WO2016121579A1 - Cof型半導体パッケージ及び液晶表示装置 - Google Patents

Cof型半導体パッケージ及び液晶表示装置 Download PDF

Info

Publication number
WO2016121579A1
WO2016121579A1 PCT/JP2016/051464 JP2016051464W WO2016121579A1 WO 2016121579 A1 WO2016121579 A1 WO 2016121579A1 JP 2016051464 W JP2016051464 W JP 2016051464W WO 2016121579 A1 WO2016121579 A1 WO 2016121579A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type semiconductor
semiconductor package
heat radiation
cof type
Prior art date
Application number
PCT/JP2016/051464
Other languages
English (en)
French (fr)
Inventor
中西 健一
達宏 池谷
良和 新井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020177020492A priority Critical patent/KR20170096050A/ko
Priority to JP2016571962A priority patent/JP6704860B2/ja
Publication of WO2016121579A1 publication Critical patent/WO2016121579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a COF type semiconductor package and a liquid crystal display device.
  • COF Chip on Film
  • the driving load of the driver IC increases due to the increase in the driving frequency of the TV and the monitor accompanying the increase in the resolution of the display, and it becomes impossible to cope with the generated heat.
  • Patent Literature 1 discloses a heat-dissipating heat-dissipating sheet in which a heat-radiating sheet provided with a heat-radiating layer is laminated on a pressure-sensitive adhesive layer and a layer made of aluminum or an aluminum alloy.
  • Patent Document 2 discloses that a heat dissipation pad made of a metal such as aluminum is provided on the lower part of the polyimide film substrate and the upper part of the IC chip of the COF type semiconductor packaging as a heat dissipation measure for the COF type semiconductor package.
  • the heat radiation layer disclosed in Patent Document 1 is made by coating alumina on aluminum or an aluminum alloy, and it cannot be said that the heat dissipation is sufficient.
  • the alumina layer may be damaged due to impact or deformation. When the alumina layer is damaged, sufficient insulation cannot be secured, and it has been difficult to use it in a place that requires insulation.
  • the heat-dissipating pad disclosed in Patent Document 2 is a metal such as aluminum that has not been subjected to a special treatment or the like, and it cannot be said that sufficient heat dissipation can be realized. Moreover, insulation from the outside could not be ensured.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a COF type semiconductor package capable of efficiently diffusing and radiating heat generated from a chip and maintaining insulation from an external environment. .
  • the inventors have devised a COF type semiconductor package in which a chip is attached on a film, and an adhesive layer, a metal layer, a heat radiation layer containing a heat radiation filler and a binder on the chip, It has been found that by providing a heat radiation sheet comprising an insulating layer in order, the heat generated from the chip can be efficiently diffused and radiated, and the insulation from the external environment can be maintained. That is, the present invention has the following configuration.
  • a COF type semiconductor package includes a film, a chip attached on the film, an adhesive layer, a metal layer, a heat radiation filler, and a binder provided on the chip.
  • a heat radiation sheet comprising a heat radiation layer and an insulating layer in order.
  • the heat radiation sheet may be further bonded to a surface of the film where the chip is not formed.
  • the insulating layer may have an average thickness of 5 to 50 ⁇ m.
  • the heat radiation filler may be a carbonaceous material.
  • the carbonaceous material is one or more selected from carbon black, graphite, and vapor grown carbon fiber. It may be a material.
  • an average thickness of the heat radiation layer may be 0.1 to 5 ⁇ m.
  • the average thickness of the metal layer may be 20 to 100 ⁇ m.
  • the metal layer may be any one of aluminum, copper, and an alloy containing these.
  • the average thickness of the adhesive layer may be 5 to 50 ⁇ m.
  • the COF type semiconductor package according to any one of the above (1) to (10) may include a plurality of the chips, and the thermal radiation sheet may be bonded so as to bridge the plurality of chips. Good.
  • a liquid crystal display device includes the COF type semiconductor package according to any one of (1) to (11).
  • the COF type semiconductor package of the present invention can more efficiently diffuse and dissipate heat generated from the chip.
  • FIG. 1 is a diagram schematically showing a cross section of a COF type semiconductor package according to one embodiment of the present invention.
  • a COF type semiconductor package 20 shown in FIG. 1 includes a lower insulating layer 9, a plurality of leads 8 formed on the upper surface of the lower insulating layer 9 and arranged so that the terminations are gathered in the central portion, and terminations of the leads 8.
  • the thermal radiation sheet 10 includes an insulating layer 1, a thermal radiation layer 2 containing a thermal radiation filler and a binder, a metal layer 3, and an adhesive layer 4, and the surface of the adhesive layer 4 is bonded to the chip 5. .
  • one chip 5 is mounted on a sheet film composed of a lower insulating layer 9, leads 8, and a surface insulating layer 7.
  • the COF type semiconductor package of the present invention is not limited to this mode, and the sheet film
  • An underfill layer 6 is embedded in the periphery where the chip 5 is fixed to stably fix the chip.
  • an anisotropic conductive film (ACF), a non-conductive paste (NCP), or the like can be used.
  • the COF type semiconductor package of the present invention is not limited to the embodiment shown in FIG.
  • the heat radiation sheet 10 may be further provided on the surface of the lower insulating layer 9 where the leads 8 are not disposed.
  • the heat radiation sheet 10 formed on the surface where the lead 8 is not disposed is formed in a portion facing the chip 5. This is because the heat immediately below the chip 5 is the highest, and it is most preferable to dissipate that part.
  • the material of each layer for example, the kind of metal, the kind of heat radiation filler, the kind and amount ratio of the binder, the thickness of each layer, etc. may be different. Can be.
  • the heat radiation sheet 10 includes an insulating layer 1, a heat radiation layer 2 containing a heat radiation filler and a binder, a metal layer 3, and an adhesive layer 4.
  • the thermal radiation sheet 10 is bonded to the surface opposite to the surface to which the terminal end 8A of the lead of the chip 5 is bonded.
  • a release sheet may be further laminated on the exposed surface of the adhesive layer 4 as necessary.
  • the “average thickness” refers to a value obtained by observing a cross section of the thermal radiation sheet 10, measuring the thickness at 10 randomly selected locations, and calculating the arithmetic average value thereof. The thickness was calculated from a cross-sectional image observed with a microscope or directly measured with a micrometer.
  • the insulating layer 1 is a layer that electrically shields the chip 5 from the outside, and is the outermost layer when the heat radiation sheet 10 is joined. Providing a layer on the heat radiation layer 2 may hinder heat radiation, and is not performed from ordinary technical common knowledge of those skilled in the art. It was found that even if 1 is provided, high thermal diffusibility and insulation can be realized.
  • the insulating layer 1 has electrical insulation.
  • the term “insulating” means that, for example, even when a voltage of 1 to 5 kV is applied to both surfaces of the insulating layer 1, the dielectric is not broken and the insulating property can be maintained. Since the insulating layer 1 has an insulating property, it can be used in an electronic component or the like that requires insulating properties.
  • the material constituting the insulating layer 1 is not particularly limited as long as it has insulating properties, and a resin material or a ceramic material can be used.
  • a resin material or a ceramic material can be used.
  • polyesters such as polyethylene terephthalate (PET), polyolefins such as polypropylene and polyethylene, and the like can be used. From the viewpoints of insulation and heat resistance, PET is particularly preferable.
  • the average thickness of the insulating layer 1 is preferably 5 to 50 ⁇ m, more preferably 5 to 15 ⁇ m. When the average thickness of the insulating layer 1 is 5 to 50 ⁇ m, sufficient insulation and high heat dissipation can be maintained.
  • the method for laminating the insulating layer 1 on the heat radiation layer 2 is not particularly limited.
  • the heat radiation sheet 10 can maintain high insulation from the outside, and can be used in places where insulation is required in electronic components and the like. Become. Further, since the insulating layer 1 protects the heat radiation layer 2 and the like formed thereunder, the wear resistance can be improved. That is, even if an impact or deformation is applied to the heat radiation sheet 10, heat dissipation and insulation can be maintained.
