WO2016121600A1 - 複合半透膜、スパイラル型分離膜エレメント、及びその製造方法 - Google Patents

複合半透膜、スパイラル型分離膜エレメント、及びその製造方法 Download PDF

Info

Publication number
WO2016121600A1
WO2016121600A1 PCT/JP2016/051584 JP2016051584W WO2016121600A1 WO 2016121600 A1 WO2016121600 A1 WO 2016121600A1 JP 2016051584 W JP2016051584 W JP 2016051584W WO 2016121600 A1 WO2016121600 A1 WO 2016121600A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
semipermeable membrane
composite semipermeable
alcohol
skin layer
Prior art date
Application number
PCT/JP2016/051584
Other languages
English (en)
French (fr)
Inventor
かずさ 松井
伸明 丸岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201680004035.XA priority Critical patent/CN106999865A/zh
Priority to KR1020177015145A priority patent/KR20170107427A/ko
Priority to US15/545,111 priority patent/US20180001274A1/en
Publication of WO2016121600A1 publication Critical patent/WO2016121600A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the present invention relates to a composite semipermeable membrane in which a skin layer containing a polyamide-based resin is formed on the surface of a porous support, a spiral separation membrane element using the composite semipermeable membrane, and a method for producing the same.
  • a composite semipermeable membrane and spiral separation membrane element is suitable for the production of ultrapure water, desalination of brine or seawater, etc., and from stains that cause pollution such as dyed wastewater and electrodeposition paint wastewater, It can contribute to the closure of wastewater by removing and collecting the pollution sources or effective substances contained in it. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.
  • Composite semipermeable membranes are called RO (reverse osmosis) membranes, NF (nanofiltration) membranes, and FO (forward osmosis) membranes depending on their filtration performance and treatment methods.
  • RO reverse osmosis
  • NF nanofiltration
  • FO forward osmosis
  • Patent Literature a composite semipermeable membrane in which a skin layer containing a polyamide resin obtained by interfacial polymerization of a polyfunctional amine and a polyfunctional acid halide is formed on a porous support.
  • the composite semipermeable membrane is usually processed into a spiral separation membrane element and used for water treatment or the like.
  • a supply-side flow channel material that guides the supply-side fluid to the separation membrane surface
  • a separation membrane that separates the supply-side fluid
  • a permeate-side flow that passes through the separation membrane and guides the permeation-side fluid separated from the supply-side fluid to the central tube
  • Patent Documents 2 and 3 A spiral type separation membrane element in which a unit made of road material is wound around a perforated central tube is known.
  • the spiral separation membrane element is often used in areas with high temperatures. Further, since the manufactured spiral separation membrane element is usually transported by ship, it is exposed to a high temperature environment near the equator. In addition, when the spiral separation membrane element is exposed to a high temperature environment for a long time, there is a problem that water permeability is lowered. Therefore, it is necessary to store the spiral separation membrane element in a region where the temperature is high, or to transport the spiral separation membrane element while refrigerated when transporting by ship. However, if the spiral separation membrane element is stored in a refrigerated state, the cost increases. Therefore, it has been desired to develop a spiral separation membrane element that does not need to be stored in a refrigerated state.
  • Patent Document 4 describes that a polyamide thin film is brought into contact with an aqueous solution at a temperature of 40 to 100 ° C. in order to obtain a composite reverse osmosis membrane having excellent water permeability, organic matter blocking performance and salt blocking performance. .
  • Patent Document 5 describes that the membrane is heated in water at 40 to 100 ° C. for 30 seconds to 24 hours in order to reduce salt passage.
  • the crosslinked polyamide thin film layer is subjected to a heat treatment within a range of 60 to 100 ° C. for 15 minutes or more. Is described.
  • the present invention provides a composite semipermeable membrane in which water permeability is not easily lowered even when exposed to a high temperature environment for a long period of time, a spiral separation membrane element using the composite semipermeable membrane, and a method for producing the same The purpose is to do.
  • Another object of the present invention is to provide a method for evaluating the water permeation performance of a composite semipermeable membrane, which evaluates whether the water permeability of the composite semipermeable membrane is likely to be reduced by heat by a simple evaluation method.
  • the skin layer has an elastic modulus calculated by a force curve measurement with an underwater AFM of 100 MPa or more.
  • the present invention relates to a composite semipermeable membrane characterized by that.
  • the composite semipermeable membrane is used in the presence of water, but the physical properties of the skin layer in water, which is the actual usage environment, has not been studied so far.
  • the present inventor has examined the physical properties of the skin layer in water by adopting a new analysis method.
  • the elastic modulus calculated by the force curve measurement with an underwater AFM is 100 MPa.
  • a composite semipermeable membrane is obtained in which water permeability is unlikely to deteriorate even when exposed to a high temperature environment (40 ° C. or higher) for a long time (300 days or longer). I found out.
  • the polyamide-based resin preferably contains a polymer of piperazine and trimesic acid chloride.
  • the present invention also provides a skin layer containing a polyamide resin by contacting an amine solution containing a polyfunctional amine component with an organic solution containing a polyfunctional acid halide component on the porous support.
  • a composite semipermeable membrane including the step of forming The contact is ethanol, propanol, butanol, butyl alcohol, 1-pentanol, 2-pentanol, t-amyl alcohol, isoamyl alcohol, isobutyl alcohol, isopropyl alcohol, undecanol, 2-ethylbutanol, 2-ethylhexanol, octanol , Cyclohexanol, tetrahydrofurfuryl alcohol, t-butanol, benzyl alcohol, 4-methyl-2-pentanol, 3-methyl-2-butanol, pentyl alcohol, allyl alcohol, anisole, ethyl isoamyl ether, ethyl
  • the skin layer is subjected to a hot water flow treatment to form a skin layer having an elastic modulus calculated by a force curve measurement with an underwater AFM of 100 MPa or more.
  • a hot water flow treatment to form a skin layer having an elastic modulus calculated by a force curve measurement with an underwater AFM of 100 MPa or more.
  • the initial water permeability of the composite semipermeable membrane is improved by forming a skin layer in the presence of a substance having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 , thereby This compensates for the deterioration of the water permeability of the composite semipermeable membrane caused by subjecting the skin layer to hot water flow treatment.
  • the reason why the elastic modulus of the skin layer in the force curve measurement with the underwater AFM becomes 100 MPa or more by performing the warm water flow treatment on the skin layer is not clear, but the crosslinked structure of the polyamide-based resin by the warm water flow treatment This is thought to be due to shrinkage and regular arrangement.
  • the warm water flow treatment is preferably performed for 1 to 5 hours using hot water of 40 to 60 ° C.
  • the elastic modulus of the skin layer tends not to be 100 MPa or more.
  • the temperature of the hot water exceeds 60 ° C.
  • the treatment time is less than 1 hour
  • the elastic modulus of the skin layer tends not to be 100 MPa or more.
  • even if the treatment time exceeds 5 hours the effect is not affected. It is disadvantageous.
  • the polyfunctional amine component is piperazine and the polyfunctional acid halide component is trimesic acid chloride.
  • the present invention is obtained by the above production method, wherein the skin layer is a composite semipermeable membrane having an elastic modulus calculated by a force curve measurement with an underwater AFM of 100 MPa or more, and a spiral using the composite semipermeable membrane.
  • the present invention relates to a mold separation membrane element.
  • the present invention also provides a skin layer containing a polyamide resin by contacting an amine solution containing a polyfunctional amine component with an organic solution containing a polyfunctional acid halide component on the porous support.
