WO2023153847A1 - 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도 - Google Patents

탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도 Download PDF

Info

Publication number
WO2023153847A1
WO2023153847A1 PCT/KR2023/001951 KR2023001951W WO2023153847A1 WO 2023153847 A1 WO2023153847 A1 WO 2023153847A1 KR 2023001951 W KR2023001951 W KR 2023001951W WO 2023153847 A1 WO2023153847 A1 WO 2023153847A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
peptide
functional group
caix
formula
Prior art date
Application number
PCT/KR2023/001951
Other languages
English (en)
French (fr)
Inventor
이송길
하혜숙
박진휘
김세원
오유정
박서현
박신영
차준회
Original Assignee
(주)씨바이오멕스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨바이오멕스 filed Critical (주)씨바이오멕스
Priority to KR1020247012641A priority Critical patent/KR20240055882A/ko
Priority to EP23753194.2A priority patent/EP4321526A1/en
Priority to KR1020237027072A priority patent/KR20230133319A/ko
Priority to JP2023563929A priority patent/JP2024518287A/ja
Priority to CN202380010970.7A priority patent/CN117120458A/zh
Priority to AU2023218802A priority patent/AU2023218802A1/en
Publication of WO2023153847A1 publication Critical patent/WO2023153847A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/988Lyases (4.), e.g. aldolases, heparinase, enolases, fumarase