  • the heat radiation layer 2 contains a heat radiation filler and a binder.
  • the thermal radiation filler used for the thermal radiation layer 2 is not particularly limited as long as it has an emissivity of 0.8 or more, regardless of metal or non-metal. From the viewpoint of high thermal emissivity and low cost, a carbonaceous material is preferable. Examples of the carbonaceous material include carbon black such as acetylene black and ketjen black, graphite, vapor grown carbon fiber, and the like. Among these, carbon black is preferable. One or more of these may be selected and used.
  • the particle size of the thermal radiation filler is preferably 0.1 to 2.0 ⁇ m, more preferably 0.2 to 1.0 ⁇ m, with a cumulative mass 50% particle size (D50). When the cumulative mass 50% particle diameter (D50) is 0.1 to 2.0 ⁇ m, a heat radiation layer with high smoothness can be obtained.
  • the binder used for the heat radiation layer 2 is not particularly limited as long as it is a material capable of binding a heat radiation filler. From the viewpoint of the binding property of the heat radiation filler, the coating properties of the composition containing the heat radiation filler and the binder, and the film performance as the heat radiation layer 2, the binder is preferably a heat or photocurable resin. .
  • the photocurable resin that can be used include epoxy resins, oxetane resins, vinyl ether resins, polysiloxane resins, vinyl ester resins, and (meth) acrylic resins.
  • thermosetting resins examples include epoxy resins, oxetane resins, polysiloxane resins, unsaturated polyester resins, vinyl ester resins, phenol resins, novolac resins, amino resins, and crosslinkable functional groups.
  • (Meth) acrylic resin having high molecular weight, polymeric polysaccharides, and the like can be used.
  • the curable resin used as the binder is preferably a thermosetting epoxy resin or a high molecular polysaccharide in terms of durability and adhesion, and it is preferable to crosslink these with an acid crosslinking agent and cure.
  • the epoxy resin include diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of biphenol, and the like, and one kind or two or more kinds can be used.
  • the polymeric polysaccharide include one or more selected from chitosan, chitin and derivatives thereof.
  • acid crosslinking agents include phthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimellitic anhydride, tetrahydrophthalic anhydride, pyromellitic anhydride, dodecyl succinic anhydride, methyl nadic anhydride, anhydrous
  • acid anhydrides such as benzophenone tetracarboxylic acid and butane tetracarboxylic anhydride, and one or more of them can be used.
  • the content of the heat radiation filler in the heat radiation layer 2 is preferably 20 to 50% by mass, more preferably 30 to 40% by mass.
  • the binder content in the heat radiation layer 2 is preferably 50 to 80% by mass, more preferably 60 to 70% by mass. Within this range, there is a merit of supporting the heat radiation filler on the substrate.
  • the formation method of the heat radiation layer 2 is not particularly limited.
  • the heat radiation layer 2 can be formed by applying and curing a composition containing a heat radiation filler and a binder on the insulating layer 1 or the metal layer 3.
  • the composition containing the heat radiation filler and the binder may be diluted with a solvent, if necessary, and then coated, dried and further cured to form the heat radiation layer 2.
  • a coating method of the composition containing a heat radiation filler and a binder gravure coating capable of forming a thin film having a uniform thickness is preferable.
  • the average thickness of the heat radiation layer is preferably from 0.1 to 5 ⁇ m, more preferably from 0.5 to 3 ⁇ m. If the average thickness of the heat radiation layer is 0.1 to 5 ⁇ m, a sufficient amount of heat radiation filler in the heat radiation layer can be secured, and sufficient heat dissipation can be obtained.
  • the metal layer 3 is provided between the heat radiation layer 2 and a heating element (chip 5) such as an electronic component. Since the metal layer 3 has high thermal conductivity, the heat generated in the chip 5 can be efficiently transmitted to the heat radiation layer 2.
  • metal layer 3 gold, silver, copper, iron, nickel, aluminum, an alloy containing those metals, or the like can be used.
  • a metal having a high thermal conductivity is preferable. From the viewpoint of low cost and ease of processing, it is preferable to use copper, aluminum, and an alloy containing these metals as the metal layer 3.
  • the average thickness of the metal layer 3 is preferably 20 to 100 ⁇ m, and more preferably 30 to 80 ⁇ m.
  • the average thickness of the metal layer 3 is 20 ⁇ m or more, the heat radiation sheet 10 excellent in heat radiation is obtained, and the distortion and deformation of the metal layer 3 in the process of manufacturing the heat radiation sheet 10 are small.
  • the average thickness of the metal layer 3 is 80 ⁇ m or less, the shape following property of the heat radiation sheet 10 to the heat generator when the heat radiation sheet 10 is bonded to the heat generator can be sufficiently secured. Accordingly, even when the surface of the heating element is a curved surface, a sufficient contact area between the heating element and the heat radiation sheet 10 can be ensured, so that the heat of the heating element can be efficiently radiated.
  • the adhesive layer 4 is a layer for adhering the heat radiation sheet 10 to the chip 5 which is a heating element such as an electronic device.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 4 is not particularly limited. It is sufficient that the insulating properties and the adhesive strength are sufficient, and silicone-based adhesives, acrylic-based adhesives, urethane-based adhesives, rubber-based adhesives, and the like can be used. Especially, it is preferable to use an acrylic adhesive from the point of adhesive force.
  • the pressure-sensitive adhesive either a solvent-containing one or a solvent-free one can be used.
  • a curing agent corresponding to the pressure-sensitive adhesive may be included.
  • an isocyanate compound, an epoxy compound, an aziridine compound, a melamine compound, or the like can be used.
  • the method for forming the pressure-sensitive adhesive layer 4 include a method in which a pressure-sensitive adhesive diluted with a solvent is applied to one surface of the metal layer 3 or the release sheet, dried and thermally cured.
  • the average thickness of the pressure-sensitive adhesive layer 4 used in the present invention is preferably 5 to 50 ⁇ m, more preferably 8 to 20 ⁇ m.
  • the thermal radiation sheet 10 has a sufficiently high bonding strength between the pressure-sensitive adhesive layer 4, the chip 5, and the metal layer 3, and can satisfy insulation.
  • the average thickness of the adhesive layer 4 is 50 ⁇ m or less, the heat of the heating element can be efficiently conducted to the metal layer 3 through the adhesive layer 4.
  • the method for applying the adhesive is not particularly limited. Examples thereof include a method using a gravure roll coater, reverse roll coater, kiss roll coater, dip roll coater, bar coater, knife coater, spray coater, comma coater, direct coater and the like.
  • the adhesive strength of the adhesive layer 4 is preferably 5 N / 25 mm or more, more preferably 8 N / 25 mm or more, more preferably 10 N / 25 mm or more, with respect to SUS304 measured using a measurement method described later. More preferably it is.
  • the adhesive strength of the adhesive layer 4 is 5 N / 25 mm or more, the thermal radiation sheet 10 has a sufficiently high bonding strength between the adhesive layer 4, the chip 5 and the metal layer 3.
  • the adhesive strength of the adhesive layer 4 is determined by the following method.
  • a PET film having a thickness of 50 ⁇ m (“Lumirror (registered trademark) S-10” manufactured by Toray Industries, Inc.) is used as a base material, and an adhesive layer 4 is formed on the base material to obtain a test laminated sheet.
  • the test laminated sheet is cut into a size of 25 mm in length and 100 mm in width to obtain a strip-like sheet.
  • a strip-shaped sheet is laminated on the test plate made of SUS304 with the adhesive layer facing the test plate. Thereafter, the test plate and the strip-shaped sheet are joined by reciprocating a 2 kg rubber roller (width: about 50 mm) once on the strip-shaped sheet.
  • the bonded test plate and strip-shaped sheet are left in an environment of 23 ° C. and humidity 50% RH for 24 hours. Thereafter, according to JIS Z0237, a tensile test in the direction of 180 ° is performed at a peeling speed of 300 mm / min, and the adhesive strength (N / 25 mm) of the strip-shaped sheet to the test plate is measured.