  • the contact is ethanol, propanol, butanol, butyl alcohol, 1-pentanol, 2-pentanol, t-amyl alcohol, isoamyl alcohol, isobutyl alcohol, isopropyl alcohol, undecanol, 2-ethylbutanol, 2-ethylhexanol, octanol , Cyclohexanol, tetrahydrofurfuryl alcohol, t-butanol, benzyl alcohol, 4-methyl-2-pentanol, 3-methyl-2-butanol, pentyl alcohol, allyl alcohol
  • a spiral separation membrane element having a built-in composite semipermeable membrane having a skin layer with an elastic modulus of 100 MPa or more calculated by force curve measurement with an underwater AFM is provided. It can be obtained with high production efficiency.
  • the purpose of subjecting the skin layer to hot water flow treatment and the purpose of forming the skin layer in the presence of a substance having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 are as described above.
  • the warm water flow treatment is preferably performed for 1 to 5 hours using hot water of 40 to 60 ° C.
  • the elastic modulus of the skin layer tends not to be 100 MPa or more.
  • the temperature of the hot water exceeds 60 ° C.
  • the water permeability of the spiral separation membrane element There is a tendency for the properties to be greatly reduced.
  • the treatment time is less than 1 hour
  • the elastic modulus of the skin layer tends not to be 100 MPa or more.
  • even if the treatment time exceeds 5 hours the effect is not affected. It is disadvantageous.
  • the polyfunctional amine component is piperazine and the polyfunctional acid halide component is trimesic acid chloride.
  • the present invention also relates to a spiral-type separation membrane element obtained by the above production method, wherein the skin layer has an elastic modulus calculated by force curve measurement with an underwater AFM of 100 MPa or more.
  • the present invention calculates the elastic modulus of the skin layer of a composite semipermeable membrane having a skin layer containing a polyamide-based resin on a porous support by force curve measurement with an underwater AFM.
  • the composite semipermeable membrane is evaluated as being less likely to be reduced in water permeability by heat.
  • the composite semipermeable membrane is The present invention relates to a method for evaluating the water permeation performance of a composite semipermeable membrane, which evaluates that water permeability tends to be reduced by heat.
  • the composite semipermeable membrane and spiral separation membrane element of the present invention are less likely to have poor water permeability even when exposed to a high temperature environment for a long period of time. Therefore, the composite semipermeable membrane and spiral separation membrane element of the present invention need not be refrigerated during storage or transportation. Thereby, the operation cost of the water treatment facility or the transport cost to the water treatment facility can be reduced. Further, according to the method for evaluating the water permeability of the composite semipermeable membrane of the present invention, it is possible to evaluate in advance whether or not the water permeability of the composite semipermeable membrane is likely to be reduced by heat by a simple evaluation method. it can.
  • the composite semipermeable membrane of the present invention has a skin layer containing a polyamide-based resin on a porous support.
  • the polyamide resin is obtained by reacting a polyfunctional amine component and a polyfunctional acid halide component.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like.
  • polyfunctional amines may be used alone or in combination of two or more.
  • piperazine, 2,5-dimethylpiperazine, or 4-aminomethylpiperazine is preferably used, and piperazine is more preferably used from the viewpoint of reactivity with the polyfunctional acid halide component.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • polyfunctional acid halides include aromatic, aliphatic and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, and chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • trimesic acid trichloride is preferably used.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid, a polyhydric alcohol such as sorbitol or glycerin may be copolymerized.
  • the porous support for supporting the skin layer is not particularly limited as long as it can support the skin layer, and usually an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 mm is preferably used.
  • the material for forming the porous support include polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyvinylidene fluoride, and the like. Polysulfone and polyarylethersulfone are preferably used from the viewpoint of stability.
  • the thickness of such a porous support is usually about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m, but is not necessarily limited thereto.
  • the porous support is reinforced by backing with a base material such as a woven fabric or a non-woven fabric.
  • the method for forming the skin layer containing the polyamide-based resin on the surface of the porous support is not particularly limited, and any known method can be used.
  • an interfacial condensation method is a method in which a skin layer is formed by bringing an amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component to cause interfacial polymerization.
  • a polyamide resin skin layer is directly formed on a porous support by interfacial polymerization on the porous support. Details of the conditions of the interfacial condensation method are described in JP-A-58-24303 and JP-A-1-180208, and those known techniques can be appropriately employed.
  • a method of forming a skin layer by bringing an amine solution containing a polyfunctional amine component and an organic solution containing a polyfunctional acid halide component into contact with each other on a porous support to cause interfacial polymerization is preferable.
  • the concentration of the polyfunctional amine component in the amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, and more preferably 0.5 to 4% by weight.
  • concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and the salt blocking performance tends to decrease.
  • concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component is likely to penetrate into the porous support, or the film thickness becomes too thick to increase the permeation resistance and increase the permeation flow. The bundle tends to decrease.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, the unreacted polyfunctional amine component tends to remain, or defects such as pinholes are likely to occur in the skin layer, resulting in a decrease in salt blocking performance. Tend to. On the other hand, when the concentration of the polyfunctional acid halide component exceeds 5% by weight, the unreacted polyfunctional acid halide component tends to remain, or the film thickness becomes too thick to increase the permeation resistance, thereby increasing the permeation flux. It tends to decrease.
  • Examples of the solvent for the amine solution include water, alcohol (for example, ethanol, isopropyl alcohol, ethylene glycol, and the like), and a mixed solvent of water and alcohol.
  • the solvent of the organic solution is not particularly limited as long as it has low solubility in water, does not degrade the porous support, and dissolves the polyfunctional acid halide component.
  • saturated hydrocarbons such as 1,2-halogenated hydrocarbons such as 1,1,2-trichlorotrifluoroethane.
  • a saturated hydrocarbon or naphthenic solvent having a boiling point of 300 ° C. or lower, more preferably 200 ° C. or lower is preferable.
  • the organic solvent may be used alone or as a mixed solvent of two or more.
  • the amine solution and the organic solution are preferably contacted in the presence of a substance having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 .
  • the solubility parameter is the amount defined by ( ⁇ H / V) 1/2 (cal / cm 3 ) 1/2 when the heat of vaporization of the liquid is ⁇ Hcal / mol and the molar volume is Vcm 3 / mol.
  • Examples of the substance having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 include alcohols, ethers, ketones, esters, halogenated hydrocarbons, and sulfur-containing compounds.
  • alcohols examples include ethanol, propanol, butanol, butyl alcohol, 1-pentanol, 2-pentanol, t-amyl alcohol, isoamyl alcohol, isobutyl alcohol, isopropyl alcohol, undecanol, 2-ethylbutanol, and 2-ethyl.
  • ethers examples include anisole, ethyl isoamyl ether, ethyl-t-butyl ether, ethyl benzyl ether, crown ether, cresyl methyl ether, diisoamyl ether, diisopropyl ether, diethyl ether, dioxane, diglycidyl ether, cineol, diphenyl ether.
