WO2016121699A1 - 外殻構造を有する濾材用フェライト粒子 - Google Patents
外殻構造を有する濾材用フェライト粒子 Download PDFInfo
- Publication number
- WO2016121699A1 WO2016121699A1 PCT/JP2016/052030 JP2016052030W WO2016121699A1 WO 2016121699 A1 WO2016121699 A1 WO 2016121699A1 JP 2016052030 W JP2016052030 W JP 2016052030W WO 2016121699 A1 WO2016121699 A1 WO 2016121699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ferrite particles
- ferrite
- particles
- outer shell
- shell structure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/02—Loose filtering material, e.g. loose fibres
- B01D39/06—Inorganic material, e.g. asbestos fibres, glass beads or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3021—Milling, crushing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3028—Granulating, agglomerating or aggregating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3042—Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0072—Mixed oxides or hydroxides containing manganese
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62818—Refractory metal oxides
- C04B35/62821—Titanium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
- H01F1/112—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
- C04B2235/3274—Ferrites
Definitions
- the present invention relates to a ferrite particle for a filter medium, and more particularly to a ferrite particle for a filter medium and a filter medium having excellent filtering ability.
- Patent Document 1 Japanese Patent Laid-Open No. 7-334022 describes a water quality active ceramic using ferrite powder or the like as an auxiliary material and describes that it is used as a filter medium for various devices.
- this Patent Document 1 describes that ferrite particles are used as a filter medium component. However, paying attention to various properties of individual ferrite particles, it has a low apparent density and can control various properties. It is not possible to maintain and fill a constant volume with a small weight. And the filter medium of this cited reference 1 did not have sufficient filtration capability.
- Patent Document 2 Japanese Patent Laid-Open No. 2007-320847 includes a core fine particle structure including a plurality of primary fine particles and a plurality of primary pores, and a shell that at least partially surrounds the core fine particle structure.
- An article including a plurality of core-shell ceramic fine particles is described, and as the article, a film, a sensor, an electrode, and a getter are described.
- the core-shell ceramic fine particles described in Patent Document 2 are composed of yttrium-stabilized zirconia as a core and lanthanum ferrite as a shell. Since lanthanum ferrite is used as a shell, it has a low apparent density, It is not possible to fill a certain volume with a small weight while maintaining the characteristics in a controllable state.
- an object of the present invention is to provide a ferrite particle for a filter medium having a low apparent density, maintaining various characteristics in a controllable state, satisfying a certain volume with a small weight, and having excellent filtration performance.
- the object is to provide a filter medium using ferrite particles.
- the present invention provides a ferrite particle for a filter medium characterized by having an outer shell structure containing Ti oxide.
- the thickness of the portion having the outer shell structure is preferably 0.5 to 10 ⁇ m.
- the ferrite particles according to the present invention preferably have a density inside the particles lower than the density of the outer shell structure.
- the volume average particle size of the ferrite particles according to the present invention is preferably 10 to 100 ⁇ m.
- the present invention also provides a filter medium using the above ferrite particles.
- the ferrite particles according to the present invention have a low apparent density by having an outer shell structure containing Ti, and can satisfy a certain volume with a small weight while maintaining various characteristics in a controllable state. . Therefore, when the ferrite particles are used as a filter agent, the filtration performance is excellent.
- the graph which image-analyzed the image obtained by FIG. The electron micrograph of FIG. 1 which shows the method to measure the outer peripheral part of the part which has an outer shell structure.
- the ferrite particles according to the present invention have an outer shell structure (core shell shape) containing titanium. This has a low apparent density and can maintain various properties in a controllable state. Further, the ferrite particles according to the present invention can fill the ferrite particles with a small weight in a constant volume.
- the term “ferrite particles” means an aggregate of individual ferrite particles unless otherwise specified, and the term simply refers to individual ferrite particles.
- the outer shell structure here means that the outer shell structure is formed to such an extent that it can be visually recognized in the cross-sectional SEM image when the cross-section is observed using the SEM after embedding the ferrite particles in the resin. is required. More specifically, the outer peripheral portion having a certain range of thickness has 80% or more of the peripheral length of the particle. More preferably, the ratio of the outer peripheral portion to the peripheral length is 90% or more.
- the thickness of the outer shell structure is preferably 0.5 to 10 ⁇ m, and the intended purpose can be achieved in this range. If the thickness of the outer shell structure is less than 0.5 ⁇ m, the mechanical strength of the ferrite particles is weak, and various powder characteristics originally possessed by destruction may not be exhibited. In particular, it may crack when used as a carrier and cause scratches on the photosensitive drum. If the thickness of the outer shell structure exceeds 10 ⁇ m, it is not different from conventional ferrite particles, and therefore the desired effect cannot be exhibited even if the outer shell structure is provided.
- the thickness of the outer shell structure is more preferably 0.5 to 8 ⁇ m, and most preferably 0.5 to 6.5 ⁇ m.
- the thickness of the outer shell structure is measured by embedding ferrite particles in a resin, observing a cross section using an SEM, as shown in FIGS.
- the obtained image can be measured by image processing.
- the thickness of the outer shell structure of the particles is measured according to the following procedure. After embedding and forming the ferrite particles in a resin, the cross section was polished with a polishing machine, and gold deposition was performed to obtain a sample for cross-sectional observation (for measuring the thickness of the outer shell).
- the sample obtained was JSM-6060A manufactured by JEOL Ltd., the acceleration voltage was 5 kV, SEM was photographed with a 200 ⁇ field of view, and the image information was image analysis software (Image- Pro PLUS) for analysis. Specifically, after adjusting the contrast of the obtained image, the luminance of the image is extracted for each particle by the line profile function of this analysis software.
- the line profile is set to a straight line so as to pass almost the center of the particle in the horizontal direction, and among the peaks existing in the obtained profile, the peak corresponding to the outer shell is sandwiched between two markers, and the width at this time Is the thickness of the outer shell.
- the peak is defined as a minimum value and a minimum value sandwiching the maximum value of the line profile.
- the contrast is preferably adjusted so that the luminance of the embedded resin portion (corresponding to the background) is 50% or less of the maximum luminance. The same operation was similarly performed on 30 particles, and the average value was defined as the thickness of the outer shell structure.
- the ratio of the outer peripheral portion to the peripheral length of the outer shell structure is as described in detail below.
- the line profile length of the luminance data obtained by the line profile function the line profile length of the luminance that is I minimum + I ⁇ ⁇ 0.2 or more and I maximum or less is integrated to obtain the line profile.
- the line profile is set to a straight line, and each particle is set to pass near the center of the particle.
- the maximum the maximum luminance profile I the minimum luminance is I minimum, when the difference between the maximum luminance and the minimum luminance was I delta, I minimum or more, I Min + I delta ⁇ range below 0.2 ferrite portion
- the portion where there is no ferrite, I minimum + I ⁇ ⁇ 0.2 or more and I maximum or less is determined as the portion where the ferrite exists.
- the line profile length (straight line) luminance data obtained by the line profile function the line profile length of the luminance that is I minimum + I ⁇ ⁇ 0.2 or more and I maximum or less is integrated, and the line profile length By dividing by (straight line), it can be obtained by calculating the ratio of the ferrite portion inside the particle. The same operation was performed on 30 particles, and the average value was defined as the density inside the particles.
- the low apparent density of conventional ferrite particles is achieved mainly by making the ferrite particles porous.
- the porous structure is characterized by the fact that it can be easily carried out by changing the firing conditions during the main firing.
- pores unique to the porous structure are uniformly generated from the surface to the inside. Therefore, when performing characteristic control by resin coating or resin impregnation, since a large amount of resin is present on the surface of the particles, the influence of the resin coated or impregnated is large, making it difficult to control the characteristics.
- the shape of the ferrite particle according to the present invention is a conventional granular particle, but the density of the particle is different between the part having the outer shell structure (outer shell part) and the inside of the particle having the porous structure. . More specifically, the pore volume of the particles is large because the density inside the particles is low, and the pore diameter is large because the density of the outer shell is high. Moreover, since it has an outer shell structure, it has a low apparent density compared to a conventional porous core. In addition, since the outer and inner sides of the ferrite particles are connected by localized pores, the resin and functional nanoparticles are dispersed inside the particles while maintaining the exposed surface of the ferrite particles while maintaining a low apparent density. Since the suspension can be impregnated, it becomes possible to have different functions in the outer shell portion and the inner porous portion, and new characteristics that could not be obtained with conventional ferrite particles can be acquired. It becomes like this.
- the ferrite particles according to the present invention preferably contain 0.5 to 4% by weight of Mg and 3 to 20% by weight of Mn.
- the ferrite particles according to the present invention preferably contain 47 to 70% by weight of Fe.
- the ferrite particles according to the present invention preferably contain 0.5 to 4.5% by weight of Ti.
- the ferrite particles according to the present invention contain Mg so that the magnetization can be easily adjusted. If Mg is less than 0.5% by weight, the effect of addition is weak and the magnetization cannot be controlled sufficiently. When the amount is more than 4% by weight, the magnetization becomes low, and it becomes difficult to use in an application utilizing the magnetic characteristics.
- the magnetization and resistance even when the ferrite particles according to the present invention contain Mn. If Mn is less than 3% by weight, the effect of addition is weak and the magnetization cannot be controlled sufficiently. When the amount is more than 20% by weight, Mn close to the stoichiometric ratio of Mn ferrite is contained, so that the inclusion effect is reduced and there is no meaning to contain. Further, by containing Mn, the magnetization can be controlled at the firing temperature even if the oxygen concentration is constant.
- the firing temperature can be controlled with high accuracy. That is, the rough magnetization control of the ferrite particles is performed by the Mg content, and the relationship between the firing temperature and the magnetization can be controlled in more detail by the Mn content.
- the ferrite particles contain Mg, so that a developer having a good rise in charge composed of a ferrite carrier using ferrite particles and a full-color toner can be obtained. .
- the resistance can be increased. If the Mg content is less than 0.5% by weight, a sufficient content effect cannot be obtained, the resistance becomes low, and the image quality deteriorates, such as generation of fog and deterioration of gradation.
- the magnetization becomes too high, so that the ears of the magnetic brush become hard and cause image defects such as scissors.