  • the adhesive layer 4 may contain an insulating heat conductive filler in the adhesive. Any thermally conductive filler may be used as long as it is insulating and has thermal conductivity. For example, 1 type, or 2 or more types of particles selected from a metal oxide, a metal nitride, a metal hydrate, etc. are mentioned.
  • the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, and titanium dioxide.
  • the metal nitride include aluminum nitride, boron nitride, and silicon nitride.
  • the metal hydrate include magnesium hydroxide and aluminum hydroxide.
  • the heat conductive filler is preferably a powder from the viewpoint of being uniformly dispersed in the adhesive layer 4.
  • the particle diameter of the thermally conductive filler is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, with a 50% cumulative mass particle diameter (D50). Further, the particle diameter of the heat conductive filler is preferably set as appropriate in accordance with the thickness of the adhesive layer 4. When the cumulative mass 50% particle diameter (D50) is 1 to 50 ⁇ m, a sufficient contact area between the heat conductive filler contained in the adhesive layer 4 and the heating element (chip 5) and the metal layer 3 can be obtained. The heat of the body (chip 5) can be efficiently conducted to the metal layer 3 through the adhesive layer 4.
  • the “cumulative mass 50% particle size (D50)” is obtained, for example, by laser diffraction particle size distribution measurement using a laser diffraction particle size distribution measuring device of trade name “SALD-200V ER” manufactured by Shimadzu Corporation.
  • the heat radiation layer 2 is formed on one surface of the metal layer 3, and then the insulating layer 1 is laminated on the heat radiation layer 2.
  • the heat radiation sheet 10 can be obtained by bonding the adhesive layer 4 to the other surface of the metal layer 3. The obtained heat radiation sheet 10 is peeled until the heat radiation sheet 10 is bonded to the heating element by laminating the release sheet on the opposite side of the surface of the adhesive layer 4 bonded to the metal layer 3.
  • the adhesive layer 4 can be protected by the sheet.
  • the heat radiation sheet 10 may be formed by laminating the insulating layer 1, the heat radiation layer 2, the metal layer 3, and the adhesive layer 4 in this order, and if necessary, such as an adhesive layer or a laminate layer. Other layers may be included.
  • the thermal radiation sheet 10 preferably has a thermal emissivity of 0.8 to 1, more preferably 0.9 to 1. If the thermal emissivity is 0.8 to 1, sufficient thermal emissivity can be obtained.
  • the heat radiation sheet 10 preferably has a dielectric breakdown voltage of 1 kV or higher. More preferably, it is 2 kV or more. When the dielectric breakdown voltage is 1 kV or more, there is no problem in use for low-power applications, and it can be used.
  • Conventionally known materials can be used for the lower insulating layer 9, the leads 8, the surface insulating layer 7, and the chip 5 provided in the COF type semiconductor package according to one aspect of the present invention.
  • the lower insulating layer 9, the lead 8, and the surface insulating layer 7 have flexibility as a whole.
  • the lower insulating layer 9 is made of polyimide
  • the lead 8 is made of copper
  • the surface insulating layer 7 is made of SR (solder resist), for example. ) Layers can be laminated to each other.
  • a chip 5 having a semiconductor integrated circuit is fixed to the upper surface of the lead 8 where a part of the end is exposed, and an underfill layer 6 is embedded in the periphery where the chip 5 is fixed to stabilize the chip. It is fixed.
  • the underfill layer 6 for example, an anisotropic conductive film (ACF), a non-conductive paste (NCP), or the like can be used.
  • FIGSecond Embodiment 3 and 4 are schematic cross-sectional views of a COF type semiconductor package according to a second embodiment of the present invention.
  • the COF type semiconductor package of the second embodiment includes a plurality of chips 5 and a heat radiation sheet 10 is bonded so as to bridge the plurality of chips 5.
  • a plurality of chips 5 may be bonded to one sheet like the semiconductor package 40, and one chip 5 may be bonded to one sheet like the semiconductor package 50.
  • Each chip can be handled as a single unit and can be bonded together at the time of mounting.
  • a liquid crystal display device includes the above-described COF type semiconductor package 20, 30, 40, or 50.
  • the COF type semiconductor package is mounted in connection with the LCD panel.
  • a chip that is a driver IC is mounted on the flexible printed wiring board of the LCD panel.
  • the insulating layer 1 is a carbon film having a 12 ⁇ m thick PET film (Toyobo Ester (registered trademark) film E5100: manufactured by Toyobo Co., Ltd.) coated with an adhesive so as to have a thickness of 1 ⁇ m, and then dried with a heat radiation layer 2 and a metal layer 3.
  • a laminated sheet in which the insulating layer 1, the heat radiation layer 2, and the metal layer 3 were laminated in this order was formed on a carbon coat layer of a coated aluminum metal sheet (Showa Denko: carbon coated aluminum foil SDX (trademark)).
  • the heat radiation layer 2 is obtained by crosslinking carbon black as a heat radiation filler and chitosan derivative as a binder with pyromellitic acid.
  • the average thickness of the heat radiation layer 2 is 1 ⁇ m
  • the metal layer 3 is an aluminum foil having an average thickness of 50 ⁇ m. Subsequently, the adhesion layer was produced.
  • the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer was an acrylic pressure-sensitive adhesive (vinylol (registered trademark) PSA SV-6805, solid content 47%, manufactured by Showa Denko KK), 100 parts by mass, an isocyanate-based cross-linking agent (corrosate manufactured by Tosoh Corporation) (Registered trademark) 1 part by mass of HX solid content 100%) and 100 parts by mass of ethyl acetate as a solvent for dilution were prepared.
  • the pressure-sensitive adhesive composition was applied onto a peeled PET film with a doctor blade, the solvent was dried, and then peeled PET was applied to obtain a pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive sheet was bonded to the metal layer 3 to obtain a pressure-sensitive adhesive layer. The thus produced thermal radiation sheet was adhered onto the chip, and the temperature and electrical insulation of the chip were measured.
  • the dielectric breakdown voltage in the thickness direction of the thermal radiation sheet produced in each example and each comparative example was measured by a method based on JIS C2110-1. Specifically, a sample obtained by peeling off a peeled PET film of a square heat radiation sheet having a length of 100 mm and a width of 100 mm was used as a measurement sample. For the measurement, a withstand voltage tester (TOS5101) manufactured by Kikusui Electronics Co., Ltd. was used. The upper electrode had a diameter of 25 mm and a height of 25 mm, and the lower electrode had a diameter of 70 mm and a height of 15 mm.
  • TOS5101 manufactured by Kikusui Electronics Co., Ltd.
  • Boosting was performed according to the conditions of the 60-second step-up test of JIS C2110-1, and the voltage at which the sample was broken was defined as the dielectric breakdown voltage. The obtained results were evaluated as follows. ⁇ : 1 kV or more ⁇ less than 1 kV
  • Chip temperature evaluation Using a semiconductor device in which a semiconductor chip (0.5 mm thick, 9 mm square) is mounted on a circuit board (FR-4), the samples prepared in Example 1 and Comparative Examples 1 to 4 are attached on the chip.
  • the chip temperature was measured at an external temperature of 25 ° C., a voltage of 5 V, and a power of 5 W.
  • the measurement timing was measured using the temperature when the temperature became constant after the operation as the chip temperature.
  • the chip temperature was measured with an AS TOOL USB data logger (manufactured by ASONE) with a K thermocouple lead wire (manufactured by OMEGA) sandwiched between the chip and the heat dissipation laminated sheet.
  • the chip temperature of the COF type semiconductor package having the configuration of Example 1 is low. You can see that That is, it can be seen that the COF type semiconductor package having the configuration of the present invention exhibits high heat dissipation. Further, comparing the COF type semiconductor package having the configuration of Example 1 with the COF type semiconductor package having the configuration of Comparative Example 4, it can be seen that the COF type semiconductor package having the configuration of Example 1 has electrical insulation. . That is, it can be seen that the COF type semiconductor package can be used even in an insulating portion.
  • SYMBOLS 1 Insulation layer, 2 ... Thermal radiation layer, 3 ... Metal layer, 4 Adhesion layer, 5 ... Chip, 6 ... Underfill layer, 7 ... Surface insulation layer, 8 ... Lead, 9 ... Lower insulation layer, 10 ... Heat Radiation sheet, 20, 30, 40, 50 ... COF type semiconductor package

