And, (c) culturing the transformant and recovering the fusion protein therefrom.
  • the term "culture” means a method of growing microorganisms under appropriately artificially controlled environmental conditions.
  • the method of culturing the transformant may be performed using a method well known in the art.
  • the culture is not particularly limited as long as it can be produced by expressing the fusion protein of the present invention, but may be continuously cultured in a batch process or an injection batch or repeated fed batch process. .
  • the medium used for culturing may meet the requirements of a particular strain in an appropriate manner while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
  • the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
  • Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the raw materials described above may be added batchwise, fed-batch or continuous in a suitable manner to the culture in the culture process, but is not particularly limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
  • the temperature of the culture is usually 27 ° C to 37 ° C, preferably 30 ° C to 35 ° C. Incubation is continued until the maximum amount of production of the fusion protein is obtained. For this purpose it is usually achieved in 3 to 100 hours.
  • the step of recovering the fusion protein from the culture may be performed by a method known in the art.
  • the recovery method is not particularly limited as long as it can recover the produced fusion protein of the present invention, preferably centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, Fractional solubilization (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and size exclusion) can be used.
  • the present invention provides a nanocluster comprising the fusion protein.
  • nanocluster refers to a protein complex in which 24 fusion proteins are self-assembled by self-assembly of ferritin included in the fusion protein provided in the present invention. Although not limited, it may have a diameter of 10 to 30 nm, and the shape of the nanoclusters may be spherical. By inducing the formation of a strong binding nanocluster through self-assembly only by the expression and purification of the fusion protein, it is possible to easily form a protein chip or a targeted drug delivery system containing the scFv without damaging the structure of the scFv. have.
  • the fusion proteins constituting the nanoclusters may include different or the same scFv, and the ferritin contained therein may also be different or the same, for example, the nanoclusters are scFv for target movement And scFv combined with the drug may be included.
  • the present invention provides a drug carrier comprising the nanocluster and the drug.
  • the nanoclusters can be used as drug carriers because the nanoclusters can be targeted to delivery of the drug by binding the desired drug using scFv located on its surface or ferritin located therein.
  • the drug carrier may be delivered to a target site by combining a desired drug with scFv or ferritin forming the nanocluster, but the drug to be bound is not particularly limited thereto, but may be a therapeutic agent, a diagnostic agent, a detection agent, or the like. Can be.
  • the therapeutic agent is not particularly limited thereto, but as an example, an antibody, an antibody fragment, a drug, a toxin, a nuclease, a hormone, an immunomodulator, a chelator, a boron compound, a photoactive agent or a dye, a radioactive agent Isotopes and the like; Diagnostic or detection agents also include, but are not particularly limited to, radioisotopes, dyes (e.g., biotin-streptavidin complexes), contrast agents, fluorescent compounds or molecules, and magnetic resonance imaging (MRI), an increasing agent (paramagnetic ion), and the like. As another example, the diagnostic agent may include a radioisotope, an increasing agent used in magnetic resonance imaging, and a fluorescent compound.
  • the tail is a polymer such as polylysine, polysaccharide, or ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), porphyrin, polyamine, crown ether, bis-thiosememi It may be a derivatized or derivatized chain having a pentent group that can be bound to a chelating group such as carbazone, polyoximes, and having a group known to be useful for this purpose. Chelates are bound to antibodies using standard chemistry. Chelates can normally be linked to antibodies by groups capable of forming a bond to the molecule with minimal loss of immunoreactivity and minimal aggregation and / or internal crosslinking.
  • useful metal-chelate combinations include 2-benzyl -DTPA Diagnostics St. isotope and its monomethyl and cyclohexyl analogs used in the general energy range of 60 ⁇ 4,000keV, and for instance, the radioactive imaging agent 125 I , 131 I, 123 I, 124 I, 62 Cu, 64 Cu, 18 F, 111 In, 67 Ga, 99 mTc, 94 mTc, 11 C, 13 N, 15 O, 76 Br, etc., manganese, When combined with non-radioactive metals such as iron and gadolinium, the same chelate may be useful for MRI when used with the nanoclusters or antibodies of the invention.
  • Macrocyclic chelates such as NOTA, DOTA, and TETA are used with kinds of metals and radioactive metals, preferably with radionuclides of gallium, yttrium and copper, respectively.
  • the metal-chelate complex can be prepared very stably by tailoring the ring size to the metal of interest.
  • Immunoconjugates are conjugates of therapeutic or diagnostic agents with antibody components.
  • the diagnostic agent may include a radioactive or nonradioactive label, a contrast agent (contrast agent suitable for magnetic resonance imaging, computed tomography, or ultrasound), and the radiolabel may be gamma-, beta-, alpha-, Auger electron- or Positron emitting isotopes.
  • Immunomodulators are therapeutic agents, as defined herein, and are typically immune or proliferated or activated in an immune response cascade, such as macrophage, B-cell, and / or T-cell.
  • the cells may be stimulated, for example, the immunomodulator may be a cytokine.
  • the present invention provides a diagnostic kit or protein chip comprising the nanocluster.
  • the diagnostic kit of the present invention may include a nanocluster comprising an scFv capable of binding to a target protein capable of diagnosing a desired disease.
  • the disease of interest is not particularly limited as long as it includes a target protein that can be detected by the scFv contained in the nanocluster, for example, a specific protein is expressed due to an infectious disease caused by bacteria or viruses, genetic variation As a result, it may be a hereditary disease that may occur, or a metabolic disease that may occur due to influx of a substance that disturbs metabolism in vivo.
  • the diagnostic kit may include various components necessary for detecting a target protein using the nanocluster in addition to the nanocluster.
  • test tubes or other suitable containers reaction buffers, secondary antibodies, detection agents, sterile water, enzymes and the like may further be included.
  • the diagnostic kit it may be a protein chip.
  • the protein chip may be in the form of a fusion protein provided by the present invention or a nanocluster composed of the fusion protein is fixed to a solid substrate, wherein the solid substrate is not particularly limited if it can be used in a biochip, an example For example, gold, glass, modified silicone, tetrafluoroethylene, polystyrene, polypropylene, and polypropylene may be commonly used polymers or gels.
  • the surface of the substrate may be surface treated with polymers, plastics, resins, carbohydrates, silicas, silica derivatives, carbons, metals, inorganic glasses and films.
  • the substrate not only serves as a support but also provides a place for the binding reaction between the immobilized antibody and the antigen to occur.
  • the size of the substrate and the position, size, and shape of the substrate to be fixed on the substrate may vary depending on the purpose of the analysis, a spotting machine, a scanner, and the like.
  • an ELISA kit including the nanoclusters, a sandwich ELISA kit, and a sandwich FICT (fluorescent immunochromatographic test kit) kit in the form of a strip may be used.
  • a sample injection unit for inserting a sample by combining a glass fiber, cotton or cellulose pad to a nitrocellulose membrane in the form of a strip is provided, and a predetermined interval from the sample injection unit is provided. It may be an immunostrip or a fluorescent immunochromatographic test kit (FICT) including a nanocluster located at.
  • FICT fluorescent immunochromatographic test kit
  • the present invention provides an antigen detection method using the nanocluster.
  • the antigen detection method of the present invention includes the step of confirming whether the antigen-antibody reaction occurs by adding a protein sample to the nanocluster.
  • the nanoclusters may be in a free form in a solution, as used in conventional immunoprecipitation, or may be in a fixed form bound to a solid substrate, such as a conventional protein chip.
  • the protein sample is not particularly limited thereto, but may be used without any treatment or diluted with a suitable buffer solution, and a sample derived from a natural system that is to be checked for the presence of antigen.
  • the protein sample may be blood, serum, plasma, body fluids, saliva, urine, intestinal fluid, lymph, peritoneal fluid, etc., isolated from a patient suspected of causing the disease. , Soil samples, freshwater samples, seawater samples, etc.
  • the disease is not particularly limited as long as it includes a target protein that can be detected by the scFv contained in the nanocluster, for example, because a specific protein is expressed due to an infectious disease caused by bacteria or viruses, genetic variation Therefore, it may be a hereditary disease that may be caused, or a metabolic disease that may be caused by influx of a substance that disturbs metabolism in vivo.
  • the antigen contained in the protein sample is not particularly limited to this, there is no particular limitation as all bioactive materials (bioactive materials) detectable by the immunoassay method, for example, autoantibodies, ligands, natural extracts, Peptides, proteins, metal ions, synthetic drugs, natural drugs, metabolites, genomes, viruses and viruses, and bacteria and viruses.
  • bioactive materials bioactive materials detectable by the immunoassay method, for example, autoantibodies, ligands, natural extracts, Peptides, proteins, metal ions, synthetic drugs, natural drugs, metabolites, genomes, viruses and viruses, and bacteria and viruses.
  • the target material that has not yet combined with the nanocluster and other substances in the non-binding sample are washed. It may further comprise the step of removing.
  • Example One Single chain antibody fragment (single chain variable fragment ;, scFv )-Ferritin Fusion protein production Ferritin platform vector creation
  • Single chain variable fragment (scFv)-a ferritin platform vector for the production of ferritin fusion protein was prepared as follows (Fig. 4). 4 is a schematic diagram showing the construction of a ferritin platform vector for expression of a scFv-ferritin fusion protein.
  • ferritin SEQ ID NO: 1 derived from a person distributed by the Korean Human Genetic Bank for the production of a ferritin platform vector was amplified by PCR using the following primers, and the vector pET 28 (a ), And then cloned ferritin gene was confirmed by sequencing.
  • the amplified human-derived ferritin gene was used as a template, and the following primers were used. PCR was performed to obtain amplified products.
  • the amplification product was cloned into the vector pET 28 (a) using the restriction enzymes BamHI and XhoI, and a ferritin protein (SEQ ID NO: 6) having a peptide sequence inserted therein that induces a structural change according to pH change through DNA sequencing. The base sequence encoding was confirmed.
  • Example 2-1 Herceptin ( Herceptin Origin scFv Ferritin Fusion protein Recombinant DNA Fabrication
  • a human-derived ferritin platform vector prepared in Example 1 and genes for Herceptin's scFv (SEQ ID NOs. 7 and 10), which are widely used as a breast cancer treatment agent a single chain variable fragment (scFv) -Recombinant DNA was prepared to prepare ferritin fusion protein.
  • the scFv (LH) gene of Herceptin was used as a template, and PCR was performed using the following primers to obtain an amplification product.
  • the amplification product was cloned into a ferritin platform vector using restriction enzymes NdeI and BamHI.
  • the cloned scFv (LH) gene was confirmed by sequencing.
  • scFv (HL) gene of Herceptin was used as a template, and PCR was performed using the following primers to obtain an amplification product.
  • the amplification product was cloned into a ferritin platform vector using restriction enzymes NdeI and BamHI and cloned.
  • scFv (HL) gene (SEQ ID NO: 10) was confirmed by sequencing.
  • the scFv (LH) gene of Herceptin was used as a template, and PCR was performed using primers (SEQ ID NOs: 8 and 9) to obtain an amplification product, and the amplification product was obtained by using vector pET 28 ( Cloned in a), the cloned scFv (LH) gene was confirmed by sequencing.
  • amplification products were obtained by PCR using the scFv (HL) gene of Herceptin as a template and primers (SEQ ID NOs: 11 and 12), and the amplification products were obtained using the vector pET 28 (restriction enzymes NdeI and BamHI). Cloned in a), the cloned scFv (HL) gene was confirmed by sequencing.
  • the plasmid DNA encoding the scFv-ferritin fusion protein of Herceptin or the plasmid DNA encoding the scFv of Herceptin was introduced into Escherichia coli (Rosetta DE3, Novagen) to obtain respective transformants, and each of the transformants While culturing, IPTG (Isopropyl- ⁇ -D-thio-galactoside) was added to 0, 0.1 or 1 mM, followed by incubation at 18 ° C. or 37 ° C. for 16 hours to induce the expression of each protein.
  • IPTG Isopropyl- ⁇ -D-thio-galactoside
  • Each transformant was then suspended in cell lysate (50 mm Tris pH 7.5, 500 mM NaCl, 5% glycerol, 0.5% 2-mercaptoethanol), crushed with an ultrasonic generator, and centrifuged to obtain a supernatant. Each cell lysate or supernatant was electrophoresed (FIG. 5).
  • Figure 5 is an electrophoresis picture showing the expression results of the fusion protein according to the protein expression conditions of the scFv-ferritin fusion protein.
  • Herceptin contained in the cell lysate and supernatant of each transformant cultured using IPTG treatment at two concentration conditions (0.1 or 1 mM) and two culture temperatures (18 ° C or 37 ° C)
  • As a result of comparing the expression level of scFv-ferritin fusion protein it was confirmed that when treated with 1 mM IPTG and cultured at 18 °C, Herceptin scFv-ferritin fusion protein can be produced in high yield.
  • Example 2-2 scFv Ferritin Fusion protein Purification and Characterization
  • the scFv-ferritin fusion protein expressed from the supernatant of the cell lysate obtained from each transformant expressing the scFv-ferritin fusion protein obtained in Example 2-1 was purified.
  • Figure 6 is an electrophoresis picture of the sample obtained during the purification of the scFv-ferritin fusion protein. As shown in Figure 6, it was confirmed that the scFv-ferritin fusion protein can be purified from each transformant expressed scFv-ferritin fusion protein using a method using a talon resin.
  • FIG. 7 is an electrophoretic photograph of a sample obtained during the purification of scFv protein. As shown in Figure 7, it was confirmed that the scFv protein can be purified from each transformant expressing the scFv protein using a method using a talon resin.
  • TEM 8 is a transmission electron microscope (TEM) photograph showing the results of confirming the morphology of the scFv-ferritin fusion protein. As shown in FIG. 8, the purified scFv-ferritin fusion protein was found to form a globular structure by forming an aggregate structure of 24 monomers.
  • the pellet was obtained by centrifugation after suspending with 9 times the volume of buffer solution (50 mM Tris pH 7.5, 500 mM NaCl, 0.5% Triton X-100) per gram of pellet produced after purification in Example 2-2. The procedure was repeated twice.
  • buffer solution 50 mM Tris pH 7.5, 500 mM NaCl, 0.5% Triton X-100
  • ScFv-ferritin fusion expressed from supernatant by suspension by centrifugation for at least 16 hours at 4 ° C. with a 9-fold volume of refolding buffer (50 mM Tris pH 7.5, 500 mM NaCl, 8 M Urea) per gram of pellet Protein monomers were obtained.
  • the scFv-ferritin fusion protein monomer thus obtained was activated by washing Talon resin (10 ml, Talon resin, Clontech) with a 5-fold volume of refolding buffer, followed by shaking three times to adsorb to the Talon resin. Then, the Talon resin was washed with refolding buffer (100 mL), and 100 mL of elution buffer (200 mM imidazole) was added to obtain an eluate. The protein contained in the obtained eluate was quantified by the Bradford assay, and the purified protein was confirmed by SDS-PAGE analysis to confirm the size of the protein monomer and the purity of the purified protein (FIG. 9).
  • Figure 9 is an electrophoresis picture showing the scFv-ferritin fusion protein contained in the fraction obtained by eluting the scFv-ferritin fusion protein adsorbed on the Talon resin with elution buffer.
  • Refolding is started by adding more than 20 times the volume of buffer per volume of solubilization buffer, followed by 3 hours at 60 rpm at 4 ° C. in order of 8 M urea, 6 M urea, 4 M urea, 2 M urea, 0 M urea. It mixed more than.
  • Use the first buffer solution 50 mM Tris pH 7.5, 500 mM NaCl, 1 mM PMSF, 1 mM DTT
  • the second buffer solution 50 mM Tris pH
  • FIG. 10 is an electrophoretic image showing scFv-ferritin fusion protein prepared using a solubilization buffer containing various concentrations of urea.
  • Example 2-4 scFv Ferritin Fusion protein Antigen Binding Assay
  • the antigen binding capacity of Herceptin-derived scFv-ferritin fusion protein was analyzed using Surface Plasma Resonance (SPR) assay.
  • Example 2-4-1 HER2 For Herceptin or scFv Ferritin Fusion protein Binding force analysis
  • the binding force between Herceptin and HER2, the prototype of scFv purified in Example 2-2, and the binding force between the scFv-ferritin fusion protein and HER2 were compared by using a surface plasmon resonance (SPR) assay.
  • SPR surface plasmon resonance
  • CM5 sensor chip GE Healthcare activated with N '-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide
  • EDC / NHS EDC / NHS
  • HER2 protein 10 ⁇ g / ml in 10 mM Sodium acetate, pH 5.0
  • the active part remaining on the surface of the sensor chip was deactivated by adding 1.0 M ethanolamine (pH 8.5).
  • Herceptin, scFv-ferritin fusion protein or Herceptin-derived scFv was diluted in buffer solution (1 X PBS, pH 7.4) at each concentration, and then flown at a flow rate of 30 ⁇ l / min to measure and compare their affinity. (Table 1).
  • both scFv-ferritin fusion protein in terms of affinity for HER2 shows a relatively higher level than Herceptin-derived scFv as well as Herceptin, it shows that the superior utilization than the conventional antibody could.
  • Example 2-4-2 scFv Ferritin Fusion protein Bonding force analysis by structure
  • scFv scFv-LH of the light chain fragment and heavy chain fragment of Herceptin or scFv (scFv-HL) of the heavy chain fragment and light chain fragment of Herceptin are respectively set, and the heavy chain fragment of each scFV is set.
  • ScFv-ferritin fusion proteins comprising respective scFv fragments designed to contain various types of linkers (SG, -2 (SGGGG)-, -3 (SGGGG)-, or -4 (SGGGG)-) between the and light chain fragments. Obtained by the production and purification by the methods of Examples 2-1 and 2-2.
  • the structure of each designed scFv is shown in Table 2 and FIG. 11 is a schematic diagram showing the linker length and order between the heavy chain and the light chain constituting the scFv.
  • Example 2-4-1 Except for using each obtained scFv-ferritin fusion protein, the same method as in Example 2-4-1 was carried out to analyze the binding capacity of each scFv-ferritin fusion protein to HER2 (Table 3). At this time, Herceptin was used as a control.
  • the length of the linker may be an important factor in determining the antigen binding capacity of the scFv-ferritin fusion protein. I could see that.
  • Example 3 Avastin ( Avastin Origin scFv Ferritin Fusion protein Manufacturing and Characterization
  • Example 3-1 scFv Ferritin Fusion protein Recombinant DNA Fabrication for Manufacturing
  • the scFv (LH) gene (SEQ ID NO: 13) of Avastin was used as a template, and PCR was performed using the following primers to obtain an amplification product, and the amplification product was cloned into a ferritin platform vector using restriction enzymes NdeI and BamHI. The cloned Avastin scFv (LH) gene was confirmed by sequencing.
  • the scFv (HL) gene (SEQ ID NO: 16) of Avastin was used as a template, and PCR was performed using the following primers to obtain an amplification product.
  • the amplification product was added to a ferritin platform vector using restriction enzymes NdeI and BamHI.
  • the cloned and cloned Avastin scFv (HL) gene was confirmed by sequencing.
  • the scFv (LH) gene (SEQ ID NO: 13) of Avastin was used as a template, and PCR was performed using the following primers to obtain an amplification product, and the amplification product was obtained using pET 28 (a) using restriction enzymes NdeI and BamHI. Cloned in the vector, the cloned Avastin scFv (LH) gene was confirmed by sequencing.
  • scafv (HL) gene SEQ ID NO: 16
  • PCR was performed using primers (SEQ ID NOs: 17 and 18) to obtain an amplification product, and the amplification products were restriction enzymes NdeI and BamHI.
  • the amplification products were restriction enzymes NdeI and BamHI.
  • the scFv (HL) gene of the cloned Avastin was confirmed by sequencing.
  • plasmid DNA encoding Avastin's scFv-ferritin fusion protein and plasmid DNA encoding Avastin's scFv were introduced into Escherichia coli (Rosetta DE3, Novagen) to obtain a transformant, and the respective transformants were cultured.
  • IPTG Isopropyl- ⁇ -D-thio-galactoside
  • Avastin derived scFv-ferritin fusion protein was purified using the method of Example 2-2, except that each transformant with which the expression of each protein was induced.
  • Example 3-2 scFv Ferritin Fusion protein Antigen Binding Assay
  • Example 3-1 Except for using Avastin, scFv-ferritin fusion protein, or Avastin-derived scFv, which is a prototype of scFv purified in Example 3-1, between Avastin and VEGF using the method of Example 2-3-1.
  • the binding force and the binding force between the scFv-ferritin fusion protein and VEGF were analyzed (Table 4).
  • Avastin, scFv-ferritin fusion protein or Avastin-derived scFv to VEGF KD (M) Chi 2 Avastin scFv-ferritin fusion protein Avastin-derived scFv 2.98E-116.83E-101.12E-06 0.170.7961.12
  • scFv-ferritin fusion protein showed a somewhat lower level than Avastin, but was found to be relatively higher than Avastin-derived scFv.
  • Example 4-1 cysteine introduced scFv Ferritin Fusion protein making
  • a variant was prepared in which a cysteine residue was introduced at a specific position of a human-derived ferritin-single chain variable fragment (scFv) fusion protein.
  • E (Glu) No. 64 and E (Glu) No. 140 were substituted with cysteine to introduce cysteine into the nanocluster, respectively.
  • PCR was performed using the following primers to replace No. A (Ala) and No. 116 D (Asp) with cysteines, respectively, to obtain respective amplified fragments.
  • E64C F 5'-gccgaggagaagcgctgcggctacgagcgtctcctg-3 '(SEQ ID NO: 19)
  • E64C R 5'-caggagacgctcgtagccgcagcgcttctcctcggc-3 '(SEQ ID NO: 20)
  • E140C F 5'-actcacttcctagattgcgaagtgaagcttatcaag-3 '(SEQ ID NO: 21)
  • E140C R 5'-cttgataagcttcacttcgcaatctaggaagtgagt-3 '(SEQ ID NO: 22)
  • S22C F 5'-gaggcagccgtcaactgcctggtcaatttgtacctg-3 '(SEQ ID NO: 23)
  • A105C F 5'-atgaaa gctgccatgtgcctggagaaaaagctgaac-3 '(SEQ ID NO: 25)
  • A105C R 5'-gttcagctttttctccaggcacatggcagctttcat-3 '(SEQ ID NO: 26)
  • D116C F 5'-aaccaggcccttttgtgccttcatgccctgggttct-3 '(SEQ ID NO: 27)
  • D116C R 5'-agaacccagggcatgaaggcacaaagggcctggtt-3 '(SEQ ID NO: 28)
  • the resulting amplified fragment was treated with restriction enzyme DpnI, introduced into E. coli to obtain each transformant, and then the mutation was induced by confirming the base sequence of the introduced DNA from the obtained transformant. It was. Subsequently, except that the transformant was used as a subject, the methods of Examples 2-1 and 2-2 were performed to prepare scFv-ferritin fusion protein into which cysteine was introduced.
  • Example 4-2 metal ligands Combined Preparation of Nanoclusters
  • nanoclusters formed using the cysteine-introduced scFv-ferritin fusion protein prepared in Example 4-1 were dissolved in deoxygenated 50 mM pH 7.5 phosphate buffer, treated with 10 mM TCEP and reacted for 30 minutes. , PD10 column chromatography was applied, the excess organic reagent was removed and the nanoclusters were recovered.
  • Metal equivalents of 1.1 equivalents of the ligands were added to the nanoclusters of the metal ion coordination ligands prepared in Example 4-2, and used for imaging or treatment, or after purification with PD-10 desalting column.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질, 상기 융합단백질을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체, 상기 형질전환체를 배양하고 이로부터 상기 융합단백질을 제조하는 방법, 상기 융합단백질을 포함하는 나노클러스터, 상기 나노클러스터를 포함하는 약물 전달체, 진단키트, 단백질 칩 및 상기 나노클러스터를 이용하는 항원 검출방법에 관한 것이다. 본 발명은 단일사슬항체조각(single chain variable fragment;, scFv) 의 서열을 페리틴에 도입함으로써 융합단백질을 제조하고 이를 이용하여 항체의 항원인식부위 24개가 항체의 페리틴표면에 발현되게 함으로써 바이오칩, 약물전달시스템, 질병진단 및 치료제 개발 등에 활용할 수 있다.

Description

단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도
본 발명은 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도에 관한 것으로, 보다 구체적으로 본 발명은 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질, 상기 융합단백질을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체, 상기 형질전환체를 배양하고 이로부터 상기 융합단백질을 제조하는 방법, 상기 융합단백질을 포함하는 나노클러스터, 상기 나노클러스터를 포함하는 약물 전달체, 진단키트, 단백질 칩 및 상기 나노클러스터를 이용하는 항원 검출방법에 관한 것이다.
페리틴은 철을 저장하는 단백질로써 원핵생물과 진핵생물에 널리 존재하고 있다. 페리틴의 분자량은 약 500.000Da으로, 무거운 사슬(Heavy chain)과 가벼운 사슬(Light chain)로 구성되어 있고, 자기조립 능력이 있어 구형 입자를 형성하는 독특한 특성을 나타낸다. 페리틴은 24개의 단량체(무거운 사슬 혹은 가벼운 사슬 중 하나로 구성된 단일 단량체 혹은 이종 단량체)가 모여서 거대한 구형태의 삼차구조를 형성한 단백질로써, 인간 페리틴의 경우 외경은 약 12 nm 이고 내경은 약 8 nm 이다. 페리틴은 pH 조건에 따라 단량체로 흩어지기도 하고 24개의 단량체가 결합한 나노클러스터를 형성하기도 하는데 이러한 특성을 이용하면 페리틴 내에 다양한 물질을 포집할 수 있다. 일반적으로는 나노클러스터 모양의 페리틴은 내부에 산화철(iron oxide)를 가지고 있으나, 이 이외에도 산화망간, 산화코발트, 산화니켈, 산화인듐, 황화철, 황화카드뮴, 셀레노카드뮴, 셀레노아연 등 다양한 무기 금속을 포함한 페리틴의 제조에 대한 사례들이 보고되어 있다. 또한, 금속과 선택적으로 결합하는 펩타이드를 이용하여, 예를 들어 은과 결합하는 펩타이드를 이용하여 은을 포집한 페리틴을 합성한 사례도 보고되고 있다. 특히, MRI 조영제인 Gd-HPDOTA(gadolinium-[10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid)를 포집시킨 페리틴도 보고되어 있다. 이처럼 페리틴의 내ㆍ외부는 분자생물학적 방법을 통해 다양한 기능단을 도입할 수 있으며, 다양한 기능단이 도입된 페리틴 구조체는 선택적인 방법으로 적절한 기능단을 이용한 수식(modification)이 가능하며 필요한 다양한 물리화학적 성질을 부여할 수 있는 장점을 가지게 된다. 한 예로, 특정 금속에 선택적으로 결합하는 펩타이드 서열을 페리틴의 적절한 위치에 도입하면 해당 금속이온을 선택적으로 결합하여 단백질과 함께 운반할 수 있게 된다. 이 과정에서 페리틴 단백질 단량체에 하나의 수식을 도입하여도 이들이 자기조립을 통하여 24개의 복합체로 구성된 단백질 나노클러스터는 24개의 균일한 수식을 가지게 되며, 결과적으로 하나의 페리틴 나노클러스터가 매우 정교한 형태로 24개의 금속이온을 수송하는 수송체 역할을 할 수 있다.
한편, 표적지향형 약물전달시스템이란 약물을 치료부위에 선택적으로 전달함으로써 건강한 조직을 약물에 노출시키지 않음과 동시에 소량의 약물만으로도 우수한 치료효과를 나타낼 수 있도록 설계된 기술을 말한다. 표적지향적 약물전달시스템을 이용하게 되면 질병이 있는 인체의 특정 부위에 약물을 집중시킴으로써 약물치료 효과를 극대화할 수 있으며, 항암제 등 독성이 강한 약물에 의한 부작용을 최소화시킬 수 있다. 뿐만 아니라, 최근에는 표적지향형 약물전달시스템을 질병진단에 활용하는 시도가 활발히 이루어지고 있다. 더 최근에는 표적지향적 약물전달 시스템을 이용하여 치료와 진단을 동시에 할 수 있는 테라그노시스(Theragnosis = Therapy+diagnosis)기술개발이 활발히 진행되고 있다. 즉, 표적지향적 약물전달 시스템에 분자영상 추적자(molecular imaging probe)를 부착하고 비침습성 생체영상화 장비(non-invasive in vivo imaging)를 이용하여 추적자를 영상화함으로써, 약물전달과 동시에 치료과정을 실시간으로 모니터링할 수 있는 기술이 테라그노시스 기술이다.
거의 모든 경우에 표적지향성을 부여하는 대표적인 물질이 신호펩티드와 항체이다. 항체가 매우 일반적이나, 항체를 사용할 경우 항체의 특정부위를 선택적으로 수식(modification)하는 것이 매우 어려운 기술로 알려져 있다. 항체는 척추동물의 면역반응으로 생성되는 단백질로써 항원의 특정 부위를 특이적으로 인식하여 결합하여 항원의 작용을 비활성시키거나 제거시키는 면역단백질이다. 항체는 중쇄(heavy chain) 2개와 경쇄(light chain) 2개를 가지며 기본적으로 Y자형을 이루고 있다. 경쇄와 중쇄의 가변영역이 합쳐져 항원결합부위(antigen binding site)가 형성되는데 이 부위를 인위적으로 펩타이드 링커를 통해 연결한 작은 단편인 단일사슬항체조각(single chain variable fragment;, scFv)를 이용하여 항체의 기능을 수행하고자 하는 연구가 진행되고 있다. 단일사슬항체조각 (single chain variable fragment;, scFv)은 일반 항체에 비해 크기가 작기 때문에 조직이나 암조직으로의 침투율이 높고 대장균시스템을 비롯한 다양한 발현시스템에서 대량생산이 가능하고, 다양한 분자생물학적 수식이 가능하며 생산에 드는 시간과 비용을 절감할 수 있다. 그러나 이 단일사슬항체조각(single chain variable fragment)은 크기가 작고 Fc 부위가 없기 때문에 인체 내에서 반감기가 짧다는 단점을 가진다. 보고된 TSH(thyroid stimulating hormone)-페리틴의 경우 대장균에서 발현은 되지만 침전이 형성되고 자기조립이 이루어지지 않는 문제가 있어 추가적인 강산을 이용하는 리폴딩 과정이 필수적으로 요구되며 이는 기능성 단백질나노 입자의 제조에 많은 시간과 비용이 소모되며 또한 단백질을 변성시킴으로써 고유의 기능(선택성, 결합력, 안정성)에도 악영향을 줄 수 있다.
의약품 전달체로 리포좀과 같은 나노구조체가 많이 사용되며, 리포좀은 생체 세포막의 구성성분인 인지질을 주성분으로 하고 있으며 내부에 수용성 혹은 불용성(소수성) 약물을 포집시킬 수 있다. 리포좀은 구성성분 및 표면성분을 다양하게 조절할 수 있는 장점이 있으나 세포내 독성이 높고 약물로 주입되었을 때 대식세포의 식작용으로 순환계에서 소실되는 등의 문제점을 가지고 있다. 이러한 문제점을 해결하는 기술로써 인지질의 말단에 PEG를 결합시켜 리포좀을 제작하거나 리포좀 표면을 PEG 또는 다당류로 코팅한 스텔스리포좀(stealth liposome)이 개발되었다. 다른 나노구조체인 마이셀은 친수성과 소수성 부위를 동시에 가진 사슬형 분자로 이루어진 전달체로서, 수용액 상에서 중심부는 소수성부분이 서로 모여 구형을 이루게 되며, 보통 난용성 약물을 중심부에 포집시켜 용해도를 증가시키고 생체 이용률을 높이는데 이용된다. 항암치료제의 경우 나노입자를 이용한 약물전달체는 수동적 표적지향 방법인 EPR(enhanced permeability and retention)효과를 통해 암조직에 선택적으로 축적이 된다. 일반적으로 암조직은 신생혈관을 통해 영양분과 산소를 공급받게 되는데, 이 때 생성되는 혈관은 짧은 기간내에 형성되기 때문에 정상 세포와는 달리 엉성한 구조를 갖게 된다. 암조직에 형성된 느슨한 혈관 조직을 통해 수십~수백나노미터 크기의 나노입자들이 암조직 주위에 축적될 수 있고 배출속도가 느려서 장기간 암조직에 체류하게 되는데 이러한 현상을 EPR(enhanced permeability and retention) 효과라고 한다. 그러나 이러한 효과는 암 주변 환경을 이용한 수동적 방법으로써 항상 일정한 효과를 기대하기 어렵다. 따라서 보다 효과적인 표적화를 위하여 표적 부위에서 발현되는 항원이나 수용체를 인지할 수 있는 항체가 결합된 약물전달체를 사용하는 방법이 개발되었다. 그 외에도 항암치료를 위한 방사능 동위원소나 첨단 영상의학에 쓰이는 다양한 조영제에 선택적인 항체를 결합시키게 되면 전신부작용을 줄이고, 치료의 효과는 높이며, 영상이미지의 정확도를 더욱 높여 줄 수 있게 된다. 현재 표적화를 위한 항체의 고정화 방법으로 사용되는 화학적 공유결합 형성 방법은 재현성이 떨어지고 항체의 고유한 기능을 손상시킬 우려가 있다. 일반의약품과 마찬가지로 생물유래 의약품의 경우도 제조과정에서 구조적 변화가 동반될 경우, 식약청으로부터 의약품으로 허가를 받기 위해서는 구조변화의 정확한 규명, 약물의 약효 증명 및 독성시험 등을 수행하여야 한다. 따라서 항체 고정화의 재현성 확보 없이는 항체를 이용한 표적지향형 약물전달시스템을 인체에 적용하는 것은 거의 불가능한 실정이다.
본 발명자들은 단일사슬항체조각(scFv)의 활용성을 향상시키는 방법을 개발하고자 예의 연구노력한 결과, scFv와 페리틴이 결합된 형태의 융합단백질이 자기조립(self-assembly)을 통해 나노클러스터를 형성할 뿐만 아니라, 상기 형성된 나노클러스터는 scFv의 활성을 향상시키는 효과를 나타냄을 확인하고, 본 발명을 완성하였다.
본 발명의 하나의 목적은 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질을 제공하는 것이다.
본 발명의 다른 목적은 상기 융합단백질을 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현벡터가 도입된 형질전환체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 형질전환체를 배양하고 이로부터 상기 융합단백질을 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 융합단백질을 포함하는 나노클러스터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 나노클러스터를 포함하는 약물 전달체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 나노클러스터를 포함하는 진단키트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 나노클러스터를 포함하는 단백질 칩을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 나노클러스터를 이용하는 항원 검출방법을 제공하는 것이다.
본 발명은 단일사슬항체조각(single chain variable fragment;, scFv) 의 서열을 페리틴에 도입함으로써 융합단백질을 제조하고 이를 이용하여 항체의 항원인식부위 24개가 항체의 페리틴표면에 발현되게 함으로써 바이오칩, 약물전달시스템, 질병진단 및 치료제 개발 등에 활용할 수 있다.
도 1은 본 발명에서 제공하는 나노클러스터의 제작과정을 나타내는 개략도이다.
도 2는 사람 유래 페리틴(light chain)의 단량체 구조와 자기조립에 의해 형성된 나노클러스터 구조를 나타내는 개략도이다.
도 3은 scFv-페리틴 융합단백질이 자기조립에 의해 형성된 나노클러스터의 형태를 나타내는 개략도이다.
도 4는 scFv-페리틴 융합단백질의 발현을 위한 페리틴 플랫폼 벡터의 구성을 나타내는 개략도이다.
도 5는 scFv-페리틴 융합단백질의 단백질 발현조건에 따른 융합단백질의 발현결과를 나타내는 전기영동사진이다.
도 6은 scFv-페리틴 융합단백질의 정제과정에서 얻어진 시료의 전기영동사진이다.
도 7은 scFv단백질의 정제과정에서 얻어진 시료의 전기영동사진이다.
도 8은 scFv-페리틴 융합단백질의 형태를 확인한 결과를 나타내는 투과전자현미경(transmission electron microscope; TEM) 사진이다.
도 9는 탈론수지에 흡착된 scFv-페리틴 융합단백질을 용출 완충용액으로 용출시켜서 수득한 분획에 포함된 scFv-페리틴 융합단백질을 나타내는 전기영동 사진이다.
도 10은 다양한 농도의 우레아를 포함하는 가용화 완충용액을 사용하여 제조된 scFv-페리틴 융합단백질을 나타내는 전기영동사진이다.
도 11은 scFv를 구성하는 heavy chain과 light chain 사이의 링커길이와 순서를 표시한 개략도이다.
본 발명자들은 단일사슬항체조각(scFv)의 활용성을 향상시키는 방법을 개발하고자 다양한 연구를 수행한 결과, 자기조립에 의하여 나노클러스터를 형성할 수 있는 페리틴(ferritin)에 주목하게 되었다.
본 발명자들은 항체결합 펩타이드-페리틴 융합단백질로 구성된 단량체 24개를 포함하는 나노입자를 제조하고, 이에 다양한 항체를 결합시킴으로써, 항체의 활용성을 향상시킨 기술을 개발한 바 있다(한국특허등록 제1477123호). 상기 기술을 이용하면, 목적하는 약물을 페리틴에 결합시켜서 약물-페리틴 형태의 1차 복합체를 형성하고, 상기 1차 복합체를 다시 항체에 결합시켜서, 약물-페리틴-항체 형태의 2차 복합체를 형성한 다음, 상기 2차 복합체를 환자에게 투여하며, 투여된 2차 복합체에 포함된 항체를 이용하여 환자 체내의 표적부위에 상기 약물을 전달할 수 있다. 그러나, 상기 2차 복합체에 포함된 항체의 활성이 환자의 내재적인 항체의 활성에 의해 교란될 수 있고, 이처럼 항체의 활성이 교란될 경우에는 표적부위에 약물을 전달할 수 없다는 문제점이 있다.
본 발명자들은 상기 문제점을 해결하기 위하여, 환자의 내재적인 항체에 의해 교란되지 않도록 페리틴을 이용하여 항체를 집적(clustering)시키는 기술을 개발하고자 하였다. 그러나, 일반적인 항체는 그의 크기 때문에 페리틴을 이용하여 집적시킬 경우, 항체간의 물리적 간섭에 의하여 오히려 항체의 활성이 억제되었으므로, 일반적인 항체 대신에 단일사슬항체조각(scFv)을 사용하였다. 즉, 항체와 동일한 활성을 나타내는 scFv와 페리틴이 결합된 융합단백질을 사용할 경우, 페리틴에 의하여 다수의 scFv가 나노클러스터를 형성하면서도, 상기 scFv의 활성이 저해되지 않음을 발견하였다.
이처럼 형성된 나노클러스터는 항체의 결합력이 증가될 뿐만 아니라, 체내에서 생물학적 반감기가 증가된다는 장점이 있다. 즉, 상기 나노클러스터는 24개의 scFv가 밀집된 형태를 나타내므로, 종래의 scFv 보다는 보다 우수한 항체활성을 나타낼 뿐만 아니라, 다수의 scFv가 집적된 거대구조로 인하여 체내에서 잔류할 수 있는 기간이 증가된다는 것이다.
이를 검증하고자, HER2에 대한 단클론항체로 알려진 허셉틴 또는 VEGF에 대한 단클론항체로 알려딘 아바스틴으로부터 유래된 각각의 scFv를 제작하고, 상기 scFv와 페리틴이 결합된 형태의 융합단백질을 수득하였으며, 이들의 구조 및 활성을 분석하였다. 그 결과, 상기 융합단백질은 자기조립 활성에 의하여 24개의 단량체가 조합된 형태의 나노클러스터를 형성하였고, 상기 나노클러스터에 결합된 scFv는 원형의 단클론 항체(허셉틴 또는 아바스틴)와 비교하여 유사한 수준의 결합활성을 나타내었지만, scFv 보다는 매우 높은 수준의 결합활성을 나타냄을 확인하였다.
따라서, 본 발명에서 제공하는 scFv와 페리틴이 결합된 형태의 융합단백질은 종래의 항체와 비교하여 발현후 수식(post-translational modification)이 없어, 생산 및 조작이 용이한 scFv의 특성을 그대로 나타내면서도, 종래의 scFv의 단점으로 지적된 항원에 대한 낮은 결합활성을 개선시켰으므로, scFv의 활용성을 확장시키는 장점을 나타낸다. 이러한 scFv와 페리틴이 결합된 형태의 융합단백질은 종래에 전혀 알려져 있지 않으며, 본 발명자에 의하여 최초로 개발되었다.
상술한 목적을 달성하기 위하여, 본 발명은 하나의 양태로서 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질을 제공한다.