- the Mg content exceeds 4% by weight, not only ferrite carrier scattering occurs due to a decrease in magnetization, but when the firing temperature is low, the moisture adsorption amount is large due to the influence of hydroxyl groups due to Mg. As a result, the environmental dependency of the electrical characteristics such as the charge amount and the resistance is deteriorated.
- the Fe content in the ferrite particles according to the present invention is less than 47% by weight, the outer shell structure is not formed. On the other hand, if the Fe content exceeds 70% by weight, the Mg-containing effect cannot be obtained, and the ferrite particles are substantially equivalent to magnetite.
- the ferrite particles according to the present invention preferably contain 0.5 to 4.5% by weight of Ti.
- Ti has the effect of lowering the firing temperature and can not only reduce aggregated particles but also obtain a uniform and wrinkled surface property.
- the content of Ti in the ferrite particles is less than 0.5% by weight, the effect of containing Ti cannot be obtained, and particles having an outer shell structure cannot be obtained. Further, even if the Ti content exceeds 4.5% by weight, the core-shell particles are produced, but this is not preferable because it is difficult to use in applications using the magnetic properties of ferrite particles.
- the difference between the Ti content of the ferrite particles according to the present invention and the Ti content of the ferrite particles having no outer shell structure, that is, the difference between the Ti content in the vicinity of the particle surface and the inside of the particle is 0.5 to 4.5% by weight. It is preferable that
- the outer shell structure cannot be formed because the coating amount of the composite oxide particles is small.
- the amount is more than 4.5% by weight, the magnetization tends to be low, and it is difficult to use in applications using the magnetic properties of ferrite particles.
- the Ti oxide having the outer shell structure is contained by performing elemental analysis by mapping the above-described cross-sectional SEM sample by EDX.
- the Ti oxide here is not only TiO 2, but also a compound in solid solution with one or more elements constituting the base ferrite particles, such as Fe—Ti oxide, Mg—Ti oxide, Sr—Ti oxide.
- the ferrite particles according to the present invention preferably contain 0 to 1.5% by weight of Sr.
- Sr contributes to the adjustment of resistance and surface properties, and has the effect of maintaining high magnetization, but also contains the effect of increasing the charging ability of the ferrite particles, and the effect is particularly great in the presence of Ti. If the Sr content exceeds 1.5% by weight, the residual magnetization and coercive force are increased, making it difficult to use in applications using the soft magnetic properties of ferrite particles.
- the ferrite particles according to the present invention preferably have a magnetization of 55 to 85 Am 2 / kg as measured by VSM when a magnetic field of 5K ⁇ 1000 / 4 ⁇ ⁇ A / m is applied.
- the magnetization of the ferrite particles at 5K ⁇ 1000 / 4 ⁇ ⁇ A / m is less than 55 Am 2 / g, the ferrite particles cannot be fully utilized in applications using the magnetic properties.
- the magnetic characteristics were measured using a vibration sample type magnetometer (model: VSM-C7-10A (manufactured by Toei Industry Co., Ltd.)).
- the measurement sample (ferrite particles) was packed in a cell having an inner diameter of 5 mm and a height of 2 mm and set in the above apparatus.
- the measurement was performed by applying an applied magnetic field and sweeping to 5K ⁇ 1000 / 4 ⁇ ⁇ A / m.
- the applied magnetic field was decreased to create a hysteresis curve on the recording paper. From this curve data, the magnetization at an applied magnetic field of 5K ⁇ 1000 / 4 ⁇ ⁇ A / m was read. Also, the residual magnetization and coercive force were calculated in the same manner.
- the ferrite particles according to the present invention preferably have a volume average particle size measured by a laser diffraction particle size distribution analyzer of 10 to 100 ⁇ m, more preferably 15 to 50 ⁇ m, and most preferably 20 to 50 ⁇ m. If the volume average particle diameter of the ferrite particles is less than 10 ⁇ m, the low density portion inside the ferrite particles becomes relatively small, and particles having a sufficiently low apparent density may not be obtained. Even if the volume average particle diameter of the ferrite particles exceeds 100 ⁇ m, the core-shell particles can be generated, but is preferably 100 ⁇ m or less in order to reduce the voids when the ferrite particles are densely packed in a certain volume.
- volume average particle size This volume average particle diameter was measured by a laser diffraction scattering method.
- a Microtrac particle size analyzer (Model 9320-X100) manufactured by Nikkiso Co., Ltd. was used as an apparatus.
- the refractive index was 2.42, and the measurement was performed in an environment of 25 ⁇ 5 ° C. and humidity 55 ⁇ 15%.
- the volume average particle diameter (median diameter) referred to here is the cumulative 50% particle diameter in the volume distribution mode and under the sieve display. Water was used as the dispersion medium.
- the ferrite particles according to the present invention preferably have a BET specific surface area of 0.2 to 1 m 2 / g, and more preferably 0.2 to 0.85 m 2 / g.
- the BET specific surface area is smaller than the above range, it means that the outer shell structure is not sufficiently formed and particles are densely packed inside, which is not preferable.
- the BET specific surface area is larger than the above range, it means that the outer shell structure is not formed and porous ferrite particles are obtained.
- the measurement result may be affected by the moisture on the surface of the ferrite particles as the measurement sample, so pretreatment to remove moisture adhering to the sample surface as much as possible It is preferable to carry out.
- the BET specific surface area was measured using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). About 5 to 7 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement device, accurately weighed with a precision balance, the sample (ferrite particles) was set in the measurement port, and measurement was started. The measurement is performed by a one-point method, and the BET specific surface area is automatically calculated when the weight of the sample is input at the end of the measurement.
- the ferrite particles according to the present invention desirably have an electric resistance of 5 ⁇ 10 7 to 1 ⁇ 10 11 ⁇ at a 6.5 mm Gap applied voltage of 50V.
- the electrical resistance of the ferrite particles at an applied voltage of 6.5 mm Gap of 50 V is 5 If it is smaller than ⁇ 10 7 , it means that the ferrite composition is close to magnetite or the amount of Ti added is small and the outer shell structure is not sufficiently formed.
- the electrical resistance of the ferrite particles is higher than 1 ⁇ 10 11 ⁇ , the Ti content on the surface of the ferrite particles becomes too large, and the magnetization may be greatly reduced.
- Electrode resistance This electrical resistance is measured by: A non-magnetic parallel plate electrode (10 mm ⁇ 40 mm) is opposed to the electrode with an interval of 6.5 mm, and 200 mg of a sample (ferrite particles) is weighed and filled between them. A sample is held between the electrodes by attaching a magnet (surface magnetic flux density: 1500 Gauss, area of the magnet in contact with the electrode: 10 mm ⁇ 30 mm) to the parallel plate electrodes, and voltages of 50 V, 100 V, 250 V, 500 V and 1000 V are applied, The resistance at the applied voltage was measured with an insulation resistance meter (SM-8210, manufactured by Toa Decay Co., Ltd.).
- SM-8210 insulation resistance meter
- the ferrite particles have a pore volume of 0.06 to 0.2 ml / g (60 to 200 ⁇ l / g) and a peak pore diameter of 0.7 to 2 ⁇ m.
- the pore volume of the ferrite particles is less than 0.06 ml / g (60 ⁇ l / g), it means that the pores inside the particles are small and the particles have a low apparent density.
- the pore volume of the ferrite particles exceeds 0.2 ml / g (200 ⁇ l / g), it means that the apparent density is too low, and the magnetic force as one magnetic powder is lowered. There is a possibility that problems may occur in applications using the magnetic properties of ferrite particles.
- the peak pore diameter of the ferrite particles exceeds 2 ⁇ m, it means that the particles do not have a low apparent density, and sufficient characteristics cannot be obtained in applications using a portion having a low density inside the ferrite particles. Also, if the peak pore diameter of the ferrite particles is less than 0.7 ⁇ m, there is a high possibility that the ferrite particles are porous ferrite particles having no outer shell structure. May be difficult to use.
- the pore diameter and pore volume of the ferrite particles are measured as follows. That is, it measured using mercury porosimeter Pascal140 and Pascal240 (ThermoFisher Scientific company make). CD3P (for powder) was used as the dilatometer, and the sample was put in a commercially available gelatin capsule having a plurality of holes and placed in the dilatometer. After degassing with Pascal 140, it was filled with mercury and the low pressure region (0 to 400 Kpa) was measured to obtain 1st Run. Next, deaeration and measurement of the low pressure region (0 to 400 Kpa) were performed again to obtain 2nd Run.
- the combined weight of the dilatometer, mercury, capsule and sample was measured.
- the high pressure region (0.1 Mpa to 200 Mpa) was measured with Pascal240.
- the pore volume, pore size distribution, and peak pore size of the ferrite particles were determined from the amount of mercury intrusion obtained by the measurement of the high pressure part. Further, when determining the pore diameter, the surface tension of mercury was 480 dyn / cm and the contact angle was 141.3 °.
- the method for producing ferrite particles according to the present invention is performed, for example, as follows.
- An example of a preferable composition of the calcined ferrite powder is as follows: Fe is 45 to 68 wt%, Mg is 0.5 to 4 wt%, Mn is 3 to 22 wt%, Ti is 0.25 to 6 wt%, and Sr is 0 ⁇ 2% by weight.
- the Ti compound is coated, and then fired to obtain various characteristics necessary and sufficient as ferrite particles according to the application.
- the above-mentioned ferrite calcined powder is added with water and, if necessary, a dispersant, a binder, etc., to make a slurry, after adjusting the viscosity, granulated with a spray dryer, granulated, further debindered and treated with particles before ferrite coating Get.
- the debinding process is performed at 600 to 1000 ° C.
- the slurry has a slurry particle diameter D 50 of 0.5 to 4.5 ⁇ m.
- D 50 the specific surface area of the calcined ferrite calcined powder is too large.
- the ferrite particles are fired after coating with the coating TiO 2 particles, the firing is excessively advanced. Ferrite particles having a BET specific surface area of 5 nm cannot be obtained.
- it exceeds 4.5 ⁇ m even when coating with TiO 2 particles for coating and firing is performed, there is a possibility that the outer shell structure is not sufficiently formed and desired ferrite particles are not formed.
- the pulverization time when preparing the slurry for this granulation, or to select the pulverization media so as to achieve the target slurry particle size and particle size distribution, or wet cyclone.
- the raw material particles present in the slurry may be classified using When a wet cyclone is used, the solid content of the slurry after classification is different, so it is necessary to adjust the solid content again, but the target slurry particle size can be achieved in a short time, combined with control of the grinding time May be used.