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Liquid Crystal (AREA)
  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の一態様に係るCOF型半導体パッケージは、フィルムと、前記フィルム上に付着されたチップと、前記チップ上に設けられ、粘着層と、金属層と、熱放射フィラーおよびバインダーを含有する熱放射層と、絶縁層とを順に具備する熱放射シートと、を備える。

Description

COF型半導体パッケージ及び液晶表示装置
本発明は、COF型半導体パッケージ及び液晶表示装置に関するものである。本願は、2015年1月29日に、日本に出願された特願2015-015787に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体チップ、トランジスター、コンデンサ、キャパシターなどの電子部品、電池(バッテリー)などの電気部品では、さらなる高性能化が進められている。それに伴って、電子部品や電気部品の発熱量が増大している。電子部品や電気部品が高温になると、寿命が短くなったり、信頼性が低下したりする場合がある。
 例えば、液晶表示装置(Liquid Crystal Display:LCD)は、高性能化により、個々のピクセルを制御する駆動チップのリードが微細化されている。そのため液晶表示装置では、コストダウン、軽量化、薄膜化および収率向上のため、1990年代末からパッケージング技術としてCOF(Chip on Film)が導入されてきている。しかしながら、ディスプレイの高解像度化に伴うTV及びモニターの駆動周波数の増加から、ドライバICの駆動負荷が上昇し、発生する発熱に対応できなくなってきている。
 このため、従来、電子部品や電気部品には、これらが発生する熱をより効率的に放散できるヒートシンクやヒートスプッレダーが求められている。従来のヒートスプレッターとしては、アルミニウム箔や銅箔などの熱伝導性を有する金属箔に粘着テープを貼り合せたものなどが多く用いられている。
 例えば、特許文献1には、粘着剤層とアルミニウムまたはアルミニウム合金からなる層上に、熱放射層を設けた熱放射シートを積層した、除熱用放熱シートが開示されている。
 特許文献2には、COF型半導体パッケージの放熱対策として、COF型半導体パッケージングのポリイミドフィルム基板下部およびICチップ上部にアルミニウムなどの金属類で構成された放熱パッドを設けることが開示されている。
特開2005-101025号公報 特開2008-28396号公報
 しかしながら、特許文献1に開示されている熱放射層は、アルミニウムまたはアルミニウム合金にアルミナを塗装したものであり、放熱性が十分とは言えなかった。またアルミナ層は、衝撃や変形により欠損が生じることがある。このアルミナ層の欠損等が生じると、十分な絶縁性を確保することができず、絶縁性を必要とする場所への使用は困難であった。
 同様に特許文献2に開示されている放熱パッドは、特別な処理等が施されていないアルミニウムなどの金属類であり、十分な放熱性を実現できるとは言えなかった。また外部との絶縁性を確保することもできなかった。
 本発明は、上記事情に鑑みてなされたものであり、チップから発生する熱を効率良く拡散、放熱でき、かつ外部環境との絶縁性を維持できるCOF型半導体パッケージを提供することを課題とする。
 発明者らは、鋭意検討の結果、チップがフィルム上に付着したCOF型半導体パッケージであって、チップの上に、粘着層と、金属層と、熱放射フィラーおよびバインダーを含有する熱放射層と、絶縁層とを順に具備する熱放射シートを備えることで、チップから発生する熱を効率良く拡散、放熱でき、かつ外部環境との絶縁性を維持できることを見出した。
 すなわち、本発明は以下に示す構成を備えるものである。
(1)本発明の一態様に係るCOF型半導体パッケージは、フィルムと、前記フィルム上に付着されたチップと、前記チップ上に設けられ、粘着層と、金属層と、熱放射フィラーおよびバインダーを含有する熱放射層と、絶縁層とを順に具備する熱放射シートと、を備える。
(2)上記(1)に記載のCOF型半導体パッケージは、前記熱放射シートが、前記フィルムの前記チップが形成されていない面にさらに接着されていてもよい。
(3)上記(2)に記載のCOF型半導体パッケージは、前記チップ上の熱放射シートと、前記フィルムの前記チップが形成されていない面にさらに接着された熱放射シートが、前記フィルムをはさんで対向する位置に接着されていてもよい。
(4)上記(1)~(3)のいずれか一つに記載のCOF型半導体パッケージは、前記絶縁層の平均厚みが5~50μmであってもよい。
(5)上記(1)~(4)のいずれか一つに記載のCOF型半導体パッケージは、前記熱放射フィラーが炭素質材料であってもよい。
(6)上記(1)~(5)のいずれか一つに記載のCOF型半導体パッケージは、前記炭素質材料が、カーボンブラック、黒鉛および気相法炭素繊維から選ばれる1種または2種以上の材料であってもよい。
(7)上記(1)~(6)のいずれか一つに記載のCOF型半導体パッケージは、前記熱放射層の平均厚みが0.1~5μmであってもよい。
(8)上記(1)~(7)のいずれか一つに記載のCOF型半導体パッケージは、前記金属層の平均厚みが20~100μmであってもよい。
(9)上記(1)~(8)のいずれか一つに記載のCOF型半導体パッケージは、前記金属層がアルミニウム、銅、及びこれらを含む合金のいずれかであってもよい。
(10)上記(1)~(9)のいずれか一つに記載のCOF型半導体パッケージは、前記粘着層の平均厚みが5~50μmであってもよい。
(11)上記(1)~(10)のいずれか一つに記載のCOF型半導体パッケージは、前記チップが複数あり、前記複数のチップを橋架けるように前記熱放射シートを接着されていてもよい。
(12)本発明の一態様に係る液晶表示装置は、上記(1)~(11)のいずれか一つに記載のCOF型半導体パッケージを備える。
 本発明のCOF型半導体パッケージは、チップから発生する熱をより効率よく拡散、放熱できる。
本発明の第1実施形態にかかるCOF型半導体パッケージの断面を模式的に示した図である。 本発明の第1実施形態の他の態様にかかるCOF型半導体パッケージの断面を模式的に示した図である。 本発明の第2実施形態にかかるCOF型半導体パッケージの断面を模式的に示した図である。 本発明の第2実施形態の他の態様にかかるCOF型半導体パッケージの断面を模式的に示した図である。
 以下、本発明の実施形態について、図面を用いて詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は、以下に示す実施形態の記載内容に限定して解釈されるものではない。
「COF型半導体パッケージ」
(第1実施形態)