  • ketones include ethyl butyyl ketone, diacetone alcohol, diisobutyl ketone, cyclohexanone, 2-heptanone, methyl isobutyl ketone, methyl ethyl ketone, and methylcyclohexane.
  • esters examples include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, isoamyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, and amyl acetate.
  • halogenated hydrocarbons examples include allyl chloride, amyl chloride, dichloromethane, dichloroethane and the like.
  • sulfur-containing compounds include dimethyl sulfoxide, sulfolane, thiolane and the like.
  • alcohols and ethers are particularly preferable. These may be used alone or in combination of two or more.
  • a substance having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 may be added to an amine solution, an organic solution, or both solutions. Further, the porous support may be impregnated with the substance in advance. Moreover, you may make an amine solution and an organic solution contact on a porous support body in the gas atmosphere of the said substance.
  • the addition amount is preferably 10 to 50% by weight. If it is less than 10% by weight, the effect of increasing the permeation flux is insufficient, and if it exceeds 50% by weight, the rejection rate tends to decrease.
  • the addition amount is preferably 0.001 to 10% by weight. If it is less than 0.001% by weight, the effect of increasing the permeation flux is insufficient, and if it exceeds 10% by weight, the rejection rate tends to decrease.
  • additives can be added to the amine solution or the organic solution for the purpose of facilitating film formation or improving the performance of the resulting composite semipermeable membrane.
  • the additive include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate, sodium hydroxide that removes hydrogen halide generated by polymerization, trisodium phosphate, and triethylamine. And basic compounds, acylation catalysts, and the like.
  • the time from application of the amine solution on the porous support to application of the organic solution depends on the composition of the amine solution, the viscosity, and the pore size of the surface layer of the porous support, but is 15 seconds or less. It is preferable that it is 5 seconds or less. If the application interval of the solution exceeds 15 seconds, the amine solution may penetrate and diffuse deep inside the porous support, and a large amount of unreacted polyfunctional amine component may remain in the porous support. . Further, the unreacted polyfunctional amine component that has penetrated deep inside the porous support tends to be difficult to remove even in the subsequent membrane cleaning treatment. In addition, you may remove an excess amine solution after coat
  • the heating temperature is more preferably 70 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating time is preferably about 30 seconds to 10 minutes, more preferably about 40 seconds to 7 minutes.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the skin layer is subjected to warm water flow treatment.
  • the temperature of the hot water used for the hot water flow treatment is not particularly limited, but is usually about 40 to 65 ° C., preferably 40 to 60 ° C.
  • the time for the hot water flow treatment is not particularly limited, but is preferably 1 to 5 hours, and more preferably 3 to 5 hours.
  • the hot water flow treatment may be performed on a membrane-shaped composite semipermeable membrane, or may be performed on a spiral separation membrane element obtained by processing the composite semipermeable membrane into a spiral shape.
  • Spiral separation membrane elements for example, stack a supply-side channel material with a composite semipermeable membrane folded in two and a permeate-side channel material to mix the supply-side fluid and permeate-side fluid.
  • a separation membrane unit is manufactured by applying an adhesive for forming a sealing portion to be prevented to the periphery (three sides) of the composite semipermeable membrane, and one or more separation membrane units are spirally formed around the central tube. And is further manufactured by sealing the periphery of the separation membrane unit.
  • the skin layer obtained by the above manufacturing method has an elastic modulus of 100 MPa or more calculated by a force curve measurement with an underwater AFM.
  • the elastic modulus is preferably 110 MPa or more, more preferably 130 MPa or more, and further preferably 150 MPa or more.
  • the calculation of the elastic modulus of the skin layer by the force curve measurement with the underwater AFM is performed by the method described in the examples.
  • the water permeability of the composite semipermeable membrane is likely to be lowered when exposed to a high temperature environment for a long period of time based on the value of the elastic modulus of the skin layer calculated by the force curve measurement with the underwater AFM.
  • the elastic modulus of the skin layer of the composite semipermeable membrane is calculated by force curve measurement with an underwater AFM, and when the obtained elastic modulus value is 100 MPa or more, the composite semipermeable membrane is heated.
  • the composite semipermeable membrane can be evaluated as being easily deteriorated in water permeability by heat.
  • the sample 1 is moved in the vertical direction, the spherical probe 6 is pushed into the skin layer of the sample 1 while applying a load, and the deflection or warpage (displacement) of the cantilever 7 at the time of separation is defined as the displacement of the laser beam 8.
  • the force curve was measured by detecting with a photodiode, and converted to load and skin layer deformation using the program attached to the device. A region having a measurement area of 90 ⁇ m ⁇ 90 ⁇ m was divided into 20 ⁇ 20, and a force curve was measured at a total of 400 points. And the average value of the deformation amount of the skin layer when the load was 3 ⁇ N was obtained.
  • the measurement apparatus and measurement conditions are as follows.
  • Measurement device MFP-3D (manufactured by Asylum Technology)
  • Cantilever Spring constant 40N / m -Spherical probe: manufactured by Nanosensors, radius of curvature of the tip 0.4 ⁇ m, Silicon (100), Poisson's ratio 0.17, elastic modulus 150 GPa
  • Measurement environment Ultra pure water
  • the elastic modulus E sample (MPa) of the skin layer is obtained by substituting each numerical value into the following Hertz elastic contact theoretical formula.
  • Comparative Example 1 An amine solution was prepared by dissolving 3.6% by weight of piperazine heptahydrate, 0.15% by weight of sodium lauryl sulfate, 6% by weight of camphorsulfonic acid, and 1.48% by weight of sodium hydroxide in water. And after making an amine solution contact the surface of a porous support body, the excess amine solution was removed. Thereafter, the amine solution on the surface of the porous support was brought into contact with an organic solution in which 0.42% by weight of trimesic acid chloride and 0.5% by weight of t-butanol were dissolved in IP1016 (boiling point 106 ° C.). Then, the excess organic solution was removed, and it hold
  • Example 1 The composite semipermeable membrane produced in Comparative Example 1 was passed through 40 ° C. warm water for 5 hours, and the skin layer was subjected to warm water passing treatment.
  • Example 2 The composite semipermeable membrane produced in Comparative Example 1 was passed through warm water at 50 ° C. for 5 hours, and the skin layer was subjected to warm water passing treatment.
  • Example 3 The composite semipermeable membrane produced in Comparative Example 1 was allowed to pass hot water at 60 ° C. for 5 hours, and the skin layer was subjected to hot water flow treatment.
  • Example 4 A spiral separation membrane element was produced using the composite semipermeable membrane produced in Comparative Example 1. Hot water at 60 ° C. was passed through the produced spiral separation membrane element for 3 hours, and the skin layer was subjected to hot water passage treatment. In the measurement of the elastic modulus and permeation flux, the composite semipermeable membrane was taken out from the element and measured.
  • the composite semipermeable membrane and spiral separation membrane element of the present invention are suitable for production of ultrapure water, desalination of brackish water or seawater, etc., and stains that cause pollution such as dyed wastewater and electrodeposition paint wastewater. Therefore, it is possible to remove / recover the pollution source or the effective substance contained therein and contribute to the closure of the waste water. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyamides (AREA)