- the coating TiO 2 particles preferably have a volume average particle size of 0.05 to 3 ⁇ m. If it is smaller than 0.05 ⁇ m, the coated particles tend to aggregate when the fine particles are adhered to the surface of the pre-coated ferrite particles, and even if the pre-coated ferrite particles are coated with a desired coating amount, the coated layer is uneven. There is a possibility that the outer shell structure is not partially formed. If it exceeds 3 ⁇ m, it is difficult to uniformly adhere to the pre-coated ferrite particles, and the outer shell structure may not be partially formed on the ferrite particles.
- the coating TiO 2 particles are preferably 0.8 to 7% by weight based on the pre-coating ferrite particles, although depending on the volume average particle diameter. When the amount is less than 0.8% by weight, sufficient resistance cannot be obtained after the main baking. When the amount is more than 7% by weight, the ferrite coating particles that did not adhere to the ferrite particles before coating may aggregate to form low-magnetization particles. When used in applications using the magnetic properties of ferrite particles May cause malfunctions.
- TiO 2 particles for coating were added to the ferrite particles before coating obtained as described above, and mixed with a mixing mill to obtain a raw material for ferrite particles.
- This raw material for ferrite particles is performed at 850 to 1230 ° C. in an inert atmosphere or a weakly oxidizing atmosphere such as a nitrogen atmosphere or a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 3% by volume or less.
- the fired product is crushed and classified to obtain ferrite particles.
- the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like.
- dry collection it can also be collected with a cyclone or the like.
- a surface treatment for charging may be performed.
- the surface treatment for imparting the charge By performing the surface treatment for imparting the charge, the aggregation of the particles is reduced, and the coating TiO 2 particles before firing are easily attached.
- a surface treating agent having a polarity opposite to the charged polarity of the ferrite particles before coating an effect of preventing the detachment of the coating TiO 2 particles attached to the ferrite particles before coating before the main firing can be obtained.
- the method for performing the main firing after adhering the coating TiO 2 particles to the surface of the pre-coating ferrite particles before the main firing has been proposed as described above, but the coating TiO is not dry-treated and pre-charged.
- the TiO 2 particles for coating to be adhered are intensely agglomerated or difficult to adhere to the pre-coating ferrite particles, or adhere as large aggregates.
- the bias is large and the properties of the ferrite particles obtained after the main firing may be inferior.
- the surface coating of the coating TiO 2 particles on the pre-coating ferrite particles before the main firing by the wet method requires the removal of the liquid as a solvent together with the ferrite particle raw material subjected to the surface coating. It's tedious.
- the coating of the TiO 2 particles for coating with the pre-coating ferrite particles by the dry method is only required to perform the surface treatment of the TiO 2 particles for coating, and it is easy to perform and is characterized by little increase in cost.
- ⁇ Filter medium according to the present invention By using the ferrite particles according to the present invention as a filter medium (filter), excellent filtration performance is obtained.
- Example 1 [Preparation of ferrite particles] Fe 2 O 3 was weighed to 100 mol, MgCO 3 to 10 mol, Mn 3 O 4 to 13.3 mol and SrCO 3 to 1 mol, and carbon black as a reducing agent was 1 to 1 wt. .35% by weight added was mixed, pulverized, and pelletized with a roller compactor. The obtained pellets were temporarily fired at 980 ° C. in a rotary firing furnace in a nitrogen atmosphere with an oxygen concentration of 0% by volume. This was pulverized with a rod mill to obtain a calcined powder for a ferrite core material.
- This calcined powder for ferrite core material is pulverized with a wet bead mill for 1 hour, and PVA is added as a binder component so as to be 1% by weight with respect to the solid content of the slurry. Added to ⁇ 3 poise.
- the D 50 of the particle size of the slurry at this time was 3.259 ⁇ m.
- the pulverized slurry thus obtained is granulated and dried with a spray dryer, and debindered at 850 ° C. using a rotary kiln in a nitrogen atmosphere with an oxygen concentration of 0% by volume to obtain ferrite core material particles. It was.
- the raw material for ferrite particles obtained above was held for 4 hours at 1010 ° C. in a nitrogen atmosphere with an oxygen concentration of 0% by volume using an electric furnace to perform main firing. Thereafter, it was crushed and further classified to obtain ferrite particles.
- Example 2 As a ferrite raw material, the same method as in Example 1 except that 100 mol of Fe 2 O 3 , 5 mol of MgCO 3 , 26.6 mol of Mn 3 O 4 and 0 mol of SrCO 3 were measured. Ferrite particles were obtained.
- Example 3 As a ferrite raw material, the same method as in Example 1 except that 100 mol of Fe 2 O 3 , 20 mol of MgCO 3 , 6.65 mol of Mn 3 O 4 and 0 mol of SrCO 3 were measured. Ferrite particles were obtained.
- Example 4 Ferrite was prepared in the same manner as in Example 1 except that 100 mol of Fe 2 O 3 , 5 mol of MgCO 3 , 5 mol of Mn 3 O 4 and 0 mol of SrCO 3 were weighed as ferrite raw materials. Particles were obtained.
- Example 5 As a ferrite raw material, the same method as in Example 1 except that 100 mol of Fe 2 O 3 , 20 mol of MgCO 3 , 26.6 mol of Mn 3 O 4 and 0 mol of SrCO 3 were measured. Ferrite particles were obtained.
- Example 6 Ferrite particles were obtained in the same manner as in Example 1, except that SrCO 3 was changed to 0 mol and coating TiO 2 particles were added in an amount of 2.5% by weight based on the ferrite core particles.
- Example 7 Ferrite particles were obtained in the same manner as in Example 1 except that SrCO 3 was changed to 0 mol, and coating TiO 2 particles were added in an amount of 5% by weight based on the ferrite core material particles.
- Example 8 Ferrite particles were obtained in the same manner as in Example 6 except that the main firing temperature was 950 ° C.
- Example 9 Ferrite particles were obtained in the same manner as in Example 6 except that the main firing temperature was 1050 ° C.
- Blending ratio of ferrite particles used in Examples 1 to 9 and Comparative Examples 1 to 3 (raw material charge molar ratio), carbon content, calcination conditions (calcination temperature and calcination atmosphere), main granulation conditions (slurry)
- Table 1 shows the particle size and PVA addition amount), debinding treatment conditions (treatment temperature and treatment atmosphere), TiO 2 mixing conditions (addition amount and mixing conditions) and main firing conditions (main firing temperature and main firing atmosphere).
- Composition of the obtained ferrite particles, magnetic properties (magnetization, remanent magnetization and coercive force) and shape of the ferrite particles (cross-sectional shape, ratio of the portion having the outer shell structure to the peripheral length, and thickness of the portion having the outer shell structure ) Is shown in Table 2.
- the powder characteristics (BET specific surface area, average particle diameter, apparent density, true specific gravity, pore volume and peak pore diameter) of the ferrite particles of Examples 1 to 9 and Comparative Examples 1 to 3 and a bridge formula of 6.5 mm Gap Resistance (50V, 100V, 250V, 500V and 1000V) is shown in Table 3. Each measuring method is as described above.
- the ferrite particles of Comparative Example 1 had a low firing temperature and produced a porous structure, but no ferrite particles having an outer shell structure were obtained.
- the ferrite particles of Comparative Example 2 have a high firing temperature. Ferrite particles with an outer shell structure were not obtained.
- the ferrite particles of Comparative Example 3 have a high firing temperature. Ferrite particles with an outer shell structure were not obtained.
- Example 10 A stainless steel mesh was processed into a circular shape so as to have a diameter of 125 mm, and set in a Nutsche having an inner diameter of 125 mm instead of filter paper, and the Nutsche was placed on a filter bottle.
- 500 g of each of the ferrite particles obtained in Example 1 was prepared and placed so as to be flat on Nutsche. While suctioning with an aspirator, 500 cc of a titanium oxide methanol dispersion having an average particle size of 0.13 ⁇ m with a transmittance of 50% is poured from above and sucked until the filtrate does not sag down, and the permeability of the filtrate that comes out was measured to evaluate the filtering ability of the ferrite powder.
- Table 4 shows the ferrite particles used in Example 10 and Comparative Examples 4 to 6, the specific surface area and the transmittance by the air permeation method.
- the specific surface area and transmittance according to the air permeation method in Table 4 were measured as follows.
- the measurement of the specific surface area by the air permeation method is calculated by measuring the specific surface area from the time required for air to pass through the ferrite particles filled in the cell.
- the value is a measurement method suitable for measuring an area relatively limited to the surface portion of the carrier core material.
- the measurement method conforms to JIS R 5201 (cement physical test method).
- the transmittance was a spectrophotometer UV-18000 manufactured by Shimadzu Corporation.
- the wavelength used for the measurement was 500 nm, and the filtration effect of the ferrite particles was evaluated based on the transmittance when the transmittance of methanol was 100%.
- Example 10 As shown in Table 4, in the first filtration, it was confirmed that the permeability increased in Example 10 and the ferrite particles were filtered. In Comparative Examples 4 to 6, although the transmittance increased to some extent due to the filtration effect, the titanium oxide particles present on the surface of the ferrite particles during the second filtration were detached from the ferrite particles, resulting in inferior results compared to Example 1. became.