 図1は、本発明の一態様にかかるCOF型半導体パッケージの断面を模式的に示した図である。図1に示すCOF型半導体パッケージ20は、下部絶縁層9と、下部絶縁層9の上面に形成され、終端が中央部分に集合されるように配置された複数のリード8と、リード8の終端8Aを除いて被覆する表面絶縁層7と、リード8の終端8Aに接着されたチップ5と、チップ5のリードの終端8Aが接着された面と反対側の面に接着された熱放射シート10とを備える。熱放射シート10は、絶縁層1と、熱放射フィラーおよびバインダーを含有する熱放射層2と、金属層3と、粘着層4とを順に備え、粘着層4の面がチップ5に接着される。図1では、下部絶縁層9、リード8、表面絶縁層7からなるシートフィルム上に一つのチップ5が実装されているが、本発明のCOF型半導体パッケージはこの態様に限られず、シートフィルムに複数のチップ5が実装されているものも含む。チップ5が固定されている周辺には、アンダーフィル層6が埋め込まれてチップを安定に固定している。アンダーフィル層6には、例えば異方導電性フィルム(Anisotropic Conductive Film:ACF)や非導電性ペースト(Non-Conductive Paste:NCP)などを用いることができる。
 また本発明のCOF型半導体パッケージは、図1の態様に限られない。例えば、図2に示すCOF型半導体パッケージ30のように、下部絶縁層9のリード8が配置されていない面に、さらに熱放射シート10を備えてもよい。この場合、リード8が配置されていない面に形成される熱放射シート10は、チップ5に対向する部分に形成されていることが好ましい。チップ5直下が最も高熱になり、当該部分を放熱することが最も好ましいためである。この場合、2つの熱放射シートは、構造が同一であれば各層の素材、例えば金属の種類、熱放射フィラー、バインダーの種類や量比、各層の厚さなど異なっていてもよく、それぞれに最適なものとすることができる。
<熱放射シート>
 熱放射シート10は、絶縁層1と、熱放射フィラーおよびバインダーを含有する熱放射層2と、金属層3と、粘着層4とを順に有する。
 熱放射シート10は、チップ5のリードの終端8Aが接着された面と反対側の面に接着される。熱放射シート10は、チップ5に接着する前には必要に応じてさらに粘着層4の露出面に剥離シートを積層していても良い。また各層の間には、その他の層を有していてもよい。
 本明細書において、「平均厚み」とは、熱放射シート10の断面を観察し、無作為に選んだ10カ所の厚みを測定し、その算術平均値として得られた値を指す。厚みの測定は、マイクロスコープで観察した断面画像から算出もしくはマイクロメーターにより直接測定を行った。
(絶縁層)
 絶縁層1は、チップ5を外部と電気的に遮断する層であり、熱放射シート10を接合した際に、最外層となる層である。
 熱放射層2の上に層を設けることは、熱放射を阻害するおそれがあり、当業者の通常の技術常識からは行われないが、本発明者らは熱放射層2の上に絶縁層1を設けても高い熱拡散性及び絶縁性を実現できることを見出した。
 絶縁層1は、電気絶縁性を有する。ここで、絶縁性とは、例えば絶縁層1の両面に1~5kVの電圧を印加した際にも絶縁破壊されず、絶縁性を維持できることを意味する。
 絶縁層1が絶縁性を有することで、電子部品等の中の絶縁性を必要とする場所での使用も可能となる。
 絶縁層1を構成する材料としては、絶縁性を有すれば特に限定されず、樹脂材料やセラミック材料を使用することができる。例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリプロピレンやポリエチレン等のポリオレフィンなどを用いることができる。絶縁性、耐熱性の観点から、PETが特に好ましい。
 絶縁層1の平均厚みは、5~50μmであることが好ましく、5~15μmであることがより好ましい。絶縁層1の平均厚みが5~50μmであれば、十分な絶縁性と高い放熱性を維持することができる。
 絶縁層1を熱放射層2の上に積層する方法は、特に限定されるものではない。例えば、絶縁層1となる樹脂を溶融押し出しし、熱放射層上にラミネートする方法や、予めフィルム状に成形された絶縁層1を各種の粘着剤、接着剤により熱放射層2と貼り合せる方法がある。
 熱放射シート10は、上述のような絶縁層1を有することで、外部との高い絶縁性を維持することができ、電子部品等の中の絶縁性を必要とする場所での使用も可能となる。また絶縁層1が、その下に形成される熱放射層2等を保護するため、耐摩耗性も向上することができる。すなわち、熱放射シート10に衝撃や変形が加わっても、放熱性及び絶縁性を維持することができる。
(熱放射層)
 熱放射層2は、熱放射フィラーおよびバインダーを含有する。
 熱放射層2に用いられる熱放射フィラーは、放射率0.8以上であれば金属、非金属に関わらず特に限定されない。高熱放射率および低コストの観点からは、炭素質材料が好ましい。炭素質材料としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、気相法炭素繊維等が挙げられ、中でもカーボンブラックが好ましい。これらの中から1種または2種以上を選択して用いても良い。熱放射フィラーの粒子径は、累積質量50%粒子径(D50)が0.1~2.0μmであることが好ましく、0.2~1.0μmであることがより好ましい。累積質量50%粒子径(D50)が0.1~2.0μmであると、平滑性の高い熱放射層を得ることができる。
 熱放射層2に用いられるバインダーとしては、熱放射フィラーを結着できる材料であれば特に限定されない。熱放射フィラーの結着性、熱放射フィラーおよびバインダーを含有する組成物の塗工性、及び熱放射層2としての皮膜性能の観点から、バインダーとしては、熱、又は光硬化性の樹脂が好ましい。光硬化性樹脂としては、例えば、エポキシ系樹脂、オキセタン系樹脂、ビニルエーテル系樹脂、ポリシロキサン系樹脂、ビニルエステル系樹脂および(メタ)アクリル系樹脂等を用いることができる。熱硬化性樹脂としては、例えば、エポキシ系樹脂、オキセタン系樹脂、ポリシロキサン系樹脂、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、フェノール系樹脂、ノボラック系樹脂、アミノ系樹脂、および架橋性官能基を有する(メタ)アクリル系樹脂、高分子多糖類等を用いることができる。
 バインダーとして用いられる硬化性樹脂としては、耐久性、密着性の点で熱硬化のエポキシ系樹脂、又は高分子多糖類が好ましく、これらを酸架橋剤で架橋し硬化することが好ましい。エポキシ系樹脂としては、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビフェノールのジグリシジルエーテル等が例示でき、1種または2種以上を用いることが出来る。高分子多糖類としては、キトサン、キチンおよびその誘導体から選ばれる1種または2種以上が挙げられる。また、酸架橋剤としては、無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水トリメリット酸、テトラヒドロ無水フタル酸、無水ピロメリット酸、無水ドデシルコハク酸、無水メチルナジック酸、無水ベンゾフェノンテトラカルボン酸、無水ブタンテトラカルボン酸などの酸無水物が挙げられ、それらの1種または2種以上を用いることが出来る。