Definitions

  • the present invention relates to a peptide ligand that specifically binds to carbonic anhydrase IX (CAIX) and a peptide structure comprising the same.
  • CAIX carbonic anhydrase IX
  • the present invention provides a CAIX-specific CAIX-binding peptide ligand containing D-amino acids and enhanced stability, a linear or cyclic high-affinity CAIX-binding peptide structure containing the peptide ligand, and diseases mediated by CAIX It relates to their use for diagnosis, prevention, inhibition or treatment of.
  • Carbonic anhydrase is a zinc (Zn 2+ ) metalloenzyme commonly present in higher vertebrates, including humans, and is an enzyme that catalyzes a reversible hydration reaction that converts carbon dioxide into hydrogen ions and bicarbonate ions ( CO 2 +H 2 O ⁇ HCO 3 - +H + ).
  • CA has been identified in 16 isozyme forms, and in humans, it is present in various tissues such as the gastrointestinal tract, reproductive tract, nervous system, kidney, lung, skin and eyeball.
  • CA isoenzymes are known to be involved in important physiological processes such as respiration, calcification, acid-base balance, bone resorption, and formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid (Thiry et al., TRENDS in Pharmacological Sciences , 27 (11): 566-573, 2006).
  • CAIX carbonic anhydrase IX
  • HIF-1 hypoxia-inducible factor
  • Tumor hypoxia results from the creation of an oxygen-poor environment as solid tumors grow at a rate that exceeds the blood supply capacity provided by the host's vasculature. Even in a hypoxic microenvironment, solid tumors maintain continuous growth and proliferation through various genetic mutations. These hypoxic tumor cells exhibit increased resistance to chemotherapy and radiotherapy because it is difficult for chemotherapy drugs to be delivered through the blood and, in the case of radiotherapy, lacks the oxygen necessary for the cytotoxic action of radiation-derived free radicals. indicate In addition, hypoxic tumor cells induce overexpression of CAIX on the cell surface to lower the pH of the extracellular environment of tumor cells by hydration of CO 2 by the extracellular catalytic domain of CAIX. The acidic tumor microenvironment thus formed can promote invasion and metastasis of tumor cells and neutralize pH-sensitive drugs (Thiry et al., ditto ). Therefore, tumor hypoxia is generally known as a poor prognostic factor for cancer patients.
  • CAIX-specific binding agents and inhibitors that are suitable for medical and pharmaceutical uses in cancer treatment, including treatment, prevention, diagnosis, prognosis, and imaging of cancer diseases.
  • Non-Patent Document 1 Thiry et al., TRENDS in Pharmacological Sciences , 27 (11): 566-573, 2006
  • Non-Patent Document 2 De Simone et al., Biochimica et Biophysica Acta , 1804 :404-409, 2010
  • One object of the present invention is to provide stable CAIX-specific binders and inhibitors suitable for use in the treatment, prevention, diagnosis or prognosis of cancer diseases.
  • One object of the present invention is to provide stable CAIX-specific binding peptide ligands.
  • One object of the present invention is to provide a high affinity CAIX-specific peptide construct comprising at least one effector or functional group, including a sulfonamide functional group, together with a CAIX-specific binding peptide ligand.
  • a further object of the present invention is to provide a conjugate comprising the peptide structure.
  • a further object of the present invention is to provide a composition for diagnosing, preventing or treating cancer comprising the peptide ligand, peptide structure or conjugate.
  • a further object of the present invention is to provide a method for diagnosing cancer using the peptide ligand, peptide structure or conjugate.
  • a further object of the present invention is to provide a method for treating cancer using the peptide ligand, peptide construct or conjugate.
  • a further object of the present invention is to provide a method for predicting prognosis after cancer treatment using the peptide ligand, peptide structure or conjugate.
  • the inventors of the present application have developed a novel CAIX-specific binding agent and inhibitor that can specifically bind to CAIX with high affinity while being stable, including D-amino acids.
  • the present invention provides a CAIX-specific peptide ligand comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 44. At least one of the constituent amino acids of the CAIX-specific peptide ligand is composed of D-amino acids, so it can be stably maintained in the body.
  • a lysine (Lys) residue may be substituted with a chemical functional group in the ⁇ -amino group of the side chain.
  • the chemical functional group include pentafluorobenzoic acid or diphenolic acid.
  • the present invention provides a peptide construct comprising a sulfonamide functional group-containing amino acid residue linked directly or via a spacer to the CAIX-specific peptide ligand.
  • the peptide structure may further include one or more functional groups other than the sulfonamide functional group-containing amino acid residues, and may have a cyclic or linear structure.
  • the present invention provides a CAIX-specific peptide structure having a cyclic structure of Formula 1 below.
  • P is a CAIX-specific binding peptide of the present invention.
  • F 1 is glycine (Gly) or a sulfonamide functional group-containing amino acid residue
  • F 2 is a sulfonamide functional group-containing amino acid residue
  • F 3 is glycine (Gly) or a functional group-containing amino acid residue other than sulfonamide;
  • n and m are each independently 0 or 1;
  • F 4 is a group of the general formula -(S 1 ) o -(F 5 ) p -(S 2 ) q -(F 6 ) r -NH 2 , wherein
  • S 1 and S 2 are each independently a spacer
  • F 5 and F 6 are each independently an amino acid residue containing a functional group other than sulfonamide
  • o, p, q and r each independently represent an integer of 0 to 6;
  • the present invention provides a CAIX-specific peptide structure having a linear structure of Formula 2 below.
  • P is a CAIX-specific binding peptide of the present invention.
  • F 8 is a sulfonamide functional group-containing amino acid residue
  • F 7 , F 9 and F 10 are each independently a functional group other than sulfonamide-containing amino acid residue, or
  • F 9 is plural, at least one F 9 is a sulfonamide functional group-containing amino acid residue, and the remaining F 9 , F 7 and F 10 are each independently a functional group other than sulfonamide-containing amino acid residue;
  • S 3 and S 4 are each independently a spacer
  • s, t, u, v and w each independently represents an integer of 0 to 3.
  • the sulfonamide functional group-containing amino acid residue may have the following structure, but is not limited thereto.
  • functional group-containing amino acid residues other than sulfonamide may be introduced through the side chain ⁇ -amino group of lysine residues, for example, chelators, cycloalkanes, biotin ( biotin), glucoheptonic acid, 4-(p-iodophenyl)butyric acid (IB), fluorescent dyes, or cytotoxic agents.
  • chelators for example, cycloalkanes, biotin ( biotin), glucoheptonic acid, 4-(p-iodophenyl)butyric acid (IB), fluorescent dyes, or cytotoxic agents.
  • the present invention provides a conjugate in which a fluorescent dye, a cytotoxic agent or a radioactive isotope is conjugated to the CAIX-specific peptide structure.
  • the present invention provides a pharmaceutical composition for diagnosis, prevention or treatment of cancer comprising the CAIX-specific peptide structure or the conjugate.
  • the cancer may be a cancer expressing CAIX.
  • the cancer is liver cancer, lung cancer, colon cancer, stomach cancer, breast cancer, colon cancer, bone cancer, pancreatic cancer, head and neck cancer, uterine cancer, ovarian cancer, rectal cancer, esophageal cancer, small intestine cancer, perianal cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, Can be selected from the group consisting of vaginal carcinoma, vulvar carcinoma, prostate cancer, biliary tract cancer, bladder cancer, kidney cancer, ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, melanoma, thyroid cancer, astrocytoma and glioblastoma, but is limited to these It doesn't work.
  • the present invention provides a method for diagnosing cancer comprising administering the CAIX-specific peptide construct or the conjugate to a subject.
  • the present invention provides a method for treating cancer comprising administering the CAIX-specific peptide construct or the conjugate to a subject.
  • the present invention provides a method for predicting prognosis after cancer treatment comprising administering the CAIX-specific peptide construct or the conjugate to a subject.
  • novel high-affinity CAIX binders and inhibitors that specifically bind to CAIX and are stable are provided.
  • the CAIX binding agent of the present invention includes a CAIX-specific binding peptide ligand comprising one or more D-amino acids, thereby exhibiting excellent stability in vivo and is useful for CAIX targeting.
  • the present invention provides a peptide structure in which one or more effectors or functional groups, including a sulfonamide functional group, are introduced into the CAIX-specific peptide ligand through the side chain of an amino acid residue, thereby imaging or diagnosing cancer with high binding affinity to CAIX CAIX binders that are particularly useful for applications can be provided.
  • the CAIX-specific peptide construct of the present invention can also be used as an effective drug for diagnosing, preventing or treating cancer by conjugating a fluorescent dye, a cytotoxic agent or a radioactive isotope.
  • FIG. 1 is a schematic diagram showing a peptide screening process for human carbonic anhydrase IX ( h CAIX) protein according to an embodiment of the present invention.
  • FIG. 2 shows a click reaction for introducing a sulfonamide functional group into a peptide library according to an embodiment of the present invention and a library structure used for h CAIX screening.
  • FIG. 3 shows the results of screening positive beads binding to h CAIX using COPAS according to an embodiment of the present invention.
  • Figure 4a shows the mass spectrometry results of h CAIX extracellular domain (ECD) binding peptide according to an embodiment of the present invention.
  • Figure 4b shows the results of MS/MS sequencing of the h CAIX ECD-binding peptide according to an embodiment of the present invention.
  • 5a and 5b are graphs showing the results of stability tests in serum and plasma of the peptide construct (No. 35) according to one embodiment of the present invention.
  • 6a and 6b are graphs showing the results of stability tests in serum and plasma of the peptide construct (No. 48) according to one embodiment of the present invention.
  • 7a to 7d are graphs of results obtained by analyzing the binding affinity and binding kinetics of a peptide construct according to an embodiment of the present invention to h CAIX ECD and human carbonic anhydrase XII ( h CAXII) ECD.
  • FIGS. 8a to 8d are graphs of the result of fluorescence-activated cell sorting (FACS) analysis using the SK-RC-52 cell line of the peptide construct according to one embodiment of the present invention.
  • FACS fluorescence-activated cell sorting
  • 8E to 8H are graphs of FACS analysis results using the A549 cell line of the peptide construct according to one embodiment of the present invention.
  • FIG. 9 is a photograph showing the results of immunofluorescence analysis using the SK-RC-52 cell line of the peptide construct (No. 22) according to an embodiment of the present invention.
  • FIG. 10 is a photograph of a Z-stack confocal microscope analysis image of a peptide structure (No. 94) according to an embodiment of the present invention.
  • FIG. 11a to 11c show the biodistribution analysis results of peptide constructs according to one embodiment of the present invention in mice xenotransplanted with SK-RC-52 cell line.
  • Figure 11a shows an experimental plan schedule using mice
  • Figure 11b is an ex vivo photograph of tumors and organs excised from mice
  • Figure 11c is homogenizing each tumor and organs to measure fluorescence intensity This is the resulting graph.
  • 12a and 12b are changes in body weight (Fig. 12a) and tumor size (Fig. 12a) and tumor size (Fig. It is a graph showing 12b).
  • FIG. 13 is an in vivo SPECT/CT image using an isotope ( 177 Lu)-labeled peptide construct (No. 95) according to an embodiment of the present invention in a mouse transplanted with SK-RC-52 cell line It shows the result of the experiment.
  • FIG. 15a to 15c are photographs showing changes in tumor size of mice by an isotope ( 177 Lu)-labeled peptide structure (No. 95) according to an embodiment of the present invention in mice in which SK-RC-52 cell line is xenotransplanted; (FIG. 15a), a graph (FIG. 15c), and a graph showing weight change (FIG. 15b).
  • CAIX-specific peptide ligands of the present invention are CAIX-specific peptide ligands of the present invention.
  • CAIX-specific peptide ligands of the present invention may include the amino acid sequence of any one of SEQ ID NOs: 1-44.
  • the peptide ligand may contain D-amino acids or consist of only D-amino acids.
  • the peptide ligand may be substituted with one or more functional groups including, but not limited to, one or more chemical functional groups, for example, pentafluorobenzoic acid or diphenolic acid, in the ⁇ -amino group of the side chain of a lysine (Lys) residue among constituent amino acid residues.
  • the peptide ligand may further include one or more chemical modifications in the side chain of a phenylalanine (Phe) residue among constituent amino acid residues.
  • modifications include, but are not limited to, a phenylalanine residue to a homophenylalanine residue, a phenyl group to a naphthalene group, or a halo, amino or phenyl substituent on a phenyl group.
  • the peptide ligand of the present invention may be prepared such that amino acid residues having a specific sequence bind to each other to form a linear or cyclic molecule.
  • the peptide ligand of the present invention can be prepared by a known peptide synthesis method, and is not particularly limited.
  • the peptide ligand of the present invention can be prepared by repeating the peptide synthesis process until a peptide having a desired length and sequence is completed on a solid single bead.
  • CAIX-specific peptide ligands of the present invention also include salt forms thereof.
  • the present invention provides a peptide construct comprising a sulfonamide functional group-containing amino acid residue linked directly or via a spacer to a CAIX-specific peptide ligand.
  • the peptide construct may further comprise one or more functional group-containing amino acid residues other than the sulfonamide functional group.
  • a chemical functional group including a sulfonamide functional group may be introduced through the side chain of an amino acid residue.
  • the amino acid residue into which the functional group is introduced is preferably lysine.
  • the peptide constructs of the present invention may contain one or two sulfonamide functional groups.
  • Introduction of the sulfonamide functional group may be achieved through a known synthetic reaction and is not particularly limited.
  • a sulfonamide functional group can be introduced into the peptide structure of the present invention through a click chemistry reaction.
  • Examples of preferred sulfonamide functional group-containing amino acid residues that can be incorporated into the peptide constructs of the present invention include, but are not limited to, the following structures.
  • non-limiting examples of functional groups other than sulfonamide that can be introduced into the peptide structure of the present invention include a chelator, a cycloalkane having 5 to 15 carbon atoms, biotin, gluco Glucoheptonic acid, 4-(p-iodophenyl)butyric acid (IB), fluorescent dyes, or cytotoxic agents may be included.
  • the chelator is, for example, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4 ,7-triacetic acid (NOTA), ethylenediaminetetraacetic acid 2,2',2'',2'''-(ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA), 1,4, 7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N'''',N'''''-hexaacetic acid (HEHA), 2-[ 4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''-pentaacetic acid (PEPA), 1, 4,7,10-tetraazacyclododecan
  • the cycloalkane having 5 to 15 carbon atoms may be, for example, one or more selected from cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, adamantane, norbornane, isobornane, and tricyclodecane. , but not limited thereto.
  • the peptide constructs of the present invention may also link a chemical functional group-containing amino acid residue, such as a sulfonamide functional group, to a CAIX-specific binding peptide ligand via a spacer.
  • the spacer may be, for example, at least one selected from a polyethylene glycol (PEG) linker, glycine, sarcosine, and a peptide linker consisting of 1 to 5 D-amino acids or L-amino acids, but is not limited thereto.
  • PEG polyethylene glycol
  • the peptide structure of the present invention may have a cyclic or linear structure.
  • the peptide structure of the present invention has a cyclic structure of Formula 1 below.
  • P, F 1 , F 2 , F 3 , F 4 , n and m are each as defined above.
  • a cyclic structure such as the cyclic peptide structure of the present invention, has less flexibility than a linear peptide, entropy loss is less during target binding, resulting in higher binding affinity and higher binding specificity to the target. is believed to increase
  • the peptide construct of the present invention specifically binds to CAIX, but exhibits high selectivity that does not bind to other isoenzymes of CAIX (eg, carbonic anhydrase XII).
  • the CAIX-specific peptide construct of the present invention may be linked directly or via a linker to a fluorescent dye, a cytotoxic agent, or a radioactive isotope to form a conjugate.
  • the conjugate can target CAIX while labeling CAIX-expressing cancer with a fluorescent dye or radioisotope, or effectively deliver drugs such as radioactive isotope or cytotoxic agent to the cancer, making it suitable for diagnosis, prevention, or treatment of cancer. useful.
  • the linker is 6-maleimidocaproyl (MC), maleimidopropanoyl (MP), valine-citrulline (val-cit), alanine-phenylalanine (ala-phe), p-aminobenzyl Oxycarbonyl (PAB), N-succinimidyl 4-(2-pyridylthio)pentanoate (SPP), N-succinimidyl 4-(N-maleimidomethyl)cyclohexane-1 carboxylate ( SMCC), 4-(2-pyridyldithio)butyric acid-N-hydroxysuccinimide ester (SPDB), and N-succinimidyl(4-iodo-acetyl)aminobenzoate (SIAB). It may be more than one, but is not limited thereto.
  • non-limiting examples of the fluorescent dye include near-infrared fluorescent dyes, fluorescein type, rhodamine type, Alexa Fluor, 4,4-difluoro-4- Contains one or more selected from boro-3a,4a-diaza-s-indacene (BODIPY), Texas Red, dansyl, lissamine, cyanine (Cy), and phycoerythrin can do.
  • BODIPY boro-3a,4a-diaza-s-indacene
  • Cy cyanine
  • phycoerythrin can do.
  • the cytotoxic agent may be one or more selected from toxins, chemotherapeutic agents, drug moieties, antibiotics, and nucleases, but is not limited thereto.
  • the radioisotope is fluorine-18 (F-18), carbon-11 (C-11), carbon-14 (C-14), techtenium-99m (Tc-99m), copper -64 (Cu-64), copper-67 (Cu-67), dysprosium-168 (Dy-168), bismuth-213 (Bi-213), samarium-153 (Sm-153), strontium-89 (St- 89), strontium-90 (St-90), erbium-169 (Er-169), phosphorus-32 (P-32), palladium-103 (Pd-103), rhenium-186 (Re-186), rhenium- 188 (Re-188), Oxygen-15 (O-15), Selenium-75 (Se-75), Sodium-24 (Na-24), Strontium-85 (Sr-85), Lutetium-177 (Lu-177) ), yttrium-90 (Y-90), iodine-123 (I-123), iodine
  • the present invention provides a pharmaceutical composition for diagnosis, prevention or treatment of cancer comprising the CAIX-specific peptide ligand, peptide construct or conjugate of the present invention.
  • the cancer of the present invention is preferably a solid cancer. More preferably, the cancer of the present invention is a cancer expressing CAIX.
  • the cancer of the present invention is liver cancer, lung cancer, colon cancer, stomach cancer, breast cancer, colon cancer, bone cancer, pancreatic cancer, head and neck cancer, uterine cancer, ovarian cancer, rectal cancer, esophageal cancer, small intestine cancer, perianal cancer, fallopian tube carcinoma, endometrium
  • It may be a solid cancer such as carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, prostate cancer, biliary cancer, bladder cancer, kidney cancer, ureteric cancer, renal cell carcinoma, renal pelvic carcinoma, melanoma, thyroid cancer, astrocytoma or glioblastoma, but , but is not limited thereto.
  • a subject to whom the pharmaceutical composition for diagnosis, prevention or treatment of cancer of the present invention is administered may be a mammal at risk of developing cancer, diagnosed with cancer, or treated for cancer.
  • the mammal may be a human or a non-human mammal.
  • the pharmaceutical composition for diagnosis, prevention, or treatment of cancer according to the present invention is an oral formulation such as powder, granule, tablet, capsule, suspension, emulsion, syrup, aerosol, external preparation, suppository, and sterile injection solution according to conventional methods, respectively. It may be formulated and used in the form of, and may include suitable carriers, excipients or diluents commonly used in the preparation of pharmaceutical compositions for formulation.
  • Examples of the carrier, excipient, or diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, and microcrystalline cellulose. , polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