- the ferrite particles according to the present invention have a low apparent density due to the outer shell structure, and can satisfy a certain volume with a small weight while maintaining various properties in a controllable state. Therefore, the filtration ability is greatly improved by using the ferrite particles as a filter medium (filter).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Compounds Of Iron (AREA)
- Filtering Materials (AREA)
Abstract
低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持し、一定容積に少ない重量で満たすことが可能で、濾過性能に優れた濾材用フェライト粒子及び該フェライト粒子を用いた濾材を提供することを目的とする。この目的を達成するため、Ti酸化物を含有する外殻構造を有している濾材用フェライト粒子及び該フェライト粒子を用いた濾材を採用する。
Description
本発明は濾材用フェライト粒子に関し、詳しくは濾過能力に優れた濾材用フェライト粒子及び濾材に関する。
フェライト粒子は、種々の用途に用いられている。例えば特許文献1(特開平7-334022号公報)には、フェライト粉末等を補助材とする水質活性セラミックスが記載され、各種装置の濾材として使用されると記載されている。
しかし、この特許文献1には、フェライト粒子を濾材成分として用いることが記載されているが、フェライト粒子個々の諸特性に着目し、低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持し、一定容積に少ない重量で満たすことが可能なものではない。そして、この引用文献1に記載の濾材は充分な濾過能力を有するものではなかった。
一方、特許文献2(特開2007-320847号公報)には、複数の一次微粒子及び複数の一次細孔を含むコア微粒子構造体と、コア微粒子構造体を少なくとも部分的に囲繞するシェルとを含むコアシェルセラミック微粒子を複数含む物品が記載され、物品として、膜、センサー、電極及びゲッターが記載されている。
この特許文献2に記載のコアシェルセラミック微粒子は、イットリウム安定化ジルコニアをコア、ランタンフェライトをシェルとして構成されるもので、ランタンフェライトをシェルとして用いていることから、低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持したままで、一定容積に少ない重量で満たすことができるものではない。
従って、本発明の目的は、低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持し、一定容積に少ない重量で満たすことが可能で、濾過性能に優れた濾材用フェライト粒子及び該フェライト粒子を用いた濾材を提供することにある。
本発明者らは、上記のような課題を解決すべく鋭意検討した結果、Ti酸化物を含有する外殻構造を有しているフェライト粒子が上記目的を達成し得ることを知見し、本発明に至った。本発明は、これらの知見に基づきなされたものである。
すなわち、本発明は、Ti酸化物を含有する外殻構造を有していることを特徴とする濾材用フェライト粒子を提供するものである。
本発明に係る上記フェライト粒子は、上記外殻構造を有する部分の厚さが0.5~10μmであることが望ましい。
本発明に係る上記フェライト粒子は、粒子内部の密度が上記外殻構造の密度より低いことが望ましい。
本発明に係るフェライト粒子の体積平均粒径は、10~100μmであることが望ましい。
また、本発明は、上記フェライト粒子を用いた濾材を提供するものである。
本発明に係るフェライト粒子は、Tiを含有する外殻構造を有することで低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持したままで、一定容積に少ない重量で満たすことができる。そのため、上記フェライト粒子を濾剤として用いた時に濾過性能に優れたものとなる。
以下、本発明を実施するための形態について説明する。
<本発明に係るフェライト粒子>
本発明に係るフェライト粒子は、チタンを含有する外殻構造(コアシェル形状)を有する。このことで低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持できる。また、本発明に係るフェライト粒子は、一定容積に少ない重量でフェライト粒子を満たすことができる。なお、本発明でいうフェライト粒子とは、特記しない限り個々のフェライト粒子の集合体を意味し、また単に粒子とは、個々のフェライト粒子をいう。
<本発明に係るフェライト粒子>
本発明に係るフェライト粒子は、チタンを含有する外殻構造(コアシェル形状)を有する。このことで低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持できる。また、本発明に係るフェライト粒子は、一定容積に少ない重量でフェライト粒子を満たすことができる。なお、本発明でいうフェライト粒子とは、特記しない限り個々のフェライト粒子の集合体を意味し、また単に粒子とは、個々のフェライト粒子をいう。
ここでいう外殻構造とは、フェライト粒子を樹脂に包埋させたのち、SEMを用いて断面観察をした際に、断面SEM画像において、目視でわかる程度に外殻構造が形成されていることが必要である。より具体的には、一定範囲の厚みを持った外周部分が粒子の周囲長の80%以上を持っているものをいう。より好ましくは、外周部分の周囲長に占める割合は90%以上である。
この外殻構造の厚さは、0.5~10μmであることが望ましく、この範囲で所期の目的が達成できる。外殻構造の厚みが0.5μm未満では、フェライト粒子の機械的強度が弱く、破壊されることで本来持っていた各種粉体特性が発揮できないことがある。特にキャリアとして使用する際に割れてしまい感光体ドラム傷の原因となる可能性がある。外殻構造の厚みが10μmを超えると、従来のフェライト粒子と変わらないため、外殻構造を有していても所望の効果を発揮することができない。外殻構造の厚さは0.5~8μmであることがさらに好ましく、0.5~6.5μmであることが最も好ましい。
この外殻構造の厚さの測定は、下記に詳述される通り、フェライト粒子を樹脂に包埋させたのち、図1及び図2に示されるように、SEMを用いて断面観察、及び得られた画像を画像処理することで測定することができる。
〔外殻構造の厚さの測定〕
ここで、粒子の外殻構造の厚さの測定は下記の手順にて行う。
フェライト粒子を樹脂に包埋・成形したのち、研磨機にて断面を研磨し、金蒸着を行い断面観察用(外殻部の厚さ測定用)サンプルとした。得られたサンプルは日本電子社製JSM-6060Aを用い、加速電圧は5kVとし、SEMを200倍視野にて撮影し、その画像情報を、インターフェースを介してメディアサイバネティクス社製画像解析ソフト(Image-Pro PLUS)に導入して解析を行った。具体的には得られた画像のコントラストを調整後、本解析ソフトウエアのラインプロファイル機能により、画像の輝度を1粒子ごとに抽出する。この時ラインプロファイルは粒子のほぼ中心を水平方向に通過するよう直線を設定し、得られたプロファイルに存在するピークのうち、外殻部に対応するピークを2つのマーカーで挟み、このときの幅を外殻部の厚さとした。なお、上記ピークはラインプロファイルの極大値を挟む極小値と極小値として定義される。また、コントラストは包埋樹脂の部分(バックグラウンドに相当)の輝度は最大輝度の50%以下になるように調整することが好ましい。同様の操作を30粒子について同様に行い、平均値を外殻構造の厚さとした。
ここで、粒子の外殻構造の厚さの測定は下記の手順にて行う。
フェライト粒子を樹脂に包埋・成形したのち、研磨機にて断面を研磨し、金蒸着を行い断面観察用(外殻部の厚さ測定用)サンプルとした。得られたサンプルは日本電子社製JSM-6060Aを用い、加速電圧は5kVとし、SEMを200倍視野にて撮影し、その画像情報を、インターフェースを介してメディアサイバネティクス社製画像解析ソフト(Image-Pro PLUS)に導入して解析を行った。具体的には得られた画像のコントラストを調整後、本解析ソフトウエアのラインプロファイル機能により、画像の輝度を1粒子ごとに抽出する。この時ラインプロファイルは粒子のほぼ中心を水平方向に通過するよう直線を設定し、得られたプロファイルに存在するピークのうち、外殻部に対応するピークを2つのマーカーで挟み、このときの幅を外殻部の厚さとした。なお、上記ピークはラインプロファイルの極大値を挟む極小値と極小値として定義される。また、コントラストは包埋樹脂の部分(バックグラウンドに相当)の輝度は最大輝度の50%以下になるように調整することが好ましい。同様の操作を30粒子について同様に行い、平均値を外殻構造の厚さとした。
また、外殻構造の外周部分の周囲長に占める割合は、下記に詳述される通り、フェライト粒子を樹脂に包埋させたのち、図3及び図4に示されるように、SEMを用いて断面観察、及び得られた画像を画像処理することで測定することができる。
〔外殻構造の外周方向の割合の測定〕
上記と同様の画像処理を行い、ラインプロファイルを円環または自由曲線(閉曲線)とし1粒子ごとに粒子の外殻構造に対して設定する。このときプロファイルの最大輝度をI最大、最小輝度をI最小とし、最大輝度と最小輝度の差をIΔとしたとき、I最小以上、I最小+IΔ×0.2未満の範囲は外殻構造がない部分、I最小+IΔ×0.2以上I最大以下が外殻部と判別する。したがってラインプロファイル機能で得られたラインプロファイル長(周囲長)の輝度データうち、のうち、I最小+IΔ×0.2以上I最大以下となっている輝度のラインプロファイル長を積算し、ラインプロファイル長(周囲長)で割ることで、一定範囲の厚みを持った外周部分の比率を算出することで求めることができる。同様の操作を30粒子について行い、平均値を外周部分の周囲長にしめる割合(=外周部分の密度)とした。
上記と同様の画像処理を行い、ラインプロファイルを円環または自由曲線(閉曲線)とし1粒子ごとに粒子の外殻構造に対して設定する。このときプロファイルの最大輝度をI最大、最小輝度をI最小とし、最大輝度と最小輝度の差をIΔとしたとき、I最小以上、I最小+IΔ×0.2未満の範囲は外殻構造がない部分、I最小+IΔ×0.2以上I最大以下が外殻部と判別する。したがってラインプロファイル機能で得られたラインプロファイル長(周囲長)の輝度データうち、のうち、I最小+IΔ×0.2以上I最大以下となっている輝度のラインプロファイル長を積算し、ラインプロファイル長(周囲長)で割ることで、一定範囲の厚みを持った外周部分の比率を算出することで求めることができる。同様の操作を30粒子について行い、平均値を外周部分の周囲長にしめる割合(=外周部分の密度)とした。
〔粒子内部の多孔質部分の割合の測定〕
上記と同様の画像処理を行い、ラインプロファイルを直線とし、1粒子ごとに粒子の中心付近を通過するように設定する。このときプロファイルの最大輝度をI最大、最小輝度をI最小とし、最大輝度と最小輝度の差をIΔとしたとき、I最小以上、I最小+IΔ×0.2未満の範囲はフェライト部分がない部分、I最小+IΔ×0.2以上I最大以下がフェライトが存在する部分と判別する。したがってラインプロファイル機能で得られたラインプロファイル長(直線)の輝度データうち、のうち、I最小+IΔ×0.2以上I最大以下となっている輝度のラインプロファイル長を積算し、ラインプロファイル長(直線)で割ることで、粒子内部のフェライト部分の比率を算出することで求めることができる。同様の操作を30粒子について行い、平均値を粒子内部の密度とした。