 熱放射層2における熱放射フィラーの含有量は、好ましくは20~50質量%、より好ましくは30~40質量%である。この範囲内であることにより熱放射フィラー単体の熱放射率に近づけ、放熱性を向上させるメリットがある。熱放射層2におけるバインダーの含有量は、好ましくは50~80質量%、より好ましくは60~70質量%である。この範囲内であることにより熱放射フィラーを基材上に担持するメリットがある。
 熱放射層2の形成方法は、特に限定されない。例えば、熱放射フィラーおよびバインダーを含有する組成物を、絶縁層1又は金属層3の上に塗布、硬化することで熱放射層2を形成することが出来る。
 熱放射フィラーおよびバインダーを含有する組成物は、必要に応じて溶剤で希釈してから塗布、乾燥、さらに硬化させて熱放射層2を形成してもよい。
 熱放射フィラーおよびバインダーを含有する組成物の塗工方法としては、均一の厚みの薄膜を形成することが出来るグラビア塗工が好ましい。
 熱放射層の平均厚みとしては、0.1~5μmであることが好ましく、0.5~3μmであることがより好ましい。熱放射層の平均厚みが0.1~5μmであれば、熱放射層内の熱放射フィラー量を十分確保でき、十分な放熱性を得られる。
(金属層)
 金属層3は、熱放射層2と電子部品等の発熱体(チップ5)の間に備えられる。金属層3は、高い熱伝導性を有することで、熱放射層2にチップ5で発生した熱を効率よく伝えることができる。
 金属層3としては、金、銀、銅、鉄、ニッケル、アルミニウムおよびそれらの金属を含む合金などを用いることができる。熱伝導率が高い金属であることが好ましく、低価格や加工容易性の観点からは、金属層3として銅、アルミニウムおよびそれらの金属を含む合金を用いることが好ましい。
 金属層3の平均厚みは、20~100μmであることが好ましく、30~80μmであることがより好ましい。金属層3の平均厚みが20μm以上であると、熱放射性に優れた熱放射シート10が得られるとともに、熱放射シート10を製造する工程における金属層3の歪みや変形が少ないものとなる。金属層3の平均厚みが80μm以下であると、発熱体に熱放射シート10を接合する際の、熱放射シート10の発熱体に対する形状追従性を十分に確保することができる。従って、発熱体の表面が曲面である場合にも、発熱体と熱放射シート10との接触面積を十分に確保することができるため、発熱体の熱を効率よく放熱することができる。
(粘着層)
 粘着層4は、熱放射シート10を電子機器等の発熱体であるチップ5と接着するための層である。
 粘着層4に用いられる粘着剤としては、特に限定されない。絶縁性と粘着力が十分であれば良く、シリコーン系粘着剤、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることが出来る。中でも、粘着力の点でアクリル系粘着剤を用いることが好ましい。
 粘着剤は、溶剤を含んだもの、無溶剤のもの、何れも用いることができる。粘着剤の凝集力を高める目的で、粘着剤に応じた硬化剤を含んでも良い。硬化剤としては、例えば、イソシアネート系化合物、エポキシ系化合物、アジリジン系化合物、メラミン系化合物等を用いることができる。
 粘着層4の形成方法としては、例えば、金属層3または剥離シートの一方の面に、溶剤で希釈された粘着剤を塗布し、乾燥して熱硬化させる方法等が挙げられる。
 本発明に用いる粘着層4の平均厚みは、5~50μmであることが好ましく、8~20μmであることがより好ましい。粘着層4の平均厚みが5μm以上であると、粘着層4と、チップ5および金属層3との接合強度が十分に高く、絶縁性も満足できる熱放射シート10となる。粘着層4の平均厚みが50μm以下であると、発熱体の熱を、粘着層4を介して金属層3に効率よく伝導できる。
 粘着剤の塗布方法は、特に限定されない。例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーターなどを用いる方法が挙げられる。
 粘着層4の粘着力は、後述する測定方法を用いて測定したSUS304に対する粘着力が5N/25mm以上のものであることが好ましく、8N/25mm以上であることがより好ましく、10N/25mm以上であることがさらに好ましい。粘着層4の粘着力が5N/25mm以上であると、粘着層4と、チップ5および金属層3との接合強度が十分に高い熱放射シート10となる。
(粘着力の試験方法)
 粘着層4の粘着力は、以下に示す方法により求める。
 厚さ50μmのPETフィルム(東レ株式会社製、「ルミラー(登録商標)S-10」)を基材とし、基材上に粘着層4を形成して、試験用積層シートとする。次に、試験用積層シートを縦25mm、横100mmの大きさに切り取り、短冊状シートとする。次いで、SUS304からなる試験板上に、粘着層を試験板に向けて短冊状シートを積層する。その後、短冊状シート上を、2kgのゴムローラー(幅:約50mm)を1往復させて試験板と短冊状シートとを接合する。
 接合された試験板および短冊状シートを、23℃、湿度50%RHの環境下で24時間放置する。その後、JIS Z0237に準じて、剥離速度300mm/分で180°方向の引張試験を行い、短冊状シートの試験板に対する粘着力(N/25mm)を測定する。
 粘着層4は、粘着剤に絶縁性の熱伝導性フィラーを含有させてもよい。熱伝導性フィラーとしては、絶縁性で熱伝導性を有するものであればよい。例えば、金属酸化物、金属窒化物および金属水和物などから選択される1種または2種以上の粒子が挙げられる。金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、二酸化チタンなどが挙げられる。金属窒化物としては、窒化アルミニウム、窒化ホウ素、窒化珪素などが挙げられる。金属水和物としては、水酸化マグネシウム、水酸化アルミニウムなどが挙げられる。
 熱伝導性フィラーは、粉体であることが粘着層4へ均一に分散させる観点から好ましい。熱伝導性フィラーの粒子径は、累積質量50%粒子径(D50)が1~50μmであることが好ましく、3~30μmであることがより好ましい。また、熱伝導性フィラーの粒子径は、粘着層4の厚みに合せて適宜設定することが好ましい。累積質量50%粒子径(D50)が1~50μmであると、粘着層4に含まれる熱伝導性フィラーと、発熱体(チップ5)および金属層3との接触面積が十分に得られ、発熱体(チップ5)の熱を、粘着層4を介して金属層3に効率よく伝導できる。
 「累積質量50%粒子径(D50)」は、例えば、株式会社島津製作所製の商品名「SALD-200V ER」のレーザ回折式粒度分布測定装置を用いるレーザ回折式粒度分布測定により得られる。
(熱放射シートの製造方法)