  • diluents or excipients such as fillers, weighting agents, binders, wetting agents, disintegrants, and surfactants commonly used in the pharmaceutical industry.
  • the preferred dosage of the pharmaceutical composition for preventing or treating cancer according to the present invention varies depending on the patient's condition, weight, disease severity, drug type, administration route and duration, but can be appropriately selected by those skilled in the art. However, for desirable effects, it may be administered at 0.0001 to 2,000 mg/kg per day, preferably 0.001 to 2,000 mg/kg. Administration may be administered once a day or divided into several times. However, the scope of the present invention is not limited by the dosage.
  • the pharmaceutical composition for preventing or treating cancer according to the present invention can be administered to mammals such as rats, mice, livestock, and humans through various routes.
  • the method of administration may be, for example, oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine intrathecal or intracerebroventricular injection and the like.
  • the present invention also provides a method for treating cancer, comprising administering the CAIX-specific peptide construct or conjugate of the present invention to a subject in need of such treatment.
  • CAIX-specific peptide constructs and conjugates of the present invention are also used for diagnosing cancer by targeting and imaging cancer, or administered to a subject undergoing cancer treatment to predict or observe the treatment prognosis of the subject after cancer treatment can be used for purposes.
  • a peptide library was synthesized to obtain peptides specifically binding to the extracellular domain (ECD) of human carbonic anhydrase IX ( h CAIX).
  • the synthesized peptide library was screened to evaluate the binding ability and specificity of the selected peptides to h CAIX ECD.
  • FIG. 1 A schematic diagram showing the peptide screening process for CAIX ECD is shown in FIG.
  • a random combinatorial one-bead-one-compound (OBOC) library was synthesized using TentaGel beads.
  • TentaGel® S-NH 2 resin (Cat# NSD30902) was purchased from Rapp Polymere GmbH (Germany).
  • Fmoc-ANP linker 3-(Fmoc-amino)-3-(2-nitrophenyl)propanoic acid, Cat# LSP308, AAPPTEC
  • N-acetylglycine 3 equivalents, Cat# A16300, Sigma-Aldrich
  • TBTU 3 equivalents, Cat# 12806, Sigma-Aldrich
  • DIPEA 7.5 equivalents, Cat# 8.00894, Sigma-Aldrich
  • the solid phase beads were washed with NMP, reacted with a piperidine/NMP (1:4) solution to remove the Fmoc protecting group, and then washed sequentially with NMP, DCM (dichloromethane), and NMP. Thereafter, Fmoc-Arg(pbf)-OH (3 equiv., Cat# 36404, GL Biochem) and Fmoc-PEG1-OH (3 equiv., Cat# 246201, ChemPep) were then synthesized in the same manner to prepare a linker. For peptide library synthesis, the linker-equipped beads were divided into 18 wells of an automatic synthesizer RV (reaction vessel) in equal amounts.
  • RV automatic synthesizer
  • the solid phase beads were collected in a collector vessel (CV), mixed, and then divided into 18 RV wells in equal amounts for coupling and removal of the Fmoc protecting group. The separation and mixing process was repeated until the length was reached.
  • CV collector vessel
  • the beads were washed with NMP and 0.1 M sodium diethyldithiocarbamate (Sigma-Aldrich, Cat# D3506)/NMP solution to remove copper impurities.
  • Trifluoroacetic acid (95%, TFA, Cat# 299537, Sigma-Aldrich), tertiary distilled water (2.5%), triisopropylsilane (2.5%, TIS, Cat# 233781, Sigma- Aldrich) for 2 hours, washed with DCM, dried in vacuo, and stored at 4 °C while blocking light.
  • FIG. 2 An embodiment of the library structure used for the click reaction and h CAIX screening for the introduction of sulfonamide functional groups into the peptide library is shown in FIG. 2 .
  • h CAIX ECD equipped with a fluorescent dye was removed from about 25,000 positive beads obtained through the primary screening in Example 2-1. Thereafter, 1 mL of the blocking solution was added to the beads, incubation was performed using a 360 ° shaker, and the solution was removed. A 250 nM h CAIX ECD solution equipped with a fluorescent dye was added, further incubation was performed, and the solution was removed. After transferring the beads to a conical tube, they were diluted with 45 mL of PBST buffer containing 0.1% of Tween20 and then subdivided.
  • Each subdivided solution was further diluted by adding a PBST solution containing 0.1% Tween20, mounted in a sample container of COPAS, and proceeded in two stages under Excitation 640 nm and Emission 680/30 BP conditions.
  • a PBST solution containing 0.1% Tween20 mounted in a sample container of COPAS, and proceeded in two stages under Excitation 640 nm and Emission 680/30 BP conditions.
  • about 1,000 beads with high fluorescence intensity were selected under the conditions of enrichment mode, PMT 630, and Gain 3.0.
  • the obtained 1,000 beads were diluted with tertiary distilled water, and then the second COPAS screening was performed using a 96-well plate under the conditions of Pure mode, PMT 620, and Gain 3.0.
  • Peptides were separated from the solid-state single beads obtained through the secondary screening of Example 2-2 through a photolysis reaction.
  • the 96-well plate containing the beads was sealed under an argon (Ar) atmosphere, and UVP cross-linking agent (Cat# 849-30101-2, Analytikjena, Germany) was used at a wavelength of 365 nm and an irradiation of 9,000 ⁇ J/cm 2 .
  • the photolysis reaction proceeded for 10 minutes under the conditions. After opening the 96-well plate, it was concentrated at room temperature using an acid benchtop concentrator (Cat# 7310042, LABCONCO, USA).
  • Example 2 About 50 kinds of peptides selected from among 250 to 300 kinds of peptides having amino acid sequences obtained in Example 2-3 were selected and subjected to Example 1 on TentaGel beads (0.08 mmole/g, 10 mg for each peptide) equipped with a photolytic linker. After synthesizing using an Apex 396 automatic synthesizer in the same manner as above, protecting groups of amino acid residues were removed using a mixed solution of TFA (95%)/tertiary distilled water (2.5%)/TIS (2.5%).
  • Fmoc-Lys(mtt)-OH (5 equiv.), Oxyma Pure (5 equiv.), and diisopropylcarbodiimide (DIC, Cat# D0254, TCI) (10 equiv.) were treated in NMP solvent for coupling After that, the Fmoc protecting group was removed. The same process was repeated twice using Fmoc-PEG1-OH (5eq).
  • the resin recovered from the ultrasonic peptide synthesizer was treated with a mixed solution of 1.5% TFA/2.5% TIS/96% DCM to remove the 4-methyltrityl protecting group (Mtt).
  • biotin-NHS (3 equivalents) and DIPEA (10 equivalents) were reacted at room temperature for 1 hour in NMP solvent, washed sequentially with NMP and DCM, and vacuum dried.
  • a peptide having the selected amino acid sequence was synthesized using the biotin linker synthesized in Example 3-1 above.
  • the mixture was washed with NMP.
  • Fmoc-E(OAll)-OH was first introduced into the biotin linker, and then the peptide connection (cyclization) reaction was performed.
  • a sulfonamide functional group was introduced into a peptide containing an azido substituent by a click reaction as described in Examples 1-2 above.
  • adamantane, cyclooctane or DOTA functional group is a peptide containing a lysine protected with Mtt or 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl (Dde) substituent.
  • Dde 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl
  • the biotin functional group was introduced by reacting biotin-NHS (3 equiv.) and DIPEA (10 equiv.) at room temperature in NMP solvent.
  • the cyclic peptide structure is a ring that forms a covalent bond between the carbonyl group of glutamic acid bonded to the C-terminus of an amino acid and the amide group of the N-terminus of an amino acid in the peptide into which glutamic acid was introduced synthesized in Example 3-2 above.
  • a cyclic structure was formed through a cyclization reaction.
  • the cyclization reaction was carried out at room temperature with PyAOP (3 equivalents, Cat# 36813, GL Biochem) and DIPEA (10 equivalents), and after the reaction was completed, the beads were washed sequentially with NMP and DCM and then vacuum dried.
  • the dried linear or cyclic peptide-equipped beads obtained in Examples 3-3 and 3-4 were treated with a mixed solution of 95% TFA/2.5% TIS/2.5% H2O.
  • the beads were removed using a filter, the TFA mixed solution containing the peptide was collected in a conical tube, and most of the mixed solution was removed by blowing with nitrogen gas.
  • diethyl ether was added to precipitate the peptide, and after rotation in a centrifuge, the upper layer of diethyl ether and a small amount of the remaining TFA mixed solution were removed, and the remaining solid peptide was vacuum dried.
  • An Agilent Poroshell 120 EC-C18 column (4.6 X 50 mm, 2.7 ⁇ m) was used as the stationary phase, and the column temperature was maintained at 40 °C.
  • a mixture of 0.1% TFA-added tertiary distilled water and ACN was used as the mobile phase solvent, and the wavelengths were 214 and 254 nm and the flow rate was 1 mL/min.
  • the purified peptide solution was used in powder form after removing the solvent using a lyophilizer.
  • AA1 to AA7 represent amino acid residues
  • lowercase letters represent D-amino acids
  • uppercase letters represent L-amino acids, respectively
  • U is a modified or unnatural D- It means an amino acid and has the following structure defined herein.
  • the stability test in serum and plasma was performed on the peptide structure obtained in Example 3. 100% pure human serum (Cat# S1, Merk) or plasma (Cat# 70039.1, STEMCELL Technologies) [or 100% pure mouse serum (Sigma, Cat# S7273) or plasma (Rockland, Cat# D508-06-0050) )] A solution of the peptide structure diluted to a final concentration of 50 ⁇ M in 1 mL was subdivided into 100 ⁇ L portions and stored at 37 ° C once a day for 7 days on an Agilent Poroshell 120 EC-C18 column (4.6 X 50 mm, 2.7 ⁇ m). ) equipped with LC-MS (1260 infinity II, Infinity Lab LC/MSD, Aglient).
  • FIGS. 6a and 6b show the results of stability tests in serum and plasma of peptide constructs Nos. 35 and 48, respectively.
  • Peptide structure No. 35 containing D-amino acids was not degraded at all and was completely maintained even after 6 days in serum and plasma, but when all amino acid residues at No. 35 were changed to L-form, it was completely degraded within 1 day in serum and within 3 days in plasma. Decomposition was confirmed (Figs. 5a and 5b).
  • peptide structure No. 48 containing D-amino acids was also shown to be completely maintained without decomposition at all even after 7 days in human or mouse serum and plasma, but when all amino acid residues at No. 48 were changed to L-form, serum It was completely degraded within 1 day, and most of it was degraded within 7 days in plasma (Figs. 6a and 6b).
  • the peptide constructs were analyzed for binding affinity and binding kinetics to h CAIX ECD. To confirm the specific binding selectivity to h CAIX ECD, the binding kinetics of the peptide construct were also analyzed for the extracellular domain of human carbonic anhydrase XII ( h CAXII), another isoform of carbonic anhydrase.
  • Binding affinity was measured using the Bio-Layer Interferometry (BLI) technology-based BLItz® system (Cat# 45-5000, Fort Bio, USA) and advanced kinetics module of BLItz Pro ver1.3 software were used. And a streptavidin biosensor (Cat# 18-5019, Sartorius, France) was used for all measurements. In addition, a protein concentration of 0 nM was used as a reference for non-specific binding and background correction. First, 10X Octet kinetics buffer (Cat# 18-1105, Sartorius) was made 1X using DPBS (Biowest, Cat# L0615) and used as a buffer solution for analysis.
  • the streptavidin biosensor was immersed for 10 minutes Hydration was performed. And after mounting the biosensor on the equipment, it was loaded for 120 seconds at rpm 2200 at a concentration of 1 ⁇ M to attach the peptide. Thereafter, association and dissociation of the proteins were performed at 2200 rpm for 120 seconds for each concentration, and the KD value was calculated as the ratio of kd to ka for kinetics data using the global fitting function. Also, kinetic parameters were obtained by baseline correction and fitting 1:1 binding model.
  • CAIX-expressing human renal cancer cell line SK-RC-52 was purchased from Memorial Sloan Kettering Cancer Center (MSK, USA), and CAXII-expressing human lung cancer cell line A549 was purchased from Korea Cell Line Bank (Cat# 10185, KCLB, Korea). Purchased.
  • the peptide construct to be used for analysis was dissolved in DMSO to make a 1 mM solution, and then diluted to a desired concentration (10000, 100, 30, 10, 5 nM) using a DMEM mixture containing 1% FBS (buffer solution for FACS).
  • the neutralized cell mixture was placed in a 15 mL tube and spun at 1000 RPM for 4 minutes using a VARISPIN 15R centrifuge. The supernatant of the centrifuged cell mixture was removed, and a new culture medium was added to dilute the number of cells to 5 X 10 5 per 100 ⁇ L, and then 100 ⁇ L was dispensed into a 96-well round plate (Cat# 34096, SPL LIFE SCIENCE). .
  • the cell mixture was centrifuged at 1000 RPM for 4 minutes using a VARISPIN 15R centrifuge, then the supernatant was removed, treated with 200 ⁇ L of Hoechst 33342 diluted to a concentration of 1 ⁇ g/mL in FACS buffer, and incubated at 4 ° C. Nuclear staining was performed for 30 min. After centrifugation at 1000 RPM for 4 minutes using a VARISPIN 15R centrifuge, the supernatant was removed and washed with 200 ⁇ L of PBS (repeated twice). The cell mixture, to which 200 ⁇ L of PBS was added, was transferred to a confocal dish (Cat# 100350, SPL LIFE SCIENCE) and fluorescence was observed with an Axio Observer 3 (ZEISS, Germany).
  • a confocal dish Cat# 100350, SPL LIFE SCIENCE
  • FIGS. 8A to 8D FACS analysis results using the SK-RC-52 cell line are shown in FIGS. 8A to 8D
  • FACS analysis results using the A549 cell line are shown in FIGS. 8E to 8H . From the results of FACS analysis, it was confirmed that the peptide construct of the present invention binds to target cells expressing CAIX with high affinity and selectivity.
  • A549 cell line 5 X 10 4 cells, SK-RC-52 cell line 1 X 10 5 cells were seeded in a confocal dish and incubated in a Galaxy 170 S CO 2 incubator (37 °C, 5% CO 2 , humid conditions) for 2 days. cultured for a while. Subsequently, each cell line was treated with M75-FITC antibody or peptide construct diluted in 2 mL of FACS buffer solution to a final concentration of 1:200 (dilution ratio from the stock solution) and 1 ⁇ M, respectively, and then incubated in Galaxy 170 S CO 2 37 °C, 5% CO 2 was incubated for 1 hour in a humid condition in the treatment machine.
  • streptavidin-Texas red and Hoechst 33342 diluted in 2 mL of FACS buffer solution were final concentrations of 1:50 (dilution ratio from the stock solution) and 0.5 ⁇ g/ml, respectively. mL, and incubated for 1 hour in a Galaxy 170 S CO 2 incubator at 37 °C and 5% CO 2 humid conditions. Then, after washing twice with 3 mL of FACS buffer solution and once with PBS, fluorescence was observed using Axio Observer 3.
  • 1 ⁇ 10 5 cells of the SK-RC-52 cell line were seeded in a confocal dish and cultured for 2 days in a Galaxy 170 S CO 2 incubator (37 °C, 5% CO 2 , humid conditions). Subsequently, the cell line was treated with the peptide construct diluted in 2 mL of FACS buffer solution to a final concentration of 100 nM, and then incubated in a Galaxy 170 S CO 2 incubator at 37 °C under 5% CO 2 humid conditions for 1 hour.
  • FIG. 10 shows a Z-stack confocal microscope analysis image of peptide construct No. 94 using the SK-RC-52 cell line. Peptide construct No. 94 was confirmed to exhibit good binding to CAIX ECD expressed in cells.
  • SK-RC-52 cell line a renal cancer cell line that overexpresses CAIX
  • SK-RC-52 cell line a renal cancer cell line that overexpresses CAIX
  • mice Orient Bio, Korea
  • Mice transplanted with tumor cells were weighed for 2 to 3 weeks to measure changes in the health of the mice, and the size of the tumor (short axis X short axis X long axis) was measured using a Digimatic Caliper (Cat#500-151-30, Mitutoyo, Japan). /2) was measured.
  • the control group injected saline containing 1% DMSO and 2% EtOH into the tail vein, and the peptide treated group injected only the peptide structure into the tail vein (i.e., peptide structure 85 No.), PDC1 in which the peptide structure and drug (MMAE) are linked through a linker (ie, peptide structure No. 86 in the form of a drug conjugate) were divided into PDC1-treated groups in which the tail vein was treated. Each group was divided into 3 animals, and the peptide treatment group was conducted with 2 animals.
  • the administration concentration was 250 nmole/kg, and it was administered using saline containing 200 ⁇ l of 1% DMSO and 2% EtOH as a vehicle.
  • As for the frequency of administration a total of 7 times, 3 times a week at 2-day intervals, was administered through the tail vein. Body weight and tumor size were measured once every 1 to 3 days.
  • the isotope of the peptide structure was labeled to confirm the diagnostic imaging and therapeutic functionality.
  • Peptide construct No. 95 was dissolved in DMSO to make a 10 mM stock solution, and then diluted with pH 5.5 ammonium acetate buffer solution to prepare a 1 mM peptide construct solution. After taking a volume of 7 nmole from the 1 mM solution and mixing with 1 mCi isotope ( 177 LuCl 3 , Eckert & Ziegler Radiopharma GmbH), pH 7.0 ammonium acetate buffer solution was added to pH 5.5. Isotope labeling was performed at 90 ° C.
  • SK-RC-52 cell line a human-derived Renal Cell Carcinoma (RCC) cell line
  • RCC Renal Cell Carcinoma
  • Tumor volume (mm 3 ) short axis 2 ⁇ long axis / 2
  • the mouse was given respiratory anesthesia with 0.2% isoflurane in oxygen for about 3 to 5 minutes, placed in the equipment, and then the anesthetic was continuously injected into the mouse at 1.5 L/min, and SPECT was measured for 50 minutes and CT for 7 minutes. , images were obtained with Inveon Research Workplace 4.2.
  • the SPECT/CT image picture obtained above is shown in FIG. 13 . It was confirmed that the isotope 177 Lu-labeled peptide structure No. 95 remained bound to the cancer cell SK-RC-52 even after 8 days.
  • mice that completed SPECT/CT measurement by 8 days after sample injection were euthanized by inhalation of carbon dioxide (CO 2 ), and after opening the stomach, tumors and organs (liver, kidney, spleen) were removed, each weight was measured, and each organ was irradiated. The amount of irradiation was measured with a portable Inspector survey meter (INSPECTER (078-510)). After converting the remaining amount of isotope 177 Lu-labeled peptide structure No. 95 measured in this way into radioactivity per unit weight, the tumor value was As a reference, the relative radiation intensity of the remaining organs was calculated and shown in Table 1 below.
  • Peptide construct No. 95 was dissolved in DMSO to make a 10 mM stock solution, and then diluted with pH 5.5 ammonium acetate buffer solution to prepare a 1 mM peptide construct solution. After taking a volume of 40 nmole from 1 mM solution and mixing with 14 mCi isotope ( 177 LuCl 3 , Eckert & Ziegler Radiopharma GmbH), pH 7.0 ammonium acetate buffer solution was added to pH 5.5.
  • Isotope labeling was performed at 90 ° C for 1 hour, and after labeling was completed, it was cooled to room temperature and purified using a 1200 Infinity LC system (Agilent) under the following conditions: (1) The stationary phase was an Agilent Poroshell 120 EC-C18 column ( 4.6 X 50 mm, 2.7 ⁇ m), (2) mobile phase solvent is a mixture of 0.1% TFA-added tertiary distilled water and ACN, (3) flow rate is 1 mL/min, (4) detection wavelengths are 254 nm and 214 nm . 14 shows the chromatogram of the target peptide construct No. 95 labeled with 177 Lu.
  • the 177Lu -labeled target peptide structure obtained by purification was loaded onto an activated Sep-Pak column (5 mL of ethanol, 5 mL of distilled water), washed with 5 mL of distilled water to remove the organic solvent, and ACN:H 2 O ( 1:1) 500 ⁇ L, 700 ⁇ L of ethanol were sequentially eluted, and the received solution was concentrated by purging with nitrogen.
  • the concentrated ethanol solution was diluted with saline (EtOH 20%, DMSO 1%) and used.
  • SK-RC-52 cell line a renal cancer cell line that overexpresses CAIX
  • PBS a renal cancer cell line that overexpresses CAIX
  • Mice transplanted with tumor cells were weighed for 2-3 weeks to measure the health of the mice, and the size of the tumor (minor axis 2 ⁇ long axis / 2) was measured.
  • the tumors reached a size of about 100 mm 3 , they were divided into 6 control groups injected with saline as a vehicle and 6 experimental groups injected with about 500 ⁇ Ci of target peptide construct No. 95 labeled with 177 Lu into the tail vein. Body weight and tumor size were measured three times a week.
  • FIGS. 15a to 15c The results are shown in Figures 15a to 15c.
  • the 177Lu -labeled target peptide construct exhibited an anticancer effect of significantly reducing the size of CAIX-overexpressing tumors without causing significant changes in the body weight of mice (FIG. 15b). shown (Figs. 15a and 15c).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 탄산탈수소효소 IX(Carbonic Anhydrase IX, CAIX)에 특이적으로 결합하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도에 관한 것이다. 본 발명의 CAIX 결합 펩타이드 리간드는 D-아미노산을 포함하여 체내에서 안정하면서도 CAIX에 대한 높은 결합 특이성을 가지며, 이를 포함하는 선형 또는 환형의 CAIX 결합 펩타이드 구조체는 체내에서 CAIX에 높은 친화성으로 결합할 수 있어 CAIX에 의해 매개되는 질환의 진단, 예방, 억제 또는 치료에 유용하다.