통상적으로, "단일사슬항체조각(single chain variable fragment, scFv)"이란, 항체로부터 형성되는 일반적인 단편이 아니라, 항체를 구성하는 중쇄의 가변영역을 포함하는 단편과 경쇄의 가변영역을 포함하는 단편을 인위적으로 융합시켜서 구성된 융합단백질이다. 상기 scFv는 단클론항체, 다클론 항체 등의 다양한 항체로부터 유래된 중쇄단편과 경쇄단편이 순차적으로 또는 역순으로 결합된 형태가 될 수 있고, 상기 중쇄단편과 경쇄단편 사이에 10 내지 25개의 아미노산 서열로 구성된 펩타이드 링커가 삽입된 형태가 될 수도 있다. 이때, 사용되는 링커는 세린(S)과 글리신(G)으로 구성된 펩타이드 링커가 될 수 있는데 상기 링커의 길이는 특별히 제한되지 않으며, 본 발명에서는 SG, SGGGGSGGGG, SGGGGSGGGGSGGGG, SGGGGSGGGGSGGGGSGGGG 등을 사용하였다.
본 발명에 있어서, 상기 scFv의 종류는 제한되지 아니하며, 아미노산 및 핵산 서열이 알려져 있는 경우 어떤 종류의 scFv도 도입이 가능하다.
이때, 본 발명에 따른 나노클러스터에 결합하는 scFv의 원천이 되는 항체는 치료용 항체일 수도 있고, 별도의 치료제제 또는 진단제제와 결합할 수 있는 항체일 수도 있으며, 치료 효과가 없는 표적화를 위한 항체일 수도 있고, 단순히 항원-항체 반응을 할 수 있는 항체일 수도 있다. 상기 치료제제 또는 진단제제는 항체에 결합할 수도 있으나, 본 발명에 따른 나노클러스터에 의해 운반될 수도 있다.
한편, 치료용 항체는 현재 약 30 종이 FDA의 승인을 받았으며 생체 내 존재하는 IgG와 성질이 거의 흡사하여 그 안전성이 매우 높다. 치료용 항체는 광범위한 질병 치료제 (예. 이식거부반응, 암, 자가면역질환과 염증, 심장질환, 전염성 감염 등)로 사용되고 있으며 이들 항체는 질병이 생긴 조직에 특이적으로 존재하는 수용체 단백질 혹은 항원단백질을 인식하여 결합하기 때문에 그 특이성이 매우 높다. 따라서 치료용 항체에 분자영상프로브나 약물전달체를 결합시키면 약물병용효과와 함께 치료과정을 모니터링 할 수 있는 테라그노시스 제제로 전환 할 수 있다. 또한 단순한 표적화 항체에도 분자영상프로브나 약물전달체를 결합시킴으로써 진단, 치료, 혹은 진단과 치료를 동시에 진행하는 테라그노시스 제제를 개발할 수 있다. 본 발명은 생물 유래 페리틴에 단일사슬항체조각(single chain variable fragment;, scFv)을 융합시켜 나노클러스터를 형성하고, 분자영상프로브, 치료용 약물 등을 도입한 후, 표적지향적 테라그노시스용 소재를 개발하는 기술을 제공할 수 있다.
또한, 상기 scFv는 단클론 항체로부터 유래된 중쇄단편과 경쇄단편 사이에 2 내지 20개의 아미노산으로 구성된 펩타이드 링커를 포함하는 것이 될 수 있다. 이때, 사용되는 펩타이드 링커는 특별히 이에 제한되지 않으나, 일 례로서 세린(S)과 글리신(G)으로 구성된 펩타이드 링커가 될 수 있는데, 본 발명에서는 SG, SGGGGSGGGG, SGGGGSGGGGSGGGG, SGGGGSGGGGSGGGGSGGGG 등을 사용하였다.
통상적으로, "페리틴(ferritin)"은 철이온과 결합할 수 있는 단백질의 일종으로서, 약 500kDa의 분자량을 갖고, 무거운 사슬(Heavy chain)과 가벼운 사슬(Light chain)로 구성되며, 자기조립 능력이 있어 구형 입자를 형성하는 독특한 특성을 나타낸다. 상기 페리틴은 24개의 단량체(무거운 사슬 혹은 가벼운 사슬 중 하나로 구성된 단일 단량체 혹은 이종 단량체)가 모여서 거대한 구형태의 삼차구조를 형성할 수 있는데, 예를 들어, 인간 페리틴의 경우 외경은 약 12 nm 이고 내경은 약 8 nm 이다. 또한, 페리틴은 pH 조건에 따라 단량체로 흩어지기도 하고 24개의 단량체가 결합한 나노클러스터를 형성하기도 하는데 이러한 특성을 이용하면 페리틴 내에 다양한 물질을 포집할 수 있고, 나노클러스터 모양의 페리틴은 내부에 산화철(iron oxide)를 가지고 있으나, 이외에도 산화망간, 산화코발트, 산화니켈, 산화인듐, 황화철, 황화카드뮴, 셀레노카드뮴, 셀레노아연 등의 다양한 무기 금속을 포함할 수 있다. 상기 단백질을 코딩하는 유전자의 구체적인 염기서열 및 단백질 정보는 NCBI에 공지되어 있다(GenBank: NM_000146, NM_002032 등). 일 례로서, 본 발명에서는 페리틴으로서 사람으로부터 유래된 서열번호 1의 염기서열로 구성된 폴리뉴클레오티드로부터 발현되는 단백질을 사용하였다.
본 발명에 있어서, 상기 페리틴은 24개의 페리틴 단량체가 나노클러스터를 형성할 때 높은 부분농도(local concentration) 혹은 다가(multi-valency) 효과를 가질 수 있는 부분구조가 형성되고, 이 대칭점에 각 단백질 단량체의 동일한 부분(아미노산 서열)이 만나게 된다(도 2 참조). 따라서 대칭점을 형성하는 단백질 부분을 수식할 경우 3~4 개의 수식이 동일 장소에서 만나게 되는데, 본 발명자들은 scFv를 페리틴 단백질의 N-말단 또는 C-말단에 도입하여 scFv가 페리틴 나노클러스터 표면의 동일한 지점에 위치할 수 있는 페리틴 플랫폼 DNA를 제작하였으며, 상기 플랫폼 DNA에는 다양한 종류의 scFv가 삽입 될 수 있다. 치료용 항체로써 유방암치료제인 허셉틴(Herceptin) 또는 혈관신생억제제인 아바스틴(Avastin) 유래의 scFv를 도입하여 새로운 기능을 가진 페리틴 나노클러스터 구조체를 개발하고 그 기능을 확인함으로써, 상기 페리틴 플랫폼 DNA가 다양한 scFv유전자와 융합되어 다양한 ScFv 나노클러스터로 전환될 수 있다는 것을 증명하였다.
한편, 상기 페리틴은 scFv가 결합된 상태에서도 자기조립 활성을 그대로 유지하여 24개의 단량체가 나노클러스터를 형성할 수 있는 한, 특별히 이에 제한되지 않으나, 모두 동일 유래일 수 있으며, 이종 유래의 페리틴들을 혼용할 수도 있다. 페리틴은 박테리아와 같은 미생물 유래 페리틴일 수도, 진핵세포 유래의 페리틴일 수 있다. 바람직하게는 사람유래 페리틴일 수 있다.
또한, 상기 페리틴들은 천연형 아미노산 서열에서 하나 이상의 아미노산 잔기가 시스테인으로 치환되거나 시스테인이 추가로 삽입된 뮤테인(mutein)일 수 있다. 시스테인은 자체로도 중금속과의 친화성이 높고, 나아가 반응성이 높은 티올(thiol)기를 포함하여 다른 반응기와의 결합이 용이하여 직접 또는 링커를 통한 결합을 이용한 약물도입을 용이하게 할 수 있다. 바람직하게 상기 시스테인은 사람유래 페리틴 아미노산 서열의 2번째 Ser(serine), 19번째 Ser(serine), 61번째 Glu(glutamic acid), 68번째 Lys(lysine), 102번째 Ala(alanine), 113번째 Asp(aspartic acid) 또는 137번째 Glu(glutamic acid) 중 하나 이상의 아미노산 잔기에 치환되거나, Pyrococcus furiosus의 아미노산 서열의 1번째와 2번째, 161번째와 162번째 또는 174번째 이후에 시스테인 또는 시스테인을 포함하는 아미노산 서열이 하나 이상 추가로 삽입될 수 있다. 상기 삽입되는 서열은 단일 시스테인 잔기이거나 GGC 서열일 수 있으나, 시스테인을 하나 이상 포함하고 천연형 단백질의 구조를 변형시키지 않는 서열이면 제한없이 사용될 수 있다. 상기 시스테인으로의 치환 또는 삽입은 당업자에 공지된 방법을 제한없이 이용하여 수행될 수 있으나, 바람직하게는 자리지정 돌연변이유발(site-directed mutagenesis)에 의해 수행될 수 있다.
예를 들어, 사람유래 페리틴 아미노산 서열의 2번째 Ser(serine), 19번째 Ser(serine), 102번째 Ala(alanine) 또는 113번째 Asp(aspartic acid)를 하나 이상의 시스테인으로 치환하거나, Pyrococcus furiosus의 아미노산 서열의 1번째와 2번째 아미노산 사이에 하나 이상 추가로 삽입하여 외부표면에 노출된 약물과 결합가능한 시스테인을 포함하는 나노입자를 제조할 수 있다. 또한, 사람유래 페리틴 아미노산 서열의 61번째 Glu(glutamic acid), 68번째 Lys(lysine) 또는 137번째 Glu(glutamic acid)를 하나 이상의 시스테인으로 치환하거나, Pyrococcus furiosus의 아미노산 서열의 161번째와 162번째 또는 174번째 이후에 시스테인 또는 시스테인을 포함하는 아미노산 서열을 하나 이상 추가로 삽입하여 내부표면에 노출된 약물과 결합가능한 시스테인을 포함하는 나노입자를 제조할 수 있다.
그 외에도 상기 페리틴은 표적화 서열, 태그(tag), 표지된 잔기, 반감기 또는 펩타이드의 안정성을 증가시키기 위한 특정 목적으로 고안된 아미노산 서열을 추가로 포함할 수 있고, 공지된 아미노산 서열의 일부 아미노산이 부가, 치환, 결실 등의 방법으로 변이된 변이체 단백질도 본 발명에서 제공하는 페리틴의 범주에 포함될 수 있다.
특히, 본 발명에서 제공하는 페리틴은 공지된 아미노산 서열과 하나 이상의 아미노산 잔기가 상이한 서열을 가지는 폴리펩티드를 포함할 수 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 폴리펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 또한, 아미노산 서열상의 변이 또는 수식에 의해서 단백질의 열, pH등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 단백질을 포함할 수 있다.
통상적으로, "융합단백질"은 둘 이상의 서로 다른 단백질이 결합된 형태의 단백질로 알려져 있는데, 본 발명에서는 상기 융합단백질을 scFv가 페리틴에 결합된 형태의 융합단백질인 것으로 한정하여 이해할 수 있는데, 일 례로서, 상기 scFv가 페리틴의 N-말단 또는 C-말단에 결합된 형태의 융합단백질이 될 수 있다. 상기 융합단백질은 다양한 항체로부터 유래된 scFv가 페리틴과 직접적으로 또는 링커를 통하여 간접적으로 결합된 형태가 될 수 있다. 상기 링커의 길이 및/또는 아미노산 조성을 조절하여 scFv 간의 간격 및 배향을 조절할 수 있다.
상기 융합단백질은 24개가 자기조립에 의해 구형의 나노클러스터를 형성할 수 있는데, 상기 나노클러스터의 직경은 10 내지 30 nm일 수 있다. 상기 융합단백질을 사용하면, 단백질의 발현 및 정제과정만으로 자기조립을 통한 강력한 항원결합력을 가진 나노클러스터 형성을 유도할 수 있다.
본 발명의 일 구체예에 따라, 페리틴의 N-말단 또는 C-말단에 scFv가 융합되어 있는 융합단백질은 페리틴의 특정부위에 3~4개의 scFv가 위치할 수 있으므로, 상기 융합단백질에 의하여 형성될 수 있는 나노클러스터는 페리틴 특정부위에 결합된 3~4개의 scFv를 통하여 하나 또는 두 개 이상의 항원이 결합될 수 있다.
본 발명의 일 실시예에 의하면, 단일사슬항체조각(single chain variable fragment;, scFv)-페리틴 융합단백질제조를 위한 페리틴 플랫폼 벡터를 제작하고(실시예 1), 상기 제작된 플랫폼 벡터를 이용하여 허셉틴 유래 scFv-페리틴 융합단백질을 제작한 다음 이의 특성을 분석한 결과, 정제된 scFv-페리틴 융합단백질은 24개의 단량체가 모인 집합구조를 형성하여 전체적으로 구형을 형성함을 확인하였고(도 8), 상기 scFv-페리틴 융합단백질은 항원인 HER2에 대한 친화도의 측면에서는 scFv-페리틴 융합단백질이 허셉틴 및 허셉틴 유래 scFv 보다도 상대적으로 높은 수준을 나타냄을 확인하였다(표 1). 한편, 상기 제작된 플랫폼 벡터를 이용하여 아바스틴 유래 scFv-페리틴 융합단백질을 제작한 다음 이의 특성을 분석한 결과, VEGF에 대한 친화력(avidity)의 측면에서는 scFv-페리틴 융합단백질이 아바스틴 보다는 상대적으로 낮은 수준을 나타내었으나, 아바스틴 유래 scFv 보다는 상대적으로 높은 수준을 나타냄을 확인하였다(표 4).
아울러, 상기 scFv-페리틴 융합단백질에 시스테인을 도입한 변이체를 이용하여 제조된 나노클러스터에 금속리간드를 통하여 금속이온을 결합시킨 형태의 단백질 복합체를 형성할 수 있으며(실시예 4), 상기 복합체는 이미징 혹은 치료에 사용될 수 있다.
본 발명은 다른 하나의 양태로서, 상기 융합단백질을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 제공한다.