 熱放射シート10の製造方法について特に制限はない。例えば、金属層3の片面に熱放射層2を形成し、その後、熱放射層2に絶縁層1をラミネートする。さらに金属層3のもう片面に粘着層4を貼り合せることで熱放射シート10を得ることが出来る。得られた熱放射シート10は、粘着層4の金属層3と貼り合せた面の反対側に、剥離シートが積層されることで、熱放射シート10を発熱体に接合するまでの間、剥離シートによって粘着層4を保護できる。熱放射シート10は、絶縁層1、熱放射層2、金属層3、および粘着層4がこの順で積層されていれば良く、必要に応じて各層の間に粘着剤層やラミネート層等の他の層を含んでもよい。
 熱放射シート10は、熱放射率が0.8~1であることが好ましく、より好ましくは0.9~1である。熱放射率が0.8~1であれば、十分な熱放射性が得られる。
 熱放射シート10は絶縁破壊電圧が1kV以上であることが好ましい。より好ましくは、2kV以上である。絶縁破壊電圧が1kV以上であれば、弱電用途への使用に問題がなく使用が可能となる。
<下部絶縁層、リード、表面絶縁層、チップ>
 本発明の一態様にかかるCOF型半導体パッケージに備えられた下部絶縁層9、リード8、表面絶縁層7、チップ5は従来公知の物を用いることができる。
 下部絶縁層9、リード8、表面絶縁層7は、全体で柔軟性を有しており、下部絶縁層9を例えばポリイミドとし、リード8を例えば銅とし、表面絶縁層7を例えばSR(ソルダーレジスト)層として、互いを積層して構成することができる。終端の一部が露出されたリード8の上部面には、半導体集積回路を有するチップ5が固定され、チップ5が固定されている周辺には、アンダーフィル層6が埋め込まれてチップを安定に固定している。アンダーフィル層6には、例えば異方導電性フィルム(Anisotropic Conductive Film:ACF)や非導電性ペースト(Non-Conductive Paste:NCP)などを用いることができる。
(第2実施形態)
 図3および図4は、本発明の第2実施形態にかかるCOF型半導体パッケージの断面模式図である。第2実施形態のCOF型半導体パッケージは、チップ5が複数あり、熱放射シート10が、この複数のチップ5を橋架けるように接着されている。このとき、チップ5は半導体パッケージ40のように一枚のシートに複数接着されていてもよく、半導体パッケージ50のように、1つのシートにチップ5が1つずつ接着されていてもよい。
 このように、複数のチップに対して一つの熱放射シート10が設けられている場合、各チップに熱放射シート10を接着させる必要が無くなり、パッケージングが容易になる。各チップを一体として扱うことができ、実装時にも一括でボンディングすることができる。
 「液晶表示装置」
 本発明の一態様に係る液晶表示装置は、上述のCOF型半導体パッケージ20、30、40または50を備える。COF型半導体パッケージは、LCDパネルと接続されて実装される。このようにすることで、LCDパネルのフレキシブルプリント配線板上に、ドライバICであるチップが実装される。
 以下、実施例により本発明をより具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(実施例1)
 絶縁層1として12μm厚のPETフィルム(東洋紡エステル(登録商標)フィルムE5100:東洋紡社製)に接着剤を1μm厚となるように塗工乾燥し、次いで熱放射層2と金属層3を有するカーボンコートアルミ金属シート(昭和電工製:カーボンコートアルミ箔 SDX(商標))のカーボンコート層上に貼り合せ、絶縁層1、熱放射層2、金属層3が順に積層された積層シートを形成した。熱放射層2は、熱放射フィラーとしてカーボンブラック、バインダーとしてキトサン誘導体をピロメリット酸により架橋させたものである。熱放射層2の平均厚みは1μmであり、金属層3は、平均厚み50μmのアルミ箔である。
 次いで、粘着層を作製した。粘着層を構成する粘着剤組成物は、アクリル系粘着剤(昭和電工株式会社製 ビニロール(登録商標) PSA  SV-6805 固形分 47% )100質量部、イソシアネート系架橋剤(東ソー株式会社製 コロネート(登録商標) HX 固形分100%)1質量部、及び希釈用溶剤の酢酸エチル100質量部を混合し、作製した。この粘着剤組成物を、剥離処理されたPETフィルム上にドクターブレードにより塗工し溶剤を乾燥させ、次いで剥離PETを被せて粘着シートを得た。この粘着シートを、金属層3と接着させることで粘着層を得た。
 このようにして作製された熱放射シートを、チップ上に接着し、チップの温度及び電気絶縁性を測定した。
(比較例1)
 熱放射シートを用いない場合のチップの温度及び電気絶縁性を測定した。
(比較例2~4)
 熱放射シートの構成を表1に示す構成として、チップの温度及び電気絶縁性を測定した。
(電気絶縁性の評価)
 JIS C2110-1に準拠した方法で、各実施例および各比較例で作製した熱放射シートの厚さ方向の絶縁破壊電圧を測定した。
 具体的には、縦100mm、横100mmの正方形の熱放射シートの剥離PETフィルムを剥がしたものを測定サンプルとして用いた。
 測定には菊水電子工業(株)製の耐電圧試験器(TOS5101)を使用し、上部電極は直径25mm、高さ25mm、下部電極は直径70mm、高さ15mmのものを使用した。
 昇圧はJIS C2110-1の60秒段階昇圧試験の条件に従って行い、サンプルが破壊された電圧を絶縁破壊電圧とした。
 得られた結果について、以下のように評価した。
○:1kV以上
×:1kV未満
(チップ温度の評価)
 回路基板(FR-4)に半導体チップ(0.5mm厚、9mm角)を実装した半導体装置を使用し、そのチップの上に実施例1、比較例1~4で作製したサンプルを貼りつけ、外気温25℃下、電圧5V、電力5Wにおけるチップの温度を測定した。測定のタイミングは、動作させてから温度が一定になった際の温度をチップ温度として測定した。チップの温度の測定方法は、チップと放熱積層シートの間にK熱電対用リード線(オメガ社製)を挟み、AS TOOL USB データロガー(アズワン社製)で測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1の構成のCOF型半導体パッケージのチップ温度と、比較例1~3の構成のCOF型半導体パッケージのチップ温度を比較すると、実施例1の構成のCOF型半導体パッケージのチップ温度が低くなっていることがわかる。すなわち、本発明の構成のCOF型半導体パッケージは、高い放熱性を示していることがわかる。
 また実施例1の構成のCOF型半導体パッケージと、比較例4の構成のCOF型半導体パッケージを比較すると、実施例1の構成のCOF型半導体パッケージは、電気絶縁性を有していることがわかる。すなわち、絶縁性を有する部分でも、当該COF型半導体パッケージを用いることができることがわかる。
1‥絶縁層、2‥熱放射層、3‥金属層、4‥粘着層、5‥チップ、6‥アンダーフィル層、7‥表面絶縁層、8‥リード、9‥下部絶縁層、10‥熱放射シート、20、30、40、50‥COF型半導体パッケージ