Abstract

 本発明は、高温環境下に長期間曝された場合であっても水透過性が低下しにくい複合半透膜、当該複合半透膜を用いたスパイラル型分離膜エレメント、及びその製造方法を提供することを目的とする。また、本発明は、簡便な評価方法により、熱によって複合半透膜の水透過性が低下しやすいか否かを評価する、複合半透膜の水透過性能の評価方法を提供することを目的とする。本発明の複合半透膜は、多孔性支持体上にポリアミド系樹脂を含むスキン層を有しており、前記スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上である。

Description

複合半透膜、スパイラル型分離膜エレメント、及びその製造方法
 本発明は、ポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜、当該複合半透膜を用いたスパイラル型分離膜エレメント、及びその製造方法に関する。かかる複合半透膜及びスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。
 複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。
 現在、複合半透膜としては、多官能アミンと多官能酸ハロゲン化物との界面重合によって得られるポリアミド樹脂を含むスキン層が多孔性支持体上に形成されたものが提案されている(特許文献1)。
 複合半透膜は、通常、スパイラル型分離膜エレメントに加工して水処理等に用いられている。例えば、供給側流体を分離膜表面へ導く供給側流路材、供給側流体を分離する分離膜、分離膜を透過し供給側流体から分離された透過側流体を中心管へと導く透過側流路材からなるユニットを有孔の中心管の周りに巻き付けたスパイラル型分離膜エレメントが知られている(特許文献2、3)。
 当該スパイラル型分離膜エレメントは、気温の高い地域で使用される場合が多い。また、製造したスパイラル型分離膜エレメントは、通常、船で輸送するため、赤道付近では高温環境下に曝されることになる。そして、スパイラル型分離膜エレメントが高温環境下に長期間曝されると水透過性が低下するという問題があった。そのため、気温の高い地域ではスパイラル型分離膜エレメントを冷蔵保存したり、船で輸送する場合には冷蔵保存しながらスパイラル型分離膜エレメントを輸送する必要があった。しかし、スパイラル型分離膜エレメントを冷蔵保存するとコストが高くなるため、冷蔵保存する必要のないスパイラル型分離膜エレメントの開発が望まれていた。
 一方、特許文献4では、水透過性、有機物阻止性能および塩阻止性能に優れた複合逆浸透膜を得るために、ポリアミド製薄膜を温度40~100℃の水溶液に接触させることが記載されている。
 また、特許文献5では、塩通過を低くするために、膜を水中にて40~100℃にて30秒~24時間加熱することが記載されている。
 また、特許文献6では、高温安定性と高いイオン分離性能を併せ有する複合半透膜を得るために、架橋ポリアミドの薄膜層に対して60~100℃の範囲内でかつ15分以上の加熱処理を施すことが記載されている。
特開2005-103517号公報 特開2000-354743号公報 特開2006-68644号公報 特開平10-165790号公報 特表2001-521808号公報 特開2005-144211号公報
 本発明は、高温環境下に長期間曝された場合であっても水透過性が低下しにくい複合半透膜、当該複合半透膜を用いたスパイラル型分離膜エレメント、及びその製造方法を提供することを目的とする。また、本発明は、簡便な評価方法により、熱によって複合半透膜の水透過性が低下しやすいか否かを評価する、複合半透膜の水透過性能の評価方法を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す複合半透膜により上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、多孔性支持体上にポリアミド系樹脂を含むスキン層を有する複合半透膜において、前記スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であることを特徴とする複合半透膜、に関する。
 複合半透膜は水の存在下で使用されるが、これまで実際の使用環境である水中でのスキン層の物性は検討されていなかった。本発明者は、新たな分析手法を採用して、水中でのスキン層の物性を検討したところ、意外にも、水中AFM(Atomic Force Microscope)でのフォースカーブ測定により算出される弾性率が100MPa以上であるスキン層を用いた場合には、高温環境下(40℃以上)に長期間(300日以上)曝された場合であっても水透過性が低下しにくい複合半透膜が得られることを見出した。空気中でスキン層の弾性率を測定した場合には、水透過性の低下とスキン層の弾性率の相関関係ははっきりしなかったが、水中AFMでのフォースカーブ測定による新たな分析手法を採用することにより、水透過性の低下とスキン層の弾性率の相関関係が明確になった。
 ポリアミド系樹脂は、ピペラジンとトリメシン酸クロライドとの重合体を含むことが好ましい。
 また、本発明は、多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
 前記接触は、エタノール、プロパノール、ブタノール、ブチルアルコール、1-ペンタノール、2-ペンタノール、t-アミルアルコール、イソアミルアルコール、イソブチルアルコール、イソプロピルアルコール、ウンデカノール、2-エチルブタノール、2-エチルヘキサノール、オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、t-ブタノール、ベンジルアルコール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、ペンチルアルコール、アリルアルコール、アニソール、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クラウンエーテル、クレジルメチルエーテル、ジイソアミルエーテル、ジイソプロピルエーテル、ジグリシジルエーテル、シネオール、ジフェニルエーテル、ジブチルエーテル、ジプロピルエーテル、ジベンジルエーテル、ジメチルエーテル、テトラヒドロピラン、トリオキサン、ジクロロエチルエーテル、ブチルフェニルエーテル、フラン、モノジクロロジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレンクロロヒドリンから選ばれる少なくとも一つの溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下で行われ、かつ
 スキン層を多孔性支持体の表面に形成した後、スキン層に温水通水処理を施す工程を含むことを特徴とする複合半透膜の製造方法、に関する。
 スキン層を多孔性支持体の表面に形成した後、スキン層に温水通水処理を施すことにより、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であるスキン層を形成することができる。それにより、保存時又は輸送時に高温環境下に長期間曝された場合であっても水透過性が低下しにくい複合半透膜を得ることができる。しかし、スキン層に温水通水処理を施すと熱によって複合半透膜の水透過性が10~20%程度低下する。そのため、本発明では、溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下でスキン層を形成することによって複合半透膜の初期の水透過性を向上させ、それにより、スキン層に温水通水処理を施すことによって起こる複合半透膜の水透過性の低下を補っている。なお、スキン層に温水通水処理を施すことにより、水中AFMでのフォースカーブ測定におけるスキン層の弾性率が100MPa以上になる理由は明らかではないが、温水通水処理によりポリアミド系樹脂の架橋構造が収縮して規則正しく配列するためと考えられる。
 温水通水処理は、40~60℃の温水を用いて1~5時間行うことが好ましい。温水の温度が40℃未満の場合には、スキン層の弾性率が100MPa以上になり難くなる傾向にあり、一方、温水の温度が60℃を超える場合には、複合半透膜の水透過性が大きく低下しやすくなる傾向にある。また、処理時間が1時間未満の場合には、スキン層の弾性率が100MPa以上になり難くなる傾向にあり、一方、処理時間が5時間を超えても効果に影響しないため、製造効率の面で不利である。
 また、多官能アミン成分がピペラジンであり、多官能酸ハライド成分がトリメシン酸クロライドであることが好ましい。
 また、本発明は、前記製造方法により得られ、スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上である複合半透膜、及び当該複合半透膜を用いたスパイラル型分離膜エレメント、に関する。
 また、本発明は、多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成して複合半透膜を作製する工程、及び複合半透膜をスパイラル状に加工する工程を含むスパイラル型分離膜エレメントの製造方法において、