Description

탄산탈수소효소 IX를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도
본 발명은 탄산탈수소효소 IX(Carbonic Anhydrase IX, CAIX)에 특이적으로 결합하는 펩타이드 리간드 및 이를 포함하는 펩타이드 구조체에 관한 것이다. 구체적으로, 본 발명은 CAIX에 특이적이면서 D-아미노산을 포함하여 안정성을 높인 CAIX 결합 펩타이드 리간드, 상기 펩타이드 리간드를 포함하는 선형 또는 환형의 고 친화성 CAIX 결합 펩타이드 구조체, 및 CAIX에 의해 매개되는 질환의 진단, 예방, 억제 또는 치료를 위한 이들의 용도에 관한 것이다.
탄산탈수소효소(Carbonic Anhydrase, CA)는 인간을 비롯한 고등 척추동물에서 공통적으로 존재하는 아연(Zn2+) 금속효소로서, 이산화탄소를 수소 이온과 중탄산 이온으로 바꾸는 가역적인 수화 반응을 촉매하는 효소이다(CO2+H2O↔HCO3 -+H+). 이러한 CA는 16가지의 동종효소(isozyme) 형태가 밝혀져 있으며, 인간에서는 위장관, 생식관, 신경계, 신장, 폐, 피부 및 안구 등 다양한 조직에 존재한다. CA 동종효소들은 대부분 호흡, 석회화, 산-염기 평형, 골 재흡수, 및 수양액, 뇌척수액, 타액 및 위산의 형성 등 중요한 생리학적 과정에 관여하는 것으로 알려져 있다(Thiry et al., TRENDS in Pharmacological Sciences, 27(11): 566-573, 2006).
CA 패밀리 중에서, 탄산탈수소효소 IX(CAIX)는 특이하게도 정상 조직에는 매우 제한적으로 발현되는 반면, 대다수의 고형 종양에는 비정상적으로 과발현되는데, 이는 주로 고형 종양의 과다 증식으로 발생하는 저산소증(hypoxia)에 의해 전사 인자인 저산소증-유도성 인자(HIF-1)가 유도되어 HIF-1에 의한 강한 전사적 활성화 때문인 것으로 보고되고 있다(De Simone et al., Biochimica et Biophysica Acta, 1804:404-409, 2010; Thiry et al., ditto).
종양 저산소증은 고형 종양이 숙주의 혈관계가 제공하는 혈액 공급 능력을 초과하는 속도로 성장함에 따라 산소가 희박한 환경이 만들어지는 데서 유래한다. 저산소성 미세환경에서도 고형 종양은 여러가지 유전적 변이를 통해 지속적인 성장과 증식을 유지한다. 이러한 저산소성 종양 세포에는 항암화학치료제가 혈액을 통해 전달되기 어렵고, 방사선요법의 경우 방사선-유래 자유 라디칼의 세포독성 작용에 필요한 산소가 부족하기 때문에, 항암화학요법 및 방사선요법에 대해 증가된 저항성을 나타낸다. 또한 저산소성 종양 세포는 세포 표면에 CAIX의 과발현을 유도하여 CAIX의 세포외 촉매 도메인에 의한 CO2 수화에 의해 종양 세포의 세포외 환경의 pH를 낮춘다. 이렇게 형성된 산성 종양 미세환경은 종양 세포의 침습과 전이를 촉진시키고 pH 민감성 약제를 무력화시킬 수 있다(Thiry et al., ditto). 따라서 종양 저산소증은 일반적으로 암 환자의 불량한 예후 인자로 알려져 있다.
최근 종양 세포에 과발현된 CAIX를 표적으로 하거나 CAIX의 촉매 활성을 방해하여 종양 세포에 의한 pH 조절을 파괴함으로써 CAIX와 연관된 종양의 성장과 증식을 저해하려는 연구가 활발히 진행되고 있다. 이들 연구는 주로 CAIX에 결합하는 모노클로날 항체나 설폰아미드 계열의 소분자 저해제의 개발에 중점을 두고 있다. 그러나 고형 종양을 표적화하는데 있어서 분자량이 큰 모노클로날 항체는 효율적인 전달이 어려운 문제가 있고, 설폰아미드 계열의 소분자 저해제는 용액 상태에서 상대적으로 불안정하여 약제 화합물로서의 유용성이 제한되는 측면이 있다.
따라서 암 질환의 치료, 예방, 진단, 예후 예측, 영상화를 포함하여 암 치료의 의약학적 용도에 적합한, 고 친화성의, 안정한, 신규 CAIX-특이적 결합제 및 저해제의 개발이 필요하다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1) Thiry et al., TRENDS in Pharmacological Sciences, 27(11): 566-573, 2006
(비특허문헌 2) De Simone et al., Biochimica et Biophysica Acta, 1804:404-409, 2010
본 발명의 일 목적은 암 질환의 치료, 예방, 진단 또는 예후 예측 용도에 적합한, 안정한 CAIX-특이적 결합제 및 저해제를 제공하는 것이다.
본 발명의 일 목적은 안정한 CAIX-특이적 결합 펩타이드 리간드를 제공하는 것이다.
본 발명의 일 목적은 CAIX-특이적 결합 펩타이드 리간드와 함께 설폰아미드 작용기를 비롯한 하나 이상의 이펙터(effector) 또는 작용기를 포함하는 고 친화성 CAIX-특이적 펩타이드 구조체를 제공하는 것이다.
본 발명의 추가적인 목적은 상기 펩타이드 구조체를 포함하는 컨쥬게이트를 제공하는 것이다.
본 발명의 추가적인 목적은 상기 펩타이드 리간드, 펩타이드 구조체 또는 컨쥬게이트를 포함하는 암의 진단, 예방 또는 치료용 조성물을 제공하는 것이다.
본 발명의 추가적인 목적은 상기 펩타이드 리간드, 펩타이드 구조체 또는 컨쥬게이트를 이용하여 암을 진단하는 방법을 제공하는 것이다.
본 발명의 추가적인 목적은 상기 펩타이드 리간드, 펩타이드 구조체 또는 컨쥬게이트를 이용하여 암을 치료하는 방법을 제공하는 것이다.
본 발명의 추가적인 목적은 상기 펩타이드 리간드, 펩타이드 구조체 또는 컨쥬게이트를 이용하여 암 치료 후 예후를 예측하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 예의 연구한 결과, 본 출원의 발명자들은 D-아미노산을 포함하여 안정하면서도 CAIX에 고 친화성으로 특이적으로 결합할 수 있는 신규한 CAIX-특이적 결합제 및 저해제를 개발하였다.
본 발명은 일 측면에서, 서열번호 1 내지 44 중 어느 하나의 아미노산 서열을 포함하는 CAIX-특이적 펩타이드 리간드를 제공한다. 상기 CAIX-특이적 펩타이드 리간드는 구성 아미노산 중 적어도 하나가 D-아미노산으로 이루어져 있어 체내에서 안정하게 유지될 수 있다. 상기 CAIX-특이적 펩타이드 리간드의 구성 아미노산 중 라이신(Lys) 잔기는 측쇄 ε-아미노 기에서 화학적 작용기로 치환될 수 있다. 상기 화학적 작용기의 비제한적인 예에는 펜타플루오로벤조산(pentafluorobenzoic acid) 또는 디페놀산(diphenolic acid)이 포함된다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 리간드에 직접 또는 스페이서(spacer)를 통해 연결된 설폰아미드 작용기-함유 아미노산 잔기를 포함하는 펩타이드 구조체를 제공한다. 상기 펩타이드 구조체는 설폰아미드 작용기 이외의 하나 이상의 다른 작용기-함유 아미노산 잔기를 추가로 포함할 수 있으며, 환형 또는 선형의 구조를 취할 수 있다.
본 발명은 일 측면에서, 하기 화학식 1의 환형 구조를 갖는 CAIX-특이적 펩타이드 구조체를 제공한다.
[화학식 1]
Figure PCTKR2023001951-appb-img-000001
상기 식에서,
P는 본 발명의 CAIX-특이적 결합 펩타이드이고,
F1은 글리신(Gly)이거나 또는 설폰아미드 작용기-함유 아미노산 잔기이며,
F2는 설폰아미드 작용기-함유 아미노산 잔기이고,
F3은 글리신(Gly)이거나 또는 설폰아미드 이외의 작용기 함유-아미노산 잔기이며,
n 및 m은 각각 독립적으로 0 또는 1이고,
F4는 일반식 -(S1)o-(F5)p-(S2)q-(F6)r-NH2의 기이며, 여기서
S1 및 S2는 각각 독립적으로 스페이서이고,
F5 및 F6은 각각 독립적으로 설폰아미드 이외의 작용기 함유-아미노산 잔기이며,
o, p, q 및 r은 각각 독립적으로 0 내지 6의 정수를 나타낸다.
본 발명은 일 측면에서, 하기 화학식 2의 선형 구조를 갖는 CAIX-특이적 펩타이드 구조체를 제공한다.
[화학식 2]
CH3C(=O)-Gly-(F7)s-F8-(S3)t-P-(F9)u-(S4)v-(F10)w-NH2
상기 식에서,
P는 본 발명의 CAIX-특이적 결합 펩타이드이고,
F8은 설폰아미드 작용기-함유 아미노산 잔기이며,
F7, F9 및 F10은 각각 독립적으로 설폰아미드 이외의 작용기-함유 아미노산 잔기이거나, 또는
F9가 복수개인 경우, 적어도 하나의 F9는 설폰아미드 작용기-함유 아미노산 잔기이고, 나머지 F9와 F7 및 F10은 각각 독립적으로 설폰아미드 이외의 작용기-함유 아미노산 잔기이며,
S3 및 S4는 각각 독립적으로 스페이서이고,
s, t, u, v 및 w는 각각 독립적으로 0 내지 3의 정수를 나타낸다.
상기 CAIX-특이적 펩타이드 구조체에서, 설폰아미드 작용기-함유 아미노산 잔기는 하기 구조를 가질 수 있으나, 이들로 제한되지 않는다.
Figure PCTKR2023001951-appb-img-000002
상기 CAIX-특이적 펩타이드 구조체에서, 설폰아미드 이외의 작용기-함유 아미노산 잔기는 라이신 잔기의 측쇄 ε-아미노 기를 통해 도입될 수 있으며, 예를 들어 킬레이터(chelator), 사이클로알칸(cycloalkane), 비오틴(biotin), 글루코헵톤산(glucoheptonic acid), 4-(p-요오도페닐)부티르산(IB), 형광 염료, 또는 세포독성제를 포함한다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 구조체에 형광 염료, 세포독성제 또는 방사성동위원소가 접합된 컨쥬게이트를 제공한다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 구조체 또는 상기 컨쥬게이트를 포함하는 암의 진단, 예방 또는 치료용 제약 조성물을 제공한다. 상기 암은 CAIX를 발현하는 암일 수 있다. 상기 암은 간암, 폐암, 대장암, 위암, 유방암, 결장암, 골암, 췌장암, 두경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 전립선암, 담도암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 흑색종, 갑상선암, 성상세포종 및 교모세포종으로 구성된 군에서 선택될 수 있으나, 이들로 제한되지 않는다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 구조체 또는 상기 컨쥬게이트를 개체에게 투여하는 것을 포함하는 암의 진단 방법을 제공한다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 구조체 또는 상기 컨쥬게이트를 개체에게 투여하는 것을 포함하는 암의 치료 방법을 제공한다.
본 발명은 일 측면에서, 상기 CAIX-특이적 펩타이드 구조체 또는 상기 컨쥬게이트를 개체에게 투여하는 것을 포함하는 암 치료 후 예후 예측 방법을 제공한다.
본 발명에 의해, CAIX에 특이적으로 결합하면서도 안정한 신규한 고 친화성 CAIX 결합제 및 저해제가 제공된다. 본 발명의 CAIX 결합제는 하나 이상의 D-아미노산을 포함하는 CAIX-특이적 결합 펩타이드 리간드를 포함함으로써 체내에서 우수한 안정성을 나타내며 CAIX 표적화에 유용하다. 또한 본 발명은 상기 CAIX-특이적 펩타이드 리간드에 설폰아미드 작용기를 비롯하여 하나 이상의 이펙터 또는 작용기를 아미노산 잔기의 측쇄를 통해 도입시킨 펩타이드 구조체를 제공함으로써, CAIX에 대한 높은 결합 친화성으로 암의 영상화 또는 진단 용도에 특히 유용한 CAIX 결합제를 제공할 수 있다. 본 발명의 CAIX-특이적 펩타이드 구조체는 또한 형광 염료, 세포독성제 또는 방사성동위원소 등을 접합시켜 암의 진단, 예방 또는 치료에 효과적인 약제로 사용될 수 있다.
도 1은 본 발명의 일 구현예에 따른 인간 탄산탈수소효소 IX(hCAIX) 단백질에 대한 펩타이드 스크리닝 과정을 나타낸 도식도이다.
도 2는 본 발명의 일 구현예에 따른 펩타이드 라이브러리에 설폰아미드 작용기 도입을 위한 클릭 반응과 hCAIX 스크리닝에 사용된 라이브러리 구조를 도시한 것이다.
도 3은 본 발명의 일 구현예에 따른 COPAS를 사용하여 hCAIX에 결합하는 양성 비드를 스크리닝한 결과를 나타낸 것이다.
도 4a는 본 발명의 일 구현예에 따른 hCAIX 세포외 도메인(ECD) 결합 펩타이드의 질량분석 결과를 나타낸 것이다.
도 4b는 본 발명의 일 구현예에 따른 hCAIX ECD 결합 펩타이드의 MS/MS 서열분석 결과를 나타낸 것이다.
도 5a 및 5b는 본 발명의 일 구현예에 따른 펩타이드 구조체(35번)의 혈청 및 혈장에서의 안정성 시험 결과를 나타낸 그래프이다.
도 6a 및 6b는 본 발명의 일 구현예에 따른 펩타이드 구조체(48번)의 혈청 및 혈장에서의 안정성 시험 결과를 나타낸 그래프이다.
도 7a 내지 7d는 본 발명의 일 구현예에 따른 펩타이드 구조체의 hCAIX ECD 및 인간 탄산탈수소효소 XII(hCAXII) ECD에 대한 결합 친화도 및 결합 역학 특성을 분석한 결과 그래프이다.
도 8a 내지 8d는 본 발명의 일 구현예에 따른 펩타이드 구조체의 SK-RC-52 세포주를 사용한 형광 활성화 세포 분류(FACS) 분석 결과 그래프이다.
도 8e 내지 8h는 본 발명의 일 구현예에 따른 펩타이드 구조체의 A549 세포주를 사용한 FACS 분석 결과 그래프이다.
도 9는 본 발명의 일 구현예에 따른 펩타이드 구조체(22번)의 SK-RC-52 세포주를 사용한 면역형광 분석 결과를 나타낸 사진이다.
도 10은 본 발명의 일 구현예에 따른 펩타이드 구조체(94번)의 Z-stack 공초점 현미경 분석 이미지 사진이다.
도 11a 내지 11c는 SK-RC-52 세포주가 이종이식된 마우스에서 본 발명의 일 구현예에 따른 펩타이드 구조체의 생체분포도 분석 결과를 나타낸 것이다. 도 11a는 마우스를 이용한 실험 계획 스케쥴을 도시한 것이고, 도 11b는 마우스에서 적출한 종양과 장기에 대한 생체외(ex vivo) 촬영 사진이며, 도 11c는 각 종양과 장기를 균질화하여 형광 세기를 측정한 결과 그래프이다.
도 12a 및 12b는 SK-RC-52 세포주가 이종이식된 마우스에서 본 발명의 일 구현예에 따른 펩타이드 구조체-약물 접합체(86번)에 의한 마우스의 체중 변화(도 12a) 및 종양 크기 변화(도 12b)를 나타낸 그래프이다.
도 13은 SK-RC-52 세포주가 이종이식된 마우스에서 본 발명의 일 구현예에 따른 동위원소(177Lu)가 표지된 펩타이드 구조체(95번)를 사용한 생체내(in vivo) SPECT/CT 영상 실험 결과를 나타낸 것이다.
도 14는 동위원소(177Lu)가 표지된 펩타이드 구조체(95번)를 LC로 정제한 결과의 크로마토그램이다.
도 15a 내지 15c는 SK-RC-52 세포주가 이종이식된 마우스에서 본 발명의 일 구현예에 따른 동위원소(177Lu)가 표지된 펩타이드 구조체(95번)에 의한 마우스의 종양 크기 변화를 나타낸 사진(도 15a)과 그래프(도 15c), 그리고 체중 변화를 나타낸 그래프(도 15b)이다.
달리 정의되지 않는 한, 본원에 사용된 모든 기술 및 과학 용어들은 본 발명이 속하는 분야의 통상의 기술자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 본원에 기재된 것들과 유사하거나 동등한 임의의 방법 및 물질이 본 발명의 실행 또는 시험에 사용될 수 있다.
본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
본 발명의 CAIX-특이적 펩타이드 리간드
본 발명은 CAIX에 특이적으로 결합하는 펩타이드 리간드를 제공한다. 본 발명의 CAIX-특이적 펩타이드 리간드는 서열 1 내지 44 중 어느 하나의 아미노산 서열을 포함할 수 있다. 상기 펩타이드 리간드는 D-아미노산을 포함하거나 또는 D-아미노산 만으로 이루어질 수 있다. 또한 상기 펩타이드 리간드는 구성 아미노산 잔기 중 라이신(Lys) 잔기의 측쇄 ε-아미노 기에서 하나 이상의 화학적 작용기, 예를 들어 펜타플루오로벤조산 또는 디페놀산을 포함하지만 이에 제한되지 않는 하나 이상의 작용기로 치환될 수 있다. 상기 펩타이드 리간드는 또한 구성 아미노산 잔기 중 페닐알라닌(Phe) 잔기의 측쇄에서 하나 이상의 화학적 변형을 추가로 포함할 수 있다. 그러한 변형은 페닐알라닌 잔기의 호모페닐알라닌 잔기로의 변형, 페닐기의 나프탈렌기로의 변형, 또는 페닐기에서 할로, 아미노 또는 페닐 치환기의 치환 등을 포함하지만 이로 제한되는 것은 아니다.
본 발명의 펩타이드 리간드는 특정 서열을 갖는 아미노산 잔기들이 서로 결합하여 선형 또는 환형의 분자를 이루도록 제조된 것일 수 있다. 본 발명의 펩타이드 리간드는 공지의 펩타이드 합성 방법에 의해 제조될 수 있으며, 특별히 제한되지 않는다. 일 실시태양에 있어서, 본 발명의 펩타이드 리간드는 고체상 단일 비드상에서 원하는 길이 및 서열의 펩타이드가 완성될 때까지 펩타이드 합성 과정을 반복하여 제조될 수 있다.
본 발명의 CAIX-특이적 펩타이드 리간드에는 그의 염 형태도 포함된다.
본 발명의 CAIX-특이적 펩타이드 구조체
본 발명은 CAIX-특이적 펩타이드 리간드에 직접 또는 스페이서를 통해 연결된 설폰아미드 작용기-함유 아미노산 잔기를 포함하는 펩타이드 구조체를 제공한다. 상기 펩타이드 구조체는 설폰아미드 작용기 이외의 하나 이상의 다른 작용기-함유 아미노산 잔기를 추가로 포함할 수 있다. 본 발명의 펩타이드 구조체에서 설폰아미드 작용기를 비롯한 화학적 작용기는 아미노산 잔기의 측쇄를 통해 도입될 수 있다. 상기 작용기가 도입되는 아미노산 잔기는 바람직하게는 라이신이다.
본 발명의 펩타이드 구조체는 1 또는 2개의 설폰아미드 작용기를 포함할 수 있다. 상기 설폰아미드 작용기의 도입은 공지의 합성 반응을 통해 이루어질 수 있으며 특별히 제한되지 않는다. 본 발명의 일 실시태양에 있어서, 설폰아미드 작용기는 클릭 화학(click chemistry) 반응을 통해 본 발명의 펩타이드 구조체에 도입될 수 있다. 본 발명의 펩타이드 구조체에 도입될 수 있는 바람직한 설폰아미드 작용기-함유 아미노산 잔기의 예는 이하의 구조를 포함하지만, 이들로 한정되는 것은 아니다.
Figure PCTKR2023001951-appb-img-000003
일 실시태양에 있어서, 본 발명의 펩타이드 구조체에 도입될 수 있는 설폰아미드 이외의 작용기의 비제한적인 예에는 킬레이터(chelator), 탄소수 5 내지 15의 사이클로알칸(cycloalkane), 비오틴(biotin), 글루코헵톤산(glucoheptonic acid), 4-(p-요오도페닐)부티르산(IB), 형광 염료, 또는 세포독성제가 포함될 수 있다.
상기 킬레이터는, 예를 들면 1,4,7,10-테트라아자사이클로도데칸-1,4,7,10-테트라아세트산(DOTA), 1,4,7-트리아자사이클로노난-1,4,7-트리아세트산(NOTA), 에틸렌다이아민테트라아세트산2,2',2'',2'''-(에탄-1,2-디일디나이트릴로)테트라아세트산(EDTA), 1,4,7,10,13,16-헥사아자사이클로옥타데칸-N,N',N'',N''',N'''',N'''''-헥사아세트산(HEHA), 2-[4-니트로벤질]-1,4,7,10,13-펜타아자사이클로펜타데칸-N,N',N'',N''',N''''-펜타아세트산(PEPA), 1,4,7,10-테트라아자시클로도데칸-1,4,7,10-테트라(메틸렌 포스폰산)(DOTP), (1R,4R,7R,10R)-α,α',α'',α'''-테트라메틸-1,4,7,10-테트라아자시클로도데칸-1,4,7,10-테트라아세트산)테트라나트륨 염(DOTMA), 2-[비스[2-[비스(카르복시메틸)아미노]에틸]아미노]아세트산(DTPA), 및 트리에틸렌테트라민(TETA)으로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
상기 탄소수 5 내지 15의 사이클로알칸은 예를 들면 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄, 사이클로노난, 사이클로데칸, 아다만탄, 노보난, 이소보난, 및 트리사이클로데칸으로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 펩타이드 구조체는 또한 스페이서를 통해 설폰아미드 작용기 등의 화학적 작용기-함유 아미노산 잔기를 CAIX-특이적 결합 펩타이드 리간드에 연결시킬 수 있다. 상기 스페이서는, 예를 들면 폴리에틸렌글리콜(PEG) 링커, 글리신, 사르코신(sarcosine), 및 1 내지 5의 D-아미노산 또는 L-아미노산으로 이루어진 펩타이드 링커로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 펩타이드 구조체는 환형 또는 선형의 구조를 가질 수 있다. 바람직하게는 본 발명의 펩타이드 구조체는 하기 화학식 1의 환형 구조를 가진다.
[화학식 1]
Figure PCTKR2023001951-appb-img-000004
상기 식에서,
P, F1, F2, F3, F4, n 및 m은 각각 상기 정의된 바와 같다.
특정한 이론에 구속되는 것은 아니지만, 본 발명의 환형 펩타이드 구조체와 같은 환형 구조는 선형 펩타이드에 비해 유연성(flexibility)이 떨어지기 때문에 표적 결합시 엔트로피 손실이 적어 결합 친화도가 더 높고 표적에 대한 결합 특이성이 증가하는 것으로 여겨진다.
본 발명의 펩타이드 구조체는 CAIX에는 특이적으로 결합하지만 CAIX의 다른 동종효소(예를 들어, 탄산탈수소효소 XII)에는 결합하지 않는 높은 선택성을 나타낸다.
컨쥬게이트
본 발명의 CAIX-특이적 펩타이드 구조체는 형광 염료, 세포독성제 또는 방사성동위원소 등에 직접 또는 링커(linker)를 통해 결합되어 컨쥬게이트를 형성할 수 있다. 상기 컨쥬게이트는 CAIX를 표적화하면서 CAIX를 발현하는 암을 형광 염료나 방사성동위원소로 표지하거나 상기 암에 방사성동위원소나 세포독성제 등의 약물을 효과적으로 전달할 수 있어 암의 진단, 예방 또는 치료 용도에 유용하다.
일 실시태양에 있어서, 상기 링커는 6-말레이미도카프로일(MC), 말레이미도프로파노일(MP), 발린-시트룰린(val-cit), 알라닌-페닐알라닌(ala-phe), p-아미노벤질옥시카르보닐(PAB), N-숙신이미딜 4-(2-피리딜티오)펜타노에이트(SPP), N-숙신이미딜 4-(N-말레이미도메틸)시클로헥산-1 카르복실레이트(SMCC), 4-(2-피리딜디티오)부티르산-N-히드록시숙신이미드 에스테르(SPDB), 및 N-숙신이미딜(4-요오도-아세틸)아미노벤조에이트(SIAB)로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
일 실시태양에 있어서, 상기 형광 염료의 비제한적인 예는 근적외선(near-infrared) 형광 염료, 플루오레세인 유형, 로다민 유형, 알렉사 플루오르(Alexa Fluor), 4,4-디플루오로-4-보로-3a,4a-디아자-s-인다센(BODIPY), 텍사스 레드(Texas Red), 단실(dansyl), 리사민(Lissamine), 시아닌(Cy), 및 피코에리트린으로부터 선택된 하나 이상을 포함할 수 있다.
일 실시태양에 있어서, 상기 세포독성제는 독소, 화학요법제, 약물 모이어티(moiety), 항생제, 및 핵산 분해 효소로부터 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