上記と同様の画像処理を行い、ラインプロファイルを直線とし、1粒子ごとに粒子の中心付近を通過するように設定する。このときプロファイルの最大輝度をI最大、最小輝度をI最小とし、最大輝度と最小輝度の差をIΔとしたとき、I最小以上、I最小+IΔ×0.2未満の範囲はフェライト部分がない部分、I最小+IΔ×0.2以上I最大以下がフェライトが存在する部分と判別する。したがってラインプロファイル機能で得られたラインプロファイル長(直線)の輝度データうち、のうち、I最小+IΔ×0.2以上I最大以下となっている輝度のラインプロファイル長を積算し、ラインプロファイル長(直線)で割ることで、粒子内部のフェライト部分の比率を算出することで求めることができる。同様の操作を30粒子について行い、平均値を粒子内部の密度とした。
従来のフェライト粒子の低見掛け密度化は、主としてフェライト粒子の多孔質化のみによって達成されるものである。この多孔質化は本焼成時の焼成条件を変更することで簡便に実施できる点を特徴としている反面、多孔質独特の細孔が表面から内部に至るまで均一に生成する。したがって、樹脂被覆や樹脂含浸による特性制御を行う場合、粒子の表面に樹脂が多く存在するため、被覆や含浸した樹脂の影響が大きく、特性の制御が極めて難しくなる。
一方、本発明によるフェライト粒子の形状は、一見すると従来から存在する粒状粒子であるが、外殻構造を有する部分(外殻部)と多孔質構造を有する粒子内部で粒子の密度が異なっている。より具体的な特徴として、粒子内部の密度が低いため粒子の細孔容積は大きく、かつ、外殻部の密度が高いため細孔径が大きくなっている。また、外殻構造を有しているため、従来の多孔質コアと比較して、低い見掛け密度を有している。また、フェライト粒子の外側と内部は局在する細孔によってつながっているため、低見掛け密度でありながらフェライト粒子の表面が露出した状態を維持したまま、粒子内部に樹脂や機能性ナノ粒子を分散させた懸濁液を含浸させることができるため、外殻部分と内部の多孔質部部分において別の機能を持たせることが可能となり、従来のフェライト粒子では得られなかった特性を新たに獲得できるようになる。
本発明に係るフェライト粒子は、Mgを0.5~4重量%及びMnを3~20重量%を含有することが望ましい。
本発明に係るフェライト粒子は、Feを47~70重量%を含有することが望ましい。
本発明に係るフェライト粒子は、Tiを0.5~4.5重量%を含有することが望ましい。
本発明に係るフェライト粒子がMgを含有することで磁化の調整が容易に行えるようになる。Mgが0.5重量%未満では添加効果が弱く、磁化の制御が十分行えない。4重量%より多い場合は、磁化が低くなり磁気特性を活かした用途での使用が難しくなる。
本発明に係るフェライト粒子がMnを含有することでも磁化や抵抗の調整が容易に行えるようになる。Mnが3重量%未満では添加効果が弱く、磁化の制御が十分行えない。20重量%より多い場合は、Mnフェライトの化学量論比に近いMnが含有されるようになるため含有効果が小さくなり、含有する意味がない。またMnを含有させることで酸素濃度が一定でも焼成温度で磁化を制御することが可能となる。
なお、MnとMgの両方の元素を含有することは焼成温度の制御を精度良く行える点から好ましい。すなわち、フェライト粒子の大まかな磁化の制御はMgの含有量で行い、Mnの含有量で焼成温度と磁化の関係をさらに詳細に制御することが可能になる。
さらに、電子写真現像剤用キャリア用途においては、フェライト粒子がMgを含有することによって、フェライト粒子を用いたフェライトキャリアとフルカラー用のトナーで構成される帯電の立ち上がりが良い現像剤を得ることができる。また抵抗を高くすることができる。Mgの含有量が0.5重量%未満では、十分な含有効果が得られず、抵抗が低くなり、カブリの発生や階調性の悪化等、画質が悪化する。また、電子写真現像剤用キャリアとして用いたときに、磁化が高くなりすぎるため、磁気ブラシの穂が硬くなり、はけ筋等の画像欠陥の発生原因となる。一方、Mgの含有量が4重量%を超えると、磁化が低下するためにフェライトキャリア飛散が発生するだけでなく、焼成温度が低い場合にはMgに起因する水酸基の影響で水分吸着量が大きくなり、帯電量や抵抗といった電気的特性の環境依存性を悪化させる原因となる。
本発明に係るフェライト粒子中のFeの含有量が47重量%未満では、外殻構造が形成されない。一方、Feの含有量が70重量%を超えると、Mg含有効果は得られず実質的にマグネタイトと同等のフェライト粒子になってしまう。
本発明に係るフェライト粒子はTiを0.5~4.5重量%含有することが望ましい。Tiは焼成温度を下げる効果を有し、凝集粒子を減らすことができるだけでなく、均一でシワ状の表面性を得ることができる。一方、フェライト粒子中のTiの含有量が0.5重量%未満では、Tiの含有効果が得られず、外殻構造を持った粒子が得られない。また、Tiの含有量が4.5重量%を超えてもコアシェル粒子は生成するがフェライト粒子の磁気特性を用いた用途では使用しにくくなるので好ましくない。
本発明に係るフェライト粒子のTi含有量と外殻構造を有しないフェライト粒子のTi含有量の差、すなわち粒子表面近傍が粒子内部とのTi含有量の差は0.5~4.5重量%であることが好ましい。
Ti含有量の差が0.5重量%より小さい場合は、複合酸化物粒子の被覆量が少ないため外殻構造が形成できない。4.5重量%より多い場合は磁化が低くなりやすく、フェライト粒子の磁気特性を用いた用途では使用しにくくなるので好ましくない。
外殻構造のTi酸化物が含有されていることは前述の断面SEM用サンプルをEDXによりマッピングによる元素分析を行うことで確認することができる。ここでいうTi酸化物はTiO2だけでなく、母体となったフェライト粒子を構成する1種類以上の元素と固溶した化合物、例えばFe-Ti酸化物、Mg-Ti酸化物、Sr-Ti酸化物、Mn-Ti酸化物、Mg-Fe-Ti酸化物、Mg-Mn-Ti酸化物、Sr-Fe-Ti酸化物、Sr-Mn-Ti酸化物、Sr-Mg-Ti酸化物、Fe-Mn-Ti酸化物、Fe-Mn-Mg-Ti酸化物Sr-Mn-Mg-Ti酸化物、Sr-Fe-Mg-Ti酸化物、及び、Sr-Fe-Mn-Ti酸化物も含むものとする。
本発明に係るフェライト粒子はSrを0~1.5重量%含有することが望ましい。Srは抵抗や表面性の調整に寄与し、高磁化を保つ効果を有するだけでなく、含有することでフェライト粒子の帯電能力を高める効果も得られ、特にTi存在下ではその効果は大きい。Srの含有量が1.5重量%を超えると、残留磁化や保磁力が高くなり、フェライト粒子の軟磁気特性を用いた用途では使用しにくくなる。
〔Fe、Mg、Ti及びSrの含有量〕
これらFe、Mg、Ti及びSrの含有量は、下記によって測定される。
フェライト粒子(フェライトキャリア芯材)0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS-1000IV)を用いてFe、Mg、Ti及びSrの含有量を測定した。
これらFe、Mg、Ti及びSrの含有量は、下記によって測定される。
フェライト粒子(フェライトキャリア芯材)0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS-1000IV)を用いてFe、Mg、Ti及びSrの含有量を測定した。
本発明に係るフェライト粒子は、5K・1000/4π・A/mの磁場をかけたときのVSM測定による磁化が55~85Am2/kgであることが望ましい。フェライト粒子の5K・1000/4π・A/mにおける磁化が55Am2/g未満であると、フェライト粒子の磁気特性を用いた用途では十分に生かすことができない。一方、フェライト粒子の5K・1000/4π・A/mにおける磁化が85Am2/gを超えることは本発明に係るフェライト粒子の組成の範囲ではない。
〔磁気特性〕
磁気特性は、振動試料型磁気測定装置(型式:VSM-C7-10A(東英工業社製))を用いて測定した。測定試料(フェライト粒子)は、内径5mm、高さ2mmのセルに詰めて上記装置にセットした。測定は、印加磁場を加え、5K・1000/4π・A/mまで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このカーブのデータより印加磁場が5K・1000/4π・A/mにおける磁化を読み取った。また、残留磁化及び保磁力も同様に算出した。
磁気特性は、振動試料型磁気測定装置(型式:VSM-C7-10A(東英工業社製))を用いて測定した。測定試料(フェライト粒子)は、内径5mm、高さ2mmのセルに詰めて上記装置にセットした。測定は、印加磁場を加え、5K・1000/4π・A/mまで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このカーブのデータより印加磁場が5K・1000/4π・A/mにおける磁化を読み取った。また、残留磁化及び保磁力も同様に算出した。
本発明に係るフェライト粒子は、レーザー回折式粒度分布測定装置により測定される体積平均粒径が好ましくは10~100μm、より好ましくは15~50μm、最も好ましくは20~50μmである。フェライト粒子の体積平均粒径が10μm未満であると、フェライト粒子内部の密度の低い部分が相対的に小さくなり十分な低見かけ密度の粒子が得られないことがある。フェライト粒子の体積平均粒径が100μmを超えてもコアシェル粒子は生成させることができるが一定の容積中に密にフェライト粒子を充填する際の空隙を小さくする意味で100μm以下が好ましい。
〔体積平均粒径〕
この体積平均粒径は、レーザー回折散乱法により測定した。装置として日機装株式会社製マイクロトラック粒度分析計(Model9320-X100)を用いた。屈折率は2.42とし、25±5℃、湿度55±15%の環境下で測定を行った。ここで言う体積平均粒径(メジアン径)とは、体積分布モード、ふるい下表示での累積50%粒子径である。分散媒には水を用いた。
この体積平均粒径は、レーザー回折散乱法により測定した。装置として日機装株式会社製マイクロトラック粒度分析計(Model9320-X100)を用いた。屈折率は2.42とし、25±5℃、湿度55±15%の環境下で測定を行った。ここで言う体積平均粒径(メジアン径)とは、体積分布モード、ふるい下表示での累積50%粒子径である。分散媒には水を用いた。
本発明に係るフェライト粒子は、BET比表面積が0.2~1m2/gが望ましく、0.2~0.85m2/gであることがさらに望ましい。
BET比表面積が上記範囲よりも小さい場合には、十分に外殻構造が形成されず粒子内部も密に詰まった粒子が生成していることを意味しており、好ましくない。BET比表面積が上記範囲よりも大きい場合も、外殻構造が形成されず多孔質状のフェライト粒子が得られたことを意味している。なお、BET比表面積測定を行う際、測定結果は測定サンプルであるフェライト粒子表面の水分の影響を受ける可能性があるので、可能な限りサンプル表面に付着している水分を除去するような前処理を行うことが好ましい。
〔BET比表面積〕
このBET比表面積の測定は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた。測定試料を比表面積測定装置専用の標準サンプルセルに約5~7g入れ、精密天秤で正確に秤量し、測定ポートに試料(フェライト粒子)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出される。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で-0.1MPaまで脱気し-0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。
環境:温度;10~30℃、湿度;相対湿度で20~80% 結露なし