 前記接触は、エタノール、プロパノール、ブタノール、ブチルアルコール、1-ペンタノール、2-ペンタノール、t-アミルアルコール、イソアミルアルコール、イソブチルアルコール、イソプロピルアルコール、ウンデカノール、2-エチルブタノール、2-エチルヘキサノール、オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、t-ブタノール、ベンジルアルコール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、ペンチルアルコール、アリルアルコール、アニソール、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クラウンエーテル、クレジルメチルエーテル、ジイソアミルエーテル、ジイソプロピルエーテル、ジグリシジルエーテル、シネオール、ジフェニルエーテル、ジブチルエーテル、ジプロピルエーテル、ジベンジルエーテル、ジメチルエーテル、テトラヒドロピラン、トリオキサン、ジクロロエチルエーテル、ブチルフェニルエーテル、フラン、モノジクロロジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレンクロロヒドリンから選ばれる少なくとも一つの溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下で行われ、かつ
 複合半透膜をスパイラル状に加工した後、スキン層に温水通水処理を施す工程を含むことを特徴とするスパイラル型分離膜エレメントの製造方法、に関する。
 本発明のスパイラル型分離膜エレメントの製造方法によれば、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であるスキン層を有する複合半透膜を内蔵したスパイラル型分離膜エレメントを製造効率よく得ることができる。スキン層に温水通水処理を施す目的、及び溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下でスキン層を形成する目的は前記の通りである。
 温水通水処理は、40~60℃の温水を用いて1~5時間行うことが好ましい。温水の温度が40℃未満の場合には、スキン層の弾性率が100MPa以上になり難くなる傾向にあり、一方、温水の温度が60℃を超える場合には、スパイラル型分離膜エレメントの水透過性が大きく低下しやすくなる傾向にある。また、処理時間が1時間未満の場合には、スキン層の弾性率が100MPa以上になり難くなる傾向にあり、一方、処理時間が5時間を超えても効果に影響しないため、製造効率の面で不利である。
 また、多官能アミン成分がピペラジンであり、多官能酸ハライド成分がトリメシン酸クロライドであることが好ましい。
 また、本発明は、前記製造方法により得られ、スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であるスパイラル型分離膜エレメント、に関する。
 さらに、本発明は、多孔性支持体上にポリアミド系樹脂を含むスキン層を有する複合半透膜の前記スキン層の弾性率を水中AFMでのフォースカーブ測定により算出し、得られた弾性率の値が100MPa以上の場合には、当該複合半透膜は、熱によって水透過性が低下しにくいと評価し、得られた弾性率の値が100MPa未満の場合には、当該複合半透膜は、熱によって水透過性が低下しやすいと評価する、複合半透膜の水透過性能の評価方法、に関する。
 本発明の複合半透膜及びスパイラル型分離膜エレメントは、高温環境下に長期間曝された場合であっても水透過性が低下しにくいものである。そのため、本発明の複合半透膜及びスパイラル型分離膜エレメントは、保管時又は輸送時に冷蔵保存する必要がない。それにより、水処理施設の運営コスト又は水処理施設への運搬コストを削減することができる。また、本発明の複合半透膜の水透過性能の評価方法によれば、簡便な評価方法により、熱によって複合半透膜の水透過性が低下しやすいか否かを事前に評価することができる。
サンプルの固定方法を示す概略構成図
 以下、本発明の実施の形態について説明する。本発明の複合半透膜は、多孔性支持体上にポリアミド系樹脂を含むスキン層を有する。
 ポリアミド系樹脂は、多官能アミン成分と多官能酸ハライド成分とを反応させることにより得られる。
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族及び脂環式の多官能アミンが挙げられる。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。
 これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。これらのうち、多官能酸ハライド成分との反応性の観点からピペラジン、2,5-ジメチルピペラジン、又は4-アミノメチルピペラジンを用いることが好ましく、ピペラジンを用いることがより好ましい。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。
 多官能酸ハライドとしては、芳香族、脂肪族及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。特に、トリメシン酸トリクロライドを用いることが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールなどを共重合させてもよい。
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されず、通常平均孔径10~500Å程度の微孔を有する限外濾過膜が好ましく用いられる。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ボリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンが好ましく用いられる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は織布、不織布等の基材による裏打ちにて補強されていている。
 ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法などが挙げられる。界面縮合法とは、具体的に、多官能アミン成分を含有するアミン溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層を多孔性支持体上に載置する方法や、多孔性支持体上での前記界面重合によりポリアミド系樹脂のスキン層を多孔性支持体上に直接形成する方法である。かかる界面縮合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 本発明においては、多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて界面重合させることによりスキン層を形成する方法が好ましい。
 アミン溶液中の多官能アミン成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、さらに好ましくは0.5~4重量%である。多官能アミン成分の濃度が0.1重量%未満の場合にはスキン層にピンホール等の欠陥が生じやすくなり、また塩阻止性能が低下する傾向にある。一方、多官能アミン成分の濃度が5重量%を超える場合には、多官能アミン成分が多孔性支持体中に浸透しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなって透過流束が低下する傾向にある。
 有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%であることが好ましく、さらに好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が0.01重量%未満の場合には、未反応多官能アミン成分が残留しやすくなったり、スキン層にピンホール等の欠陥が生じやすくなって塩阻止性能が低下する傾向にある。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなり、透過流束が低下する傾向にある。
 アミン溶液の溶媒としては、例えば、水、アルコール(例えば、エタノール、イソプロピルアルコール、及びエチレングリコールなど)、及び水とアルコールとの混合溶媒などが挙げられる。
 有機溶液の溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素またはナフテン系溶媒である。有機溶媒は1種単独で用いてもよく、2種以上の混合溶媒として用いてもよい。
 本発明においては、溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下でアミン溶液と有機溶液とを接触させることが好ましい。
 溶解度パラメーターとは、液体のモル蒸発熱を△Hcal/mol、モル体積をVcm/molとするとき、(△H/V)1/2 (cal/cm)1/2で定義される量をいう。溶解度パラメーターが8~14(cal/cm3)1/2の物質としては、例えば、アルコール類、エーテル類、ケトン類、エステル類、ハロゲン化炭化水素類、及び含硫黄化合物類などが挙げられる。
 アルコール類としては、例えば、エタノール、プロパノール、ブタノール、ブチルアルコール、1-ペンタノール、2-ペンタノール、t-アミルアルコール、イソアミルアルコール、イソブチルアルコール、イソプロピルアルコール、ウンデカノール、2-エチルブタノール、2-エチルヘキサノール、オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、ネオペンチルグリコール、t-ブタノール、ベンジルアルコール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、ペンチルアルコール、アリルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等が挙げられる。