본 발명에 있어서, 상기 폴리뉴클레오티드를 구성하는 염기서열은 상기 융합단백질의 아미노산 서열을 코딩할 수 있는 염기서열 또는 상기 아미노산 서열의 N-말단 또는 C-말단에 부가될 수 있는 다양한 아미노산 서열을 코딩하는 염기서열이 상기 아미노산 서열을 코딩할 수 있는 염기서열의 5'-말단 또는 3'-말단에 부가된 형태가 될 수 있다.
또한, 종래의 페리틴과 동일하게 나노클러스터를 형성할 수 있는 단백질을 코딩할 수 있는 한, 상기 염기서열과 상동성을 나타내는 염기서열을 포함하는 폴리뉴클레오티드 역시 본 발명에서 제공하는 폴리뉴클레오티드의 범주에 포함될 수 있는데, 바람직하게는 80% 이상의 상동성을 나타내는 염기서열을 포함하는 폴리뉴클레오티드가 될 수 있고, 보다 바람직하게는 90% 이상의 상동성을 나타내는 염기서열을 포함하는 폴리뉴클레오티드가 될 수 있으며, 가장 바람직하게는 95% 이상의 상동성을 나타내는 염기서열을 포함하는 폴리뉴클레오티드가 될 수 있다.
한편, 상기 폴리뉴클레오티드는 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있다. 뉴클레오티드 서열을 화학적으로 합성하여 제조하는 경우, 당업계에 널리 공지된 합성법, 예를 들어 문헌(Engels and Uhlmann, Angew Chem IntEd Engl., 37:73-127, 1988)에 기술된 방법을 이용할 수 있으며, 트리에스테르, 포스파이트, 포스포르아미다이트 및 H-포스페이트 방법, PCR 및 기타 오토프라이머 방법, 고체 지지체상의 올리고뉴클레오타이드 합성법 등을 들 수 있다.
본 발명은 또 다른 하나의 양태로서, 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공한다.
본 발명에서 "발현벡터"는 적절한 숙주세포에서 목적 단백질을 발현할 수 있도록 유전자 삽입물을 포함하고, 상기 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물이 될 수 있다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을 포함하는데, 상기 개시 코돈 및 종결 코돈은 일반적으로 폴리펩타이드를 암호화하는 뉴클레오티드 서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 구비될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다.
통상적으로, 상기 발현벡터는 숙주 내에서 자율적인 복제를 할 수 있고, 프로모터, 라이보좀 결합서열, 본 발명의 핵산 및 전사 종료 서열 (transcription termination sequence)로 구성될 수 있다. 상기 프로모터는, 본 발명의 핵산을 대장균과 같은 숙주에서 발현하도록 하는 한 어떠한 프로모터도 사용될 수 있다. 예를 들어, trp 프로모터, lac 프로모터, PL 프로모터 또는 PR 프로모터 같은 대장균 또는 파아지-유래 프로모터; T7 프로모터 같은 대장균 감염 파아지-유래 프로모터가 사용될 수 있다. 또한 tac 프로모터 같은 인공적으로 변형된 프로모터도 사용될 수 있다.
본 발명의 용어 "작동가능하게 연결(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.
또한, 상기 발현벡터는 세포 배양액으로부터 단백질의 분리를 촉진하기 위하여 상기 융합단백질의 배출을 위한 시그널 서열을 포함할 수 있다. 특이적인 개시 시그널은 또한 삽입된 핵산 서열의 효율적인 번역에 필요할 수도 있다. 이들 시그널은 ATG 개시코돈 및 인접한 서열들을 포함한다. 어떤 경우에는, ATG 개시 코돈을 포함할 수 있는 외인성 번역 조절 시그널이 제공되어야 한다. 이들 외인성 번역 조절 시그널들 및 개시 코돈들은 다양한 천연 및 합성 공급원일 수 있다. 발현 효율은 적당한 전사 또는 번역 강화 인자의 도입에 의하여 증가될 수 있다.
아울러, 상기 발현벡터는 상기 융합단백질의 검출을 용이하게 하기 위하여, 임의로 엔도펩티아이제를 사용하여 제거할 수 있는 단백질 태그를 추가로 포함할 수 있다.
본 발명의 용어 "태그(tag)"란, 정량가능한 활성 또는 특성을 나타내는 분자를 의미하며, 플로오레세인과 같은 화학적 형광물질(fluoracer), 형광 단백질(GFP) 또는 관련 단백질과 같은 폴리펩타이드 형광물질을 포함한 형광분자일 수도 있고; Myc 태그, 플래그(Flag) 태그, 히스티딘 태그, 루신 태그, IgG 태그, 스트랩타비딘 태그 등의 에피톱 태그일 수도 있다. 특히, 에피톱 태그를 사용할 경우, 바람직하게는 6개 이상의 아미노산 잔기로 구성되고, 보다 바람직하게는 8개 내지 50개의 아미노산 잔기로 구성된 펩타이드 태그를 사용할 수 있다.
본 발명에 있어서, 상기 발현벡터는 상기 폴리뉴클레오티드를 발현시켜서 본 발명에서 제공하는 융합단백질을 생산할 수 있는 한 특별히 제한되지 않는데, 포유류 세포(예를 들어, 사람, 원숭이, 토끼, 래트, 햄스터, 마우스 세포 등), 식물 세포, 효모 세포, 곤충 세포 또는 박테리아 세포(예를 들어, 대장균 등)를 포함하는 진핵 또는 원핵세포에서 상기 폴리뉴클레오티드를 복제 및/또는 발현할 수 있는 벡터가 될 수 있고, 바람직하게는 숙주세포에서 상기 폴리뉴클레오티드가 발현될 수 있도록 적절한 프로모터에 작동가능하도록 연결되며, 적어도 하나의 선별마커를 포함하는 벡터가 될 수 있으며, 보다 바람직하게는 상업적으로 개발된 플라스미드(pUC18, pBAD, pIDTSAMRT-AMP 등), 대장균 유래 플라스미드(pYG601BR322, pBR325, pUC118 및 pUC119), 바실러스 서브틸리스(Bacillus subtilis)-유래 플라스미드(pUB110 및 pTP5), 효모-유래 플라스미드(YEp13, YEp24 및 YCp50), λ-파아지(Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11 및 λZAP), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 백시니아 바이러스(vaccinia virus), 배큘로바이러스(baculovirus) 등이 될 수 있다. 상기 발현벡터는 숙주 세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용함이 바람직하다.
본 발명은 또 다른 하나의 양태로서, 상기 발현벡터가 숙주세포에 도입된 형질전환체를 제공한다.
본 발명에서 제공하는 형질전환체는 상기 본 발명에서 제공하는 발현벡터를 숙주세포에 도입하여 형질전환시켜서 제작되고, 상기 발현벡터에 포함된 폴리뉴클레오티드를 발현시켜서, 본 발명의 융합단백질을 생산하는데 사용될 수 있다.
본 발명에서 제공하는 상기 발현벡터가 도입될 수 있는 숙주세포는 상기 폴리뉴클레오티드를 발현시켜서 상기 펩타이드를 생산할 수 있는 한 특별히 이에 제한되지 않으나, 대장균(E. coli), 스트렙토마이세스, 살모넬라 티피뮤리움 등의 박테리아 세포; 사카로마이세스 세레비지애, 스키조사카로마이세스 폼베 등의 효모 세포; 피치아 파스토리스 등의 균류 세포; 드로소필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO, COS, NSO, 293, 보우 멜라노마 세포 등의 동물 세포; 또는 식물 세포가 될 수 있다.
또한, 상기 형질전환은 다양한 방법에 의하여 수행될 수 있는데, 다양한 세포활성을 높은 수준으로 향상시킬 수 있는 효과를 나타내는 본 발명의 융합단백질을 생산할 수 있는 한, 특별히 이에 제한되지 않으나, CaCl2 침전법, CaCl2 침전법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 사용될 수 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 형질전환체를 이용하여 본 발명의 융합단백질을 제조하는 방법을 제공한다.
구체적으로, 본 발명의 융합단백질을 제조하는 방법은 (a) 상기 형질전환체를 배양하여 배양물을 수득하는 단계; 및, (b) 상기 배양물로부터 본 발명의 융합단백질을 회수하는 단계를 포함한다.
또 다른 방법으로서, 본 발명의 융합단백질을 제조하는 방법은 (a) 본 발명의 융합단백질을 코딩하는 폴리뉴클레오티드를 클로닝하여 발현벡터를 수득하는 단계; (b) 상기 수득한 발현벡터를 숙주세포에 도입하여 형질전환체를 수득하는 단계; 및, (c) 상기 형질전환체를 배양하고, 이로부터 상기 융합단백질을 회수하는 단계를 포함한다.
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 방법을 의미한다. 본 발명에 있어서, 상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 본 발명의 융합단백질을 발현시켜서 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족시킬 수 있다. 사용될 수 있는 탄소원으로는 글루코즈 및 자일로즈의 혼합당을 주 탄소원으로 사용하며 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃이다. 배양은 상기 융합단백질의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 3 내지 100 시간에서 달성된다.
아울러, 배양물로부터 상기 융합단백질을 회수하는 단계는 당업계에 공지된 방법에 의해 수행될 수 있다. 구체적으로, 상기 회수 방법은 생산된 본 발명의 융합단백질을 회수할 수 있는 한, 특별히 이에 제한되지 않으나, 바람직하게는 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 융합단백질을 포함하는 나노클러스터를 제공한다.
본 발명의 용어 "나노클러스터"란, 본 발명에서 제공하는 융합단백질에 포함된 페리틴의 자기조립 활성에 의하여 24개의 융합단백질이 자기조립되어 형성되는 단백질 복합체를 의미하는데, 상기 나노클러스터의 크기는 특별히 제한되지 않으나 10 내지 30 nm의 직경을 갖을 수 있고, 상기 나노클러스터의 형태는 구형이 될 수 있다. 상기 융합단백질의 발현 및 정제 과정만으로 자기조립을 통한 강력한 결합력을 가진 나노클러스터의 형성을 유도함으로써 scFv의 구조를 손상시키지 않고도 용이하게 상기 scFv를 포함하는 단백질 칩 또는 표적지향적 약물전달시스템을 형성할 수 있다. 이때, 상기 나노클러스터를 구성하는 융합단백질은 서로 상이하거나 또는 동일한 scFv를 포함할 수 있고, 이에 포함된 페리틴 역시 서로 상이하거나 또는 동일할 수 있는데, 일 례로서, 상기 나노클러스터는 표적이동을 위한 scFv와 약물과 결합되는 scFv를 모두 포함할 수 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 나노클러스터 및 약물을 포함하는 약물 전달체를 제공한다.
상기 나노클러스터는 그의 표면에 위치한 scFv 또는 그의 내부에 위치한 페리틴을 사용하여 목적하는 약물을 결합시켜서, 상기 약물을 표적지향적으로 전달할 수 있으므로, 상기 나노클러스터는 약물 전달체로서 사용될 수 있다.
상기 약물 전달체는 상기 나노클러스터를 형성하는 scFv 또는 페리틴에 목적하는 약물이 결합되어 목적부위로 전달될 수 있는데, 상기 결합되는 약물은 특별히 이에 제한되지 않으나, 치료제제, 진단제제, 검출제제 등이 될 수 있다.
상기 치료제제는 특별히 이에 제한되지 않으나, 일 례로서 항체, 항체단편, 약물, 독소, 핵산가수분해효소(nuclease), 호르몬, 면역조절제, 킬레이터, 붕소화합물, 광활성(photoactive)제제 또는 염료, 방사성동위원소 등이 될 수 있고; 진단제제 또는 검출제제 역시 특별히 이에 제한되지 않으나 일 례로서, 방사성동위원소, 염료(예를 들어, 비오틴(biotin)-스트렙타비딘(streptavidin) 복합체), 조영제, 형광 화합물 또는 분자 및 자기공명 영상화(MRI)에의 증가제(상자성 이온) 등이 될 수 있다. 다른 예로서, 상기 진단제제는 방사성동위원소, 자기공명 영상에서 사용되는 증가제, 및 형광화합물을 포함할 수 있다.
경우에 따라서는 항체성분을 방사성 금속 또는 상자성 이온과 부하하기 위해, 이온을 결합하는데 킬레이트기의 다수와 부착된 긴 꼬리를 갖는 반응물과 반응하는 것이 필요할 수도 있다. 상기의 꼬리는 폴리리신, 폴라사카라이드와 같은 고분자, 또는 에틸렌디아민테트라아세트산 (EDTA), 디에틸렌트리아민펜타아세트산 (DTPA; diethylenetriaminepentaacetic acid), 포르피린(porphyrin), 폴리아민, 크라운 에테르, 비스-티오세미카르바존(thiosemicarbazone), 폴리옥심(polyoximes)과 같은 킬레이트기와 결합될 수 있는 펜텐트기를 갖고 상기 목적에 유용하다고 알려진 기를 갖는 유도화되거나 유도될 수 있는 사슬일 수 있다. 킬레이트는 표준화학을 사용하여 항체에 결합된다. 킬레이트는 정상적으로 면역반응성의 최소 손실과 최소 집합체 및/또는 내부 교차연결로 분자에 결합을 형성할 수 있는 기에 의해 항체에 연결될 수 있다.
특히, 유용한 금속-킬레이트 조합은 진단성 동위원소와 60~4,000keV의 일반적인 에너지 범위에서 사용되는 2-벤질-DTPA 및 이의 모노메틸 및 시클로헥실 유사체를 포함하고, 예를 들어 방사성 영상화제에는 125I, 131I, 123I, 124I, 62Cu, 64Cu, 18F, 111In, 67Ga, 99mTc, 94mTc, 11C, 13N, 15O, 76Br 등이 될 수 있고, 망간, 철 및 가돌리늄과 같은 비-방사성 금속과 복합화될 경우, 같은 킬레이트는 본 발명의 나노클러스터 또는 항체와 사용될 때 MRI에 유용하게 사용될 수 있다. NOTA, DOTA, 및 TETA와 같은 거대고리(macrocyclic) 킬레이트는 금속 및 방사성 금속의 종류와 사용되고, 바람직하게는 갈륨, 이트륨(yttrium) 및 구리의 방사성핵종과 각각 사용될 수 있다. 상기 금속-킬레이트 복합체는 대상의 금속에 고리크기를 맞춤으로써 매우 안정하게 제조될 수 있다.