Claims (12)

  1.  フィルムと、
     前記フィルム上に付着されたチップと、
     前記チップ上に設けられ、粘着層と、金属層と、熱放射フィラーおよびバインダーを含有する熱放射層と、絶縁層とを順に具備する熱放射シートと、を備えるCOF型半導体パッケージ。
  2.  前記熱放射シートが、前記フィルムの前記チップが形成されていない面にさらに接着されている請求項1に記載のCOF型半導体パッケージ。
  3.  前記チップ上の熱放射シートと、前記フィルムの前記チップが形成されていない面にさらに接着された熱放射シートが、前記フィルムをはさんで対向する位置に接着されている請求項2に記載のCOF型半導体パッケージ。
  4.  前記絶縁層の平均厚みが5~50μmである請求項1~3のいずれか一項に記載のCOF型半導体パッケージ。
  5.  前記熱放射フィラーが炭素質材料である請求項1~4のいずれか一項に記載のCOF型半導体パッケージ。
  6.  前記炭素質材料が、カーボンブラック、黒鉛および気相法炭素繊維から選ばれる1種または2種以上の材料である請求項5に記載のCOF型半導体パッケージ。
  7.  前記熱放射層の平均厚みが0.1~5μmである請求項1~6のいずれか一項に記載のCOF型半導体パッケージ。
  8.  前記金属層の平均厚みが20~100μmである請求項1~7のいずれか一項に記載のCOF型半導体パッケージ。
  9.  前記金属層がアルミニウム、銅、及びこれらを含む合金のいずれかであることを特徴とする請求項1~8のいずれか一項に記載のCOF型半導体パッケージ。
  10.  前記粘着層の平均厚みが5~50μmである請求項1~9のいずれか一項に記載のCOF型半導体パッケージ。
  11.  前記チップが複数あり、
     前記熱放射シートが、前記複数のチップを橋架けるように接着された請求項1~10のいずれか一項に記載のCOF型半導体パッケージ。
  12.  請求項1~11のいずれか一項に記載のCOF型半導体パッケージを備えた液晶表示装置。
PCT/JP2016/051464 2015-01-29 2016-01-19 Cof型半導体パッケージ及び液晶表示装置 WO2016121579A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177020492A KR20170096050A (ko) 2015-01-29 2016-01-19 Cof형 반도체 패키지 및 액정 표시 장치
JP2016571962A JP6704860B2 (ja) 2015-01-29 2016-01-19 Cof型半導体パッケージ及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015787 2015-01-29
JP2015015787 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121579A1 true WO2016121579A1 (ja) 2016-08-04

Family

ID=56543196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051464 WO2016121579A1 (ja) 2015-01-29 2016-01-19 Cof型半導体パッケージ及び液晶表示装置

Country Status (4)

Country Link
JP (1) JP6704860B2 (ja)
KR (1) KR20170096050A (ja)
TW (1) TWI614856B (ja)
WO (1) WO2016121579A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481619A (zh) * 2017-09-29 2017-12-15 武汉天马微电子有限公司 显示模组和显示装置
WO2018074841A1 (ko) * 2016-10-18 2018-04-26 한국기계연구원 캐리어 필름, 이를 이용한 소자 전사방법 및 소자 전사방법을 이용한 전자제품 제조방법
WO2020248426A1 (zh) * 2019-06-13 2020-12-17 武汉华星光电技术有限公司 显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638433B (zh) * 2017-10-24 2018-10-11 英屬維京群島商艾格生科技股份有限公司 元件次黏著載具及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295733A (ja) * 1989-05-10 1990-12-06 Hagiwara Kogyo Kk 遠赤外線放射性複合フイルム
JP2007180574A (ja) * 2003-04-16 2007-07-12 Oki Electric Ind Co Ltd 半導体装置の放熱構造
JP2008028396A (ja) * 2006-07-20 2008-02-07 Samsung Electronics Co Ltd Cof型半導体パッケージ
JP2014160718A (ja) * 2013-02-19 2014-09-04 Big Technos Kk 熱放射性フィルム及び熱放射性粘着テープ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395306B (zh) * 2008-02-05 2013-05-01 矽品精密工業股份有限公司 半導體封裝件之散熱模組化結構及其製法
US8508056B2 (en) * 2009-06-16 2013-08-13 Dongbu Hitek Co., Ltd. Heat releasing semiconductor package, method for manufacturing the same, and display apparatus including the same
BR112014032223B1 (pt) * 2012-06-29 2021-10-19 Sony Corporation Unidade de exibição
KR101465580B1 (ko) * 2013-06-11 2014-11-26 에스케이씨 주식회사 방열시트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295733A (ja) * 1989-05-10 1990-12-06 Hagiwara Kogyo Kk 遠赤外線放射性複合フイルム
JP2007180574A (ja) * 2003-04-16 2007-07-12 Oki Electric Ind Co Ltd 半導体装置の放熱構造
JP2008028396A (ja) * 2006-07-20 2008-02-07 Samsung Electronics Co Ltd Cof型半導体パッケージ
JP2014160718A (ja) * 2013-02-19 2014-09-04 Big Technos Kk 熱放射性フィルム及び熱放射性粘着テープ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074841A1 (ko) * 2016-10-18 2018-04-26 한국기계연구원 캐리어 필름, 이를 이용한 소자 전사방법 및 소자 전사방법을 이용한 전자제품 제조방법
US11152256B2 (en) 2016-10-18 2021-10-19 Korea Institute Of Machinery & Materials Carrier film, element transfer method using same, and electronic product manufacturing method using element transfer method
CN107481619A (zh) * 2017-09-29 2017-12-15 武汉天马微电子有限公司 显示模组和显示装置
CN107481619B (zh) * 2017-09-29 2019-09-24 武汉天马微电子有限公司 显示模组和显示装置
WO2020248426A1 (zh) * 2019-06-13 2020-12-17 武汉华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
KR20170096050A (ko) 2017-08-23
JPWO2016121579A1 (ja) 2017-12-14
TW201640631A (zh) 2016-11-16
JP6704860B2 (ja) 2020-06-03
TWI614856B (zh) 2018-02-11

Similar Documents

Publication Publication Date Title
JP6704860B2 (ja) Cof型半導体パッケージ及び液晶表示装置
JP4993880B2 (ja) 異方導電性接着シート及び微細接続構造体
KR20160004326A (ko) 방열 시트
TWI476572B (zh) 散熱帶及其製造方法
KR101419426B1 (ko) 방열시트
JP7152020B2 (ja) 放熱シート
JP7232996B2 (ja) 電子部品搭載基板および電子機器
WO2015183896A1 (en) Enhanced pressure sensitive adhesive for thermal management applications
JP5581605B2 (ja) 異方導電性接着フィルムの製造方法
JP2018166166A (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP2007224111A (ja) 異方導電性接着シート及びその製造方法
JP4993877B2 (ja) 異方導電性接着シート及び微細接続構造体
TWI590750B (zh) 絕緣散熱薄片、散熱器及電子機器
JP4994653B2 (ja) 異方導電性接着シート
KR101983673B1 (ko) 방열 시트
JP7010323B2 (ja) 電子素子
KR20210071276A (ko) 향상된 수직 열전도도를 갖는 방열시트
JP2017118025A (ja) 電磁遮蔽放熱シートおよびヒートスプレッダー
JP2020057759A (ja) 電磁波シールドシート、および電子部品搭載基板
JP2007224112A (ja) 異方導電性接着シート及びその製造方法
KR101510109B1 (ko) 박막 열방사 시트
JP2011253859A (ja) 接着層付き基板、放熱性実装基板、接着層付き基板の製造方法、および放熱性実装基板の製造方法
JP2013159097A (ja) 積層構造体
KR101992534B1 (ko) 방열 시트
JP2007103545A (ja) 接続構造体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571962

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020492

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743183

Country of ref document: EP

Kind code of ref document: A1