 エーテル類としては、例えば、アニソール、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クラウンエーテル、クレジルメチルエーテル、ジイソアミルエーテル、ジイソプロピルエーテル、ジエチルエーテル、ジオキサン、ジグリシジルエーテル、シネオール、ジフェニルエーテル、ジブチルエーテル、ジプロピルエーテル、ジベンジルエーテル、ジメチルエーテル、テトラヒドロピラン、テトラヒドロフラン、トリオキサン、ジクロロエチルエーテル、ブチルフェニルエーテル、フラン、メチル-t-ブチルエーテル、モノジクロロジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレンクロロヒドリン等が挙げられる。
 ケトン類としては、例えば、エチルブチイルケトン、ジアセトンアルコール、ジイソブチルケトン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサン等が挙げられる。
 エステル類としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル等が挙げられる。
 ハロゲン化炭化水素類としては、例えば、アリルクロライド、塩化アミル、ジクロロメタン、ジクロロエタン等が挙げられる。
 含硫黄化合物類としては、例えば、ジメチルスルホキシド、スルホラン、チオラン等が挙げられる。
 これらのうち、特にアルコール類、エーテル類が好ましい。これらは1種で用いてもよく、2種以上を併用してもよい。
 溶解度パラメーターが8~14(cal/cm3)1/2の物質は、アミン溶液に添加してもよく、有機溶液に添加してもよく、両溶液に添加してもよい。また、当該物質を予め多孔性支持体に含浸させておいてもよい。また、当該物質のガス雰囲気中で、アミン溶液と有機溶液とを多孔性支持体上で接触させてもよい。
 アミン溶液に当該物質を添加する場合、添加量は10~50重量%であることが好ましい。10重量%未満では透過流束を上げる効果は不十分であり、50重量%を超えると阻止率が低下する傾向となる。有機溶液に当該物質を添加する場合、添加量は0.001~10重量%であることが好ましい。0.001重量%未満では透過流束を上げる効果は不十分であり、10重量%を超えると阻止率が低下する傾向となる。
 アミン溶液又は有機溶液には、製膜を容易にしたり、得られる複合半透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒などが挙げられる。
 多孔性支持体上に前記アミン溶液を塗布してから前記有機溶液を塗布するまでの時間は、アミン溶液の組成、粘度及び多孔性支持体の表面層の孔径にもよるが、15秒以下であることが好ましく、さらに好ましくは5秒以下である。前記溶液の塗布間隔が15秒を超える場合には、アミン溶液が多孔性支持体の内部深くまで浸透・拡散し、未反応多官能アミン成分が多孔性支持体中に大量に残存する恐れがある。また、多孔性支持体の内部深くまで浸透した未反応多官能アミン成分は、その後の膜洗浄処理でも除去し難い傾向にある。なお、前記多孔性支持体上に前記アミン溶液を被覆した後、余分なアミン溶液を除去してもよい。
 本発明においては、アミン溶液と有機溶液との接触後、多孔性支持体上の過剰な有機溶液を除去し、多孔性支持体上の形成膜を70℃以上で加熱乾燥してスキン層を形成することが好ましい。形成膜を加熱処理することによりその機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは100~150℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.05~2μm程度であり、好ましくは、0.1~1μmである。
 また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。
 本発明においては、スキン層を多孔性支持体の表面に形成した後、スキン層に温水通水処理を施す。温水通水処理に用いる温水の温度は特に制限されないが、通常40~65℃程度であり、好ましくは40~60℃である。温水通水処理の時間は特に制限されないが、1~5時間であることが好ましく、より好ましくは3~5時間である。温水通水処理は、膜状の複合半透膜に対して行ってもよく、複合半透膜をスパイラル状に加工して得られるスパイラル型分離膜エレメントに対して行ってもよい。
 スパイラル型分離膜エレメントは、例えば、複合半透膜を二つ折りにした間に供給側流路材を配置したものと、透過側流路材とを積み重ね、供給側流体と透過側流体の混合を防ぐ封止部を形成するための接着剤を複合半透膜の周辺部(3辺)に塗布して分離膜ユニットを作製し、この分離膜ユニットの単数または複数を中心管の周囲にスパイラル状に巻きつけて、更に分離膜ユニットの周辺部を封止することによって製造される。
 前記製造方法により得られるスキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上である。弾性率は110MPa以上であることが好ましく、より好ましくは130MPa以上であり、さらに好ましくは150MPa以上である。
 水中AFMでのフォースカーブ測定によるスキン層の弾性率の算出は、実施例に記載の方法で行う。
 また、水中AFMでのフォースカーブ測定によって算出されたスキン層の弾性率の値に基づいて、高温環境下に長期間曝された場合に複合半透膜の水透過性が低下しやすいか否かを事前に評価することが可能である。具体的には、複合半透膜のスキン層の弾性率を水中AFMでのフォースカーブ測定により算出し、得られた弾性率の値が100MPa以上の場合には、当該複合半透膜は、熱によって水透過性が低下しにくいと評価でき、得られた弾性率の値が100MPa未満の場合には、当該複合半透膜は、熱によって水透過性が低下しやすいと評価することができる。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔評価及び測定方法〕
 (水中AFMでのフォースカーブ測定によるスキン層の弾性率の算出)
 作製したウェット状態の複合半透膜を2cm×2cmの大きさに切断したサンプル1を、アサイラムテクノロジー社製の液中測定用固定治具(Closed Fluid Cell)、固定ピン2、及び抑え板3を用いて、図1に示すように、固定治具のガラス板4上に固定した。その後、サンプル1上に超純水5を約100μl滴下した。 
 そして、サンプル1を垂直方向に移動させて、サンプル1のスキン層に、荷重をかけながら球形プローブ6を押し込み、そして引き離した際のカンチレバー7のたわみ又はそり(変位)をレーザー光8の変位としてフォトダイオードで検出してフォースカーブを測定し、装置付属のプログラムを用いて荷重とスキン層変形量に変換した。測定面積90μm×90μmの領域を20×20分割し、合計400点でフォースカーブを測定した。そして、荷重3μNの時のスキン層変形量の平均値を求めた。 
 測定装置及び測定条件は以下のとおりである。 
・測定装置:MFP-3D(アサイラムテクノロジー社製)
・カンチレバー:ばね定数40N/m
・球形プローブ:ナノセンサーズ社製、先端曲率半径0.4μm、Silicon(100)、ポアソン比0.17、弾性率150GPa
・測定環境:超純水中
・押し込み速度、引き離し速度:4.0μm/s
・最大荷重:3μN
・測定n数:400
 スキン層の弾性率Esample(MPa)は、下記ヘルツ弾性接触理論式に各数値を代入することにより求められる。 
 h=〔3/4[{(1-νprobe 2)/Eprobe}+{(1-νsample 2)/Esample}]〕2/32/3-1/3
h:スキン層変形量(平均値)
νprobe:プローブのポアソン比0.17
νsample:サンプルのポアソン比0.35(樹脂の代表値として0.35を採用(固定値))
probe:プローブの弾性率150GPa
sample:サンプルの弾性率(MPa)
F:荷重3μN
r:プローブの先端曲率半径0.4μm
 (透過流束の低下率)
 作製した複合半透膜を所定の形状、サイズに切断したサンプルを平膜評価用のセルにセットする。0.2%のMgSOを含みかつNaOHを用いてpH6.5~7.0に調整した水溶液を25℃で膜の供給側と透過側に0.9MPaの差圧を与えて膜に接触させる。この操作によって得られた透過水の透過速度を測定し、膜面積1平方メートル当たりの1日の透水量(立方メートル)から透過流束X(m/m・d)を算出した。当該サンプルを40℃の環境下で7日間保管し、その後、同様の方法で透過流束Yを算出した。透過流束の低下率は下記式により算出した。 
 透過流束の低下率(%)=〔(X-Y)/X〕×100
 比較例1
 ピペラジン7水和物3.6重量%、ラウリル硫酸ナトリウム0.15重量%、カンファースルホン酸6重量%、及び水酸化ナトリウム1.48重量%を水に溶解させてアミン溶液を調製した。そして、アミン溶液を多孔性支持体の表面に接触させた後、余分なアミン溶液を除去した。その後、多孔性支持体の表面のアミン溶液と、トリメシン酸クロライド0.42重量%及びt-ブタノール0.5重量%をIP1016(沸点106℃)に溶解させた有機溶液とを接触させた。その後、余分な有機溶液を除去し、120℃の熱風乾燥機中で3分間保持して、多孔性支持体上にポリアミド系樹脂を含むスキン層を形成して複合半透膜を作製した。
 実施例1
 比較例1で作製した複合半透膜に、40℃の温水を5時間通水して、スキン層に温水通水処理を施した。
 実施例2
 比較例1で作製した複合半透膜に、50℃の温水を5時間通水して、スキン層に温水通水処理を施した。
 実施例3
 比較例1で作製した複合半透膜に、60℃の温水を5時間通水して、スキン層に温水通水処理を施した。
 実施例4
 比較例1で作製した複合半透膜を用いてスパイラル型分離膜エレメントを作製した。作製したスパイラル型分離膜エレメントに、60℃の温水を3時間通水して、スキン層に温水通水処理を施した。なお、前記弾性率及び透過流束の測定においては、エレメントから複合半透膜を取り出して測定した。
Figure JPOXMLDOC01-appb-T000001
 