이뮤노컨쥬게이트(immunoconjugate)는 치료제제 또는 진단제제와 항체 성분의 컨쥬게이트이다. 상기 진단제제는 방사성 또는 비방사성 라벨, 조영제(자기공명영상화, 컴퓨터단층촬영(computed tomography), 또는 초음파에 적절한 조영제)를 포함하고, 방사성 라벨은 감마-, 베타-, 알파-, 오제 전자- 또는 양전자 방출 동위원소일 수 있다.
면역조절제는 본 발명에서 정의된 바와 같이 치료제제이며, 전형적으로 대식세포(macrophage), B-세포, 및/또는 T-세포와 같은 면역반응 캐스캐이드(immune response cascade)에서 증식하거나 활성화되는 면역세포를 자극할 수 있는데, 일 례로서 상기 면역조절제는 시토킨이 될 수 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 나노클러스터를 포함하는 진단키트 또는 단백질 칩을 제공한다.
본 발명의 진단키트는 목적하는 질환을 진단할 수 있는 표적 단백질과 결합할 수 있는 scFv를 포함하는 나노클러스터를 포함할 수 있다. 이때, 목적하는 질환은 나노클러스터에 포함된 scFv에 의해 검출될 수 있는 표적 단백질을 포함하는 한 특별히 제한되지 않는데, 일 례로서, 세균 또는 바이러스에 의한 감염성 질환, 유전적인 변이로 인하여 특정 단백질이 발현됨에 따라 발병될 수 있는 유전성 질환, 생체내 대사를 교란하는 물질의 유입으로 인하여 발병될 수 있는 대사성 질환 등이 될 수 있다.
한편, 상기 진단키트는 상기 나노클러스터 이외에 상기 나노클러스터를 이용하여 표적 단백질을 검출하는데 필요한 다양한 구성요소를 포함할 수 있다. 예를 들어, 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액, 2차 항체, 검출용 제제, 멸균수, 효소 등을 추가로 포함할 수 있다.
상기 진단키트의 일 례로서, 단백질 칩이 될 수 있다. 상기 단백질 칩은 본 발명에서 제공하는 융합단백질 또는 상기 융합단백질로 구성된 나노클러스터가 고체 기질에 고정된 형태일 수 있는데, 이때, 상기 고체 기질은 바이오 칩에 사용될 수 있다면 특별히 이에 제한되지 않으나, 일 례로서 금, 유리, 변형된 실리콘, 테트라플루오로에틸렌(tetrafluoroethylene), 폴리스티렌(polystyrene) 및 폴리프로필렌(polyprophylene) 등 흔히 사용되는 중합체나 겔 등이 될 수 있다. 또한, 상기 기판의 표면은 중합체, 플라스틱, 수지, 탄수화물, 실리카, 실리카 유도물질, 탄소, 금속, 무기 유리 및 막 등으로 표면 처리될 수 있다. 상기 기판은 지지체로서의 역할 뿐 아니라, 고정된 항체와 항원 간의 결합 반응이 일어나는 장소를 제공한다. 상기 기판의 규격 및 기판 상에 고정되는 위치, 크기 및 모양은 분석의 목적, 점적 기기(spotting machine) 및 스캐너(scanner) 등의 장치에 따라 변화될 수 있다.
상기 진단키트의 다른 예로서, 상기 나노클러스터를 포함하는 ELISA 키트, 샌드위치 ELISA 키트, 스트립 형태의 샌드위치 FICT(fluorescent immunochromatographic test kit) 키트가 될 수 있다.
예를 들어, 스트립 형태의 나이트로셀룰로오스 멤브레인에 유리 섬유(glass fiber), 코튼(cotton) 또는 셀룰로오스 재질의 패드를 결합시켜서 시료를 투입할 수 있는 시료주입부가 구비되고, 상기 시료주입부로부터 일정 간격에 위치한 나노클러스터를 포함하는 면역스트립 또는 FICT(fluorescent immunochromatographic test kit)가 될 수 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 나노클러스터를 이용하는 항원 검출방법을 제공한다.
구체적으로, 본 발명의 항원 검출방법은 상기 나노클러스터에 단백질 시료를 가하여 항원-항체 반응이 발생하는지의 여부를 확인하는 단계를 포함한다. 이때, 상기 나노클러스터는 통상적인 면역침전법에서 사용되듯이, 용액내에 자유로인 존재하는 형태가 될 수도 있고, 통상적인 단백질 칩과 같이, 고체 기질에 결합되어 고정된 형태가 될 수도 있다. 이때, 상기 단백질 시료는 특별히 이에 제한되지 않으나, 어떤 처리도 거치지 않은 상태로 사용되거나 적당한 완충용액에 의해서 희석된 상태로 사용될 수 있고, 항원의 존재여부를 확인하고자 하는 대상이 되는 자연계로부터 유래된 시료가 될 수 있는데, 일 례로서, 상기 단백질 시료는 질환의 유발이 의심되는 환자로부터 분리된 혈액, 혈청, 혈장, 체액, 타액, 소변, 장액, 림프액, 복강액 등이 될 수 있고, 다른 예로서, 토양시료, 담수시료, 해수시료 등이 될 수도 있다. 이때, 상기 질환은 나노클러스터에 포함된 scFv에 의해 검출될 수 있는 표적 단백질을 포함하는 한 특별히 제한되지 않는데, 일 례로서, 세균 또는 바이러스에 의한 감염성 질환, 유전적인 변이로 인하여 특정 단백질이 발현됨에 따라 발병될 수 있는 유전성 질환, 생체내 대사를 교란하는 물질의 유입으로 인하여 발병될 수 있는 대사성 질환 등이 될 수 있다.
한편, 상기 단백질 시료에 포함된 항원은 특별히 이에 제한되지 않으나, 면역분석 방법에 의하여 검출 가능한 모든 생체활성물질(bioactive materials)로서 특별한 제한이 없으며, 예컨대, 자가항체(autoantibody), 리간드, 천연 추출물, 펩타이드, 단백질, 금속 이온, 합성 약물, 천연 약물, 대사체, 유전체, 바이러스 및 바이러스에 의한 생성 물질, 및 박테리아 및 바이러스에 의한 생성 물질 등이 될 수 있다.
아울러, 상기 방법에 있어서, 상기 단백질 시료와 나노클러스터를 반응시킨 후, 항원-항체 반응의 발생을 확인하기 전에, 나노클러스터와 미처 결합하지 못한 표적 물질 및 결합이 가능하지 않은 시료 내 다른 물질을 세척하여 제거하는 단계를 추가로 포함할 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 단일사슬항체조각 (single chain variable fragment;, scFv )- 페리틴 융합단백질제조를 위한 페리틴 플랫폼 벡터 제작
단일사슬항체조각(single chain variable fragment;, scFv) - 페리틴 융합단백질제조를 위한 페리틴 플랫폼 벡터를 다음과 같이 제작하였다(도 4). 도 4는 scFv-페리틴 융합단백질의 발현을 위한 페리틴 플랫폼 벡터의 구성을 나타내는 개략도이다.
먼저, 페리틴 플랫폼 벡터 제작을 위해 한국인간유전자은행으로부터 분양받은 사람 유래의 페리틴(서열번호 1)을 하기의 프라이머를 사용한 PCR을 수행하여 증폭시키고, 제한효소 BamHI과 XhoI을 이용하여 벡터 pET 28(a)에 클로닝한 다음, 클로닝된 페리틴 유전자를 염기서열 분석을 통해 확인하였다.
P1: 5'-cgcggatccggcagcagcggcagcagcatgagctcccagattcgtcagaat-3'(서열번호 2)
P2: 5'-ccgctcgagtcattcagctaaagcttcagctaaatg-3'(서열번호 3)
다음으로, 페리틴 단백질의 158번과 175번 사이에 pH 변화에 따라 구조변화를 유도하는 펩타이드(서열번호 4)을 도입하기 위하여, 상기 증폭된 사람 유래의 페리틴 유전자를 주형으로하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다. 상기 증폭산물을 제한 효소 BamHI과 XhoI을 이용하여 벡터 pET 28(a)에 클로닝하고, DNA 염기 서열 분석을 통해 pH 변화에 따라 구조변화를 유도하는 펩타이드 서열이 삽입된 페리틴 단백질(서열번호 6)을 코딩하는 염기서열을 확인하였다.
P1: 5'-cgcggatccggcagcagcggcagcagcatgagctcccagattcgtcagaat-3'(서열번호 2)
P3: 5'-ccgctcgagttaaagcttcagctaaagcctccgggccacccagcctgtggaggttggt-3'(서열번호 5)
실시예 2: 허셉틴( Herceptin ) 유래 scFv -페리틴 융합단백질의 제조 및 특성분석
실시예 2-1: 허셉틴( Herceptin ) 유래 scFv -페리틴 융합단백질의 재조합 DNA 제작
상기 실시예 1에서 제작된 사람 유래의 페리틴 플랫폼 벡터와 유방암 치료제로 널리 사용되고 있는 허셉틴의 scFv에 대한 유전자(서열번호 7 및 10)를 이용하여, 단일사슬항체조각(single chain variable fragment;, scFv) - 페리틴 융합단백질을 제조하기 위한 재조합 DNA를 제작하였다.
먼저, 허셉틴(Herceptin)의 scFv(LH) 유전자를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 페리틴 플랫폼 벡터에 클로닝하고, 클로닝된 scFv(LH) 유전자(서열번호 7)는 염기서열 분석을 통해 확인하였다.
P4: 5'-gggaattccatatgaccgtggcccaggcggccg-3'(서열번호 8)
P5: 5'-cgcggatccgctgccggccgcgtgctggccggcctg-3'(서열번호 9)
다음으로, 허셉틴의 scFv(HL) 유전자를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 페리틴 플랫폼 벡터에 클로닝하고, 클로닝된 scFv(HL) 유전자(서열번호 10)는 염기서열 분석을 통해 확인하였다.
P6: 5'-gggaattccatatgaccgtggcc caggcggccgaagtg-3'(서열번호 11)
P7: 5'-cgcggatccgctgccggccgcgtgctggcc ggcctg-3'(서열번호 12)
또한, 허셉틴의 scFv(LH) 유전자를 주형으로 하고, 프라이머(서열번호 8 및 9)를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 벡터 pET 28(a)에 클로닝하고, 클로닝된 scFv (LH) 유전자는 염기서열 분석을 통해 확인하였다.
아울러, 허셉틴의 scFv(HL) 유전자를 주형으로 하고, 프라이머(서열번호 11 및 12)를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 벡터 pET 28(a)에 클로닝하고, 클로닝된 scFv(HL) 유전자는 염기서열 분석을 통해 확인하였다.
끝으로, 허셉틴의 scFv-페리틴융합단백질을 코딩하는 플라스미드 DNA 또는 허셉틴의 scFv를 코딩하는 플라스미드 DNA를 각각 대장균(Rosetta DE3, Novagen)에 도입하여 각각의 형질전환체를 수득하고, 상기 각 형질전환체를 배양하면서, IPTG(Isopropyl-β-D-thio-galactoside)를 0, 0.1 또는 1 mM이 되도록 첨가한 뒤 18℃ 또는 37℃에서 16시간동안 배양하여 각 단백질의 발현을 유도하였다. 이어 각 형질전환체를 세포 파쇄액(50 mm Tris pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 % 2-mercaptoethanol)에 현탁하고, 초음파 발생기로 파쇄시킨 다음, 이를 원심분리하여 상층액을 수득하고, 상기 각각의 세포파쇄물 또는 상층액을 전기영동하였다(도 5).
도 5는 scFv-페리틴 융합단백질의 단백질 발현조건에 따른 융합단백질의 발현결과를 나타내는 전기영동사진이다. 도 5에서 보듯이, 두 가지 농도 조건(0.1 또는 1 mM)의 IPTG 처리와 두 가지 배양온도(18℃ 또는 37℃)를 사용하여 배양된 각 형질전환체의 세포파쇄물과 상층액에 포함된 허셉틴의 scFv-페리틴융합단백질의 발현수준을 비교한 결과, 1 mM의 IPTG를 처리하고, 18℃에서 배양한 경우에, 허셉틴의 scFv-페리틴융합단백질을 높은 수율로 생산할 수 있음을 확인하였다.
실시예 2-2: scFv -페리틴 융합단백질의 정제 및 특성분석
상기 실시예 2-1에서 수득한 scFv-페리틴 융합단백질이 발현된 각각의 형질전환체로부터 수득한 세포파쇄물의 상층액으로부터 발현된 scFv-페리틴 융합단백질을 정제하였다.
구체적으로, 10 ㎖의 컬럼완충용액(50 mM Tris pH 7.5, 500 mM NaCl, 5% glycerol, 0.05% β-mercaptoethanol)으로 탈론 레진(1 ㎖, Talon resin, Clontech)을 2번 씻어서 활성화시킨 후, 상기 수득한 세포파쇄물의 상층액을 가하여 4℃에서 1시간 동안 천천히 진탕하여 단백질을 탈론 수지에 흡착시켰다. 이어, 상기 탈론 수지를 컬럼완충용액(10 ㎖)으로 두 번 세척하고, 10 ㎖의 용출 완충용액(elution buffer: 100 mM 이미다졸)을 가한 후 다시 1 시간 천천히 진탕(rocking)하여 용출액을 수득하였다. 상기 수득한 용출액에 포함된 단백질은 브래드포드 검출(Bradford assay)법을 통해 정량하고, 정제된 단백질은 SDS-PAGE 분석을 통하여 단백질 단량체의 크기 및 정제된 단백질의 순도를 확인하였다(도 6).
도 6은 scFv-페리틴 융합단백질의 정제과정에서 얻어진 시료의 전기영동사진이다. 도 6에서 보듯이, 탈론 수지를 이용한 방법을 사용하여 scFv-페리틴 융합단백질이 발현된 각각의 형질전환체로부터 scFv-페리틴 융합단백질을 정제할 수 있음을 확인하였다.
아울러, 상기 실시예 2-1에서 수득한 scFv 단백질이 발현된 각각의 형질전환체로부터 수득한 세포파쇄물의 상층액으로부터 발현된 scFv 단백질을 상술한 바와 동일한 방법으로 정제하였다(도 7).
도 7은 scFv단백질의 정제과정에서 얻어진 시료의 전기영동사진이다. 도 7에서 보듯이, 탈론 수지를 이용한 방법을 사용하여 scFv 단백질이 발현된 각각의 형질전환체로부터 scFv 단백질을 정제할 수 있음을 확인하였다.
한편, 상기 정제된 scFv-페리틴 융합단백질을 대상으로 TEM(transmission electron microscope) 분석을 수행하였다(도 8).
도 8은 scFv-페리틴 융합단백질의 형태를 확인한 결과를 나타내는 투과전자현미경(transmission electron microscope; TEM) 사진이다. 도 8에서 보듯이, 정제된 scFv-페리틴 융합단백질은 24개의 단량체가 모인 집합구조를 형성하여 전체적으로 구형을 형성함을 확인하였다.
실시예 2-3: scFv -페리틴 융합단백질의 리폴딩
상기 실시예 2-2에서 정제 후 생성된 펠렛 1 g 당 9배 부피의 완충용액(50 mM Tris pH 7.5, 500 mM NaCl, 0.5% Triton X-100)으로 현탁시킨 후 원심분리에 의해 펠렛을 수득하는 과정을 2번 반복하였다.
펠렛 1 g 당 9배 부피의 리폴딩 완충용액(50 mM Tris pH 7.5, 500 mM NaCl, 8 M Urea)으로 4 ℃에서 16시간 이상 현탁시킨 후 원심분리에 의해 상층액으로부터 발현된 scFv-페리틴 융합단백질 단량체를 수득하였다.
이렇게 수득한 scFv-페리틴 융합단백질 단량체를 탈론 레진(10 ㎖, Talon resin, Clontech)을 5배 부피의 리폴딩 완충용액으로 씻어서 활성화시킨 후, 3회 진탕하여 탈론 수지에 흡착시켰다. 이어, 상기 탈론 수지를 리폴딩 완충용액(100 ㎖)으로 세척하고, 100 ㎖의 용출 완충용액(elution buffer: 200 mM 이미다졸)을 가하여 용출액을 수득하였다. 상기 수득한 용출액에 포함된 단백질은 브래드포드 검출(Bradford assay)법을 통해 정량하고, 정제된 단백질은 SDS-PAGE 분석을 통하여 단백질 단량체의 크기 및 정제된 단백질의 순도를 확인하였다(도 9).
도 9는 탈론수지에 흡착된 scFv-페리틴 융합단백질을 용출 완충용액으로 용출시켜서 수득한 분획에 포함된 scFv-페리틴 융합단백질을 나타내는 전기영동 사진이다.
리폴딩은 가용화 완충용액 1 부피당 20배 이상 부피의 완충용액을 첨가함으로써 시작되는데, 8 M 우레아, 6 M 우레아, 4 M 우레아, 2 M 우레아, 0 M 우레아 순으로 4 ℃에서 60 rpm으로 3시간 이상 혼합하였다. 4 M 우레아 단계까지는 제1완충용액(50 mM Tris pH 7.5, 500 mM NaCl, 1 mM PMSF, 1 mM DTT)을 사용하고, 2 M 우레아와 0 M 우레아 단계에서는 제2완충용액(50 mM Tris pH 7.5, 500 mM NaCl, 1 mM PMSF, 2 mM Reduced glutathione, 0.2 mM Oxidized glutathione)을 사용하였다.
최종적으로 리폴딩 가용화 완충용액을 원심분리하여 상층액으로부터 scFv-페리틴 융합단백질을 수득하였다(도 10).
도 10은 다양한 농도의 우레아를 포함하는 가용화 완충용액을 사용하여 제조된 scFv-페리틴 융합단백질을 나타내는 전기영동사진이다.
상기 도 9 및 10에서 보듯이, 단일 밴드의 scFv-페리틴 융합단백질을 제조하였음을 확인하였다.
실시예 2-4: scFv -페리틴 융합단백질의 항원 결합력 분석
SPR(Surface plasmon resonance) 분석법을 이용하여 허셉틴 유래 scFv-페리틴 융합단백질의 항원 결합력을 분석하였다.
실시예 2-4-1: HER2에 대한 허셉틴 또는 scFv -페리틴 융합단백질의 결합력 분석
상기 실시예 2-2에서 정제된 scFv의 원형인 허셉틴과 HER2간의 결합력 및 상기 scFv-페리틴 융합단백질과 HER2간의 결합력을 SPR(Surface plasmon resonance) 분석법을 이용하여 비교하였다.
구체적으로, Biacore T100 분석기 (GE Healthcare, Uppsala, Sweden)를 사용하였는데, 바이오센서 분석에서는 EDC / NHS(N'-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide)로 활성화한 CM5 센서 칩(GE Healthcare, Uppsala, Sweden)에 10 ㎕/min의 유속으로 HER2 단백질(10 μg/㎖ in 10 mM Sodium acetate, pH 5.0)을 5 분간 흘려주어 고정화시켰다. 센서 칩 표면에 남아있는 활성화 부분은 1.0 M 에탄올아민(ethanolamine, pH 8.5)을 첨가하여 비활성화시켰다. 이 상태에서 허셉틴, scFv-페리틴 융합단백질 또는 허셉틴 유래 scFv를 각 농도별로 완충용액(1 X PBS, pH 7.4)에 희석한 후, 30 ㎕/min의 유속으로 흘러주면서 이들의 친화도를 측정하고 비교하였다(표 1).
HER2에 대한 허셉틴, scFv-페리틴 융합단백질 또는 허셉틴 유래 scFv의 결합력
KD(M) Chi2
허셉틴scFv-페리틴 융합단백질허셉틴 유래 scFv 8.42E-108.95E-113.03E-08 0.04910.3041.79
상기 표 1에서 보듯이, HER2에 대한 친화도(avidity) 측면에서 모두 scFv-페리틴 융합단백질이 허셉틴 유래 scFv는 물론 허셉틴 보다도 상대적으로 높은 수준을 나타내므로, 종래의 항체보다도 우수한 활용성을 나타냄을 알 수 있었다.
실시예 2-4-2: scFv -페리틴 융합단백질의 구조에 따른 결합력 분석
scFv-페리틴 융합단백질의 구조에 따라, HER2에 대한 결합력이 변화되는지를 확인하고자 하였다.
이를 위하여, 허셉틴의 경쇄단편과 중쇄단편이 연결된 형태의 scFv(scFv-LH) 또는 허셉틴의 중쇄단편과 경쇄단편이 연결된 형태의 scFv(scFv-HL)을 각각 설정하고, 상기 설정된 각 scFV의 중쇄단편과 경쇄단편사이에 다양한 형태의 링커(SG, -2(SGGGG)-, -3(SGGGG)- 또는 -4(SGGGG)-)를 포함하도록 설계된 각각의 scFv 단편을 포함하는 scFv-페리틴 융합단백질을 실시예 2-1 및 2-2의 방법으로 생산 및 정제하여 수득하였다. 이때, 설계된 각 scFv의 구조는 표 2 및 도 11에 도시하였다. 도 11은 scFv를 구성하는 heavy chain과 light chain 사이의 링커길이와 순서를 표시한 모식도이다.
다양한 구조의 scFv
명칭 구조
scFv LH2scFv LH10scFv LH15scFv LH20scFv HL2scFv HL10scFv HL15scFv HL20 경쇄-SG-중쇄경쇄-2(SGGGG)-중쇄경쇄-3(SGGGG)-중쇄경쇄-4(SGGGG)-중쇄중쇄-SG-경쇄중쇄-2(SGGGG)-경쇄중쇄-3(SGGGG)-경쇄중쇄-4(SGGGG)-경쇄
상기 수득한 각각의 scFv-페리틴 융합단백질을 사용하는 것을 제외하고는, 상기 실시예 2-4-1과 동일한 방법을 수행하여, HER2에 대한 각각의 scFv-페리틴 융합단백질의 결합력을 분석하였다(표 3). 이때, 대조군으로는 허셉틴을 사용하였다.
scFv-페리틴 융합단백질의 구조에 따른 친화도 분석
항체 Kinetics Fit(1:1 binding) Affinity Fit(Steady state affinity)
KD(M) Chi2(RU2) KD(M) Chi2(RU2)
허셉틴scFv LH2scFv LH10scFv LH15scFv LH20scFv HL2scFv HL10scFv HL15scFv HL20 3.03E-103.74E-101.48E-091.86E-106.17E-103.83E-101.88E-109.59E-119.06E-11 0.1090.08890.05160.4010.05130.1120.1290.1490.226 1.03E-084.91E-098.63E-091.59E-092.23E-097.87E-094.81E-093.09E-092.25E-09 0.1140.04370.003610.1360.009030.02810.02120.05820.0916
상기 표 3에서 보듯이, scFv를 구성함에 있어서, 링커를 부가할 경우, 상기 부가된 링커의 길이에 따라 scFv-페리틴 융합단백질의 결합력이 변화될 수 있음을 확인하였다. 특히, 다양한 길이의 링커가 부가된 scFv HL을 포함하는 융합단백질의 경우에는 상기 링커의 길이가 증가할 수록 KD(M) 값이 감소되는 경향을 나타냄을 확인하였다.
따라서, 링커가 부가된 scFv HL을 포함하는 융합단백질은 상기 링커의 길이가 증가할 수록 결합력이 증가하는 것으로 분석되었으므로, 상기 링커의 길이는 scFv-페리틴 융합단백질의 항원결합력을 결정하는 중요한 요인이 될 수 있음을 알 수 있었다.
아울러, 상기 링커의 길이변화는 scFv의 구조적 변화를 수반하므로, 상기 링커가 부가된 scFv HL을 포함하는 융합단백질에서 링커의 길이가 증가할 수록 결합력이 증가한다는 결과는, scFv의 구조적 변화가 scFv-페리틴 융합단백질의 기능에 직접적으로 영향을 미칠 수 있음을 시사하는 것으로 분석되었다.
실시예 3: 아바스틴 ( Avastin ) 유래 scFv -페리틴 융합단백질의 제조 및 특성분석
실시예 3-1: scFv -페리틴 융합단백질 제조를 위한 재조합 DNA 제작
먼저, 아바스틴의 scFv(LH) 유전자(서열번호 13)를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 페리틴 플랫폼 벡터에 클로닝하고, 클로닝된 아바스틴의 scFv(LH) 유전자는 염기서열 분석을 통해 확인하였다.
P8: 5'-gggaattccat atggatatccagatgacacagtcc-3'(서열번호 14)
P9: 5'-ggtcgcggatcccgcgtgctggccggcctg-3'(서열번호 15)
다음으로, 아바스틴의 scFv(HL) 유전자(서열번호 16)를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 페리틴 플랫폼 벡터에 클로닝하고, 클로닝된 아바스틴의 scFv(HL) 유전자는 염기서열 분석을 통해 확인하였다.
P10: 5'-gggaattccatatggaagtccagttggtggagtcc-3'(서열번호 17)
P9: 5'-ggtcgcggatcccgcgtgctggccggcctg-3'(서열번호 15)
또한, 아바스틴의 scFv(LH) 유전자(서열번호 13)를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 pET 28(a) 벡터에 클로닝하고, 클로닝된 아바스틴의 scFv(LH) 유전자는 염기서열 분석을 통해 확인하였다.
P8: 5'-gggaattccat atggatatccagatgacacagtcc-3'(서열번호 14)
P11: 5'-ggtcgcggatcc ttacgcgtgctggccggcctg-3'(서열번호 18)
아울러, 아바스틴의 scFv(HL) 유전자(서열번호 16)를 주형으로 하고, 프라이머(서열번호 17 및 18)를 사용한 PCR을 수행하여, 증폭산물을 수득하였으며, 증폭산물을 제한효소 NdeI, BamHI을 이용하여 pET 28(a) 벡터에 클로닝하고, 클로닝된 아바스틴의 scFv(HL) 유전자는 염기서열 분석을 통해 확인하였다.
끝으로, 아바스틴의 scFv-페리틴융합단백질을 코딩하는 플라스미드 DNA와 아바스틴의 scFv를 코딩하는 플라스미드 DNA를 각각 대장균(Rosetta DE3, Novagen)에 도입하여 형질전환체를 수득하고, 상기 각 형질전환체를 배양하면서, IPTG(Isopropyl-β-D-thio-galactoside)를 1 mM이 되도록 첨가한 뒤 18℃에서 16시간동안 배양하여 각 단백질의 발현을 유도하였다. 상기 각 단백질의 발현이 유도된 각각의 형질전환체를 사용하는 것을 제외하고는, 상기 실시예 2-2의 방법을 사용하여 아바스틴 유래 scFv-페리틴 융합단백질을 정제하였다.
실시예 3-2: scFv -페리틴 융합단백질의 항원 결합력 분석
상기 실시예 3-1에서 정제된 scFv의 원형인 아바스틴, scFv-페리틴 융합단백질 또는 아바스틴 유래 scFv를 사용하는 것을 제외하고는, 상기 실시예 2-3-1의 방법을 사용하여, 아바스틴과 VEGF간의 결합력 및 상기 scFv-페리틴 융합단백질과 VEGF간의 결합력을 비교분석하였다(표 4).