このBET比表面積の測定は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた。測定試料を比表面積測定装置専用の標準サンプルセルに約5~7g入れ、精密天秤で正確に秤量し、測定ポートに試料(フェライト粒子)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出される。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で-0.1MPaまで脱気し-0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。
環境:温度;10~30℃、湿度;相対湿度で20~80% 結露なし
本発明に係るフェライト粒子は、6.5mmGap印加電圧50Vにおける電気抵抗が5×107~1×1011Ωであることが望ましい。
6.5mmGap印加電圧50Vにおけるフェライト粒子の電気抵抗が5
×107よりも小さい場合はフェライト組成がマグネタイトに近くなっているかTi添加量が少なく外殻構造が十分に形成されていないことを意味している。フェライト粒子の電気抵抗が1×1011Ωよりも高い場合はフェライト粒子表面のTi含有量が多くなりすぎ、磁化が大きく下がっている可能性がある。
×107よりも小さい場合はフェライト組成がマグネタイトに近くなっているかTi添加量が少なく外殻構造が十分に形成されていないことを意味している。フェライト粒子の電気抵抗が1×1011Ωよりも高い場合はフェライト粒子表面のTi含有量が多くなりすぎ、磁化が大きく下がっている可能性がある。
〔電気抵抗〕
この電気抵抗は、下記によって測定される。
電極間間隔6.5mmで非磁性の平行平板電極(10mm×40mm)を対向させ、その間に、試料(フェライト粒子)200mgを秤量して充填する。磁石(表面磁束密度:1500Gauss、電極に接する磁石の面積:10mm×30mm)を平行平板電極に付けることにより電極間に試料を保持させ、50V、100V、250V、500V及び1000Vの電圧を印加し、それらの印加電圧における抵抗を絶縁抵抗計(SM-8210、東亜ディケーケー(株)製)にて測定した。
この電気抵抗は、下記によって測定される。
電極間間隔6.5mmで非磁性の平行平板電極(10mm×40mm)を対向させ、その間に、試料(フェライト粒子)200mgを秤量して充填する。磁石(表面磁束密度:1500Gauss、電極に接する磁石の面積:10mm×30mm)を平行平板電極に付けることにより電極間に試料を保持させ、50V、100V、250V、500V及び1000Vの電圧を印加し、それらの印加電圧における抵抗を絶縁抵抗計(SM-8210、東亜ディケーケー(株)製)にて測定した。
このフェライト粒子の細孔容積は0.06~0.2ml/g(60~200μl/g)、ピーク細孔径は0.7~2μmであることが望ましい。
フェライト粒子の細孔容積が0.06ml/g(60μl/g)未満であると、粒子内部の細孔が小さく低い見掛け密度の粒子となっていないことを意味している。また、フェライト粒子の細孔容積が0.2ml/g(200μl/g)を超えると、見掛け密度が低くなりすぎていることを意味しており、1粒子の磁性粉としての磁力が下がってしまいフェライト粒子の磁気特性を用いた用途で不具合が出る可能性がある。
フェライト粒子のピーク細孔径が2μmを超えると、低い見掛け密度の粒子となっていないことを意味しており、フェライト粒子内部の密度の低い部分を利用した用途において十分な特性を得ることができない。また、フェライト粒子のピーク細孔径が0.7μm未満であると、外殻構造を持たない多孔質状のフェライト粒子となっている可能性が高く、フェライト粒子内部と外部で機能を分けた用途での使用が難しくなる可能性がある。
このように、細孔容積とピーク細孔径が上記範囲にあることで、上記した各不具合がなく、適度に軽量化されたフェライト粒子を得ることができる。
〔フェライト粒子の細孔径及び細孔容積〕
このフェライト粒子の細孔径及び細孔容積の測定は、次のようにして行われる。すなわち、水銀ポロシメーターPascal140とPascal240(ThermoFisher Scientific社製)を用いて測定した。ディラトメータはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメータ内に入れた。Pascal140で脱気後、水銀を充填し低圧領域(0~400Kpa)を測定し、1st Runとした。次に再び脱気と低圧領域(0~400Kpa)の測定を行い、2nd Runとした。2nd Runの後、ディラトメーターと水銀とカプセルとサンプルを合わせた重量を測定した。次にPascal240で高圧領域(0.1Mpa~200Mpa)を測定した。この高圧部の測定で得られた水銀圧入量をもって、フェライト粒子の細孔容積、細孔径分布及びピーク細孔径を求めた。また、細孔径を求める際には水銀の表面張力を480dyn/cm、接触角を141.3°として計算した。
このフェライト粒子の細孔径及び細孔容積の測定は、次のようにして行われる。すなわち、水銀ポロシメーターPascal140とPascal240(ThermoFisher Scientific社製)を用いて測定した。ディラトメータはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメータ内に入れた。Pascal140で脱気後、水銀を充填し低圧領域(0~400Kpa)を測定し、1st Runとした。次に再び脱気と低圧領域(0~400Kpa)の測定を行い、2nd Runとした。2nd Runの後、ディラトメーターと水銀とカプセルとサンプルを合わせた重量を測定した。次にPascal240で高圧領域(0.1Mpa~200Mpa)を測定した。この高圧部の測定で得られた水銀圧入量をもって、フェライト粒子の細孔容積、細孔径分布及びピーク細孔径を求めた。また、細孔径を求める際には水銀の表面張力を480dyn/cm、接触角を141.3°として計算した。
<本発明に係るフェライト粒子の製造方法>
次に、本発明に係るフェライト粒子の製造方法について説明する。
次に、本発明に係るフェライト粒子の製造方法について説明する。
本発明に係るフェライト粒子の製造方法は、例えば次のように行われる。
(フェライト芯材用粒子の調製)
Fe、Mn及びMgの各化合物、さらに必要に応じてSr、Ti等の化合物を粉砕、混合、仮焼した後、ロッドミルで粉砕し、フェライト仮焼粉とする。
Fe、Mn及びMgの各化合物、さらに必要に応じてSr、Ti等の化合物を粉砕、混合、仮焼した後、ロッドミルで粉砕し、フェライト仮焼粉とする。
フェライト仮焼粉の好ましい組成の一例は、Feが45~68重量%、Mgが0.5~4重量%、Mnが3~22重量%、Tiが0.25~6重量%、Srが0~2重量%である。
上記のフェライト仮焼粉の組成範囲を満たすことでTi化合物を被覆後、焼成を行うことで用途に応じたフェライト粒子として必要十分な各種特性を得ることが出来る。
上記したフェライト仮焼粉を水及び必要に応じ分散剤、バインダー等を添加し、スラリーとし、粘度調整後、スプレードライヤーにて粒状化し、造粒を行い、さらに脱バインダー処理してフェライト被覆前粒子を得る。脱バインダー処理は600~1000℃で行われる。
上記スラリーのスラリー粒径D50が0.5~4.5μmであることが望ましい。スラリー粒径を上記範囲とすることによって、所望のBET比表面積を有したフェライト粒子を得ることができる。スラリー粒径D50が0.5μm未満では、粉砕後のフェライト仮焼粉の比表面積が大きくなりすぎること被覆用TiO2粒子被覆後フェライト粒子の焼成を行った場合、焼成が進みすぎることによって所望のBET比表面積を持ったフェライト粒子が得られない。4.5μmを超えると被覆用TiO2粒子による被覆を行い、焼成を行った場合でも十分に外殻構造が形成されず、所望のフェライト粒子にならない可能性がある。
スラリー粒径を上記範囲とするには、本造粒用のスラリーを調製する際に粉砕時間を制御するか、粉砕メディアを目標のスラリー粒径及び粒度分布になるように選択するか、湿式サイクロンを用いてスラリー中に存在する原料粒子を分級すればよい。湿式サイクロンを用いた場合には分級後のスラリーの固形分が異なるので再度固形分の調整が必要になるものの、短時間で目標のスラリー粒径とすることができるため、粉砕時間の制御と組み合わせて用いてもよい。
被覆用TiO2粒子は体積平均粒径が0.05~3μmであることが望ましい。0.05μmよりも小さい場合には被覆前フェライト粒子の表面に微粒子を付着させる際に被覆粒子が凝集体となりやすく、所望の被覆量で被覆前フェライト粒子表面に被覆しても被覆層にムラができやすく、部分的に外殻構造が形成されない可能性がある。3μmを超えると均一に被覆前フェライト粒子に付着しにくく、フェライト粒子に部分的に外殻構造が生成されない可能性がある。
被覆用TiO2粒子は、その体積平均粒径にもよるが、被覆前フェライト粒子に対して0.8~7重量%であることが好ましい。0.8重量%よりも少ない場合は、本焼成後に十分な抵抗が得られない。7重量%よりも多い場合には被覆前フェライト粒子に付着しなかったフェライト被覆用粒子同士が凝集し、低磁化粒子を形成することがあり、フェライト粒子の磁気特性を用いた用途で使用する際に不具合の原因となる可能性がある。
(フェライト粒子の調製)
上記のようにして得られた被覆前フェライト粒子に被覆用TiO2粒子を添加し、混合ミルで混合し、フェライト粒子用原料とした。このフェライト粒子用原料を不活性雰囲気又は弱酸化性雰囲気、例えば窒素雰囲気下や酸素濃度が3体積%以下の窒素と酸素の混合ガス雰囲気下、850~1230℃で行う。
上記のようにして得られた被覆前フェライト粒子に被覆用TiO2粒子を添加し、混合ミルで混合し、フェライト粒子用原料とした。このフェライト粒子用原料を不活性雰囲気又は弱酸化性雰囲気、例えば窒素雰囲気下や酸素濃度が3体積%以下の窒素と酸素の混合ガス雰囲気下、850~1230℃で行う。
その後、焼成物を解砕、分級を行ってフェライト粒子を得る。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法等を用いて所望の粒径に粒度調整する。乾式回収を行う場合は、サイクロン等で回収することも可能である。
このようにして、上記各特性を有する本発明に係るフェライト粒子が得られる。
本発明に係るフェライト粒子においては付着させる被覆用TiO2粒子の表面に対して易分散性を得られるようにするため、帯電付与の表面処理を行ってもよい。帯電付与の表面処理を行うことで粒子同士の凝集が減少し、本焼成前の被覆用TiO2粒子が付着しやすくなる。また、被覆前フェライト粒子の帯電極性と逆極性の表面処理剤を用いることで本焼成前の被覆前フェライト粒子に付着した被覆用TiO2粒子の脱離を防止する効果が得られる。
本焼成前の被覆前フェライト粒子の表面に被覆用TiO2粒子を付着させた後に本焼成を行う方法については前述の通り提案されているが、乾式で帯電付与の前処理を行わない被覆用TiO2粒子を用いて本焼成前の被覆前フェライト粒子の表面に付着させる場合、付着させる被覆用TiO2粒子の凝集が激しく被覆前フェライト粒子に付着しにくいか、大きな凝集体として付着するため組成の偏りが大きく、本焼成後に得られたフェライト粒子の特性は劣る場合がある。
湿式による本焼成前の被覆前フェライト粒子に対する被覆用TiO2粒子の表面被覆は、表面被覆を行なったフェライト粒子用原料ごと溶媒となる液体の除去が必要となるため、工程として大掛かりになるためコストがかさむ。乾式による被覆用TiO2粒子の被覆前フェライト粒子への被覆は被覆用TiO2粒子の表面処理のみを行えば良く、容易に行え、コストの上昇も少ないのが特徴である。
<本発明に係る濾材>
本発明に係るフェライト粒子を濾材(フィルター)として用いることによって、優れた濾過性能を有する。
本発明に係るフェライト粒子を濾材(フィルター)として用いることによって、優れた濾過性能を有する。
以下、実施例等に基づき本発明を具体的に説明する。
[実施例1]
[フェライト粒子の調製]
Fe2O3を100モル、MgCO3を10モル、Mn3O4を13.3モル及びSrCO3を1モルとなるように秤量し、さらに、還元剤としてカーボンブラックを原料重量に対して1.35重量%添加したものを混合、粉砕後、ローラーコンパクターでペレット化した。得られたペレットを980℃にて酸素濃度0体積%下の窒素雰囲気下、ロータリー式の焼成炉で仮焼成を行った。これをロッドミルにて粉砕したものをフェライト芯材用仮焼粉とした。