일 실시태양에 있어서, 상기 방사성동위원소는 플루오린-18(F-18), 탄소-11(C-11), 탄소-14(C-14), 테크테늄-99m(Tc-99m), 구리-64(Cu-64), 구리-67(Cu-67), 디스프로슘-168(Dy-168), 비스무트-213(Bi-213), 사마륨-153(Sm-153), 스트론튬-89(St-89), 스트론튬-90(St-90), 어븀-169(Er-169), 인-32(P-32), 팔라듐-103(Pd-103), 레늄-186(Re-186), 레늄-188(Re-188), 산소-15(O-15), 셀레늄-75(Se-75), 나트륨-24(Na-24), 스트론튬-85(Sr-85), 루테튬-177(Lu-177), 이트륨-90(Y-90), 아이오딘-123(I-123), 아이오딘-125(I-125), 아이오딘-131(I-131), 이리듐-192(Ir-192), 이리듐-196(Ir-196), 이터븀-166(Yb-166), 인듐-111(In-111), 제논-133(Xe-133), 질소-13(N-13), 칼슘-47(Ca-47), 코발트-57(Co-57), 코발트-60(Co-60), 크로뮴-51(Cr-51), 크립톤-81(Kr-81), 칼륨-42(K-42), 홀뮴-166(Ho-166), 갈륨-67(Ga-67), 갈륨-68(Ga-68), 악티늄-225(Ac-225), 지르코늄-89(Zr-89), 납-212(Pb-212), 및 아스타틴-211(At-211)로부터 선택된 하나 이상일 수 있다.
치료적 투여 및 제형
본 발명은 본 발명의 CAIX-특이적 펩타이드 리간드, 펩타이드 구조체 또는 컨쥬게이트를 포함하는 암의 진단, 예방 또는 치료용 제약 조성물을 제공한다. 본 발명의 암은 고형암인 것이 바람직하다. 더욱 바람직하게는, 본 발명의 암은 CAIX를 발현하는 암이다. 예를 들어, 본 발명의 암은 간암, 폐암, 대장암, 위암, 유방암, 결장암, 골암, 췌장암, 두경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 전립선암, 담도암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 흑색종, 갑상선암, 성상세포종 또는 교모세포종 등과 같은 고형암일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 암의 진단, 예방 또는 치료용 제약 조성물을 투여하는 대상은 암 발생 위험이 있거나, 암으로 진단받았거나, 암 치료를 받은 포유류일 수 있다. 상기 포유류는 인간 또는 인간을 제외한 포유류일 수 있다.
본 발명에 따른 암의 진단, 예방 또는 치료용 제약 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구제 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화되어 사용할 수 있고, 제형화를 위하여 제약 조성물의 제조에 통상적으로 사용되는 적절한 담체, 부형제 또는 희석제를 포함할 수 있다.
상기 담체, 부형제 또는 희석제로는 락토즈, 덱스트로즈, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 포함한 다양한 화합물 혹은 혼합물을 사용할 수 있다.
제제화할 경우에는 제약업계에서 통상 사용하는 충진제, 중량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조할 수 있다.
본 발명에 따른 암의 예방 또는 치료용 제약 조성물의 바람직한 투여량은 환자의 상태, 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서는 1일 0.0001 내지 2,000 mg/kg으로, 바람직하게는 0.001 내지 2,000 mg/kg으로 투여할 수 있다. 투여는 하루에 한 번 투여할 수도 있고, 수회 나누어서 투여할 수도 있다. 다만, 상기 투여량에 의해서 본 발명의 범위를 한정하는 것은 아니다.
본 발명에 따른 암의 예방 또는 치료용 제약 조성물은 쥐, 생쥐, 가축, 인간 등의 포유 동물에 다양한 경로로 투여할 수 있다. 투여 방식은, 예를 들면 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관내(intracerebroventricular) 주사 등에 의해서 투여될 수 있다.
본 발명은 또한 본 발명의 CAIX-특이적 펩타이드 구조체 또는 컨쥬게이트를 암의 치료가 필요한 개체에게 투여하는 것을 포함하는, 암의 치료 방법을 제공한다.
본 발명의 CAIX-특이적 펩타이드 구조체 및 컨쥬게이트는 또한 암을 표적화 및 영상화하여 암을 진단하는 용도로 사용되거나, 또는 암 치료를 받은 개체에게 투여하여 암 치료 후 개체의 치료 예후를 예측하거나 관찰하는 용도로 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 예시하기 위한 것일 뿐, 본 발명의 정당한 권리범위를 제한하고자 제공되는 것이 아니며, 본 발명의 권리범위 내에서 다양한 변형이 가능함은 당업자에게 자명할 것이다.
실시예
실시예 1. 인간 탄산탈수소효소 IX에 결합하는 펩타이드 스크리닝
인간 탄산탈수소효소 IX(hCAIX)의 세포외 도메인(ECD)에 특이적으로 결합하는 펩타이드를 얻기 위해 펩타이드 라이브러리를 합성하였다. 합성된 펩타이드 라이브러리를 스크리닝하여 선별된 펩타이드에 대해 hCAIX ECD에 대한 결합력과 특이성을 평가하였다.
hCAIX ECD에 대한 펩타이드 스크리닝 과정을 나타낸 도식도를 도 1에 나타내었다.
1-1. 비드가 도입된 펩타이드 라이브러리 합성
펩타이드 라이브러리의 합성을 위해 TentaGel 비드를 사용하여 Random OBOC(combinatorial one-bead-one-compound) 라이브러리를 합성하였다. TentaGel® S-NH2 resin(Cat# NSD30902)은 Rapp Polymere GmbH(Germany)에서 구입하였다.
TentaGel® S-NH2 비드(polyethylene glycol-grafted polystyrene beads)상에서 각 잔기 위치 별로 cysteine과 methionine을 제외한 18가지의 D형 아미노산을 사용하여 자동합성기(Apex 396, AAPPTEC)로 반복적인 분리 혼합(split and mix) 과정을 통하여 합성하였다. 특히, Fmoc(플루오레닐메틸옥시카르보닐)-D-isoleucine-OH와 Fmoc-D-glutamine-OH의 경우, 펩타이드의 아미노산 서열분석시 동위 원소 잔기를 구별하기 위해 각각 10 mol%의 Fmoc-glycine-OH를 추가하였다. TentaGel을 NMP(N-Methylpyrrolidone) 용매에서 팽윤(swelling)시키고, 광분열(photocleavage) 할 수 있는 링커(linker)를 장착한 후, 자동합성기로 펩타이드 라이브러리를 합성하였다. Fmoc-ANP 링커(3-(Fmoc-amino)-3-(2-nitrophenyl)propanoic acid, Cat# LSP308, AAPPTEC) 도입시, N-아세틸글리신(3 당량, Cat# A16300, Sigma-Aldrich)을 첨가하여 로딩 비율을 1/4로 조절하고, TBTU(3 당량, Cat# 12806, Sigma-Aldrich), DIPEA(7.5 당량, Cat# 8.00894, Sigma-Aldrich)와 함께 반응시켰다. 고체상 비드를 NMP로 세척하고, Fmoc 보호기 제거를 위해 피페리딘/NMP(1:4) 용액과 반응시킨 후 NMP, DCM(디클로로메탄), 그리고 NMP를 사용하여 순차적으로 세척하였다. 이후, Fmoc-Arg(pbf)-OH(3 당량, Cat# 36404, GL Biochem)와 Fmoc-PEG1-OH(3 당량, Cat# 246201, ChemPep)를 이어서 같은 방법으로 합성하여 링커를 만들었다. 펩타이드 라이브러리 합성을 위해 링커가 장착된 비드를 자동합성기 RV(reaction vessel)의 18개 well에 동일한 양으로 나누어 담았다. 한 사이클의 커플링(coupling) 및 Fmoc 보호기 제거가 완료되면 고체상 비드를 CV(collector vessel)에 모아 섞은 후, 다시 동일한 양으로 18개 RV well에 나누어 커플링 및 Fmoc 보호기 제거를 진행하였으며, 원하는 펩타이드 길이가 될 때까지 분리 혼합 과정을 반복하였다.
1-2. 설폰아미드 작용기가 도입된 펩타이드 라이브러리 합성
상기 실시예 1-1에서 합성된 펩타이드에 아지도(azido) 치환기를 도입한 후, 18개 RV의 비드는 하나의 튜브에 회수한 다음 4-에티닐벤젠설폰아미드(4-ethynylbenzenesulfonamide)와 클릭 반응을 진행하였다(도 2). 구체적으로, 아르곤(Ar) 대기 하에서 펩타이드 라이브러리가 장착된 비드 1 당량, 4-에티닐벤젠설폰아미드(3 당량), CuI(1 당량), 트리스(벤질트리아졸릴메틸)아민(TBTA, 3 당량, Cat# T2993, TCI사), DIPEA(10 당량)을 NMP 용매에서 혼합 후 상온에서 12시간 동안 진행하였다. 반응 완료 후, 비드는 NMP, 그리고 0.1 M 나트륨 디에틸디티오카르바메이트(Sigma-Aldrich, Cat# D3506)/NMP 용액으로 세척하여 구리 불순물을 제거하였다. 아미노산 잔기의 보호기 제거를 위하여 트리플루오로아세트산(95%, TFA, Cat# 299537, Sigma-Aldrich), 3차 증류수(2.5%), 트리이소프로필실란(2.5%, TIS, Cat# 233781, Sigma-Aldrich)에서 2 시간 동안 반응시킨 후, DCM으로 세척하여 진공에서 건조하고, 빛을 차단한 상태로 4 ℃에서 보관하였다.
펩타이드 라이브러리에 설폰아미드 작용기 도입을 위한 클릭 반응과 hCAIX 스크리닝에 사용된 라이브러리 구조의 일 구현예를 도 2에 나타내었다.
실시예 2. 인간 CAIX에 결합하는 펩타이드의 선별
2-1. 펩타이드 라이브러리 1차 스크리닝
상기 실시예 1에서 합성된 펩타이드 라이브러리가 도입된 비드 50 mg을 4 mL Extract-Clean Filter Columns(Cat# 211104, S*PURE, Singapore)에 옮겨 담은 후 2 mL의 pH 7.4 인산염 완충용액(PBS)을 넣고 ultrasonic cleaner(Cat# 5210R-DTH, BRANSON, USA)로 초음파 처리(sonication)하여 팽윤시켰다. PBS를 2 mL 블로킹(blocking) 용액[10% FBS, 0.1% Tween20 (Cat# 69295-1601, Junsei, Japan) in pH 7.4 PBS]으로 교체한 뒤 상온에서 360° 진탕기(Shaker)(Cat# M04-238-157, SCILOGEX, USA)에서 항온처리(incubation) 하였다. 형광염료가 장착된 hCAIX ECD(ACROBiosystems, Cat# CA9-H5226) 용액 60 nM을 넣고 추가로 항온처리를 진행한 후 용액을 제거하였다. Conical tube에 비드를 옮겨 담은 후 0.1%의 Tween20를 함유한 PBST 완충용액 45 mL로 희석한 후 소분하였다. 각각의 소분된 용액에는 0.1% Tween20를 함유한 PBST 완충용액을 첨가하여 추가로 희석하고, COPAS의 시료 용기(sample vessel)에 장착시킨 후 스크리닝을 진행하였다. 스크리닝은 Excitation 640 nm, Emission 680/30 BP로 진행하였고 Enrichment mode, PMT 690, Gain 3.0 조건으로 형광 세기가 높은 비드 약 5,000개를 선별하였다. 위의 과정을 5회 반복하여 2차 스크리닝에 사용될 총 25,000개의 양성 비드(즉, hCAIX ECD에 결합하는 펩타이드가 장착된 비드)를 선별하였다(도 3).
2-2. 펩타이드 라이브러리 2차 스크리닝
상기 실시예 2-1에서 1차 스크리닝으로 확보된 약 25,000개의 양성 비드로부터 형광염료가 장착된 hCAIX ECD을 제거하였다. 이후, 상기 비드에 블로킹 용액 1 mL를 넣고 360° 진탕기(Shaker)를 사용하여 항온처리를 진행한 뒤 용액을 제거하였다. 형광염료가 장착된 hCAIX ECD 용액 250 nM을 넣고 추가로 항온처리를 진행한 후 용액을 제거하였다. Conical tube에 비드를 옮겨 담은 후 0.1%의 Tween20를 함유한 PBST 완충용액 45 mL로 희석한 후 소분하였다. 각각의 소분된 용액에는 0.1% Tween20를 함유한 PBST 용액을 첨가하여 추가로 희석하고, COPAS의 시료 용기에 장착해서 Excitation 640 nm, Emission 680/30 BP 조건으로 2단계에 걸쳐서 진행하였다. 첫번째 단계에서는 Enrichment mode, PMT 630, Gain 3.0 조건으로 형광 세기가 높은 비드 약 1,000개를 선별하였다. 확보된 1,000개의 비드는 3차 증류수로 희석한 다음 Pure mode, PMT 620, Gain 3.0의 조건으로 96-well 플레이트를 사용하여 두번째 COPAS 선별을 진행하였다.
2-3. 2차 스크리닝으로 확보된 펩타이드의 분리 및 분석
상기 실시예 2-2의 2차 스크리닝을 통해 수득한 고체상 단일 비드로부터 광분해 반응을 통해 펩타이드를 분리하였다. 구체적으로, 아르곤(Ar) 대기하에서 상기 비드가 담긴 96-well 플레이트를 밀봉한 다음 UVP 가교결합제(Cat# 849-30101-2, Analytikjena, Germany)를 사용하여 파장 365 nm, 조사량 9,000 μJ/cm2 조건으로 10분 동안 광분해 반응을 진행하였다. 96-well 플레이트를 개봉한 후 acid benchtop concentrator(Cat# 7310042, LABCONCO, USA)를 사용하여 상온에서 농축하였다.
이후, Enhanced ultrafleXtreme MALDI-TOF/TOF 질량분석기(mass spectrometer)(Bruker, USA)를 사용하여 얻은 MS와 MS/MS를 기반으로 펩타이드의 분자량과 아미노산 서열을 분석하였다. 각 분석 결과의 예시를 각각 도 4a(질량분석 결과) 및 도 4b(MS/MS 서열분석 결과)에 나타내었다.
2-4. 후보 펩타이드 선정을 위한 펩타이드 라이브러리 3차 스크리닝
상기 실시예 2-3에서 확보된 아미노산 서열을 갖는 250 ~ 300종의 펩타이드 중에서 약 50여종을 선별하여 광분해 링커가 장착된 TentaGel 비드(0.08 mmole/g, 각 펩타이드 당 10 mg) 상에서 상기 실시예 1과 동일한 방법으로 Apex 396 자동합성기를 사용하여 합성한 후, TFA(95%)/3차 증류수(2.5%)/TIS(2.5%) 혼합 용액을 사용하여 아미노산 잔기의 보호기를 제거하였다.
이후, 최종 펩타이드 후보물질 도출을 위한 3차 COPAS 스크리닝을 위해서 50여종의 각기 다른 펩타이드가 장착된 TentaGel 비드를 각 1 mg씩 취해서(총 50 mg) 4 mL Extract-Clean Filter Columns에 모아 섞은 뒤 2 mL의 PBS를 넣고 초음파 처리하여 비드를 팽윤시켰다. 이후 형광염료가 장착된 hCAIX ECD의 최종 농도를 250 nM로 유지한 상태에서 2차 펩타이드 라이브러리 스크리닝과 동일한 방법으로 COPAS 선별작업을 진행하였다. 결과의 재현성을 확보하기 위해 이 과정을 3회 반복하였다. MS와 MS/MS 데이터 분석 결과, 양성 히트 넘버(hit number) 순으로 펩타이드를 서열화 한 후 상위에 있는 펩타이드를 기반으로 후보물질을 선정하였다.
실시예 3. 선별된 펩타이드를 포함하는 펩타이드 구조체의 합성 및 정제
3-1. 비오틴(biotin) 링커의 합성
자동화 초음파 펩타이드 합성기(Liberty Blue™automated microwave peptide synthesizer, CEM Corporation)를 사용하여 고체상 비오틴 링커를 합성하였다. 구체적으로, NMP에서 팽윤시킨 Rink Amide-ChemMatrix®Resin(0.45mmole/g)에 피페리딘/NMP(v/v = 1:4, 0.1 M OxymaPure) 혼합 용액을 처리하여 Fmoc 보호기를 제거한 후 NMP로 세척하였다. 이후, NMP 용매에서 Fmoc-Lys(mtt)-OH(5 당량), Oxyma Pure(5 당량), 그리고 디이소프로필카르보디이미드(DIC, Cat# D0254, TCI)(10 당량)를 처리하여 커플링한 후, Fmoc 보호기를 제거하였다. 동일한 과정으로 Fmoc-PEG1-OH(5eq)를 사용하여 2회 반복하여 연결시켰다. 초음파 펩타이드 합성기로부터 회수한 resin에 1.5% TFA/2.5% TIS/96% DCM 혼합 용액을 처리하여 4-메틸트리틸 보호기(Mtt)를 제거하였다. 비오틴을 도입하기 위해서 NMP 용매에서 비오틴-NHS(3 당량)와 DIPEA(10 당량)로 1시간 동안 상온에서 반응시킨 후, NMP, DCM로 순차적으로 세척하여 진공 건조하였다.
비오틴 링커의 합성을 위한 예시적인 반응식을 나타내면 아래와 같다.
[반응식 1]
Figure PCTKR2023001951-appb-img-000005
3-2. 선별된 펩타이드의 합성
상기 실시예 3-1에서 합성된 비오틴 링커를 사용하여 선별된 아미노산 서열의 펩타이드를 합성하였다. 먼저, 비오틴 링커가 도입된 비드에 피페리딘/NMP(v/v = 1:4) 혼합용액으로 Fmoc 보호기를 제거한 후 NMP, DCM, NMP를 순차적으로 사용하여 세척하였다. Fmoc 보호기가 붙은 아미노산(3 당량), TBTU(3 당량), DIPEA(7 당량)로 상온에서 반응시킨 후 NMP로 세척하였다. 원하는 서열의 펩타이드가 완성될 때까지 위의 과정을 반복하였다. 특히 환형 구조의 펩타이드 합성을 위해서는 비오틴 링커에 Fmoc-E(OAll)-OH를 먼저 도입한 다음 펩타이드 연결(고리화) 반응을 진행하였다.
3-3. 선형 구조의 펩타이드 구조체 합성 및 정제
상기 실시예 3-2에서 합성된 펩타이드에 설폰아미드, 아다만탄(adamantane), 사이클로옥탄(cyclooctane), 1,4,7,10-테트라아자사이클로도데칸-1,4,7,10-테트라아세트산(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA) 또는 비오틴 작용기를 도입시켜 선형 펩타이드 구조체를 제조하였다.
설폰아미드 작용기는 아지도(azido) 치환기를 포함하는 펩타이드를 상기 실시예 1-2에 기재된 바와 같은 클릭 반응으로 도입시켰다.
아다만탄, 사이클로옥탄 또는 DOTA 작용기의 도입은 Mtt 또는 1-(4,4-디메틸-2,6-디옥소사이클로헥스-1-일리덴)에틸(Dde) 치환기로 보호된 lysine을 포함하는 펩타이드가 장착된 비드로부터 Mtt 또는 Dde 보호기를 제거하여 진행하였다. Mtt 보호기는 1.5% TFA/2.5% TIS/96% DCM 혼합 용액으로 처리하여 제거하였고, Dde 보호기는 아르곤(Ar) 대기하에서 Pd(PPh3)4(1 당량), 1,3-디메틸바르비투르산(1,3-Dimethylbarbituric acid)(30 당량)을 DCM 용매에서 혼합 후 반응시켜 제거하였다. 이후, 각각 1-아다만탄카르복실산(1-adamantanecarboxylic acid, Cat# 106399-25G, Sigma-Aldrich), 사이클로옥탄카르복실산(cyclooctanecarboxylic acid, Cat# EN300-85433, Enamine) 또는 DOTA-트리스(tert-부틸 에스테르)(2 당량), 및 TBTU(2 당량), DIPEA(5 당량)과 함께 NMP 용매에서 상온에서 반응시켜 도입시켰다.
비오틴 작용기는 NMP 용매에서 비오틴-NHS(3 당량)와 DIPEA(10 당량)로 상온에서 반응시켜 도입시켰다.
반응 완료 후, 비드는 NMP와 DCM으로 순차적으로 세척하여 진공 건조하였다. 선별된 펩타이드에 아다만탄 작용기를 도입시키기 위한 반응식의 예는 아래와 같다.
[반응식 2]
Figure PCTKR2023001951-appb-img-000006
3-4. 환형 구조의 펩타이드 구조체 합성 및 정제
환형 구조의 펩타이드 구조체는 상기 실시예 3-2에서 합성된 글루탐산이 도입된 펩타이드에서 아미노산의 C-말단에 결합된 글루탐산의 카르보닐 기와 아미노산의 N-말단의 아마이드 기 사이에 공유결합을 형성하는 고리화(cyclization) 반응을 통해 환형 구조를 형성하였다.
먼저, 고체상 비드 상의 펩타이드에서 글루탐산의 알릴(allyl) 보호기 제거 반응을 진행하였다. 아르곤(Ar) 대기하에서 Pd(PPh3)4(0.5 당량), PhSiH3(20 당량)을 DCM 용매에서 혼합 후 상온에서 반응시켰다. 비드를 NMP, 0.1 M 나트륨 디에틸디티오카르바메이트/NMP 용액으로 순차적으로 세척하여 Pd 불순물을 제거하였다. 피페리딘/NMP(v/v = 1:4) 혼합 용액으로 Fmoc 보호기를 제거한 후, NMP, DCM, NMP를 순차적으로 사용하여 세척하였다. 고리화 반응은 PyAOP(3 당량, Cat# 36813, GL Biochem), DIPEA(10 당량)로 상온에서 진행하였으며, 반응 완료 후 비드는 NMP, DCM을 순차적으로 사용하여 세척한 후 진공 건조하였다.
환형 펩타이드의 합성을 위한 고리화 반응식의 예는 아래와 같다.
[반응식 3]
Figure PCTKR2023001951-appb-img-000007
3-5. 수득된 선형 또는 환형 펩타이드 구조체의 분리 및 정제
상기 실시예 3-3 및 3-4에서 수득된 건조된 상태의 선형 또는 환형 펩타이드가 장착된 비드를 95% TFA/2.5% TIS/2.5% H2O 혼합 용액을 사용하여 처리하였다. 필터를 사용하여 비드를 제거하고, 펩타이드가 포함된 TFA 혼합 용액을 conical tube에 모은 후 질소가스로 불어서 대부분의 혼합 용액을 제거하였다. 이어서, 디에틸 에테르(diethyl ether)를 넣어 펩타이드를 침전시킨 다음 원심분리기에 넣고 회전시킨 후 상층의 디에틸 에테르와 소량 남아있는 TFA 혼합 용액을 제거한 후 남아있는 고체 상태의 펩타이드를 진공 건조하였다.
고체상 비드에서 절단된 펩타이드를 ACN/H2O(1:1) 혼합 용액에 녹인 후, 필터(45 μm syringe filter, Cat# DISMIC-3HP, Advantec, Japan)를 사용하여 녹지 않는 이물질을 제거하고 1260 Infinity II LC 시스템(Agilent)으로 다음과 같은 조건하에서 정제하였다: (1) 고정상은 Kromasil 100-5-C18 컬럼(21.2 X 250 mm, 5 μm), (2) 이동상 용매는 0.1% TFA가 첨가된 3차 증류수와 ACN의 혼합액, (3) 유속은 15 mL/min, (4) 검출 파장은 214 와 254 nm. 정제된 펩타이드의 순도와 분자량 측정은 LC-MS(1260 infinity II, Infinity Lab LC/MSD, Agilent)를 사용하고 MNOVA(v. 14.2.0, Mestrelab research, Spain)를 사용하여 데이터를 분석하였다.
고정상은 Agilent Poroshell 120 EC-C18 컬럼(4.6 X 50 mm, 2.7 μm)을 사용하였으며, 컬럼 온도는 40 ℃를 유지하였다. 또한 이동상 용매로는 0.1% TFA가 첨가된 3차 증류수와 ACN의 혼합액을 사용하였으며, 파장은 214와 254 nm, 유속은 1 mL/min을 유지하였다. 정제된 펩타이드 용액은 동결건조기를 사용하여 용매를 제거한 다음 분말 형태로 사용되었다.
그 결과, 인간 CAIX에 특이적으로 결합하는 펩타이드를 포함하며 1 또는 2개의 설폰아미드 작용기를 갖는 하기 화학식 3 내지 8의 독특한 선형 또는 환형 펩타이드 구조체를 수득하였다.
[화학식 3의 선형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000008
[화학식 4의 선형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000009
[화학식 5의 선형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000010
[화학식 6의 환형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000011
[화학식 7의 환형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000012
[화학식 8의 환형 펩타이드 구조체]
Figure PCTKR2023001951-appb-img-000013