VEGF에 대한 아바스틴, scFv-페리틴 융합단백질 또는 아바스틴 유래 scFv의 결합력
KD(M) Chi2
아바스틴scFv-페리틴 융합단백질아바스틴 유래 scFv 2.98E-116.83E-101.12E-06 0.170.7961.12
상기 표 4에서 보듯이, VEGF에 대한 친화도의 측면에서는 scFv-페리틴 융합단백질이 아바스틴 보다는 상대적으로 다소 낮은 수준을 나타내었으나, 아바스틴 유래 scFv 보다는 상대적으로 높은 수준을 나타냄을 확인하였다.
실시예 4: 시스테인이 도입된 scFv -페리틴 융합단백질의 제조
실시예 4-1: 시스테인이 도입된 scFv -페리틴 융합단백질의 제작
사람유래 페리틴- 단일사슬항체조각(single chain variable fragment;, scFv) 융합단백질의 특정 위치에 시스테인 잔기를 도입한 변이체를 제작하였다. 구체적으로, 나노클러스터 내부에 시스테인을 도입하기 위하여 64번 E(Glu) 및 140번 E(Glu)를 각각 시스테인으로 치환하였으며, 나노클러스터의 외부에 시스테인을 도입하기 위하여 22번 S(Ser), 105번 A(Ala) 및 116번 D(Asp)를 각각 시스테인으로 치환하기 위하여 하기 프라이머를 이용한 PCR을 수행하여 각각의 증폭단편을 수득하였다.
E64C F: 5'-gccgaggagaagcgctgcggctacgagcgtctcctg-3'(서열번호 19)
E64C R: 5'-caggagacgctcgtagccgcagcgcttctcctcggc-3'(서열번호 20)
E140C F: 5'-actcacttcctagattgcgaagtgaagcttatcaag-3'(서열번호 21)
E140C R: 5'-cttgataagcttcacttcgcaatctaggaagtgagt-3'(서열번호 22)
S22C F: 5'-gaggcagccgtcaactgcctggtcaatttgtacctg-3'(서열번호 23)
S22C R: 5'-caggtacaaattgaccaggcagttgacggctgcctc-3'(서열번호 24)
A105C F: 5'-atgaaa gctgccatgtgcctggagaaaaagctgaac-3'(서열번호 25)
A105C R: 5'-gttcagctttttctccaggcacatggcagctttcat-3'(서열번호 26)
D116C F: 5'-aaccaggcccttttgtgccttcatgccctgggttct-3'(서열번호 27)
D116C R: 5'-agaacccagggcatgaaggcacaaaagggcctggtt-3'(서열번호 28)
상기 수득한 증폭단편에 제한효소 DpnI을 처리하고, 이를 대장균에 도입하여 각각의 형질전환체를 수득한 다음, 상기 수득한 형질전환체로부터 상기 도입된 DNA의 염기서열을 확인함으로써 돌연변이가 유도됨을 확인하였다. 이어, 상기 형질전환체를 대상으로 사용하는 것을 제외하고는, 상기 실시예 2-1 및 2-2의 방법을 수행하여, 시스테인이 도입된 scFv-페리틴 융합단백질을 제조하였다.
실시예 4-2: 금속리간드가 결합된 나노클러스터의 제조
상기 실시예 4-1에서 제조된 시스테인이 도입된 scFv-페리틴 융합단백질을 이용하여 형성된 나노클러스터를 산소를 제거한 50 mM pH 7.5 인산완충액에 용해시키고, 10 mM TCEP를 처리하고 30분 동안 반응시킨 다음, PD10 컬럼 크로마토그래피에 적용하여, 과량의 유기시약을 제거하고 상기 나노클러스터를 회수하였다. 상기 회수된 나노클러스터에 다양한 화합물((S)-2-(4-(2-bromoacetamido)benzyl)-DOTA, DTPA-maleimidoethylamide(DTPA-MEA) 또는 DTPA-bromoacetamidoethylamide(DTPA-BAEA))을 단백질 단량체당 10당량의 비율로 가하고, 상온에서 10시간 또는 4℃에서 24시간 동안 반응시켰다. 반응이 종료된 후, 상기 반응물을 PD10 컬럼 크로마토그래피에 적용하여 과량의 미반응 시약을 제거하고, 금속이온 배위리간드가 결합된 나노클러스터를 제조하였다. 이때, 금속이온 배위리간드의 결합수준은 질량분석을 통해 확인하였다.
실시예 4-3: 금속이온이 결합된 나노클러스터의 제조
상기 실시예 4-2에서 제조된 금속이온 배위리간드가 결합된 나노클러스터에 상기 리간드의 1.1 당량에 해당하는 금속이온을 첨가하여 이미징 혹은 치료에 그대로 사용하거나 PD-10 탈염칼럼으로 정제 후 사용하였다.

Claims (22)

  1. 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질.
  2. 제1항에 있어서,
    상기 scFv는 페리틴의 N-말단 또는 C-말단에 결합된 것인 융합단백질.
  3. 제1항에 있어서,
    상기 scFv는 직접적으로 페리틴과 결합되거나 또는 펩타이드 링커를 통하여 페리틴에 결합된 것인 융합단백질.
  4. 제1항에 있어서,
    상기 scFv는 항체의 중쇄단편 및 경쇄단편을 포함하는 것인 융합단백질.
  5. 제4항에 있어서,
    상기 중쇄단편과 경쇄단편은 직접적으로 결합되거나 또는 펩타이드 링커를 통하여 결합되는 것인 융합단백질.
  6. 제1항에 있어서,
    상기 페리틴은 동종 또는 이종인 것인 융합단백질.
  7. 제1항에 있어서,
    상기 페리틴은 서열번호 1의 폴리뉴클레오티드에 의해 코딩되는 것인 융합단백질.
  8. 제1항 내지 제7항 중 어느 한 항의 융합단백질을 코딩하는 폴리뉴클레오티드.
  9. 제8항의 폴리뉴클레오티드를 포함하는 발현벡터.
  10. 제9항의 발현벡터가 숙주에 도입된 형질전환체.
  11. (a) 제10항의 형질전환체를 배양하여 배양물을 수득하는 단계; 및,
    (b) 상기 배양물로부터 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질을 회수하는 단계를 포함하는, 융합단백질의 제조방법.
  12. (a) 단일사슬항체조각(scFv)과 페리틴이 결합된 형태의 융합단백질을 코딩하는 폴리뉴클레오티드를 클로닝하여 발현벡터를 수득하는 단계;
    (b) 상기 수득한 발현벡터를 숙주세포에 도입하여 형질전환체를 수득하는 단계; 및,
    (c) 상기 형질전환체를 배양하고, 이로부터 상기 융합단백질을 회수하는 단계를 포함하는, 융합단백질의 제조방법.
  13. 제1항 내지 제7항 중 어느 한 항의 융합단백질을 포함하는 나노클러스터.
  14. 제13항에 있어서,
    상기 융합단백질 24개가 자기조립되어 형성되는 것인 나노클러스터.
  15. 제13항에 있어서,
    10 내지 30 nm의 직경을 갖는 구형인 것인 나노클러스터.
  16. 제13항의 나노클러스터 및 약물을 포함하는 약물 전달체.
  17. 제16항에 있어서,
    상기 약물은 나노클러스터의 내부 또는 표면에 결합되어 표적지향적 약물전달이 가능한 것인 약물 전달체.
  18. 제13항의 나노클러스터를 포함하는 진단키트.
  19. 제13항의 나노클러스터를 포함하는 단백질 칩.
  20. 제13항의 나노클러스터에 분리된 단백질 시료를 가하여 항원-항체 반응이 발생하는지의 여부를 확인하는 단계를 포함하는 항원 검출방법.
  21. 제20항에 있어서,
    상기 단백질 시료는 질환의 유발이 의심되는 환자로부터 분리된 혈액, 혈청, 혈장, 체액, 타액, 소변, 장액, 림프액 또는 복강액인 것인 방법.
  22. 제21항에 있어서,
    상기 질환은 감염성 질환, 유전성 질환 또는 대사성 질환인 것인 방법.
PCT/KR2016/001016 2015-01-30 2016-01-29 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도 WO2016122259A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0015366 2015-01-30
KR1020150015366A KR20160094550A (ko) 2015-01-30 2015-01-30 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도

Publications (1)

Publication Number Publication Date
WO2016122259A1 true WO2016122259A1 (ko) 2016-08-04

Family

ID=56543783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001016 WO2016122259A1 (ko) 2015-01-30 2016-01-29 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도

Country Status (2)

Country Link
KR (1) KR20160094550A (ko)
WO (1) WO2016122259A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196675A1 (ja) * 2021-03-16 2022-09-22 味の素株式会社 複合体またはその塩、およびその製造方法
CN116068198A (zh) * 2022-11-30 2023-05-05 深圳湾实验室 Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用
EP4007779A4 (en) * 2019-08-01 2023-09-06 The Hospital for Sick Children MULTIVALENT AND MULTI-SPECIFIC NANOPARTICLE PLATFORMS AND METHODS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367488B1 (ko) 2020-06-29 2022-02-25 주식회사 프로테인웍스 단일사슬항체-알부민 약물 복합체의 분석방법
EP4238984A1 (en) * 2020-10-30 2023-09-06 Cellemedy Co., Ltd Antibody-like protein and use thereof
WO2022235140A1 (ko) * 2021-05-07 2022-11-10 연세대학교 산학협력단 단일사슬항체조각 및 페리틴의 융합단백질을 포함하는 나노입자 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058964A (ko) * 2006-12-23 2008-06-26 고려대학교 산학협력단 질병마커 인지 에피토프와 연결된 단백질 나노입자를포함하는 진단용 단백질 칩과 그의 초고감도 검출 방법
US20100159442A1 (en) * 2006-11-02 2010-06-24 Iti Scotland Limited Magnetic recognition system
JP2011520791A (ja) * 2008-05-02 2011-07-21 アイティーアイ・スコットランド・リミテッド 医療において用いるためのベクター
KR20130039672A (ko) * 2011-10-12 2013-04-22 국립대학법인 울산과학기술대학교 산학협력단 항체결합 펩타이드-페리틴 융합단백질 및 이의 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159442A1 (en) * 2006-11-02 2010-06-24 Iti Scotland Limited Magnetic recognition system
KR20080058964A (ko) * 2006-12-23 2008-06-26 고려대학교 산학협력단 질병마커 인지 에피토프와 연결된 단백질 나노입자를포함하는 진단용 단백질 칩과 그의 초고감도 검출 방법
JP2011520791A (ja) * 2008-05-02 2011-07-21 アイティーアイ・スコットランド・リミテッド 医療において用いるためのベクター
KR20130039672A (ko) * 2011-10-12 2013-04-22 국립대학법인 울산과학기술대학교 산학협력단 항체결합 펩타이드-페리틴 융합단백질 및 이의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEHAL ET AL.: "Magnetizable Antibody-like Proteins", BIOTECHNOLOGY JOURNAL, vol. 5, 2010, pages 596 - 604 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4007779A4 (en) * 2019-08-01 2023-09-06 The Hospital for Sick Children MULTIVALENT AND MULTI-SPECIFIC NANOPARTICLE PLATFORMS AND METHODS
WO2022196675A1 (ja) * 2021-03-16 2022-09-22 味の素株式会社 複合体またはその塩、およびその製造方法
CN116068198A (zh) * 2022-11-30 2023-05-05 深圳湾实验室 Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用
CN116068198B (zh) * 2022-11-30 2024-01-09 深圳湾实验室 Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用

Also Published As

Publication number Publication date
KR20160094550A (ko) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016122259A1 (ko) 단일사슬항체조각과 페리틴을 포함하는 융합단백질 및 그의 용도
WO2013055058A2 (ko) 항체결합 펩타이드-페리틴 융합단백질 및 이의 용도
KR102080366B1 (ko) 비만 치료를 위한 글루카곤/glp-1 작용제
AU2021269420B2 (en) Antibody-coupled cyclic peptide tyrosine tyrosine compounds as modulators of neuropeptide Y receptors
WO2012002759A2 (ko) 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도
JP6970090B2 (ja) C末端リジンで結合体化された免疫グロブリン
KR102538866B1 (ko) 리신 접합된 이뮤노글로불린
JPH08259600A (ja) ポリペプチドおよび蛋白質の誘導体類
KR20220113491A (ko) 재조합 펩티드-mhc 복합체 결합 단백질 및 이의 생성 및 용도
WO2019107896A1 (ko) 글루타치온-s-전이효소 및 표적 세포 또는 표적 단백질 결합능을 갖는 단백질을 포함하는 융합 단백질 및 이의 용도
WO2016089126A1 (ko) 뉴로필린 1(Neuropilin 1)에 대한 항체 및 이의 용도
JPH08510210A (ja) ポリオキシム化合物及びそれらの調整
WO2012138176A2 (ko) 타겟 친화도가 유지되고 안정성이 개선된 d-앱타이드 및 레트로 인버소 앱타이드
WO2014007506A1 (ko) IgG Fc 위치선택적 결합 펩티드 및 이를 포함하는 하이브리드 분자
CN107223133B (zh) 一种可溶的异质二聚t细胞受体及其制法和应用
WO2017209471A1 (ko) 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도
WO2023153876A1 (ko) Cd40l에 특이적으로 결합하는 스테핀 a 단백질 변이체 및 이의 용도
WO2023277575A1 (ko) 신규한 세포 투과성 펩타이드 및 이의 용도
WO2023153847A1 (ko) 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도
WO2022092974A1 (ko) 항체 유사 단백질 및 그 용도
CN100338217C (zh) 单链重组t细胞受体
WO2024085280A1 (ko) 신규한 키뉴레니나제 및 이의 용도
WO2022039507A1 (ko) 변형 항체 및 이의 제조방법
WO2019107962A2 (ko) 항체와 생리활성물질의 접합방법
KR20230079047A (ko) 기능성폴리펩티드 변이체의 컨쥬게이트 및 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743737

Country of ref document: EP

Kind code of ref document: A1