 
 本発明の複合半透膜及びスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。
1:サンプル
2:固定ピン
3:抑え板
4:固定治具のガラス板
5:超純水
6:球形プローブ
7:カンチレバー
8:レーザー光

Claims (12)

  1. 多孔性支持体上にポリアミド系樹脂を含むスキン層を有する複合半透膜において、前記スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であることを特徴とする複合半透膜。
  2. ポリアミド系樹脂は、ピペラジンとトリメシン酸クロライドとの重合体を含む請求項1記載の複合半透膜。
  3. 多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
     前記接触は、エタノール、プロパノール、ブタノール、ブチルアルコール、1-ペンタノール、2-ペンタノール、t-アミルアルコール、イソアミルアルコール、イソブチルアルコール、イソプロピルアルコール、ウンデカノール、2-エチルブタノール、2-エチルヘキサノール、オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、t-ブタノール、ベンジルアルコール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、ペンチルアルコール、アリルアルコール、アニソール、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クラウンエーテル、クレジルメチルエーテル、ジイソアミルエーテル、ジイソプロピルエーテル、ジグリシジルエーテル、シネオール、ジフェニルエーテル、ジブチルエーテル、ジプロピルエーテル、ジベンジルエーテル、ジメチルエーテル、テトラヒドロピラン、トリオキサン、ジクロロエチルエーテル、ブチルフェニルエーテル、フラン、モノジクロロジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレンクロロヒドリンから選ばれる少なくとも一つの溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下で行われ、かつ
     スキン層を多孔性支持体の表面に形成した後、スキン層に温水通水処理を施す工程を含むことを特徴とする複合半透膜の製造方法。
  4. 温水通水処理は、40~60℃の温水を用いて1~5時間行う請求項3記載の複合半透膜の製造方法。
  5. 多官能アミン成分がピペラジンであり、多官能酸ハライド成分がトリメシン酸クロライドである請求項3又は4記載の複合半透膜の製造方法。
  6. 請求項3~5のいずれかに記載の製造方法により得られ、スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上である複合半透膜。
  7. 請求項1、2又は6記載の複合半透膜を用いたスパイラル型分離膜エレメント。
  8. 多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成して複合半透膜を作製する工程、及び複合半透膜をスパイラル状に加工する工程を含むスパイラル型分離膜エレメントの製造方法において、
     前記接触は、エタノール、プロパノール、ブタノール、ブチルアルコール、1-ペンタノール、2-ペンタノール、t-アミルアルコール、イソアミルアルコール、イソブチルアルコール、イソプロピルアルコール、ウンデカノール、2-エチルブタノール、2-エチルヘキサノール、オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、t-ブタノール、ベンジルアルコール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、ペンチルアルコール、アリルアルコール、アニソール、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クラウンエーテル、クレジルメチルエーテル、ジイソアミルエーテル、ジイソプロピルエーテル、ジグリシジルエーテル、シネオール、ジフェニルエーテル、ジブチルエーテル、ジプロピルエーテル、ジベンジルエーテル、ジメチルエーテル、テトラヒドロピラン、トリオキサン、ジクロロエチルエーテル、ブチルフェニルエーテル、フラン、モノジクロロジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレンクロロヒドリンから選ばれる少なくとも一つの溶解度パラメーターが8~14(cal/cm3)1/2の物質の存在下で行われ、かつ
     複合半透膜をスパイラル状に加工した後、スキン層に温水通水処理を施す工程を含むことを特徴とするスパイラル型分離膜エレメントの製造方法。
  9. 温水通水処理は、40~60℃の温水を用いて1~5時間行う請求項8記載のスパイラル型分離膜エレメントの製造方法。
  10. 多官能アミン成分がピペラジンであり、多官能酸ハライド成分がトリメシン酸クロライドである請求項8又は9記載のスパイラル型分離膜エレメントの製造方法。
  11. 請求項8~10のいずれかに記載の製造方法により得られ、スキン層は、水中AFMでのフォースカーブ測定により算出される弾性率が100MPa以上であるスパイラル型分離膜エレメント。
  12. 多孔性支持体上にポリアミド系樹脂を含むスキン層を有する複合半透膜の前記スキン層の弾性率を水中AFMでのフォースカーブ測定により算出し、得られた弾性率の値が100MPa以上の場合には、当該複合半透膜は、熱によって水透過性が低下しにくいと評価し、得られた弾性率の値が100MPa未満の場合には、当該複合半透膜は、熱によって水透過性が低下しやすいと評価する、複合半透膜の水透過性能の評価方法。
PCT/JP2016/051584 2015-01-29 2016-01-20 複合半透膜、スパイラル型分離膜エレメント、及びその製造方法 WO2016121600A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004035.XA CN106999865A (zh) 2015-01-29 2016-01-20 复合半透膜、螺旋型分离膜元件、及其制造方法
KR1020177015145A KR20170107427A (ko) 2015-01-29 2016-01-20 복합 반투막, 스파이럴형 분리막 엘리먼트, 및 그 제조 방법
US15/545,111 US20180001274A1 (en) 2015-01-29 2016-01-20 Composite semipermeable membrane, spiral wound separation membrane element, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015898A JP6437835B2 (ja) 2015-01-29 2015-01-29 複合半透膜、スパイラル型分離膜エレメント、及びその製造方法
JP2015-015898 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121600A1 true WO2016121600A1 (ja) 2016-08-04