상기 화학식 3 내지 8에서, AA1 내지 AA7은 아미노산 잔기를 나타내고, 소문자는 D-아미노산을, 대문자는 L-아미노산을 각각 나타내며, U는 변형되거나 (modified) 또는 통상적으로 존재하지 않는(unnatural) D-아미노산을 의미하는 것으로 본 명세서에 정의된 이하의 구조를 가진다.
Figure PCTKR2023001951-appb-img-000014
Figure PCTKR2023001951-appb-img-000015
Figure PCTKR2023001951-appb-img-000016
실시예 4. 펩타이드 구조체의 안정성 평가
상기 실시예 3에서 수득한 펩타이드 구조체에 대해 혈청(serum) 및 혈장(plasma)에서의 안정성 시험을 진행하였다. 100% 순수한 사람의 혈청(Cat# S1, Merk)이나 혈장(Cat# 70039.1, STEMCELL Technologies) [또는 100% 순수한 마우스의 혈청(Sigma, Cat# S7273)이나 혈장(Rockland, Cat# D508-06-0050)] 1 mL에 최종 농도가 50 μM이 되도록 희석한 펩타이드 구조체의 용액을 100 μL씩 소분한 다음 37 ℃에 보관하면서 7일간 하루에 한번씩 Agilent Poroshell 120 EC-C18 컬럼(4.6 X 50 mm, 2.7 μm)이 장착된 LC-MS(1260 infinity II, Infinity Lab LC/MSD, Aglient)를 사용하여 분석하였다. 시료를 LC에 주입하기 전에 펩타이드를 포함한 혈청 또는 혈장 용액에 100 μL의 ACN을 첨가한 다음 원심분리기에 넣고 회전시켜서 침전물을 가라앉힌 후 10 μL의 상층액만 분석에 사용하였다.
도 5a 및 5b, 및 도 6a 및 6b에 각각 펩타이드 구조체 35번 및 48번의 혈청 및 혈장에서의 안정성 시험 결과를 나타내었다. D-아미노산을 포함하는 펩타이드 구조체 35번은 혈청 및 혈장에서 6일 후에도 전혀 분해되지 않고 완전히 유지되었으나, 35번의 모든 아미노산 잔기를 L-form으로 변경한 경우 혈청에서는 1일 이내에, 혈장에서는 3일 이내에 완전히 분해되는 것을 확인할 수 있었다(도 5a 및 5b).
마찬가지로, D-아미노산을 포함하는 펩타이드 구조체 48번 역시 인간 또는 마우스의 혈청 및 혈장에서 7일 후에도 전혀 분해되지 않고 완전히 유지되는 것으로 나타났으나, 48번의 모든 아미노산 잔기를 L-form으로 변경한 경우 혈청에서는 1일 이내에 완전히 분해되었고, 혈장에서는 7일 이내에 대부분 분해되는 결과가 얻어졌다(도 6a 및 6b).
실시예 5. 펩타이드 구조체의 생물학적 특성 확인
5-1. h CAIX ECD에 대한 결합 친화도(binding affinity) 및 결합 역학(binding kinetics) 분석
펩타이드 구조체에 대해 hCAIX ECD에 대한 결합 친화도 및 결합 역학 특성을 분석하였다. hCAIX ECD에 대한 특이적인 결합 선택성을 확인하기 위해 탄산탈수소효소의 다른 동형체인 인간 탄산탈수소효소 XII(hCAXII)의 세포외 도메인에 대해서도 펩타이드 구조체의 결합 역학 특성을 분석하였다.
결합 친화도는 Bio-Layer Interferometry(BLI) technology가 기반이 되는 BLItz® 시스템(Cat# 45-5000, Fort
Figure PCTKR2023001951-appb-img-000017
Bio, USA)과 BLItz Pro ver1.3 소프트웨어의 advanced kinetics 모듈을 사용하였다. 그리고 스트렙타비딘 바이오센서(Cat# 18-5019, Sartorius, France)를 모든 측정에 이용하였다. 또한, 비특이적인 결합과 background 보정을 위해 단백질 농도 0 nM을 기준값(reference)으로 사용하였다. 먼저 DPBS(Biowest, Cat# L0615)를 사용하여 10X Octet kinetics buffer(Cat# 18-1105, Sartorius)를 1X로 만들어 분석용 완충 용액으로 사용하였다. 다음 분석용 완충 용액을 96-well, black, flat-bottom polypylene(Cat# 655209, Greiner Bio-One, Austria)에 200 μl/well로 분주한 뒤, 스트렙타비딘 바이오센서를 담근 상태에서 10분 동안 수화(hydration)를 진행하였다. 그리고 장비에 바이오센서를 장착한 뒤 펩타이드를 부착시키기 위해 1 μM 농도로 rpm 2200에서 120초 동안 로딩하였다. 이후, 단백질을 각 농도별로 2200 rpm에서 120초 동안 연합(association)과 해리(dissociation)를 진행하였고, kinetics data는 global fitting 기능을 사용하여 KD 값은 kd 대 ka의 비율로 계산하였다. 또한 kinetic parameter는 baseline correction과 Fitting 1:1 binding model에 의해서 얻어졌다.
그 결과를 도 7a 내지 7d에 나타내었다. 펩타이드 구조체들은 hCAXII ECD에 비해 hCAIX ECD에 대해 현저히 높은 선택성을 나타내었다.
5-2. 표적 세포에의 결합 특이성 분석
펩타이드 구조체가 CAIX를 발현하는 표적 세포에 특이적으로 결합하는지를 확인하기 위해 시험관내 세포 결합 특성을 분석하였다. CAIX를 발현하는 인간 신장 암 세포주 SK-RC-52는 Memorial Sloan Kettering Cancer Center(MSK, USA)에서 구입하였고, CAXII를 발현하는 인간 폐암 세포주 A549는 한국세포주은행(Cat# 10185, KCLB, Korea)에서 구입하였다.
형광 활성화 세포 분류(FACS) 분석
분석에 사용될 펩타이드 구조체는 DMSO에 녹여서 1 mM 용액으로 만든 다음 1% FBS가 포함된 DMEM 혼합액(FACS용 완충 용액)을 사용하여 원하는 농도(10000, 100, 30, 10, 5 nM)로 희석하였다.
FACS 분석을 진행하기 2 ~ 3일 전 A549 세포주는 5 X 105개, SK-RC-52 세포주는 1 ~ 1.5 X 106개의 세포를 시딩(seeding)하였다. 실험 당일 A549 또는 SK-RC-52 세포주가 80%의 밀집도(confluency)로 배양되어 있는 T75 플라스크로부터 배양액을 제거하고 15 mL의 PBS로 1회 세척하였다. 1 mL의 트립신-EDTA를 5분간 Galaxy 170 S CO2 항온처리기(37 ℃, 5% CO2, 습한 조건)에서 처리한 뒤에 9 mL의 배양액으로 트립신-EDTA를 중화시켰다. 중화된 세포 혼합액을 15 mL 튜브에 담고 VARISPIN 15R 원심분리기를 이용하여 1000 RPM에서 4분간 회전하였다. 원심분리된 세포 혼합액의 상층액을 제거하고 새 배양액을 첨가하여 100 μL당 5 X 105개의 세포수가 되도록 희석한 다음 96-well round plate(Cat# 34096, SPL LIFE SCIENCE)에 100 μL씩 분주하였다. VARISPIN 15R 원심분리기를 이용하여 1000 RPM에 4분간 회전한 뒤 각 well로부터 상층액을 제거하고 미리 준비해 놓은 펩타이드 구조체 용액 200 μL를 첨가한 다음 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2, 습한 조건으로 배양하였다. 1시간 후 VARISPIN 15R 원심분리기를 이용하여 1000 RPM에서 4분간 회전한 다음 상층액을 제거하고 200 μL의 FACS용 완충 용액으로 세척하였다. 원심분리 (1000 RPM에서 4분) 후 세척액을 제거한 뒤 FACS용 완충 용액에 1 μg/mL 농도로 희석되어 있는 Streptavidin-Alexa fluor 488(Cat# S11223, Invitrogen, USA) 200 μL를 처리하여 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2, 습한 조건으로 1 시간 배양하였다(펩타이드 구조체 80, 81, 82에 대해서는 Streptavidin-Alexa fluor 488 처리과정 생략). VARISPIN 15R 원심분리 (1000 RPM에서 4분) 후 상층액을 제거하고 200 μL의 FACS용 완충 용액으로 세척하였다. 동일한 방법으로 1회 추가 세척한 후 각 well에 200 μL의 FACS용 완충 용액을 첨가하여 세포와 혼합한 다음 cell strainer가 달린 5 mL round bottom 시험관(Cat# 352235, CORNING, USA)에 옮기고 BD Accuri C6 Plus(BD Biosciences, Singapore)를 이용하여 각 세포의 형광 세기를 측정하였다. 측정된 데이터는 FlowJo 10.7.1(BD biosciences, USA)로 분석하였다.
FACS 분석이 끝난 세포 혼합액은 VARISPIN 15R 원심분리기를 이용하여 1000 RPM에서 4분간 원심분리 후 상층액을 제거하고 FACS용 완충 용액에 1 μg/mL 농도로 희석되어 있는 Hoechst 33342 200 μL를 처리하여 4 ℃에 30분간 핵 염색을 수행하였다. VARISPIN 15R 원심분리기를 이용하여 1000 RPM에서 4분간 원심분리 후 상층액을 제거하고 200 μL의 PBS로 세척하였다(2회 반복). 200 μL의 PBS를 첨가한 세포 혼합액은 confocal dish(Cat#100350, SPL LIFE SCIENCE)에 옮겨 Axio Observer 3(ZEISS, Germany)로 형광을 관찰하였다.
SK-RC-52 세포주를 사용한 FACS 분석 결과를 도 8a 내지 8d에 나타내었고, A549 세포주를 사용한 FACS 분석 결과를 도 8e 내지 8h에 도시하였다. FACS 분석 결과로부터, 본 발명의 펩타이드 구조체가 CAIX를 발현하는 표적 세포에 대해 높은 친화력과 선택성으로 결합하는 것을 확인할 수 있었다.
면역형광 분석(colocalization)
A549 세포주는 5 X 104개, SK-RC-52 세포주는 1 X 105개의 세포를 confocal dish에 시딩하고 Galaxy 170 S CO2 항온처리기(37 ℃, 5% CO2, 습한 조건)에서 2일 동안 배양하였다. 이어서 2 mL의 FACS용 완충 용액에 희석한 M75-FITC 항체 또는 펩타이드 구조체를 최종 농도가 각각 1:200(원액으로부터의 희석비율)과 1 μM이 되도록 각 세포주에 처리한 다음 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2 습한 조건으로 1 시간 배양하였다. 이어서 3 mL의 FACS용 완충 용액으로 2번 세척한 다음 2 mL의 FACS용 완충 용액에 희석된 streptavidin-Texas red와 Hoechst 33342를 최종농도가 각각 1:50(원액으로부터의 희석비율)과 0.5 μg/mL가 되도록 처리하여 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2 습한 조건으로 1 시간 동안 배양하였다. 그 뒤 3 mL의 FACS용 완충 용액으로 2번, PBS로 1번 세척 후 Axio Observer 3를 이용하여 형광을 관찰하였다.
도 9에 펩타이드 구조체 22번의 면역형광 분석 결과를 나타내었다. 펩타이드 구조체 22번은 M75 항체와 마찬가지로 CAIX를 발현하는 SK-RC-52 세포주에 특이적으로 결합함을 확인할 수 있었다.
공초점 현미경 분석 이미징(confocal microscopy imaging)
SK-RC-52 세포주 1 X 105개의 세포를 confocal dish에 시딩하고 Galaxy 170 S CO2 항온처리기(37 ℃, 5% CO2, 습한 조건)에서 2일 동안 배양하였다. 이어서 2 mL의 FACS용 완충 용액에 희석한 펩타이드 구조체를 최종 농도가 100 nM이 되도록 세포주에 처리한 다음 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2 습한 조건으로 1 시간 배양하였다. 이어서 3 mL의 FACS용 완충 용액으로 3회 세척한 다음 2 mL의 FACS용 완충 용액에 희석된 Hoechst 33342를 최종농도가 0.5 μg/mL가 되도록 처리하여 Galaxy 170 S CO2 항온처리기에서 37 ℃, 5% CO2 습한 조건으로 15분 간 반응시킨 뒤 3 mL의 PBS로 3회 세척 후 Leica SP5 공초점 현미경을 이용하여 형광을 관찰하였다.
SK-RC-52 세포주를 사용한 펩타이드 구조체 94번의 Z-stack 공초점 현미경 분석 이미지 사진을 도 10에 나타내었다. 펩타이드 구조체 94번은 세포에서 발현되는 CAIX ECD에 양호한 결합을 나타내는 것으로 확인되었다.
5-3. 실험동물 모델을 이용한 생체분포도(biodistribution) 분석
6 주령의 암컷 BALB/c 누드 마우스(오리엔트바이오, Korea)를 이용하여 2 X 106 세포수의 SK-RC-52를 누드 마우스의 왼쪽 앞 다리 위쪽에 피하주사로 주입하였다. 피하 주입 후 13, 20, 27, 35일 째에 무게와 종양의 크기를 측정하였다(도 11a). 종양의 크기는 caliper를 이용하여 [부피 = (단축(width))2 X (장축(length)) / 2]로 측정하였다.
SK-RC-52 세포주를 이종이식한 뒤 36일째 되는 날 5 μM의 펩타이드 구조체를 200 μL(5% DMSO in saline solution)씩 꼬리정맥주사로 주입하였다. 주입 후 24시간에 촬영된 쥐들은 과량의 이산화탄소를 주입시켜 희생시킨 후 개복하여 종양과 장기(간, 신장, 장, 폐, 비장, 위, 췌장, 심장)를 적출하여 ex vivo imaging을 촬영하였다(도 11b).
동물실험에서 얻어진 각 군의 종양, 간, 신장, 장, 폐, 비장, 위장, 심장에 대해 ex vivo imaging을 찍은 뒤 드라이아이스에 얼리고, 실험 전까지 -80 ℃에 보관하였다. 실험 전 각 종양의 무게를 측정한 뒤 ice-cold 균질화 완충 용액(homogenization buffer)(40 mM EDTA, 6 mg/mL 트립신, 1.6% Triton X-100에 미량의 DNase 1이 포함된 pH 7.4의 PBS)을 장기 무게 100 mg당 100 μL의 완충 용액으로 넣고 5분간 FastPrep-24 5G(MP biomedicals, USA)를 이용하여 균질화를 수행하였다. 균질화된 장기들은 96 well black plate에 균질화물을 100 μL씩 분주하여 EnSpire Multimode Microplate Reader(PerkinElmer, USA)로 형광을 측정하였다(도 11c). 펩타이드 구조체들은 다른 장기들에 비해 CAIX을 과발현하는 종양에 특이적으로 결합함을 확인하였다.
5-4. 펩타이드 구조체-약물 접합체의 항암 효과 분석
펩타이드 구조체에 약물을 접합시킨 접합체가 생체내 항암 작용을 나타내는지를 확인하기 위해 동물 실험을 실시하였다. 6 주령의 암컷 BLAB/c 누드 마우스(오리엔트바이오, Korea)의 오른쪽 앞 측면에 CAIX을 과발현하는 신장암 세포인 SK-RC-52 세포주를 PBS에 2 X 106 세포수로 희석하고 피하주사로 주입하였다. 종양세포를 이식한 마우스는 2 ~ 3주간 마우스의 건강 변화 측정을 위해 체중을 측정하였고, Digimatic Caliper(Cat#500-151-30, Mitutoyo, Japan)를 이용하여 종양의 크기(단축 X 단축 X 장축/2)를 측정하였다. 종양의 크기가 약 100 mm3에 도달하였을 때, 1% DMSO와 2% EtOH가 포함된 식염수를 꼬리정맥에 주입한 Control군, 펩타이드 구조체만 꼬리정맥에 주입한 Peptide 처리군(즉, 펩타이드 구조체 85번), 펩타이드 구조체와 약물(MMAE)이 링커를 통해 결합되어 있는 PDC1(즉, 약물 접합체 형태의 펩타이드 구조체 86번)을 꼬리정맥에 처리한 PDC1 처리군으로 나누었다. 각 그룹은 3마리씩 나뉘었으며, Peptide 처리군은 두 마리를 대상으로 진행하였다. 투여농도는 250 nmole/kg으로 200 μl의 1% DMSO와 2% EtOH을 포함한 식염수를 비히클(vehicle)로 사용하여 투여하였다. 투여빈도는 2일 간격으로 일주일에 3번 총 7번을 꼬리정맥을 통해 투여하였다. 체중과 종양의 크기는 1 ~ 3일마다 한번씩 측정하였다.
그 결과를 도 12a 및 12b에 나타내었다. 도 12a 및 12b에서 보는 바와 같이, 펩타이드 구조체 85번에 MMAE 약물을 링커를 통해 접합시킨 약물 접합체 형태의 펩타이드 구조체 86번은 마우스의 체중에 심각한 변화를 유발하지 않으면서(도 12a), CAIX을 과발현하는 종양의 크기를 현저히 감소시키는 항암 효과를 나타내었다(도 12b).
5-5. 동위원소( 177 Lu)가 표지된 펩타이드 구조체의 생체내(in vivo) SPECT/CT 영상 실험
펩타이드 구조체의 동위원소를 표지하여 영상진단 및 치료 기능성을 확인하였다. 펩타이드 구조체 95번을 DMSO에 녹여 10 mM의 stock solution을 만든 후, pH 5.5 아세트산암모늄 완충 용액으로 희석하여 1 mM의 펩타이드 구조체 용액을 만들었다. 1 mM 용액에서 7 nmole이 되는 부피를 덜어 1 mCi 동위원소(177LuCl3, Eckert & Ziegler Radiopharma GmbH)와 섞은 후, pH 7.0의 아세트산암모늄 완충 용액을 넣어 pH 5.5가 되도록 하였다. 90 ℃에서 1시간 동안 동위원소 표지를 진행하고, 표지가 완료되면 상온으로 식힌 후 Sep-Pak column(Cat#186005125, Waters)을 이용하여 정제하였다. 활성화된 Sep-Pak column(ethanol 5 mL, 증류수 5 mL)에 샘플을 로딩하고 증류수 5 mL로 세척한 후, 에탄올 1.5 mL로 elution하여 받은 용액은 질소로 purge하여 농축하였다. 농축된 에탄올 용액은 식염수로 희석하여 사용하였다.
6 주령의 수컷 BALB/c 누드 마우스(오리엔트바이오, Seoul, Korea)에 사람 유래의 신세포암(Renal Cell Carcinoma, RCC) 세포주인 SK-RC-52 세포주(Memorial Sloan-Kettering Cancer Center, MSK, New York, USA)를 마우스 당 2 x 106 세포/100 μL로 오른쪽 앞다리 겨드랑이 밑부분에 피하 투여(Subcutaneous Injection)하였다. 이식한 암세포 SK-RC-52가 생착하여 생성된 종양의 크기가 평균 100 mm3(80~100 mm3)일 때 종양의 크기를 기준으로 군 분리를 실시하였다. 체중과 종양의 크기는 주 2회 측정하였으며 종양의 크기는 Vernier Calipers(Mitutoyo, Kawasaki, Tumor volume Japan)를 사용하여 종양의 단축(width)과 장축(length)을 측정한 후 아래의 식에 대입하여 종양의 부피를 계산하였다.
종양 부피(mm3) = 단축2 × 장축 / 2
신세포암 세포주인 SK-RC-52를 이식하여 생성된 종양의 크기가 평균 100 mm3(80~100 mm3)에 이르렀을 때 방사선양 600-700 μCi에 해당되는 100-150 μL의 동위원소 177Lu가 표지된 펩타이드 구조체 95번을 마우스의 미정맥 주사(Tail Vein injection) 방법으로 1회 투여하여 6시간, 2일, 8일에 각각 SPECT/CT (Simens Inveon, software: Inveon Acqusition Workplace)를 측정하였다. 촬영을 위해서 마우스에 3 - 5분가량 0.2% isoflurane in oxygen으로 호흡기 마취를 시킨 후, 장비에 위치시킨 다음 마우스에 마취제가 1.5 L/min으로 계속 주입되도록 하여 SPECT 50분, CT 7분으로 측정하였으며, 이미지는 Inveon Research Workplace 4.2로 얻었다.
상기에서 얻은 SPECT/CT 영상 이미지 사진을 도 13에 나타내었다. 동위원소 177Lu가 표지된 펩타이드 구조체 95번은 8일이 지난 후에도 암세포 SK-RC-52에 결합하여 남아있는 것을 확인할 수 있었다.
이후, 시료 주입 후 8일까지 SPECT/CT 측정 완료한 마우스는 탄산가스(CO2) 흡입에 의해 안락사 하여 개복 후 종양과 장기(간, 신장, 비장)를 적출, 각각 무게를 측정하고 장기별 방사선 조사량을 휴대용 방사능 측정기(Inspector survey meter, INSPECTER(078-510)로 측정하였다. 이러한 방법으로 측정된 동위원소 177Lu 표지된 펩타이드 구조체 95번 잔량을 단위 무게 당 방사능세기로 환산한 후, 종양 수치를 기준으로 상대적인 나머지 장기의 방사능 세기를 계산하여 아래 표 1로 나타내었다.
[표 1]
Figure PCTKR2023001951-appb-img-000018
5-6. 동위원소( 177 Lu)가 표지된 CAIX 표적 펩타이드(펩타이드 구조체 95번)의 항암 효과 분석
펩타이드 구조체 95번을 DMSO에 녹여 10 mM의 stock solution을 만든 후, pH 5.5 아세트산암모늄 완충 용액으로 희석하여 1 mM의 펩타이드 구조체 용액을 만들었다. 1 mM 용액에서 40 nmole이 되는 부피를 덜어 14 mCi 동위원소(177LuCl3, Eckert & Ziegler Radiopharma GmbH)와 섞은 후, pH 7.0의 아세트산암모늄 완충 용액을 넣어 pH 5.5가 되도록 하였다. 90 ℃에서 1시간 동안 동위원소 표지를 진행하고, 표지가 완료되면 상온으로 식힌 후 1200 Infinity LC 시스템(Agilent)으로 다음과 같은 조건하에서 정제하였다: (1) 고정상은 Agilent Poroshell 120 EC-C18 컬럼(4.6 X 50 mm, 2.7 μm), (2) 이동상 용매는 0.1% TFA가 첨가된 3차 증류수와 ACN의 혼합액, (3) 유속은 1 mL/min, (4) 검출 파장은 254 nm와 214 nm. 177Lu가 표지된 95번 표적 펩타이드 구조체의 크로마토그램을 도 14에 나타내었다.
정제하여 얻은 177Lu가 표지된 95번 표적 펩타이드 구조체를 활성화된 Sep-Pak column(에탄올 5 mL, 증류수 5 mL)에 로딩하고 증류수 5 mL로 세척하여 유기용매를 제거한 후, ACN:H2O(1:1) 500 μL, 에탄올 700 μL를 순차적으로 elution하여 받은 용액은 질소로 purge하여 농축하였다. 농축된 에탄올 용액은 식염수로 희석(EtOH 20%, DMSO 1%)하여 사용하였다.
6 주령의 암컷 BLAB/c 누드 마우스(오리엔트바이오, Korea)의 오른쪽 앞 측면에 CAIX을 과발현하는 신장암 세포인 SK-RC-52 세포주를 PBS에 2 X 106개로 희석하여 피하주사로 주입하였다. 종양세포를 이식한 마우스는 2~3주간 마우스의 건강 변화 측정을 위해 체중을 측정하였고, Digimatic Caliper(Cat#500-151-30, Mitutoyo, Japan)를 이용하여 종양의 크기(단축2 × 장축 / 2)를 측정하였다. 종양의 크기가 약 100 mm3에 도달하였을 때, 비히클인 식염수를 주입한 대조군 6마리와 177Lu가 표지된 95번 표적 펩타이드 구조체 약 500 μCi를 꼬리정맥에 주입한 실험군 6마리로 나누었다. 체중과 종양의 크기는 일주일에 3번씩 측정하였다.
그 결과를 도 15a 내지 15c에 나타내었다. 도 15a 내지 15c에서 보는 바와 같이, 177Lu가 표지된 95번 표적 펩타이드 구조체는 마우스의 체중에 심각한 변화를 유발하지 않으면서(도 15b), CAIX를 과발현하는 종양의 크기를 현저히 감소시키는 항암 효과를 나타내었다(도 15a 및 15c).
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 권리범위가 개시된 실시예 및 첨부된 도면에 의하여 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 다른 구체적인 형태로 다양하게 변형이 가능하다는 것을 이해할 것이다.
서열 리스트
[표 2]
Figure PCTKR2023001951-appb-img-000019

Claims (24)

  1. 서열번호 1 내지 44 중 어느 하나의 아미노산 서열을 포함하되, 구성 아미노산 중 적어도 하나는 D-아미노산으로 이루어져 있으며, 구성 아미노산 중 라이신(Lys) 잔기는 측쇄 ε-아미노 기에서 화학적 작용기로 치환될 수 있는 것인 펩타이드 리간드.
  2. 제1항에 있어서, 상기 화학적 작용기는 펜타플루오로벤조산(pentafluorobenzoic acid) 또는 디페놀산(diphenolic acid)인 것을 특징으로 하는 펩타이드 리간드.
  3. 제1항의 펩타이드 리간드, 및
    상기 펩타이드 리간드에 직접 또는 스페이서를 통해 연결된 설폰아미드 작용기-함유 아미노산 잔기
    를 포함하는 펩타이드 구조체.
  4. 제3항에 있어서, 하기 화학식 1의 환형 구조를 갖는 것을 특징으로 하는 펩타이드 구조체.
    [화학식 1]
    Figure PCTKR2023001951-appb-img-000020
    상기 식에서,
    P는 제1항의 펩타이드이고,
    F1은 글리신(Gly)이거나 또는 설폰아미드 작용기-함유 아미노산 잔기이며,
    F2는 설폰아미드 작용기-함유 아미노산 잔기이고,
    F3은 글리신(Gly)이거나 또는 설폰아미드 이외의 작용기 함유-아미노산 잔기이며,
    n 및 m은 각각 독립적으로 0 또는 1이고,
    F4는 일반식 -(S1)o-(F5)p-(S2)q-(F6)r-NH2의 기이며, 여기서
    S1 및 S2는 각각 독립적으로 스페이서이고,
    F5 및 F6은 각각 독립적으로 설폰아미드 이외의 작용기 함유-아미노산 잔기이며,
    o, p, q 및 r은 각각 독립적으로 0 내지 6의 정수를 나타낸다.
  5. 제3항에 있어서, 하기 화학식 2의 선형 구조를 갖는 것을 특징으로 하는 펩타이드 구조체.
    [화학식 2]
    CH3C(=O)-Gly-(F7)s-F8-(S3)t-P-(F9)u-(S4)v-(F10)w-NH2
    상기 식에서,
    P는 제1항의 펩타이드이고,
    F8은 설폰아미드 작용기-함유 아미노산 잔기이며,
    F7, F9 및 F10은 각각 독립적으로 설폰아미드 이외의 작용기-함유 아미노산 잔기이거나, 또는
    F9가 복수개인 경우, 적어도 하나의 F9는 설폰아미드 작용기-함유 아미노산 잔기이고, 나머지 F9와 F7 및 F10은 각각 독립적으로 설폰아미드 이외의 작용기-함유 아미노산 잔기이며,
    S3 및 S4는 각각 독립적으로 스페이서이고,
    s, t, u, v 및 w는 각각 독립적으로 0 내지 3의 정수를 나타낸다.
  6. 제3항 내지 제5항 중 어느 한 항에 있어서, 상기 설폰아미드 작용기-함유 아미노산 잔기는 하기 구조를 갖는 것을 특징으로 하는 펩타이드 구조체.
    Figure PCTKR2023001951-appb-img-000021
  7. 제3항 내지 제5항 중 어느 한 항에 있어서, 상기 설폰아미드 이외의 작용기는 라이신 잔기의 측쇄 ε-아미노 기를 통해 도입되는 것을 특징으로 하는 펩타이드 구조체.
  8. 제7항에 있어서, 상기 설폰아미드 이외의 작용기는 킬레이터(chelator), 탄소수 5 내지 15의 사이클로알칸(cycloalkane), 비오틴(biotin), 글루코헵톤산(glucoheptonic acid), 4-(p-요오도페닐)부티르산(IB), 형광 염료, 또는 세포독성제인 것을 특징으로 하는 펩타이드 구조체.
  9. 제8항에 있어서, 상기 킬레이터는 1,4,7,10-테트라아자사이클로도데칸-1,4,7,10-테트라아세트산(DOTA), 1,4,7-트리아자사이클로노난-1,4,7-트리아세트산(NOTA), 에틸렌다이아민테트라아세트산2,2',2'',2'''-(에탄-1,2-디일디나이트릴로)테트라아세트산(EDTA), 1,4,7,10,13,16-헥사아자사이클로옥타데칸-N,N',N'',N''',N'''',N'''''-헥사아세트산(HEHA), 2-[4-니트로벤질]-1,4,7,10,13-펜타아자사이클로펜타데칸-N,N',N'',N''',N''''-펜타아세트산(PEPA), 1,4,7,10-테트라아자시클로도데칸-1,4,7,10-테트라(메틸렌 포스폰산)(DOTP), (1R,4R,7R,10R)-α,α',α'',α'''-테트라메틸-1,4,7,10-테트라아자시클로도데칸-1,4,7,10-테트라아세트산)테트라나트륨 염(DOTMA), 2-[비스[2-[비스(카르복시메틸)아미노]에틸]아미노]아세트산(DTPA), 및 트리에틸렌테트라민(TETA)으로부터 선택된 하나 이상인 것을 특징으로 하는 펩타이드 구조체.
  10. 제8항에 있어서, 상기 탄소수 5 내지 15의 사이클로알칸은 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄, 사이클로노난, 사이클로데칸, 아다만탄, 노보난, 이소보난, 및 트리사이클로데칸으로부터 선택된 하나 이상인 것을 특징으로 하는 펩타이드 구조체.
  11. 제3항 내지 제5항 중 어느 한 항에 있어서, 스페이서는 폴리에틸렌글리콜(PEG) 링커, 글리신, 사르코신(sarcosine), 및 1 내지 5의 D-아미노산 또는 L-아미노산으로 이루어진 펩타이드 링커로부터 선택된 하나 이상인 것을 특징으로 하는 펩타이드 구조체.
  12. 제5항에 있어서, 하기 화학식 3, 4 또는 5의 구조를 갖는 것을 특징으로 하는 펩타이드 구조체.
    [화학식 3]
    Figure PCTKR2023001951-appb-img-000022
    [화학식 4]
    Figure PCTKR2023001951-appb-img-000023
    [화학식 5]
    Figure PCTKR2023001951-appb-img-000024
    상기에서,
    소문자는 D-아미노산을 나타내고, 대문자는 L-아미노산을 나타내며,
    U로 표시된 치환기들은 각각 아래에 정의한 바와 같다.
    Figure PCTKR2023001951-appb-img-000025
  13. 제4항에 있어서, 하기 화학식 6, 7 또는 8의 구조를 갖는 것을 특징으로 하는 펩타이드 구조체.
    [화학식 6]
    Figure PCTKR2023001951-appb-img-000026
    [화학식 7]
    Figure PCTKR2023001951-appb-img-000027
    [화학식 8]
    Figure PCTKR2023001951-appb-img-000028
    상기에서,
    소문자는 D-아미노산을 나타내고, 대문자는 L-아미노산을 나타내며,
    U로 표시된 치환기들은 각각 아래에 정의한 바와 같다.
    Figure PCTKR2023001951-appb-img-000029
    Figure PCTKR2023001951-appb-img-000030
    Figure PCTKR2023001951-appb-img-000031
  14. 형광 염료, 세포독성제 또는 방사성동위원소에 직접 또는 링커를 통해 결합된 제3항 내지 제5항, 제2항 및 제13항 중 어느 한 항의 펩타이드 구조체를 포함하는 컨쥬게이트.
  15. 제14항에 있어서, 상기 링커는 6-말레이미도카프로일(MC), 말레이미도프로파노일(MP), 발린-시트룰린(val-cit), 알라닌-페닐알라닌(ala-phe), p-아미노벤질옥시카르보닐(PAB), N-숙신이미딜 4-(2-피리딜티오)펜타노에이트(SPP), N-숙신이미딜 4-(N-말레이미도메틸)시클로헥산-1 카르복실레이트(SMCC), 4-(2-피리딜디티오)부티르산-N-히드록시숙신이미드 에스테르(SPDB), 및 N-숙신이미딜(4-요오도-아세틸)아미노벤조에이트(SIAB)로부터 선택된 하나 이상인 것을 특징으로 하는 컨쥬게이트.
  16. 제14항에 있어서, 상기 형광 염료는 근적외선(near-infrared) 형광 염료, 플루오레세인 유형, 로다민 유형, 알렉사 플루오르(Alexa Fluor), 4,4-디플루오로-4-보로-3a,4a-디아자-s-인다센(BODIPY), 텍사스 레드(Texas Red), 단실(dansyl), 리사민(Lissamine), 시아닌(Cy), 및 피코에리트린으로부터 선택된 하나 이상인 것을 특징으로 하는 컨쥬게이트.
  17. 제14항에 있어서, 상기 세포독성제는 독소, 화학요법제, 약물 모이어티(moiety), 항생제, 및 핵산 분해 효소로부터 선택된 하나 이상인 것을 특징으로 하는 컨쥬게이트.
  18. 제14항에 있어서, 상기 방사성동위원소는 플루오린-18(F-18), 탄소-11(C-11), 탄소-14(C-14), 테크테늄-99m(Tc-99m), 구리-64(Cu-64), 구리-67(Cu-67), 디스프로슘-168(Dy-168), 비스무트-213(Bi-213), 사마륨-153(Sm-153), 스트론튬-89(St-89), 스트론튬-90(St-90), 어븀-169(Er-169), 인-32(P-32), 팔라듐-103(Pd-103), 레늄-186(Re-186), 레늄-188(Re-188), 산소-15(O-15), 셀레늄-75(Se-75), 나트륨-24(Na-24), 스트론튬-85(Sr-85), 루테튬-177(Lu-177), 이트륨-90(Y-90), 아이오딘-123(I-123), 아이오딘-125(I-125), 아이오딘-131(I-131), 이리듐-192(Ir-192), 이리듐-196(Ir-196), 이터븀-166(Yb-166), 인듐-111(In-111), 제논-133(Xe-133), 질소-13(N-13), 칼슘-47(Ca-47), 코발트-57(Co-57), 코발트-60(Co-60), 크로뮴-51(Cr-51), 크립톤-81(Kr-81), 칼륨-42(K-42), 홀뮴-166(Ho-166), 갈륨-67(Ga-67), 갈륨-68(Ga-68), 악티늄-225(Ac-225), 지르코늄-89(Zr-89), 납-212(Pb-212), 및 아스타틴-211(At-211)로부터 선택된 하나 이상인 것을 특징으로 하는 컨쥬게이트.
  19. 제3항 내지 제5항, 제12항 및 제13항 중 어느 한 항의 펩타이드 구조체를 포함하는 암의 진단, 예방 또는 치료용 제약 조성물.
  20. 제14항의 컨쥬게이트를 포함하는 암의 진단, 예방 또는 치료용 제약 조성물.
  21. 제19항에 있어서, 상기 암은 탈탄산수소효소 IX를 발현하는 것인 제약 조성물.
  22. 제19항에 있어서, 상기 암은 간암, 폐암, 대장암, 위암, 유방암, 결장암, 골암, 췌장암, 두경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 전립선암, 담도암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 흑색종, 갑상선암, 성상세포종 또는 교모세포종인 제약 조성물.
  23. 제20항에 있어서, 상기 암은 탈탄산수소효소 IX를 발현하는 것인 제약 조성물.
  24. 제20항에 있어서, 상기 암은 간암, 폐암, 대장암, 위암, 유방암, 결장암, 골암, 췌장암, 두경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 전립선암, 담도암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 흑색종, 갑상선암, 성상세포종 또는 교모세포종인 제약 조성물.
PCT/KR2023/001951 2022-02-11 2023-02-10 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도 WO2023153847A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020247012641A KR20240055882A (ko) 2022-02-11 2023-02-10 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도
EP23753194.2A EP4321526A1 (en) 2022-02-11 2023-02-10 Peptide ligand targeting carbonic anhydrase ix, peptide construct comprising same, and uses thereof
KR1020237027072A KR20230133319A (ko) 2022-02-11 2023-02-10 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드,이를 포함하는 펩타이드 구조체 및 이들의 용도
JP2023563929A JP2024518287A (ja) 2022-02-11 2023-02-10 炭酸脱水素酵素ixを標的にするペプチドリガンド、これを含むペプチド構造体及びその用途
CN202380010970.7A CN117120458A (zh) 2022-02-11 2023-02-10 靶向碳酸酐酶ix的肽配体、包含其的肽结构体及它们的用途
AU2023218802A AU2023218802A1 (en) 2022-02-11 2023-02-10 Peptide ligand targeting carbonic anhydrase ix, peptide construct comprising same, and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220018467 2022-02-11
KR10-2022-0018467 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023153847A1 true WO2023153847A1 (ko) 2023-08-17