[フェライト粒子の調製]
Fe2O3を100モル、MgCO3を10モル、Mn3O4を13.3モル及びSrCO3を1モルとなるように秤量し、さらに、還元剤としてカーボンブラックを原料重量に対して1.35重量%添加したものを混合、粉砕後、ローラーコンパクターでペレット化した。得られたペレットを980℃にて酸素濃度0体積%下の窒素雰囲気下、ロータリー式の焼成炉で仮焼成を行った。これをロッドミルにて粉砕したものをフェライト芯材用仮焼粉とした。
このフェライト芯材用仮焼粉を湿式ビーズミルで1時間粉砕し、バインダー成分としてPVAをスラリー固形分に対して1重量%となるように添加し、ポリカルボン酸系分散剤をスラリーの粘度が2~3ポイズになるように添加した。この際のスラリー粒径のD50は3.259μmであった。
このようにして得られた粉砕スラリーをスプレードライヤーにて造粒、乾燥し、酸素濃度0体積%下の窒素雰囲気下、ロータリーキルンを用いて850℃で脱バインダー処理し、フェライト芯材用粒子を得た。
被覆用TiO2粒子を、上記フェライト芯材用粒子に対して4重量%添加し、混合ミルで10分間混合撹拌した。得られた混合物を80メッシュの振動ふるいで凝集体をほぐし、フェライト粒子用原料とした。
上記で得られたフェライト粒子用原料を、電気炉を用いて、酸素濃度0体積%下の窒素雰囲気下、1010℃で4時間保持し、本焼成を行なった。その後、解砕し、さらに分級してフェライト粒子を得た。
[実施例2]
フェライト原料として、Fe2O3を100モル、MgCO3を5モル、Mn3O4を26.6モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
フェライト原料として、Fe2O3を100モル、MgCO3を5モル、Mn3O4を26.6モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例3]
フェライト原料として、Fe2O3を100モル、MgCO3を20モル、Mn3O4を6.65モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
フェライト原料として、Fe2O3を100モル、MgCO3を20モル、Mn3O4を6.65モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例4]
フェライト原料として、Fe2O3を100モル、MgCO3を5モル、Mn3O4を5モル、及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
フェライト原料として、Fe2O3を100モル、MgCO3を5モル、Mn3O4を5モル、及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例5]
フェライト原料として、Fe2O3を100モル、MgCO3を20モル、Mn3O4を26.6モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
フェライト原料として、Fe2O3を100モル、MgCO3を20モル、Mn3O4を26.6モル及びSrCO3を0モルとなるように秤量した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例6]
SrCO3を0モルとし、被覆用TiO2粒子を、上記フェライト芯材用粒子に対して2.5重量%添加した以外は、実施例1と同様の方法でフェライト粒子を得た。
SrCO3を0モルとし、被覆用TiO2粒子を、上記フェライト芯材用粒子に対して2.5重量%添加した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例7]
SrCO3を0モルとし、被覆用TiO2粒子を、上記フェライト芯材用粒子に対して5重量%添加した以外は、実施例1と同様の方法でフェライト粒子を得た。
SrCO3を0モルとし、被覆用TiO2粒子を、上記フェライト芯材用粒子に対して5重量%添加した以外は、実施例1と同様の方法でフェライト粒子を得た。
[実施例8]
本焼成温度を950℃とした以外は、実施例6と同様の方法でフェライト粒子を得た。
本焼成温度を950℃とした以外は、実施例6と同様の方法でフェライト粒子を得た。
[実施例9]
本焼成温度を1050℃とした以外は、実施例6と同様の方法でフェライト粒子を得た。
本焼成温度を1050℃とした以外は、実施例6と同様の方法でフェライト粒子を得た。
[比較例1]
本焼成温度を920℃とした以外は、実施例1と同様の方法でフェライト粒子を得た。
本焼成温度を920℃とした以外は、実施例1と同様の方法でフェライト粒子を得た。
[比較例2]
被覆用TiO2粒子を、フェライト芯材用粒子に対して添加しなかった以外は、実施例1と同様の方法でフェライト粒子を得た。
被覆用TiO2粒子を、フェライト芯材用粒子に対して添加しなかった以外は、実施例1と同様の方法でフェライト粒子を得た。
[比較例3]
本焼成温度を1165℃とした以外は、実施例1と同様の方法でフェライト粒子を得た。
本焼成温度を1165℃とした以外は、実施例1と同様の方法でフェライト粒子を得た。
実施例1~9及び比較例1~3で用いられたフェライト粒子の配合割合(原料仕込量モル比)、炭素量、仮焼条件(仮焼温度及び仮焼雰囲気)、本造粒条件(スラリー粒径及びPVA添加量)、脱バインダー処理条件(処理温度及び処理雰囲気)、TiO2混合条件(添加量及び混合条件)及び本焼成条件(本焼成温度及び本焼成雰囲気)を表1に示し、得られたフェライト粒子の組成、磁気特性(磁化、残留磁化及び保磁力)及びフェライト粒子の形状(断面形状、外殻構造を有する部分が周囲長に占める割合及び外殻構造を有する部分の厚さ)を表2に示す。また、実施例1~9及び比較例1~3のフェライト粒子の粉体特性(BET比表面積、平均粒径、見掛け密度、真比重、細孔容積及びピーク細孔径)及び6.5mmGapのブリッジ式抵抗(50V、100V、250V、500V及び1000V)を表3に示す。各測定方法は上述の通りである。
表2に示されるように、実施例1~9のフェライト粒子は、いずれも外殻構造を持ったものが得られた。
これに対し、比較例1のフェライト粒子では焼成温度が低く、多孔質構造を生成したものの、外殻構造を持ったフェライト粒子は得られなかった。
比較例2のフェライト粒子は、焼成温度が高く。外殻構造を持ったフェライト粒子とならなかった。
比較例3のフェライト粒子は、焼成温度が高く。外殻構造を持ったフェライト粒子とならなかった。
〔実施例10〕
直径125mmになるように円形にステンレスのメッシュを加工し、ろ紙の代わりに内径125mmのヌッチェにセットし、ヌッチェは濾過ビンの上に設置した。実施例1で得られたフェライト粒子を各500g用意し、ヌッチェ上に平らになるように投入した。アスピレーターを用いて吸引しながら透過率50%の平均粒径0.13μmの酸化チタンのメタノール分散液500ccを上から注ぎ、濾液が下にたれなくなるまで吸引した後、出てきた濾過液の透過度を測定することでフェライト粉の濾過能力を評価した。その後、ろ瓶にたまった濾液をすてて、フェライト粒子が保持された状態のヌッチェをろ瓶にセットし、メタノールを上から注ぎ、2回目の濾過を行い、1回目と同様に濾液の透過率を測定した。
直径125mmになるように円形にステンレスのメッシュを加工し、ろ紙の代わりに内径125mmのヌッチェにセットし、ヌッチェは濾過ビンの上に設置した。実施例1で得られたフェライト粒子を各500g用意し、ヌッチェ上に平らになるように投入した。アスピレーターを用いて吸引しながら透過率50%の平均粒径0.13μmの酸化チタンのメタノール分散液500ccを上から注ぎ、濾液が下にたれなくなるまで吸引した後、出てきた濾過液の透過度を測定することでフェライト粉の濾過能力を評価した。その後、ろ瓶にたまった濾液をすてて、フェライト粒子が保持された状態のヌッチェをろ瓶にセットし、メタノールを上から注ぎ、2回目の濾過を行い、1回目と同様に濾液の透過率を測定した。
〔比較例4〕
実施例1で得られたフェライト粒子に代えて、比較例1で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
実施例1で得られたフェライト粒子に代えて、比較例1で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
〔比較例5〕
実施例1で得られたフェライト粒子に代えて、比較例2で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
実施例1で得られたフェライト粒子に代えて、比較例2で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
〔比較例6〕
実施例1で得られたフェライト粒子に代えて、比較例3で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
実施例1で得られたフェライト粒子に代えて、比較例3で得られたフェライト粒子を用いた以外は、実施例10と同様にして濾液の透過率を評価した。
実施例10及び比較例4~6で使用したフェライト粒子、空気透過法による比表面積及び透過率を表4に示す。表4の空気透過法による比表面積及び透過率は下記により測定した。
〔フェライト粒子の空気透過法による比表面積の測定〕
空気透過法による比表面積の測定は、セル中に充填したフェライト粒子を空気が通過する際に要する時間より比表面積を測定することによって算出される。その値は比較的キャリア芯材の表面部分に限定された面積を測定するのに適した測定法である。測定方法はJIS R 5201(セメントの物理試験方法)に準拠する。
空気透過法による比表面積の測定は、セル中に充填したフェライト粒子を空気が通過する際に要する時間より比表面積を測定することによって算出される。その値は比較的キャリア芯材の表面部分に限定された面積を測定するのに適した測定法である。測定方法はJIS R 5201(セメントの物理試験方法)に準拠する。
〔透過率〕
透過率は島津製作所製、分光光度計UV-18000を使用した。測定に使用する波長は500nmとし、メタノールの透過率を100%としたときの透過率でフェライト粒子の濾過の効果を評価した。
透過率は島津製作所製、分光光度計UV-18000を使用した。測定に使用する波長は500nmとし、メタノールの透過率を100%としたときの透過率でフェライト粒子の濾過の効果を評価した。
表4に示されるように、1回目の濾過では実施例10では透過度が高くなりフェライト粒子の濾過の効果があることが確認された。比較例4~6でも濾過の効果で透過率はある程度上昇したものの、2回目の濾過時にフェライト粒子表面に存在していた酸化チタン粒子がフェライト粒子から脱離し実施例1と比較して劣る結果となった。
本発明に係るフェライト粒子は、外殻構造を有することで低い見掛け密度を有し、さまざまな特性を制御可能な状態に維持したままで、一定容積に少ない重量で満たすことができる。そのため、上記フェライト粒子を濾材(フィルター)として用いることによって、濾過能力が大幅に向上する。
Claims (5)
- Ti酸化物を含有する外殻構造を有していることを特徴とする濾材用フェライト粒子。
- 上記外殻構造を有する部分の厚さが0.5~10μmである請求項1に記載の濾材用フェライト粒子。
- 粒子内部の密度が上記外殻構造の密度より低い請求項1又は2に記載の濾材用フェライト粒子。
- 体積平均粒径が10~100μmである請求項1~3のいずれかに記載の濾材用フェライト粒子。
- 請求項1~4のいずれかに記載のフェライト粒子を用いた濾材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16743302.8A EP3251735B1 (en) | 2015-01-28 | 2016-01-25 | Ferrite particles for filter material which have outer shell structure |