Family

ID=56543215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051584 WO2016121600A1 (ja) 2015-01-29 2016-01-20 複合半透膜、スパイラル型分離膜エレメント、及びその製造方法

Country Status (5)

Country Link
US (1) US20180001274A1 (ja)
JP (1) JP6437835B2 (ja)
KR (1) KR20170107427A (ja)
CN (1) CN106999865A (ja)
WO (1) WO2016121600A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3603776A4 (en) * 2017-09-29 2021-05-19 Sumitomo Chemical Company Limited SPIRAL TYPE GAS SEPARATION MEMBRANE ELEMENT, GAS SEPARATION MEMBRANE MODULE AND GAS SEPARATION DEVICE
KR102212128B1 (ko) 2018-05-10 2021-02-17 주식회사 엘지화학 역삼투막, 이의 제조방법 및 수처리 모듈
JP7072112B1 (ja) 2021-11-05 2022-05-19 日東電工株式会社 複合半透膜、スパイラル型膜エレメント、水処理システム及び水処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165790A (ja) * 1996-12-05 1998-06-23 Nitto Denko Corp 複合逆浸透膜の製造方法
JP2005144211A (ja) * 2003-11-11 2005-06-09 Toray Ind Inc 複合半透膜及びその製造方法ならびに流体分離素子の処理方法
WO2012033086A1 (ja) * 2010-09-07 2012-03-15 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489922B2 (ja) * 1994-12-22 2004-01-26 日東電工株式会社 高透過性複合逆浸透膜の製造方法
JP3681214B2 (ja) * 1996-03-21 2005-08-10 日東電工株式会社 高透過性複合逆浸透膜
US5876602A (en) * 1997-11-04 1999-03-02 The Dow Chemical Company Treatment of composite polyamide membranes to improve performance
JP5377452B2 (ja) * 2009-10-16 2013-12-25 日東電工株式会社 複合半透膜の製造方法
US10525423B2 (en) * 2013-04-10 2020-01-07 Nanyang Technological University Nanofiltration membrane and method of manufacturing a nanofiltration membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165790A (ja) * 1996-12-05 1998-06-23 Nitto Denko Corp 複合逆浸透膜の製造方法
JP2005144211A (ja) * 2003-11-11 2005-06-09 Toray Ind Inc 複合半透膜及びその製造方法ならびに流体分離素子の処理方法
WO2012033086A1 (ja) * 2010-09-07 2012-03-15 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Also Published As

Publication number Publication date
CN106999865A (zh) 2017-08-01
JP2016140777A (ja) 2016-08-08
KR20170107427A (ko) 2017-09-25
JP6437835B2 (ja) 2018-12-12
US20180001274A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
KR101432218B1 (ko) 염제거율 및 투과유량 특성이 우수한 역삼투 분리막 및 그 제조방법
JP6136266B2 (ja) 複合半透膜
KR101327294B1 (ko) 금속-유기 구조체를 포함하는 수처리용 분리막 및 이의 제조방법
JP5978998B2 (ja) 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法
JP5923793B2 (ja) カルボジイミド系化合物を含む高透過逆浸透膜及びこれを製造する方法
JP2016518982A (ja) 塩除去率及び透過流量特性に優れたポリアミド系水処理分離膜及びその製造方法
KR101114668B1 (ko) 폴리아마이드 역삼투 분리막의 제조방법 및 그에 의해 제조된 폴리아마이드 역삼투 분리막
EP3088073B1 (en) High-functional polyamide-based dry water treatment separator and method for manufacturing same
US20130292325A1 (en) Method for preparing reverse osmosis membrane, and reverse osmosis membrane prepared thereby
WO2016121600A1 (ja) 複合半透膜、スパイラル型分離膜エレメント、及びその製造方法
KR102497473B1 (ko) 복합 반투막
WO2016052427A1 (ja) 複合半透膜及びその製造方法、スパイラル型分離膜エレメント
JP6747926B2 (ja) スパイラル型分離膜エレメントの製造方法
KR20130076498A (ko) 초친수층을 포함하는 역삼투막 및 그 제조방법
WO2014003140A1 (ja) 複合半透膜および複合半透膜エレメント
JP2017213501A (ja) 複合半透膜および複合半透膜の製造方法
WO2016121599A1 (ja) スパイラル型分離膜エレメントの船輸送方法
JP2021035658A (ja) 複合半透膜および複合半透膜の製造方法
WO2015118913A1 (ja) スパイラル型分離膜エレメント
JP2009262089A (ja) 複合半透膜の製造方法
WO2018003944A1 (ja) 複合半透膜および複合半透膜の製造方法
JP2016123899A (ja) 複合半透膜
WO2024048695A1 (ja) 複合半透膜及び複合半透膜の製造方法
CN113226527B (zh) 复合半透膜
WO2023276642A1 (ja) 正浸透膜モジュール、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015145

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743204

Country of ref document: EP

Kind code of ref document: A1