Family

ID=87564802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001951 WO2023153847A1 (ko) 2022-02-11 2023-02-10 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도

Country Status (6)

Country Link
EP (1) EP4321526A1 (ko)
JP (1) JP2024518287A (ko)
KR (2) KR20230133319A (ko)
CN (1) CN117120458A (ko)
AU (1) AU2023218802A1 (ko)
WO (1) WO2023153847A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093248A (ko) * 2014-12-19 2017-08-14 다나-파버 캔서 인스티튜트 인크. 탄산무수화효소 ix 특이적 키메라 항원 수용체 및 이의 사용 방법
KR20180136567A (ko) * 2016-05-13 2018-12-24 더 존스 홉킨스 유니버시티 탄산 탈수효소 ix를 표적으로 하는 핵 영상화 및 방사선치료 제제 및 이의 용도
KR20200114854A (ko) * 2019-03-29 2020-10-07 (주)씨바이오멕스 탄산탈수소효소 9을 타겟으로 하는 암 진단 또는 치료용 펩타이드
US20210154334A1 (en) * 2019-11-22 2021-05-27 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C Dual-targeted carbonic anhydrase ix complex and contrast agent thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1038473C2 (en) * 2010-12-24 2012-06-27 Centre Nat Rech Scient Cancer targeting using carbonic anhydrase isoform ix inhibitors.
CN102626522B (zh) * 2012-04-12 2014-09-10 韩彦江 基于趋化因子受体cxcr4多肽类拮抗剂的多肽放射性诊断与治疗药物
KR102342319B1 (ko) * 2016-03-16 2021-12-23 온 타겟 래보래토리스, 엘엘씨 Ca ix-표적 nir 염료 및 그의 용도
CN109922818B (zh) * 2016-09-06 2024-02-20 主线生物科学公司 Cxcr4拮抗剂及使用方法
EP3679053A4 (en) * 2017-09-05 2021-10-27 Mainline Biosciences CXCR4 SELECTIVE BINDING CONJUGATE WITH HIGH AFFINITY AND METHOD OF USE
GB201900526D0 (en) * 2019-01-15 2019-03-06 Bicyclerd Ltd Bicyclic peptide ligands specific for caix
CN115811990A (zh) * 2020-05-19 2023-03-17 安尼根有限公司 新型核仁素结合肽及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093248A (ko) * 2014-12-19 2017-08-14 다나-파버 캔서 인스티튜트 인크. 탄산무수화효소 ix 특이적 키메라 항원 수용체 및 이의 사용 방법
KR20180136567A (ko) * 2016-05-13 2018-12-24 더 존스 홉킨스 유니버시티 탄산 탈수효소 ix를 표적으로 하는 핵 영상화 및 방사선치료 제제 및 이의 용도
KR20200114854A (ko) * 2019-03-29 2020-10-07 (주)씨바이오멕스 탄산탈수소효소 9을 타겟으로 하는 암 진단 또는 치료용 펩타이드
US20210154334A1 (en) * 2019-11-22 2021-05-27 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C Dual-targeted carbonic anhydrase ix complex and contrast agent thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE SIMONE ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1804, 2010, pages 404 - 409
SETHI KALYAN K.; VERMA SAURABH M.; TANÇ MUHAMMET; PURPER GAULTIER; CALAFATO GAETAN; CARTA FABRIZIO; SUPURAN CLAUDIU T. : "Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties", BIOORGANIC & MEDICINAL CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 22, no. 5, 31 January 2014 (2014-01-31), AMSTERDAM, NL, pages 1586 - 1595, XP028616700, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2014.01.031 *
THIRY ET AL., TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 27, no. 11, 2006, pages 566 - 573

Also Published As

Publication number Publication date
JP2024518287A (ja) 2024-05-01
KR20230133319A (ko) 2023-09-19
EP4321526A1 (en) 2024-02-14
CN117120458A (zh) 2023-11-24
KR20240055882A (ko) 2024-04-29
AU2023218802A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP7116217B2 (ja) Mt1-mmpに特異的な二環性ペプチドリガンド
JP7387440B2 (ja) Mt1-mmpに結合するためのペプチドリガンド
EP2790732B1 (en) Clicked somatostatin conjugated analogs for biological applications
FI101938B (fi) Polypeptidijohdannaisia
AU725827B2 (en) Radiometal-binding peptide analogues
CN111065646B (zh) 放射性药物
JP7026784B2 (ja) ミニガストリン誘導体、特にcck2受容体陽性腫瘍の診断及び/又は治療において使用するためのミニガストリン誘導体
JP2022514618A (ja) Pd-l1に特異的な二環式ペプチドリガンド
JP2022513256A (ja) デュアルモード18f標識セラノスティック化合物及びその使用
KR20130132935A (ko) Nota에 의해 복합체를 형성한 알루미늄―〔18〕플루오라이드로 표지된 her2 결합 펩티드
JP2020506921A (ja) がんイメージング及びがん放射線治療のための組成物及び方法
SK2094A3 (en) Somatostatine polypeptides, method of their preparing and using
JP2021528432A (ja) Cd38に結合するためのペプチドリガンド
WO2023153847A1 (ko) 탄산탈수소효소 ix를 표적으로 하는 펩타이드 리간드, 이를 포함하는 펩타이드 구조체 및 이들의 용도
JP2022507296A (ja) ガストリン放出ペプチド受容体(grpr)のインビボイメージングおよびgrpr関連障害の治療のための放射性標識ボンベシン由来化合物
EP3868394A1 (en) Mono- and multi-triazolominigastrins for targeting of cck2r-positive neoplasms
US20210196842A1 (en) Site-specific radiofluorination of peptides with 8-[18f]-fluorooctanoic acid catalyzed by lipoic acid ligase
CA3201655A1 (en) Radiolabeled compounds targeting the prostate-specific membrane antigen
CA2299389A1 (en) Radiolabeled peptides for the diagnosis and treatment of breast and prostate tumors and metastases of such tumors
EP2710027A1 (en) Bombesin receptor targeting peptide incorporating a 1, 2, 3-triazole group in the backbone for preparing in vivo diagnostic and therapeutic agents
WO2024083224A1 (en) Dual receptor targeting radioligands and uses thereof related applications
CA3238734A1 (en) Cleavable radioligands for targeting cell surface receptors and uses thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237027072

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027072

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23753194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: AU2023218802

Country of ref document: AU

Ref document number: 2023218802

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023218802

Country of ref document: AU

Date of ref document: 20230210

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023753194

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023753194

Country of ref document: EP

Effective date: 20231109