WO2017209471A1 - 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도 - Google Patents

높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도 Download PDF

Info

Publication number
WO2017209471A1
WO2017209471A1 PCT/KR2017/005593 KR2017005593W WO2017209471A1 WO 2017209471 A1 WO2017209471 A1 WO 2017209471A1 KR 2017005593 W KR2017005593 W KR 2017005593W WO 2017209471 A1 WO2017209471 A1 WO 2017209471A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cys
amino acid
npa
asn
Prior art date
Application number
PCT/KR2017/005593
Other languages
English (en)
French (fr)
Inventor
정상전
최원우
강효진
김주환
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170065171A external-priority patent/KR101966301B1/ko
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2017209471A1 publication Critical patent/WO2017209471A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • the present invention relates to a ligand for antibody purification that maintains binding ability and has a more relaxed elution condition. More specifically, to induce modification of an amino acid sequence of an antibody-binding peptide to maintain antibody binding capacity while maintaining high antibody binding capacity For peptide hybrids.
  • antibody purification has generally used affinity chromatography, and natural IgG-binding proteins such as protein A and protein G derived from bacteria are used as the adsorption ligands. It is commonly used as.
  • protein ligands have a problem of high production cost, low stability, and high possibility of contamination due to bacterial components.
  • a severe condition is required to elute the binding antibody, so that the antibody is highly denatured.
  • Synthetic ligands have thus been developed as an alternative to protein ligands (R. Li, V. Dowd, D. J. Stewart, S. J. Burton, C. R. Lowe, Nat. Biotechnol. 16: 190, 1998).
  • New ligands include thiols, dyes, triazine-based compounds, and natural and / or non-natural peptides, and so far include dendrimers, iron ions or callicrow derivatives,
  • Antibody purification methods using 4-8 peptides and the like have been developed, but these methods show a similar degree of binding or weak binding ability to all kinds of proteins without orientation control and selectivity to antibodies.
  • FcBP IgG Fc domain-binding peptide
  • the present inventors have developed a column for antibody purification using FcBP and have been successfully used for antibody purification, but there has been a continuous demand for antibody purification resins that maintain binding capacity and have more elution conditions.
  • the present invention has been made to solve the above-mentioned problems in the prior art, the inventors of the present invention, as a result of efforts to develop antibody purification ligands that maintain the binding force and the elution conditions are more relaxed, the amino acid sequence of the antibody-binding peptide of the present invention The present invention was completed by confirming that the antibody binding ability was maintained by inducing modification but the elution conditions were alleviated.
  • an object of the present invention is to provide a novel peptide that can easily adjust the binding capacity to IgG.
  • An object of the present invention is to provide a peptide hybrid with a linker attached to the C-terminus or N-terminus of the novel peptide.
  • the present invention is a peptide that specifically binds to the Fc fragment of immunoglobulin G (Immunoglobulin G; IgG), the peptide is a leucine (position 6 position in the amino acid sequence of SEQ ID NO: 1) Leu) provides a peptide having an amino acid sequence substituted with asparagine (Asn), histidine (His) or glutamine (Gln).
  • the present invention is a peptide that specifically binds to the Fc fragment of immunoglobulin G (Immunoglobulin G; IgG), wherein the peptide is asparagine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: Asn), histidine (His) or glutamine (Gln), and a peptide having an amino acid sequence substituted for tryptophan (Trp) at position 11 with 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA).
  • Immunoglobulin G immunoglobulin G
  • IgG immunoglobulin G
  • the peptide is asparagine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: Asn), histidine (His) or glutamine (Gln), and a peptide having an amino acid sequence substituted for tryptophan (Trp) at position 11 with 1-naphthylalanine (N
  • the peptide may have any one amino acid sequence selected from the group consisting of SEQ ID NO: 2 to 4.
  • the peptide may have any one amino acid sequence selected from the group consisting of SEQ ID NOs: 5-10.
  • the present invention provides a peptide hybrid having any one structure selected from the following structural formulas (1) to (3).
  • n is an integer from 1 to 30
  • Cys * is a disulfide bond
  • Xaa is Asn, His or Gln
  • Xbb is Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA)
  • Cap is an acetyl or succinyl group, n is an integer from 1 to 30, Cys * is a disulfide bond, Xaa is Asn, His or Gln, Xbb is Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine ( BzA)
  • Cap is an acetyl or succinyl group, m and n are each independently an integer from 1 to 30, Cys * is a disulfide bond;
  • Xaa is Asn, His or Gln,
  • Xbb is Trp, 1-naphthylalanine (NpA) Or 3-benzothienylalanine (BzA),
  • Y is an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 18 carbon atoms, oxygen (-O-), amine (-NH-), urea (-NHCONH-), amide ( -CONH-) or ester (-COO-)
  • Xaa may be Asn, His or Gln
  • Xbb may be Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA).
  • the peptide of the present invention is controlled to significantly change the binding force to IgG between pH 3 to 5 by replacing the amino acid at a specific position in the amino acid sequence with other amino acids, it can be usefully used for the use of IgG immobilization or purification.
  • the peptide having improved binding ability to IgG of the present invention has excellent binding ability to IgG and elutes IgG at a mild pH (between 3 and 5) conditions, and has excellent purification ability even after multiple repeated use. It can be useful for the column.
  • 1 is a diagram confirming the structures of PEG6-Asn-FcBP-NpA, PEG6-His-FcBP-NpA and PEG6-Gln-FcBP-NpA peptide.
  • Figure 2 is a diagram analyzing the binding force of Herceptin (humanized IgG1) and PEG6-Asn-FcBP-NpA peptide.
  • Figure 3 is a diagram analyzing the binding force of Herceptin (humanized IgG1) and PEG6-His-FcBP-NpA peptide.
  • Figure 4 is a diagram showing the binding constant of PEG6-Asn-FcBP-NpA peptide and PEG6-His-FcBP-NpA peptide for Herceptin (humanized IgG1).
  • FIG. 5 is a diagram showing antibody purification ability and antibody elution conditions of PEG6-Asn-FcBP-NpA peptide and PEG6-His-FcBP-NpA peptide.
  • Figures 6a and 6b is a comparative analysis of antibody purification ability using a peptide resin column
  • Figure 6a is a PEG6-Asn-FcBP-NpA peptide resin and PEG6-His-FcBP-NpA peptide resin
  • Fig. 6B shows the result of comparing antibody purification ability using resin
  • Fig. 6B is a diagram quantifying the comparison result of such antibody purification ability.
  • the present invention provides a peptide that specifically binds to an Fc fragment of immunoglobulin G (Immunoglobulin G; IgG), wherein the peptide is asparagine (Leu) of Leucine at position 6 in the amino acid sequence of SEQ ID NO: 1.
  • the novel peptide of the present invention has an amino acid sequence in which leucine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: 1 is substituted with asparagine (Asn), histidine (His) or glutamine (Gln).
  • leucine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: 1 is substituted with asparagine (Asn), histidine (His) or glutamine (Gln), and tryptophan (Trp) at position 11 It has an amino acid sequence substituted with 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA).
  • the peptide of the present invention has an amino acid sequence where leucine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: 1 has an amino acid sequence substituted with asparagine (Asn), histidine (His) or glutamine (Gln), the peptide of the present invention is a sequence It may have any one amino acid sequence selected from the group consisting of numbers 2 to 4.
  • leucine (Leu) at position 6 in the amino acid sequence of SEQ ID NO: 1 is substituted with asparagine (Asn), histidine (His) or glutamine (Gln), and tryptophan (Trp) at position 11 is 1-.
  • the peptide of the present invention may have any one amino acid sequence selected from the group consisting of SEQ ID NOs: 5-10.
  • the present invention also provides a peptide hybrid with a linker added to the C-terminus or N-terminus of the peptide.
  • IgG may be immobilized on a substrate, resin, or the like, and used for preparing an immunosensor or IgG purification column using an antigen antibody reaction.
  • the linker is to facilitate the introduction of the peptide to the substrate, resin, etc. and to improve solubility.
  • the linker may be added at the C-terminus or the N-terminus of the peptide, and preferably at the C-terminus. .
  • the linker according to the invention is preferably PEG (polyethylene glycol) or 1,2-bis- (2-aminoethoxy) ethane (BAE) having a weight average molecular weight of 60 to 3,000.
  • the peptide hybrid according to the present invention may have a structure of any one of the following Chemical Formulas 1-3.
  • n is an integer from 1 to 30
  • Cys * is a disulfide bond
  • Xaa is Asn, His or Gln
  • Xbb is Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA)
  • Cap is an acetyl or succinyl group, n is an integer from 1 to 30, Cys * is a disulfide bond, Xaa is Asn, His or Gln, Xbb is Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine ( BzA)
  • Cap is an acetyl or succinyl group, m and n are each independently an integer from 1 to 30, Cys * is a disulfide bond;
  • Xaa is Asn, His or Gln,
  • Xbb is Trp, 1-naphthylalanine (NpA) Or 3-benzothienylalanine (BzA),
  • Y is an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 18 carbon atoms, oxygen (-O-), amine (-NH-), urea (-NHCONH-), amide ( -CONH-) or ester (-COO-)
  • the C-terminal or N-terminal amine (NH 2) group may be substituted with any one functional group selected from the group consisting of maleimide, azide, and alkyne, Other appropriate functional groups may be substituted, but is not limited thereto.
  • Xaa may be Asn, His or Gln
  • Xbb may be Trp, 1-naphthylalanine (NpA) or 3-benzothienylalanine (BzA).
  • the binding capacity of the peptide hybrid to IgG is slightly decreased, but by replacing hydrophobic amino acid residues (Leu) with hydrophilic amino acid residues (Asn, His or Gln),
  • the bound antibody can be isolated and eluted under mild conditions (pH 3-4) without denaturation of the antibody, and thus can be particularly useful for the purification of IgG.
  • Reagents used for peptide synthesis include DMF, DCM, DIPEA, 0.5 M 2- (1H-benzotriazole-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), and DMF, 0.5 M hydroxybenzotirazole (HOBt) DMF, 20% piperidine-containing DMF, using the listed Fmoc amino acid blocks and linkers, sequentially proceeded from C-terminal amino acids to solid phase peptide synthesis.
  • the peptide resin was treated with DMF containing 20% Acetic anhydride when capping with acetyl group and DMF with 1.0 M succinic anhydride when capping with succinyl group.
  • H-PEG6-OH was performed using the same conditions as the Fmoc-protected amino acid introduction process using Fmoc-N-amido-dPEG6-acid (Quanta Biodesign, USA), and the peptides from the protecting group and the resin were cleaved. This was carried out using a TFA cleavage solution, disulfide bond reaction was carried out in 5% -DMSO-20% -ACN in 0.01M ammonium acetate buffer (pH 6.5) to maintain the peptide concentration below 0.1 mg / ml. Analysis of the obtained product and observation of the progress of the reaction were carried out by analytical HPLC, and purification of the synthesized peptide was obtained using peptide prep-HPLC to obtain peptide hybrids with a purity of 90% or more.
  • the amount of reagent used in the following procedure was based on 0.25 mmole.
  • 0.5 g of Clear amide resin (0.48 mmole / g, Peptide International, USA) was added to the synthesis reactor, and 1 mmole of each Fmoc-amino acid block was weighed and prepared from the C-terminus to the N-terminus in the order of peptide amino acid sequence. .
  • Fmoc removal was performed in 20% piperidine-containing DMF and residue activation and incorporation was performed according to sequence prepared amino acids in 2 ml 0.5 M HOBT containing DMF solution, 2 ml 0.5 M HBTU containing DMF solution, and 174 ul DIPEA and 5 After mixing for a minute, it was poured into a reactor containing resin and mixed for 2 hours.
  • Peptide was cleaved from the resin by stirring 250 mg of the peptide-attached resin prepared in the above (b) with 120 ml of a mixture of TFA, TIS, water and EDT (94: 1.0: 2.5: 2.5) at room temperature for 120 minutes.
  • the cleavage mixture was filtered, the filtrate was concentrated about halfway with nitrogen gas and then ether was poured to precipitate the peptide.
  • the precipitated peptide was washed three more times with ether and dried with nitrogen gas. The dried precipitate was dissolved in 0.1% TFA-30% AcCN-containing water, stirred for 6 hours, and then concentrated.
  • the concentrated solution was dissolved in 5% -DMSO-20% -ACN in 0.01M ammonium acetate buffer (pH 6.5) solution at a concentration of 0.1 mg / ml and stirred for 3 days in an air exposed state. Progress of the disulfide bond formation reaction was observed by HPLC, and when judged not to proceed any more, the reaction solution was lyophilized to obtain peptide precipitates.
  • Peptide precipitate obtained by lyophilization in the step (c) was separated in the prep-LC primary purification conditions shown in Table 1, and then further purified and freeze-dried under the prep-LC secondary purification conditions shown in Table 2.
  • the obtained peptides were confirmed to be 90% or more purity by analytical HPLC, and the molecular weight of the synthesized peptides was confirmed by LC / MS mass spectrometry.
  • CM5 sensor activated with N '-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide (EDC / NHS)
  • EDC / NHS N-hydroxysuccinimide
  • the peptide (GE Healthcare, Uppsala, Sweden) was immobilized by flowing a peptide (10 ⁇ g / ml in 10 mM Sodium acetate, pH 5.0) for 3 minutes at a flow rate of 10 ⁇ l / min.
  • the active part remaining on the surface of the sensor chip was deactivated by adding 1.0 M ethanolamine (pH 8.5).
  • the Herceptin was diluted in buffer solution (1 X PBS, pH 7.4) at each concentration, and then flown at a flow rate of 30 ⁇ l / min to confirm binding and dissociation sensorgrams.
  • a cell inactivated only by ethanolamine was used to correct sensorgrams caused by nonspecific binding with sensor chips, and nonspecific binding was corrected by subtracting sensorgrams of ethanolamine from Herceptin sensorgrams.
  • the surface of the sensor chip was regenerated by flowing a regeneration buffer (20 mM NaOH).
  • Figure 2 is a test result data for calculating the binding force by fixing the PEG6-Asn-FcBP-NpA peptide to the sensor chip for measuring the SPR and binding human-derived IgG (Herceptin) of various concentrations, the final binding force (KD) is It was measured at 7.10E-10 M (0.71 nM).
  • Figure 3 is a test result data for calculating the binding force by fixing the PEG6-His-FcBP-NpA peptide to the sensor chip for measuring SPR and binding human-derived IgG (Herceptin) of various concentrations, the final binding force (KD ) was determined to be 4.92E-09 M (4.92 nM).
  • Affinity resin using each peptide hybrid prepared in Example 1 was prepared according to the manufacturer's protocol.
  • a column was prepared using the antibody-affinity resin prepared in the above process, and was prepared to be used for comparing antibody purification ability and measuring dynamic binding capacity.
  • the antibody used was human-derived IgG (Herceptin), the column was washed with PBS, the elution solution was used pH 6 ⁇ 2.5 buffer, antibody loading, PBS wash, pH elution of the antibody by the buffer by pH. The volume of the washed and eluted aliquots was 5 times the volume of the resin, and the eluted antibody was analyzed by SDS-PAGE to confirm the antibody purification ability and elution pH (see FIG. 5).
  • the amount of the antibody that can be purified per mL of the column is commercially available protein A.
  • PEG6-Asn-FcBP-NpA resin was improved by about 111% and PEG6-His-FcBP-NpA resin by about 127%.
  • the present invention relates to a ligand for antibody purification, which maintains binding ability and has a more relaxed elution condition. More specifically, the present invention relates to an antibody purification ligand that induces modification to an amino acid sequence of an antibody-binding peptide, thereby maintaining a high antibody binding capacity but having reduced elution conditions.
  • the peptide hybrid with improved binding ability to IgG of the present invention has excellent binding ability to IgG and elutes IgG at mild pH conditions, and has excellent purification ability even after multiple repeated use. In the future, it is expected to be useful for IgG purification columns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명의 펩타이드는 아미노산 서열 중 특정 위치의 아미노산이 타 아미노산으로 치환됨으로써 IgG에 대한 결합력이 조절되어, IgG 고정이나 정제의 용도로써 유용하게 활용 가능하다. 또한 본 발명의 IgG에 대한 결합력이 개선된 펩타이드는 IgG에 대한 결합력은 우수하면서 온화한 pH 조건에서 IgG를 용출시킬 뿐만 아니라, 복수회의 반복 사용 후에도 우수한 정제 능력을 가져 IgG 정제용 칼럼에 유용하게 이용될 수 있다.

Description

높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도
본 발명은 결합력을 유지하며 용출 조건이 보다 완화된 항체 정제용 리간드에 관한 것으로, 보다 구체적으로는, 항체결합 펩타이드의 아미노산 서열에 변형을 유도하여 높은 항체 결합력은 유지되나 용출조건이 완화된 항체 정제용 펩티드 혼성체에 관한 것이다.
질병의 치료 및 진단에 있어서, 항체의 사용이 증가하고 있으며, 임상시험을 마친 바이오 의약품의 약 20%가 항체 제제이다. 이에 항체의 생산 및 정제에 관련된 기술이 학문적 및 산업적 관심의 대상이 되고 있다.
특히, 치료용적 항체의 제작에서 정제 등의 후속 과정이 전체 비용의 50 ~ 80 % 정도를 차지할 정도로 정제 단계가 비용 집약적이기 때문에 항체의 정제 기술을 개발하는데 많은 노력을 기울이고 있다.
지난 20년에 걸쳐서, 항체 정제는 일반적으로 흡착 크로마토그래피(affinity chromatography)를 이용하여 왔으며, 박테리아로부터 유래된 단백질 A 및 단백질 G와 같은 천연의 IgG-결합 단백질(natural IgG-binding protein)이 흡착 리간드로서 흔히 사용되고 있다. 그러나 단백질 리간드는 생산 비용이 높고, 안정성이 낮으며, 박테리아 성분으로 인한 오염 가능성이 크다는 문제점이 있다. 더욱이 결합 항체를 용출시키기 위해 가혹한 조건이 요구되므로 항체가 변성될 가능성이 크다는 단점이 있다.
이에 합성 리간드가 단백질 리간드의 대안으로 개발되어 왔다(R. Li, V. Dowd, D.J. Stewart, S.J. Burton, C.R. Lowe, Nat. Biotechnol. 16:190, 1998). 새로운 리간드는 티올(thiol), 염료(dyes), 트리아진계(triazine-based) 화합물(compound), 및 천연 및/또는 비천연의 펩티드를 포함하며, 지금까지 덴드리머, 철이온 또는 캘릭스크라운 유도체, 4~8개의 펩타이드 등을 이용한 항체 정제 방법들이 개발되었으나 상기 방법들은 항체에 대한 배향성 조절 및 선택성 없이 모든 종류의 단백질에 비슷한 정도의 결합을 나타내거나 결합력이 약하다는 단점이 있다.
이와 같이 항체 리간드가 개발되었음에도 불구하고, 박테리아 유래 단백질이 여전히 IgG 정제를 위한 흡착 리간드로 일반적으로 사용되고 있는데 이는 주로 상기 단백질이 IgG와 선택적이고 특이적으로 결합하여 정제의 효율이 높기 때문이다. 이러한 특이성 및 선택성은 단백질 A 및 단백질 G의 IgG에 대한 강한 결합 친화성(Kd = 10-5~ 10-8 M)과 관련이 있다. 이에 반하여 지금까지 보고된 대부분의 합성 리간드는 항체와의 결합 친화성이 Kd = 10-3~ 10-5 M 정도로 항체와의 선택적 특이적 결합력이 낮다는 문제점이 있다.
본 발명자들은 IgG와 높은 선택성 및 특이성을 가지고 결합하는 IgG Fc 도메인-결합 펩티드(Fc domain-binding peptide, 이하 FcBP라 함)를 개발하였고(대한민국 특허출원 제 10-2008-0060863호), 이를 이용하여 표면 플라즈마 공명(surface plasmon resonance, SPR) 칩 위에 항체를 고정하는 데 성공하였으며, 나아가 다른 고체상 표면(자성입자, 슬라이드 글라스 표면)에 항체를 고정하는데 이용하였다.
또한, 본 발명자들은 FcBP를 사용하여 항체 정제용 칼럼을 개발하였으며 성공적으로 항체 정제에 사용할 수 있었으나 결합력을 유지하며 용출 조건이 보다 완화된 항체 정제용 레진에 대한 수요가 지속적으로 있어 왔다.
본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은 결합력을 유지하며 용출 조건이 보다 완화된 항체 정제용 리간드를 개발하고자 노력한 결과, 본 발명의 항체결합 펩타이드의 아미노산 서열에 변형을 유도하여 항체 결합력은 유지되나 용출조건이 완화됨을 확인함으로써, 본 발명을 완성하였다.
이에, 본 발명은 IgG에 대한 결합력을 용이하게 조절할 수 있는 신규 펩타이드를 제공하는 것을 목적으로 한다.
본 발명은 상기 신규 펩타이드의 C-말단 또는 N-말단에 링커가 부착된 펩타이드 혼성체를 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위하여, 본 발명은 면역글로불린 G(Immunoglobulin G; IgG)의 Fc 단편(fragment)에 특이적으로 결합하는 펩타이드로서, 상기 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환된 아미노산 서열을 갖는, 펩타이드를 제공한다.
또한, 본 발명은 면역글로불린 G(Immunoglobulin G; IgG)의 Fc 단편(fragment)에 특이적으로 결합하는 펩타이드로서, 상기 펩타이드는 서열번호 1 의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환되고, 11번 위치의 트립토판(Trp)이 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)으로 치환된 아미노산 서열을 갖는 펩타이드를 제공한다.
본 발명의 일 구현예로, 상기 펩타이드는 서열번호 2 내지 4로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 가질 수 있다.
본 발명의 다른 구현예로, 상기 펩타이드는 서열번호 5 내지 10으로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 가질 수 있다.
또한, 본 발명은 하기 구조식 1 내지 3으로부터 선택되는 어느 하나의 구조를 갖는 펩타이드 혼성체를 제공한다.
[구조식 1]
H2N(CH2CH2O)nCH2CH2CO-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-NH2
(식 중, n은 1 내지 30의 정수이고, Cys*는 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
[구조식 2]
Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)nNH2
(Cap는 아세틸기 또는 숙시닐기이고, n은 1 내지 30의 정수이고, Cys*은 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
[구조식 3]
Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)mYCH2CH2(OCH2CH2)nNH2
(Cap는 아세틸기 또는 숙시닐기이고, m 및 n은 서로 독립적으로 1 내지 30의 정수이고, Cys*는 이황화 결합이고; Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)이며, Y는 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 18의 아릴렌기, 산소(-O-), 아민(-NH-), 유레아(-NHCONH-), 아미드(-CONH-) 또는 에스테르(-COO-)임)
본 발명의 또 다른 구현예로, 상기 구조식 1 내지 3 중 Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA) 일 수 있다.
본 발명의 펩타이드는 아미노산 서열 중 특정 위치의 아미노산이 타 아미노산으로 치환됨으로써 pH 3~5 사이에서 IgG에 대한 결합력이 크게 변하도록 조절되어, IgG 고정이나 정제의 용도로써 유용하게 활용 가능하다. 또한 본 발명의 IgG에 대한 결합력이 개선된 펩타이드는 IgG에 대한 결합력은 우수하면서 온화한 pH(3~5 사이) 조건에서 IgG를 용출시킬 뿐만 아니라, 복수회의 반복 사용 후에도 우수한 정제 능력을 가져 IgG 정제용 칼럼에 유용하게 이용될 수 있다.
도 1은 PEG6-Asn-FcBP-NpA, PEG6-His-FcBP-NpA 및 PEG6-Gln-FcBP-NpA 펩타이드의 구조를 확인한 도이다.
도 2는 허셉틴(humanized IgG1)과 PEG6-Asn-FcBP-NpA 펩타이드의 결합력을 분석한 도이다.
도 3은 허셉틴(humanized IgG1)과 PEG6-His-FcBP-NpA 펩타이드의 결합력을 분석한 도이다.
도 4는 허셉틴(humanized IgG1)에 대한 PEG6-Asn-FcBP-NpA 펩타이드와 PEG6-His- FcBP-NpA 펩타이드의 결합상수를 나타내는 도이다.
도 5는 PEG6-Asn-FcBP-NpA 펩타이드와 PEG6-His-FcBP-NpA 펩타이드의 항체 정제능 및 항체 용출조건을 나타내는 도이다.
도 6a 및 도 6b는 펩타이드 레진 칼럼을 이용하여 항체 정제능을 비교 분석한 도로서, 도 6a는 PEG6-Asn-FcBP-NpA 펩타이드 레진과 PEG6-His-FcBP-NpA 펩타이드 레진, 및 시판되는 Protein A 레진을 이용한 항체 정제능을 비교한 결과를 나타내는 도이고, 도 6b는 이와 같은 항체 정제능의 비교결과를 정량화한 도이다.
본 발명은 면역글로불린 G(Immunoglobulin G; IgG)의 Fc 단편(fragment)에 특이적으로 결합하는 펩타이드로서, 상기 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환된 아미노산 서열을 가지거나, 또는 서열번호 1 의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환되고, 11번 위치의 트립토판(Trp)이 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)으로 치환된 아미노산 서열을 가짐으로써, IgG에 대한 결합력이 조절되어, IgG에 대한 우수한 결합력을 갖는 IgG 고정용 기판, 단분자막의 용도로 활용되거나, 우수한 정제 능력을 갖는 IgG 정제용 칼럼에 유용하게 이용될 수 있는, 면역글로불린 G의 Fc 부위에 선택적으로 결합하는 신규 펩타이드에 관한 것이다.
이하 본 발명을 상세히 설명한다.
본 발명의 신규 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환된 아미노산 서열을 갖는다.
또한, 본 발명의 신규 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환되고, 11번 위치의 트립토판(Trp)이 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)으로 치환된 아미노산 서열을 갖는다.
본 발명의 펩타이드가 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환된 아미노산 서열을 갖는 경우, 본 발명의 펩타이드는 서열번호 2 내지 4로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 가질 수 있다.
본 발명의 펩타이드가 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His) 또는 글루타민(Gln)으로 치환되고, 11번 위치의 트립토판(Trp)이 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)으로 치환된 아미노산 서열을 갖는 경우, 본 발명의 펩타이드는 서열번호 5 내지 10으로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 가질 수 있다.
또한, 본 발명은 상기 펩타이드의 C-말단 또는 N-말단에 링커를 부가한 펩타이드 혼성체를 제공한다.
전술한 본 발명의 펩타이드는 IgG의 Fc 단편에 결합하므로, IgG를 기판, 레진 등에 고정시켜 항원 항체 반응을 이용하는 면역 센서 또는 IgG 정제용 컬럼을 제조하는 용도로 활용될 수 있다.
링커는 펩타이드를 기판, 레진 등에 용이하게 도입할 수 있도록 하고 용해도를 개선하는 역할을 하는 것으로, 펩타이드의 C-말단 또는 N-말단에 부가될 수 있고, 바람직하게는 C-말단에 부가될 수 있다.
본 발명에 따른 링커는 중량평균분자량이 60 내지 3,000인 PEG(폴리에틸렌글리콜) 또는 1,2-비스-(2-아미노에톡시)에탄 (BAE)인 것이 바람직하다.
본 발명에 따른 펩타이드 혼성체는 하기 구조식 1 내지 3 중 어느 하나의 구조를 가질 수 있다.
[구조식 1]
H2N(CH2CH2O)nCH2CH2CO-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-NH2
(식 중, n은 1 내지 30의 정수이고, Cys*는 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
[구조식 2]
Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)nNH2
(Cap는 아세틸기 또는 숙시닐기이고, n은 1 내지 30의 정수이고, Cys*은 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
[구조식 3]
Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)mYCH2CH2(OCH2CH2)nNH2
(Cap는 아세틸기 또는 숙시닐기이고, m 및 n은 서로 독립적으로 1 내지 30의 정수이고, Cys*는 이황화 결합이고; Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)이며, Y는 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 18의 아릴렌기, 산소(-O-), 아민(-NH-), 유레아(-NHCONH-), 아미드(-CONH-) 또는 에스테르(-COO-)임)
상기 구조식 1 내지 3에서 C-말단 또는 N-말단의 아민(NH2)기가 말레이미드(maleimide), 아지드(azide) 및 알킨(alkyne)으로 구성된 군으로부터 선택된 어느 하나의 기능기로 치환될 수 있으며, 그 외 다른 적절한 기능기로 치환된 것일 수 있으나 이에 한정되지 않는다.
상기 구조식 1 내지 3에서 Xaa는 Asn, His 또는 Gln일 수 있고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA) 일 수 있다.
상기 구조식 1 내지 3에서 Xaa가 Asn, His 또는 Gln인 경우, 펩타이드 혼성체의 IgG에 대한 결합력이 다소 떨어졌으나, 소수성 아미노산 잔기(Leu)를 친수성 아미노산 잔기(Asn, His 또는 Gln)로 치환함으로써, 결합된 항체를 온화한 조건(pH 3~4)에서 항체의 변성 없이 분리 용출 시킬 수 있으므로, IgG의 정제를 위한 용도로 특히 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
실시예 1. 펩타이드 혼성체의 제조
펩타이드 합성에 사용된 시약은 DMF, DCM, DIPEA, 0.5 M 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) 함유 DMF, 0.5 M hydroxybenzotirazole (HOBt) 함유 DMF, 20% 피페리딘 함유 DMF이며, 열거된 Fmoc 아미노산 블록 및 링커를 사용하여 C-말단 아미노산부터 고체상 펩타이드 합성법에 따라 순차적으로 진행하였다.
N-말단 아미노기의 캡핑의 경우, 아세틸기로 캡핑하는 경우에는 20% Acetic anhydride가 포함된 DMF를, 숙신닐기로 캡핑하는 경우에는 1.0 M succinic anhydride가 포함된 DMF를 펩타이드 레진에 처리하여 달성하였다.
H-PEG6-OH의 도입은 Fmoc-N-amido-dPEG6-acid (Quanta Biodesign, 미국)를 사용하여 Fmoc-보호 아미노산 도입 과정과 동일한 조건을 사용하여 수행하였으며, 보호기 및 레진으로부터의 펩타이드를 절단하는 것은 TFA 절단 용액을 사용하여 진행하였고, 이황결합 반응은 5%-DMSO-20%-ACN in 0.01M ammonium acetate buffer (pH 6.5)에서 펩타이드 농도를 0.1 mg/ml 이하로 유지하는 조건에서 수행하였다. 수득물의 분석 및 반응 진행의 관찰은 분석용 HPLC로 수행하였고, 합성이 완료된 펩타이드의 정제는 prep-HPLC를 사용하여 90% 이상의 순도로 펩타이드 혼성체를 확보하였다.
이하, 항체결합능은 유지된 채 항체 용출조건을 온화한 조건으로 변경하기 위한 PEG6-Asn-FcBP-Np, PEG6-His-FcBP-Np 및 PEG6-Gln-FcBP-Np의 구체적인 합성 방법을 설명한다.
실시예 2. PEG6 - Asn - FcBP - NpA 제조
2-1. PEG6 - Asn - FcBP - NpA의 구조
Figure PCTKR2017005593-appb-I000001
2-2. 사용된 Fmoc 아미노산 목록 및 도입순서
Fmoc-L-Thr(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-L-NpA-OH, Fmoc-L-Val-OH, Fmoc-L-Leu-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Asp(tBu)-OH
2-3. 제조 방법
(a) 아미노산 도입
하기 과정에서 사용된 시약의 양은 0.25 mmole에 기초하였다. 0.5 g의 Clear amide resin (0.48 mmole/g, Peptide International, 미국)를 합성 반응기에 넣고, 각각의 Fmoc-아미노산 블록 1 mmole의 무게를 달아 펩타이드 아미노산 서열 순서대로 C-말단에서부터 N-말단까지 준비하였다.
Fmoc-아미노산을 활성화하여 Clear amide resin에 활성화된 잔기를 부착하는 반응을 C-말단 아미노산부터 순차적으로 진행하였다.
Fmoc의 제거는 20% 피페리딘 함유 DMF에서 수행하였고 잔기의 활성화 및 도입은 서열에 맞추어 준비한 아미노산을 2 ml 0.5 M HOBT 함유 DMF용액, 2 ml 0.5 M HBTU 함유 DMF 용액, 그리고 174 ul DIPEA와 5 분간 혼합한 다음 레진이 담긴 반응기에 부어 2 시간 동안 혼합하였다.
도입 반응의 확인은 카이저 시험법으로 수행하였으며 미반응으로 확인되면 도입 반응을 1회 더 반복하거나 20% Ac2O함유 DMF 용액으로 캡핑을 실시하였다. 각 도입 반응과 Fmoc 제거 과정에서 다음 단계로 넘어가기 전에 DMF와 DCM으로 수지를 충분히 세척하였다. 이러한 과정은 목표한 펩타이드 서열이 완성될 때까지 반복하여 진행하였다.
(b) H-PEG6-OH의 도입
아미노산 도입이 모두 끝난 다음에 N-말단에 H-PEG6-OH을 도입하기 위하여 1 ml 0.5 M Fmoc-N-amido-dPEG6-acid in DMF 용액, 1 ml 0.5 M HBTU 함유 DMF 용액, 1 ml 0.5 M HOBT 함유 DMF용액, 그리고 87 ul DIPEA와 5분간 혼합한 다음 반응 레진이 담긴 반응기에 부어 2 시간 동안 혼합하였다.
반응의 진행은 Kaiser 시험법으로 확인하였으며, 미반응 아민이 남아 있는 것으로 판단되면 반응 시간을 1 ~ 3 시간 더 연장하거나 반응액을 비우고 상기의 반응 과정을 다시 반복하였다. N-말단의 Fmoc 보호기의 제거는 20% piperidine in DMF를 사용하여 수행한 다음, 펩타이드가 부착된 레진을 건조하고 중량을 측정하였다.
(c) 보호기의 제거와 수지와 분리
상기 (b) 과정에서 준비한 펩타이드가 부착된 수지 250 mg을 TFA, TIS, 물 그리고 EDT (94:1.0:2.5:2.5)의 혼합액 2 ml와 함께 실온에서 120분간 교반하여 레진에서 펩타이드를 절단하였다. 절단 혼합물을 여과하고 여과액을 질소 가스로 절반 가량 농축한 다음 에테르를 부어 펩타이드를 침전시켰다. 침전된 펩타이드를 에테르로 3회 더 세척하고 질소 가스로 건조시켰다. 건조된 침전을 0.1% TFA-30% AcCN 함유 물에 녹인 다음 6시간 동안 교반한 다음 농축하였다.
농축액을 5%-DMSO-20%-ACN in 0.01M ammonium acetate buffer (pH 6.5) 용액에 0.1 mg/ml 농도로 녹인 다음 공기 노출된 상태로 3일 동안 교반 하였다. 이황화 결합 형성 반응의 진행은 HPLC로 관측하였으며, 더 이상 진행하지 않는 것으로 판단되면 반응액을 동결건조하여 펩타이드 침전물을 얻었다.
(d) 정제
상기 (c) 과정에서 동결건조하여 얻은 펩타이드 침전물을 하기 표 1에 기재된 prep-LC 1차 정제 조건에서 분리한 다음 하기 표 2에 기재된 prep-LC 2차 정제 조건으로 추가 정제하고 동결 건조하였다. 얻어진 펩타이드는 각각 90% 이상의 순도임을 분석용 HPLC로 확인하였으며, 합성한 펩타이드의 분자량을 LC/MS 질량 분석기로 확인하였다.
H-PEG6-Asp-Asp-Cys*-Ala-Trp-His-Asn-Gly-Glu-Leu-Val-NpA-Cys*-Thr-NH2 (Cys*이황화 결합 위치, EM = 1990.84, MW = 1992.21), 64 mg을 확보하였다(Purity; 95% up (HPLC), Maldi-Tof: M+1 1992.06, M+Na 2014.07, M+K 2030.07).
prep-LC 1차 정제조건
장비명 Waters 2525 pump, Waters 2487 UV detector
컬럼 Waters, XBridge Prep C18 5um OBD 19x250 mm
이동상A/B 0.1% TFA-20% AcCN / 0.1% TFA in 80% AcCN
구배 0 min → 30 min : B 0% → B 100%
유속 17 ml/min 검출파장 UV 230 nm
prep-LC 2차 정제조건
장비명 Waters 2525 pump, Waters 2487 UV detector
컬럼 Waters, XBridge Prep C18 5um OBD 19x250 mm
이동상A/B 0.1% TFA-30% AcCN / 0.1% TFA in 70% AcCN
구배 0 min → 30 min : B 0% → B 100%
유속 15 ml/min 검출파장 UV 280 nm
실시예 3. PEG6 -His- FcBP - NpA 제조
3-1. PEG6 -His- FcBP - NpA의 구조
Figure PCTKR2017005593-appb-I000002
3-2. 사용된 Fmoc 아미노산 목록 및 도입순서
Fmoc-L-Thr(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-L-NpA-OH, Fmoc-L-Val-OH, Fmoc-L-Leu-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Asp(tBu)-OH
3-3. 제조 방법
상기 실시예 2-3과 동일한 방법으로 진행하여 H-PEG6-Asp-Asp -Cys*-Ala-Trp-His-His-Gly-Glu-Leu-Val-NpA-Cys*-Thr-NH2 (Cys*는 이황화 결합, EM = 2013.86, MW = 2015.25) 69 mg을 확보하였다(Purity: 90% up (HPLC), Maldi-Tof: M+1 2015, M+Na 2053, M+K 2030.07).
실시예 4. PEG6 - Gln - FcBP - NpA 제조
4-1. PEG6 - Gln - FcBP - NpA의 구조
Figure PCTKR2017005593-appb-I000003
4-2. 사용된 Fmoc 아미노산 목록 및 도입순서
Fmoc-L-Thr(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-L-NpA-OH, Fmoc-L-Val-OH, Fmoc-L-Leu-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Asp(tBu)-OH
4-3. 제조 방법
상기 실시예 2-3과 동일한 방법으로 진행하여 H-PEG6-Asp-Asp -Cys*-Ala-Trp-His-Gln-Gly-Glu-Leu-Val-NpA-Cys*-Thr-NH2 (Cys*는 이황화 결합, EM = 2004.86, MW = 2006.23) 59 mg을 확보하였다(Purity: 95% up (HPLC), Maldi-Tof: M+1 2006).
실시예 5. 펩타이드 리간드 및 항체의 결합력 측정
상기 실시예 2 및 3에서 제조한 PEG6-Asn-FcBP-NpA 또는 PEG6-His-FcBP-NpA 펩타이드의 항체의 Fc 부분과의 결합력을 분석하기 위하여, 유방암 항체치료제인 허셉틴(humanized IgG1)의 결합력을 SPR (Surface plasmon resonance) 분석법을 이용하여 비교하였다.
구체적으로, 상기 분석을 위해 Biacore T100 분석기(GE Healthcare, Uppsala, Sweden)를 사용하였는데, 바이오센서 분석에서는 EDC / NHS (N'-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide)로 활성화한 CM5 센서 칩(GE Healthcare, Uppsala, Sweden)에 10 ㎕/min의 유속으로 펩타이드(10 μg/㎖ in 10 mM Sodium acetate, pH 5.0)를 3 분간 흘려주어 고정화시켰다. 센서 칩 표면에 남아있는 활성화 부분은 1.0 M 에탄올아민(ethanolamine, pH 8.5)을 첨가하여 비활성화시켰다. 이 상태에서 허셉틴을 각 농도별로 완충용액(1 X PBS, pH 7.4)에 희석한 후, 30 ㎕/min의 유속으로 흘러주면서 결합 센서그램과 해리 센서그램을 확인하였다. 이때, 센서 칩과의 비특이적 결합에 의해 발생하는 센서그램을 보정하기 위해서 ethanolamine으로만 완전히 비활성화된 셀을 사용하였고 허셉틴의 센서그램에서 ethanolamine의 센서그램을 빼줌으로써 비특이성 결합을 보정하였다. 센서 칩의 표면은 재생(regeneration) 완충용액(20 mM NaOH)을 흘려줌으로써 재생하였다.
도 2는 PEG6-Asn-FcBP-NpA 펩타이드를 SPR 측정용 센서칩에 고정하고 다양한 농도의 인간 유래 IgG(Herceptin)를 결합시켜 봄으로써 결합력을 계산하기 위한 실험결과 데이터이며, 최종 결합력(KD)은 7.10E-10 M (0.71 nM)으로 측정되었다.
또한, 도 3은 PEG6-His-FcBP-NpA 펩타이드를 SPR 측정용 센서칩에 고정하고 다양한 농도의 인간 유래 IgG(Herceptin)를 결합시켜 봄으로써 결합력을 계산하기 위한 실험결과 데이터이며, 최종 결합력(KD)은 4.92E-09 M (4.92 nM)으로 측정되었다.
아울러, 도 4에 나타낸 바와 같이, 허셉틴에 대한 친화도 및 결합력의 측면에서 PEG6-Asn-FcBP-NpA 펩타이드와 PEG6-His-FcBP-NpA 펩타이드는 기존에 보고된 항체결합 펩타이드인 PEG6-FcBP 혹은 BAE-04-6A와 비교하여 동등한 상태 이상의 결합력을 나타내는 것을 확인하였다. 상기 결과를 통해 신규 제작된 PEG6-Asn-FcBP-NpA 펩타이드와 PEG6-His-FcBP-NpA 펩타이드가 항체 정제용 칼럼으로써 사용이 가능하다는 것을 확인할 수 있었다.
실시예 6. 항체 친화성 레진 및 칼럼 제작
상기 실시예 1 에서 제조된 각각의 펩타이드 혼성체를 이용한 친화성 레진을 제조사의 프로토콜에 따라 제작하였다.
구체적으로, 10 mL의 NHS-activated SepharoseTM4FastFlow(GE헬스케어, Uppsala, Sweden)를 40 mg 펩타이드 리간드 혼성체가 포함된 0.2 M NaHCO3 (pH8.0;100mL)용액과 함께 4 ℃에서 하루 동안 반응시켰다. 펩타이드 용액을 제거한 후에, 레진(resin)을 블로킹 완충 용액 (blocking buffer 150 mM NaCl)을 포함하는 0.5 M 에탄올아민(ethanolamine, pH 8.5)으로 한 시간 동안 처리하여 활성형 에스테르(NHS ester)를 불활성화하였다. 그런 다음, 증류수로 세척한 후 펩타이드가 고정된 레진(resin)을 4 ℃에 보관하였다. 레진에 고정된 펩타이드의 양은 대략 3.6 ± 0.5 mg/mL 습식 레진이었으며, 이는 고정화 후 회수된 펩타이드의 용액의 HPLC 분석을 통해 계산되었다.
상기 과정에서 제작된 항체 친화성 레진을 가지고 칼럼을 제작하여 항체정제능 비교 시험과 Dynamic binding capacity를 측정하는데 사용할 수 있도록 준비하였다.
6-1. 항체 정제 시험
상기 실시예 5에서 제작한 항체 정제용 레진 100 uL를 이용하여 배치방법(batch method)을 통해 IgG 항체에 대한 정제 효능을 시험하였다. 사용한 항체는 인간 유래 IgG(Herceptin)를 사용하였고, 칼럼 세척은 PBS로, 용출용액은 pH6~2.5의 완충액 을 사용하였으며, 항체 적재, PBS 세척, pH 별 완충액에 의한 항체의 용출 단계로 진행하였다. 세척분액과 용출분액의 용량은 레진 부피의 5배를 이용하였으며, 용출된 항체는 SDS-PAGE 방법으로 분석하여 항체정제능 및 용출 pH를 확인하였다(도 5 참조).
실험 결과, 도 5에 나타낸 바와 같이, PEG6-Asn-FcBP-NpA 펩타이드와 PEG6-His-FcBP-NpA 펩타이드를 이용하여 항체를 정제하였을 때, 항체 결합량은 기존에 보고된 펩타이드(PEG6-FcBP, BAE-04-6A)와 유사하며, 항체가 용출되는 pH는 기존에 보고된 펩타이드(pH 2.5에서 대부분이 용출)에 비해 약 pH4에서부터 항체가 용출이 되는 것으로 확인되었으며 이는 시판되는 항체정제용 레진인 Protein A 와 유사한 경향성을 보이는 것으로 판단된다.
6-2. 항체 정제능 분석 시험
상기 실시예 5에서 제작한 항체 정제용 레진 1 mL를 이용하여 IgG 항체에 대한 정제 효능을 시험하였다. 구체적으로, 사용한 항체는 인간 유래 IgG를 사용하였고, 칼럼 세척은 PBS로, 용출용액은 pH4~2.5의 완충액을 사용하였으며, 항체 적재, PBS 세척, pH 별 완충액에 의한 항체의 용출 단계로 진행하였다. 세척분액과 용출분액의 용량은 레진 부피의 5배를 이용하였으며, 용출된 항체는 SDS-PAGE 방법 및 브래드 포드 단백질 정량법으로 분석하여 제작된 각 항체정제 칼럼의 항체 정제능을 확인하였다(도 6a 및 도 6b 참조).
도 6b에 나타낸 바와 같이, PEG6-Asn-FcBP-NpA 펩타이드 레진과 PEG6-His-FcBP-NpA 펩타이드 레진을 이용하여 항체를 정제하였을 때, 칼럼 1 mL 당 정제할 수 있는 항체의 양은 시판되는 protein A 레진 펩타이드(nProtein A resin, GE)에 비하여, PEG6-Asn-FcBP-NpA 레진은 약 111%, PEG6-His-FcBP-NpA 레진은 약 127% 이상 증진된 것을 확인하였다.
상기로부터, 본 발명에서 제시한 두 종류의 펩타이드 레진 칼럼의 항체정제능은 시판되는 항체정제용 레진인 Protein A에 비해 향상된 성능을 보임을 알 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명은 결합력을 유지하며 용출 조건이 보다 완화된 항체 정제용 리간드에 관한 것으로서, 보다 구체적으로는, 항체결합 펩타이드의 아미노산 서열에 변형을 유도하여 높은 항체 결합력은 유지되나 용출조건이 완화된 항체 정제용 펩티드 혼성체에 관한 것인바, 본 발명의 IgG에 대한 결합력이 개선된 펩타이드는 IgG에 대한 결합력은 우수하면서 온화한 pH 조건에서 IgG를 용출시킬 뿐만 아니라, 복수회의 반복 사용 후에도 우수한 정제 능력을 가지고 있으므로, 향후 IgG 정제용 칼럼에 유용하게 이용될 수 있을 것으로 기대된다.

Claims (7)

  1. 면역글로불린 G(Immunoglobulin G)의 Fc 단편(fragment)에 특이적으로 결합하는 펩타이드로서, 상기 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His), 또는 글루타민(Gln)으로 치환된 아미노산 서열을 갖는, 펩타이드.
  2. 면역글로불린 G(Immunoglobulin G)의 Fc 단편(fragment)에 특이적으로 결합하는 펩타이드로서, 상기 펩타이드는 서열번호 1의 아미노산 서열에서 6번 위치의 류신(Leu)이 아스파라긴(Asn), 히스티딘(His), 또는 글루타민(Gln)으로 치환되고, 11번 위치의 트립토판(Trp)이 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)으로 치환된 아미노산 서열을 갖는, 펩타이드.
  3. 제 1항에 있어서,
    상기 펩타이드는 서열번호 2 내지 4로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 갖는, 펩타이드.
  4. 제 2항에 있어서,
    상기 펩타이드는 서열번호 5 내지 10으로 구성된 군으로부터 선택되는 어느 하나의 아미노산 서열을 갖는, 펩타이드.
  5. 하기 구조식 1 내지 3으로 구성된 군으로부터 선택되는 어느 하나의 구조를 갖는 펩타이드 혼성체:
    [구조식 1]
    H2N(CH2CH2O)nCH2CH2CO-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-NH2
    (식 중, n은 1 내지 30의 정수이고, Cys*는 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
    [구조식 2]
    Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)nNH2
    (Cap는 아세틸기 또는 숙시닐기이고, n은 1 내지 30의 정수이고, Cys*은 이황화 결합이고, Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)임)
    [구조식 3]
    Cap-Asp-Asp-Cys*-Ala-Trp-His-Xaa-Gly-Glu-Leu-Val-Xbb-Cys*-Thr-HNCH2CH2(OCH2CH2)mYCH2CH2(OCH2CH2)nNH2
    (Cap는 아세틸기 또는 숙시닐기이고, m 및 n은 서로 독립적으로 1 내지 30의 정수이고, Cys*는 이황화 결합이고; Xaa는 Asn, His 또는 Gln이고, Xbb는 Trp, 1-naphthylalanine (NpA) 또는 3-benzothienylalanine (BzA)이며, Y는 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 18의 아릴렌기, 산소(-O-), 아민(-NH-), 유레아(-NHCONH-), 아미드(-CONH-) 또는 에스테르(-COO-)임).
  6. 제 5항에 있어서,
    상기 구조식 1 내지 3 중 Xaa는 Asn 또는 Gln인, 펩타이드 혼성체.
  7. 제 5항에 있어서,
    상기 구조식 1 내지 3 중 Xaa는 His인, 펩타이드 혼성체.
PCT/KR2017/005593 2016-05-30 2017-05-29 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도 WO2017209471A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160066296 2016-05-30
KR10-2016-0066296 2016-05-30
KR10-2017-0065171 2017-05-26
KR1020170065171A KR101966301B1 (ko) 2016-05-30 2017-05-26 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도

Publications (1)

Publication Number Publication Date
WO2017209471A1 true WO2017209471A1 (ko) 2017-12-07

Family

ID=60478670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005593 WO2017209471A1 (ko) 2016-05-30 2017-05-29 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도

Country Status (1)

Country Link
WO (1) WO2017209471A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196675A1 (ja) 2021-03-16 2022-09-22 味の素株式会社 複合体またはその塩、およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044177A1 (en) * 2002-04-16 2004-03-04 Macke Helmut Robert Peptide compounds having improved binding affinity to somatostatin receptors
US20040087765A1 (en) * 2000-11-08 2004-05-06 Wofgang Ronspeck Peptides, the production and use thereof for binding immunoglobulins
US20050208140A1 (en) * 2003-11-25 2005-09-22 John Hilfinger Short peptide carrier system for cellular delivery of agent
US20100297606A1 (en) * 2006-11-02 2010-11-25 Yuji Ito IgG BINDING PEPTIDE
KR20140008787A (ko) * 2012-07-12 2014-01-22 한국생명공학연구원 항체의 Fc 부위 결합 펩타이드를 이용한 항체 정제용 흡착 칼럼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087765A1 (en) * 2000-11-08 2004-05-06 Wofgang Ronspeck Peptides, the production and use thereof for binding immunoglobulins
US20040044177A1 (en) * 2002-04-16 2004-03-04 Macke Helmut Robert Peptide compounds having improved binding affinity to somatostatin receptors
US20050208140A1 (en) * 2003-11-25 2005-09-22 John Hilfinger Short peptide carrier system for cellular delivery of agent
US20100297606A1 (en) * 2006-11-02 2010-11-25 Yuji Ito IgG BINDING PEPTIDE
KR20140008787A (ko) * 2012-07-12 2014-01-22 한국생명공학연구원 항체의 Fc 부위 결합 펩타이드를 이용한 항체 정제용 흡착 칼럼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196675A1 (ja) 2021-03-16 2022-09-22 味の素株式会社 複合体またはその塩、およびその製造方法

Similar Documents

Publication Publication Date Title
US5817752A (en) Cyclic polypeptides comprising a thioether linkage and methods for their preparation
JP5572207B2 (ja) ヒト第viii因子および第viii因子様タンパク質に対する結合分子
KR101237561B1 (ko) Boc 및 Fmoc 고상 펩타이드 합성
Hojo et al. Development of a Linker with an Enhanced Stability for the Preparation of Peptide Thioesters and Its Application to the Synthesis of a Stable-Isotope-Labelled HU-Type DNA-Binding Protein.
SE457352B (sv) Humaninterferon-beslaektad peptid, humaninterferon-antikropp jaemte framstaellning och anvaendning daerav samt maerkt peptid jaemte framstaellning av denna
JPS62120399A (ja) 抗原決定ペプチド及びそれらの製造方法
EP0339695A2 (en) A process for preparing an antigenic or immunogenic conjugate as well as the use of such conjugates
KR101609840B1 (ko) 항체의 Fc 부위 결합 펩타이드를 이용한 항체 정제용 흡착 칼럼
CN111040020B (zh) 一种烯烃硫醚类订书肽及其制备方法与应用
FI67691B (fi) Foerfarande foer framstaellning av nya terapeutiskt anvaendbara peptider
WO2017209471A1 (ko) 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도
EP2614371B1 (en) Method for labeling of compounds
Žáková et al. The use of Fmoc‐Lys (Pac)‐OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs
WO2014007506A1 (ko) IgG Fc 위치선택적 결합 펩티드 및 이를 포함하는 하이브리드 분자
US20030004320A1 (en) Activated peptides and conjugates
CN115181158A (zh) Fmoc基团裂解方法
JP4339797B2 (ja) 非標的部位のアミンが保護されたペプチド、その製造方法、及びこれを利用したpegが特異的に接合されたペプチドの製造方法
KR101966301B1 (ko) 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도
JPH09124696A (ja) フオンビルブランド因子に結合するペプチドリガンド
EP0779297B1 (en) Antigenic peptides with glycine substitutions
SE446866B (sv) Sett att framstella en aktiv polypeptid med formaga att inducera differentiering av bade t-lymfocyter och komplementreceptor (cr?72+) b-lymfocyter
EP1621546B1 (en) Peptide ligands specific to immonoglobulins
SZEWCZUK et al. Conformational modification of the PRP‐hexapeptide by a direct covalent attachment of aromatic side chain groups
EP3875466A1 (en) Process for the synthesis of etelcalcetide
ITBO970655A1 (it) Oligopeptidi antiparalleli e oligopeptidi idrofobicamente complementari, matrici che li contengono e loro uso nella purificazione e nella rivelazione di sottotipi di interferone alfa.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806964

Country of ref document: EP

Kind code of ref document: A1