US15/545,521 US10603614B2 (en) | 2015-01-28 | 2016-01-25 | Ferrite particles having outer shell structure used for filtering medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-013796 | 2015-01-28 | ||
JP2015013796A JP6583877B2 (ja) | 2015-01-28 | 2015-01-28 | 外殻構造を有する濾材用フェライト粒子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121699A1 true WO2016121699A1 (ja) | 2016-08-04 |
Family
ID=56543312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052030 WO2016121699A1 (ja) | 2015-01-28 | 2016-01-25 | 外殻構造を有する濾材用フェライト粒子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10603614B2 (ja) |
EP (1) | EP3251735B1 (ja) |
JP (1) | JP6583877B2 (ja) |
TW (1) | TWI686357B (ja) |
WO (1) | WO2016121699A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6493727B2 (ja) * | 2014-09-19 | 2019-04-03 | パウダーテック株式会社 | 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体 |
JP6225400B2 (ja) * | 2015-01-28 | 2017-11-08 | パウダーテック株式会社 | 外殻構造を有する触媒担持体用フェライト粒子 |
JP6737652B2 (ja) | 2016-07-12 | 2020-08-12 | オリンパス株式会社 | 医療機器用ワイヤーおよび医療機器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376544A (en) * | 1976-12-20 | 1978-07-07 | Shigeru Obiyama | Filter |
JPS56105401A (en) * | 1979-12-07 | 1981-08-21 | Ici Australia Ltd | Magnetic particle protected with chromium oxide |
JPS61210997A (ja) * | 1985-03-15 | 1986-09-19 | 株式会社東芝 | マンガンフエライト担持高温吸着濾材 |
JPH0238318A (ja) * | 1988-05-24 | 1990-02-07 | Alcan Internatl Ltd | 磁気吸引性粒子及びその製法 |
JPH0320002A (ja) * | 1989-03-30 | 1991-01-29 | Nippon Zeon Co Ltd | コバルト含有六方晶系バリウムフェライト磁性粉の製造方法 |
JPH10182264A (ja) * | 1996-02-21 | 1998-07-07 | Mikuni:Kk | セラミック造粒体 |
JP2005199163A (ja) * | 2004-01-15 | 2005-07-28 | Trial Corp | 磁性ビーズ利用の濾取装置及び方法 |
JP2012206106A (ja) * | 2011-03-15 | 2012-10-25 | Toshiba Corp | 樹脂複合体、水処理用ろ過助剤、水処理用プレコート材及び水処理方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07330422A (ja) | 1994-06-03 | 1995-12-19 | Seraaaze:Kk | 水質活性セラミックス及びその製造方法 |
EP0918045A1 (en) | 1997-02-18 | 1999-05-26 | Mikuni Corporation | Ceramic granules |
US7670679B2 (en) * | 2006-05-30 | 2010-03-02 | General Electric Company | Core-shell ceramic particulate and method of making |
JP5376544B2 (ja) | 2008-09-04 | 2013-12-25 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | 損失を低減された誘電性導波路交差構造(waveguideintersection) |
JP2012006106A (ja) | 2010-06-24 | 2012-01-12 | Hitachi Koki Co Ltd | 工具保持機 |
CN103046138A (zh) * | 2011-10-12 | 2013-04-17 | 中国科学院福建物质结构研究所 | 一种铁电单晶铌铁酸铅-铌镱酸铅-钛酸铅及其制备方法 |
JP6156626B2 (ja) * | 2013-03-19 | 2017-07-05 | パウダーテック株式会社 | 電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤 |
JP5692766B1 (ja) * | 2014-01-20 | 2015-04-01 | パウダーテック株式会社 | 外殻構造を有するフェライト粒子を用いた電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤 |
-
2015
- 2015-01-28 JP JP2015013796A patent/JP6583877B2/ja active Active
-
2016
- 2016-01-25 EP EP16743302.8A patent/EP3251735B1/en active Active
- 2016-01-25 WO PCT/JP2016/052030 patent/WO2016121699A1/ja active Application Filing
- 2016-01-25 US US15/545,521 patent/US10603614B2/en active Active
- 2016-01-26 TW TW105102306A patent/TWI686357B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376544A (en) * | 1976-12-20 | 1978-07-07 | Shigeru Obiyama | Filter |
JPS56105401A (en) * | 1979-12-07 | 1981-08-21 | Ici Australia Ltd | Magnetic particle protected with chromium oxide |
JPS61210997A (ja) * | 1985-03-15 | 1986-09-19 | 株式会社東芝 | マンガンフエライト担持高温吸着濾材 |
JPH0238318A (ja) * | 1988-05-24 | 1990-02-07 | Alcan Internatl Ltd | 磁気吸引性粒子及びその製法 |
JPH0320002A (ja) * | 1989-03-30 | 1991-01-29 | Nippon Zeon Co Ltd | コバルト含有六方晶系バリウムフェライト磁性粉の製造方法 |
JPH10182264A (ja) * | 1996-02-21 | 1998-07-07 | Mikuni:Kk | セラミック造粒体 |
JP2005199163A (ja) * | 2004-01-15 | 2005-07-28 | Trial Corp | 磁性ビーズ利用の濾取装置及び方法 |
JP2012206106A (ja) * | 2011-03-15 | 2012-10-25 | Toshiba Corp | 樹脂複合体、水処理用ろ過助剤、水処理用プレコート材及び水処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3251735A4 * |
Also Published As
Publication number | Publication date |
---|---|
TWI686357B (zh) | 2020-03-01 |
EP3251735B1 (en) | 2019-06-26 |
EP3251735A4 (en) | 2018-07-04 |
EP3251735A1 (en) | 2017-12-06 |
US20180008921A1 (en) | 2018-01-11 |
US10603614B2 (en) | 2020-03-31 |
TW201634399A (zh) | 2016-10-01 |
JP6583877B2 (ja) | 2019-10-02 |
JP2016137448A (ja) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011164224A (ja) | 電子写真現像剤用キャリア芯材の製造方法及び該製造方法により得られるキャリア芯材 | |
WO2016121699A1 (ja) | 外殻構造を有する濾材用フェライト粒子 | |
WO2016121743A1 (ja) | 外殻構造を有する触媒担持体用フェライト粒子 | |
KR101940594B1 (ko) | 페라이트 입자 및 이것을 사용한 전자 사진 현상용 캐리어, 전자 사진용 현상제 및 페라이트 입자의 제조 방법 | |
KR20120121412A (ko) | 전자 사진 현상제용 캐리어 심재, 전자 사진 현상제용 캐리어, 및 전자 사진 현상제 | |
EP3252536A1 (en) | Ferrite particles having outer shell structure | |
JP2016138015A5 (ja) | ||
JP6127324B2 (ja) | 磁性フィラー | |
JP5736078B1 (ja) | フェライト粒子並びにそれを用いた電子写真用キャリア及び電子写真用現像剤 | |
JP2016138189A5 (ja) | ||
JP6742119B2 (ja) | キャリア用芯材、キャリア、現像剤及び電子写真現像システム | |
KR20130014064A (ko) | 전자 사진 현상제용 캐리어 심재, 전자 사진 현상제용 캐리어, 전자 사진 현상제, 및 전자 사진 현상제용 캐리어 심재의 제조 방법 | |
JP6061423B2 (ja) | キャリア芯材及びそれを用いた電子写真現像用キャリア及び電子写真用現像剤 | |
CN115398349A (zh) | 铁氧体颗粒、电子照相显影剂用载体芯材、电子照相显影剂用载体以及电子照相显影剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743302 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15545521 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016743302 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |