WO2016121217A1 - 3次元造形物の製造方法、3次元造形物の製造装置、3次元造形物及び造形材料 - Google Patents

3次元造形物の製造方法、3次元造形物の製造装置、3次元造形物及び造形材料 Download PDF

Info

Publication number
WO2016121217A1
WO2016121217A1 PCT/JP2015/083504 JP2015083504W WO2016121217A1 WO 2016121217 A1 WO2016121217 A1 WO 2016121217A1 JP 2015083504 W JP2015083504 W JP 2015083504W WO 2016121217 A1 WO2016121217 A1 WO 2016121217A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
urethane resin
powder
aqueous medium
dimensional
Prior art date
Application number
PCT/JP2015/083504
Other languages
English (en)
French (fr)
Inventor
小杉 隆司
崇文 小杉
Original Assignee
株式会社アールテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アールテック filed Critical 株式会社アールテック
Priority to JP2016571790A priority Critical patent/JP6401801B2/ja
Priority to US15/547,412 priority patent/US10556380B2/en
Publication of WO2016121217A1 publication Critical patent/WO2016121217A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/218Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2475/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present invention provides a three-dimensional structure formed by a powder lamination method, which is a kind of modeling method using a 3D printer, a manufacturing method thereof, a manufacturing apparatus thereof, and a three-dimensional structure formed by a powder lamination method. It relates to the modeling material to be used.
  • the powder lamination method which is a kind of modeling method using a 3D printer, discharges and solidifies a modeling liquid having a function of an adhesive on a flatly arranged modeling material to form one layer of a three-dimensional modeled object. It is a method of forming a three-dimensional structure by forming and laminating this layer.
  • Patent Document 1 describes a technique using gypsum powder as a main material of a modeling material.
  • the present invention has been made in view of such problems, and in forming a three-dimensional structure by the powder lamination method, the strength is high, and the image is soft and can be imaged by an ultrasonic diagnostic apparatus. It aims at enabling it to form a three-dimensional structure.
  • the manufacturing method of the three-dimensional structure of the present invention includes a step of forming a three-dimensional structure by a powder lamination method using a modeling material in which urethane resin powder is mixed with gypsum powder, and the three-dimensional structure. And impregnating with urethane resin.
  • Another aspect of the method for producing a three-dimensional structure of the present invention further includes a step of immersing the three-dimensional structure in an aqueous medium after the step of impregnating the urethane resin is completed.
  • an antiseptic / antifungal agent is dissolved in the aqueous medium.
  • the other aspect in the manufacturing method of the three-dimensional structure according to the present invention is the hollow of the three-dimensional structure after the step of impregnating the urethane resin and before the step of immersing in the aqueous medium.
  • the method further includes forming a soft resin softer than the three-dimensional structure in the region.
  • the other aspect in the manufacturing method of the three-dimensional structure according to the present invention is such that the soft resin is formed using a urethane resin as a main material.
  • the other aspect in the manufacturing method of the three-dimensional structure according to the present invention is such that, in addition to the main material, the soft resin projects the soft resin formed in the hollow region in ultrasonic imaging. It is formed including an ultrasonic scattering material.
  • the urethane resin powder has a weight ratio of 5% to 60% with respect to the total weight of the modeling material.
  • the present invention provides a three-dimensional structure manufacturing apparatus that performs the above-described three-dimensional structure manufacturing method, a three-dimensional structure manufactured by the above-described three-dimensional structure manufacturing method, and the above-described three-dimensional structure.
  • the modeling material used with the manufacturing method of a molded article is included.
  • a three-dimensional structure having high strength can be formed in the formation of the three-dimensional structure by the powder lamination method. Furthermore, according to the present invention, it is possible to form a soft three-dimensional structure. In addition, according to the present invention, it is possible to form a three-dimensional structure that can be imaged by an ultrasonic diagnostic apparatus. For example, if the technique of the present invention is applied to the medical field, it is possible to form a three-dimensional structure that reproduces an individual patient's organ in a form closer to the real object. And can be used for surgical training using an ultrasonic diagnostic apparatus, and the quality of medical care can be improved.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a three-dimensional structure manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an example of a processing procedure in the three-dimensional structure manufacturing method executed by the three-dimensional structure manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example of a specific operation of the three-dimensional structure forming apparatus shown in FIG.
  • FIG. 4 shows the first embodiment of the present invention, and a three-dimensional structure manufactured after changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material shown in FIG. 1 (after immersion in an aqueous medium). It is a characteristic view which shows the result of a tensile strength test.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a three-dimensional structure manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an example of a processing procedure in the three
  • FIG. 5 shows the first embodiment of the present invention, and a three-dimensional structure (before urethane resin impregnation) manufactured by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material shown in FIG. It is a characteristic view which shows the result of the rubber hardness test of a three-dimensional structure (after urethane resin impregnation) and a three-dimensional structure (after aqueous medium immersion).
  • FIG. 6 shows the first embodiment of the present invention, and retains the shape of the three-dimensional structure manufactured by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material shown in FIG. It is a figure which shows the propriety of.
  • FIG. 6 shows the first embodiment of the present invention, and retains the shape of the three-dimensional structure manufactured by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material shown in FIG. It is a figure which shows the propriety of.
  • FIG. 7 is a block diagram which shows an example of schematic structure of the manufacturing apparatus of the three-dimensional structure based on the 2nd Embodiment of this invention.
  • FIG. 8 is a flowchart which shows an example of the process sequence in the manufacturing method of the three-dimensional structure performed with the manufacturing apparatus of the three-dimensional structure based on the 2nd Embodiment of this invention.
  • FIG. 9A is a diagram illustrating a three-dimensional structure obtained by ultrasonic imaging.
  • FIG. 9B shows a comparative example, and is an external view of a three-dimensional structure manufactured without forming a hollow region (that is, with a modeling material in which all of the soft resin is mixed with powder without forming a soft resin). is there.
  • FIG. 9A is a diagram illustrating a three-dimensional structure obtained by ultrasonic imaging.
  • FIG. 9B shows a comparative example, and is an external view of a three-dimensional structure manufactured without forming a hollow region (that is, with a modeling material in which all of the
  • FIG. 9C shows a comparative example, in which the three-dimensional structure shown in FIG. 9B manufactured without forming a hollow region (that is, with a modeling material in which all of the soft resin part is mixed with powder without forming a soft resin) is produced. It is a figure which shows the result of having carried out ultrasonic imaging
  • FIG. 9D is a diagram illustrating a result of ultrasonic imaging of the three-dimensional structure illustrated in FIG. 9A in which the soft resin is formed in the hollow region according to the second embodiment of this invention.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a three-dimensional structure manufacturing apparatus 100 according to the first embodiment of the present invention.
  • the three-dimensional structure manufacturing apparatus 100 includes an information input device 110, an information processing / control device 120, a three-dimensional structure formation apparatus 130, a first heat treatment apparatus 140, and urethane.
  • a resin impregnation device 150, a second heat treatment device 160, and an aqueous medium immersion device 170 are included.
  • the information input device 110 is a device that inputs various types of information including various types of data to the information processing / control device 120.
  • the information input device 110 may be constituted by, for example, a keyboard and a mouse in a personal computer, or may be a communication interface for connecting to a computer network.
  • the information processing / control device 120 is a device that processes various types of information input from the information input device 110 and controls the operation of the three-dimensional structure manufacturing apparatus 100 in an integrated manner. For example, the information processing / control device 120 controls each device (130 to 170) in the three-dimensional structure manufacturing device 100 based on various types of information input from the information input device 110.
  • the three-dimensional structure forming apparatus 130 forms a three-dimensional structure 300-1 by a powder lamination method using a modeling material 200 in which urethane resin powder is mixed with gypsum powder under the control of the information processing / control apparatus 120. It is a device to do.
  • the modeling material 200 is further mixed with a gypsum powder and an antiseptic / antifungal agent in addition to the urethane resin powder.
  • the molding material 200 in the present embodiment is a mixture of a gypsum powder and a urethane resin powder and an antiseptic / antifungal agent.
  • a silver-containing amorphous glass powder is used as an antiseptic / antifungal agent contained in the modeling material 200.
  • the urethane resin powder contained in the modeling material 200 preferably has a weight ratio of 5% to 60% with respect to the total weight of the modeling material 200. This is because when the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is less than 5%, the plaster becomes dominant and the finished three-dimensional model 300 becomes brittle due to insufficient strength, In addition, when the weight ratio of the urethane resin powder to the total weight of the modeling material 200 exceeds 60%, when the three-dimensional model 300 that is a finished product is stored (stored in an aqueous medium), This is because there is a problem that the shape cannot be maintained and collapses.
  • the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is in the range of 20% to 40%.
  • the antiseptic / antifungal agent contained in the modeling material 200 preferably has a weight ratio with respect to the total weight of the modeling material 200 in the range of 0.1% to 5%. This is because when the weight ratio of the antiseptic / antifungal agent to the total weight of the modeling material 200 is less than 0.1%, the antiseptic / antifungal function of the three-dimensional model 300 that is the finished product becomes insufficient. This is because it occurs.
  • the gypsum powder contained in the modeling material 200 preferably has a weight ratio of 35% to 94.9% with respect to the total weight of the modeling material 200.
  • the first heat treatment apparatus 140 is an apparatus that heat-treats the three-dimensional structure 300-1 formed by the three-dimensional structure formation apparatus 130 at a predetermined temperature (first heat treatment) according to the control of the information processing / control apparatus 120. It is. In the present embodiment, the first heat treatment apparatus 140 first heat-treats the three-dimensional structure 300-1 at a temperature of about 50 ° C. for 30 minutes to 1 hour, and then at a temperature of about 80 ° C. Heat treatment is performed for 30 minutes to 1 hour. In this example, the first heat treatment by the first heat treatment apparatus 140 causes the entire water content of the three-dimensional structure 300-1 to be removed to fix the gypsum particles.
  • the urethane resin impregnation device 150 is a device for impregnating the urethane resin into the three-dimensional structure 300-2 heat-treated by the first heat treatment device 140 in accordance with the control of the information processing / control device 120.
  • the impregnation method by the urethane resin impregnation apparatus 150 for example, a form in which the urethane resin is impregnated using a brush, a form in which the urethane resin is sprayed and impregnated, or a container filled with the urethane resin is 3 It is possible to adopt a form in which the three-dimensional structure 300-2 is immersed and impregnated.
  • the urethane resin used in the urethane resin impregnation apparatus 150 is not particularly limited as long as it can be cured with a liquid urethane resin, but the operation is simplified by using a one-component moisture-curing urethane resin. This is preferable.
  • a urethane resin obtained by diluting a mixture of a polyol and a polyisocyanate with butyl acetate, ethyl acetate, or the like is used as a material of the urethane resin used in the urethane resin impregnation apparatus 150.
  • the second heat treatment apparatus 160 heat-treats the three-dimensional structure 300-3, which has been subjected to the urethane resin impregnation treatment by the urethane resin impregnation apparatus 150, at a predetermined temperature (second heat treatment) in accordance with the control of the information processing / control apparatus 120. It is a device to do.
  • the second heat treatment apparatus 160 first heat-treats the three-dimensional structure 300-3 at a temperature of 15 ° C. or more for 12 to 24 hours, and then performs a temperature of 80 ° C. Heat treatment is performed for about 2 hours.
  • the urethane resin impregnated by the urethane resin impregnation apparatus 150 is cured by the second heat treatment by the second heat treatment apparatus 160.
  • the aqueous medium immersion apparatus 170 is an apparatus for immersing the three-dimensional structure 300-4 heat-treated by the second heat treatment apparatus 160 in the aqueous medium under the control of the information processing / control apparatus 120.
  • the aqueous medium is not particularly limited as long as the strength and softness of the three-dimensional structure 300 are not impaired, but water, physiological saline, buffer solution, aqueous organic solvent such as glycerin and ethylene glycol, or A mixture of these can be mentioned, and a water-soluble substance can also be dissolved in them.
  • an antiseptic / antifungal agent can be added to the aqueous medium described above.
  • the antiseptic / antifungal agent has antiseptic / antifungal functions for the three-dimensional structure 300-4 and an aqueous medium, and does not affect the strength and softness of the three-dimensional structure 300.
  • an antifungal agent in consideration of handling, surgical training, etc., those with low irritation are preferable, such as hydrogen peroxide, hypochlorous acid, sodium hypochlorite, phenoxyethanol, benzoic acid
  • examples thereof include sodium acid, paraoxybenzoic acid ester, and salts thereof, and can be used at appropriate concentrations that exhibit antiseptic and antifungal functions, respectively.
  • the aqueous medium immersion device 170 for example, immerses the three-dimensional structure 300-4 in an aqueous medium having a temperature of 80 ° C. to 95 ° C. for about 1 hour.
  • the three-dimensional structure manufacturing apparatus 100 performs a process of taking out the three-dimensional structure 300-5 from the aqueous medium immersion device 170.
  • FIG. 1 a mode in which two heat treatment apparatuses, a first heat treatment apparatus 140 and a second heat treatment apparatus 160 are provided, is shown, but in this embodiment, the present invention is limited to this aspect. Instead, for example, an embodiment in which one heat treatment apparatus is provided and both the first heat treatment by the first heat treatment apparatus 140 and the second heat treatment by the second heat treatment apparatus 160 are performed in this one heat treatment apparatus is also performed in this embodiment. Applicable to form. In addition, in the case where the three-dimensional structure 300 is naturally dried over a long period of time, an embodiment in which either one or both of the first heat treatment apparatus 140 and the second heat treatment apparatus 160 is not provided is also the present embodiment. It is applicable to.
  • FIG. 2 is a flowchart showing an example of a processing procedure in the method for manufacturing a three-dimensional structure executed by the three-dimensional structure manufacturing apparatus 100 according to the first embodiment of the present invention. The processing of the flowchart shown in FIG. 2 will be described below with reference to FIG.
  • the information input device 110 of FIG. 1 performs a process of inputting three-dimensional modeling data to the information processing / control device 120. Then, for example, the information processing / control device 120 processes the three-dimensional modeling data input from the information input device 110 to obtain slice data of N layers. In addition, the information processing / control device 120 sets the number N of layers. Thereafter, the information processing / control device 120 transmits information related to the slice data of each layer of the three-dimensional modeling data, information related to the number N of the three-dimensional modeling data, and the like to the three-dimensional modeling object forming device 130.
  • the three-dimensional structure forming apparatus 130 that has received the information related to the slice data of each layer of the three-dimensional modeling data and the information related to the number N of the three-dimensional modeling data from the information processing / control apparatus 120 is indicated by a broken line in FIG.
  • the following steps S2 to S6 surrounded by a frame are performed.
  • the three-dimensional structure forming apparatus 130 in FIG. 1 sets 1 to the stacking number n indicating the layer to be formed.
  • step S3 of FIG. 2 the three-dimensional structure forming device 130 of FIG. 1 supplies the nth layer of the forming material 200 to the modeling region portion according to the control of the information processing / control device 120.
  • step S4 of FIG. 2 the three-dimensional structure forming device 130 of FIG. 1 performs the nth layer based on the slice data of the nth layer of the three-dimensional structure data according to the control of the information processing / control device 120.
  • a modeling liquid having an adhesive function is applied to a predetermined position of the modeling material 200.
  • step S5 of FIG. 2 the three-dimensional structure forming apparatus 130 of FIG. 1 determines whether or not the currently set stacking number n is smaller than the stacking number N set in step S1.
  • step S5 if the currently set stacking number n is smaller than the stacking number N set in step S1 (S5 / YES), the processing on the slice data of all layers is still complete. If not, the process proceeds to step S6 in FIG.
  • the three-dimensional structure forming apparatus 130 in FIG. 1 adds 1 to the stacking number n indicating the formation target layer to change the stacking number n indicating the formation target layer. Then, it returns to step S3 and performs the process based on the changed stacking number n. That is, in the process of the flowchart shown in FIG. 2, the processes in steps S3 to S6 are repeated for the number N of layers set in step S1.
  • step S5 when the currently set stacking number n is not smaller than the stacking number N set in step S1 (S5 / NO), the processing on the slice data of all layers is completed. The process proceeds to step S7 in FIG.
  • step S7 in FIG. 2 the specific operation of the three-dimensional structure forming apparatus 130 in steps S2 to S6 described above will be described.
  • FIG. 3 is a schematic diagram showing an example of a specific operation of the three-dimensional structure forming apparatus 130 shown in FIG. Specifically, FIG. 3 shows an example of a specific operation of the three-dimensional structure forming apparatus 130 when forming the three-dimensional structure 300-1 by the powder lamination method.
  • the three-dimensional structure forming apparatus 130 includes a roller 131, a printer head 132, a modeling material storage unit 133, a piston 134, a modeling region unit 135, a piston 136, and a modeling material discharge unit 137. It is comprised.
  • the roller 131 performs an operation for supplying the modeling material 200 for each layer to the modeling region part 135.
  • the printer head 132 applies a modeling liquid having a function of an adhesive to a predetermined position of the modeling material 200 of each layer supplied to the modeling area unit 135 based on slice data of each layer of the three-dimensional modeling data.
  • the printer head 132 is assumed to operate integrally with the roller 131.
  • the modeling material storage unit 133 stores the modeling material 200 used when forming the three-dimensional model 300-1 by the powder lamination method.
  • the piston 134 operates when supplying the modeling material 200 stored in the modeling material storage unit 133 to the modeling region unit 135.
  • the modeling area part 135 is an area part for forming the three-dimensional structure 300-1.
  • the piston 136 operates when forming the three-dimensional structure 300-1.
  • the modeling material discharge unit 137 is for discharging excess modeling material 200 out of the modeling material 200 supplied to the modeling region unit 135.
  • the roller 131 and the printer head 132 are located on the left side of the modeling material storage unit 133.
  • the roller 131 moves to the right side of the sheet along with the printer head 132 while rotating.
  • a predetermined amount of the modeling material 200 stored in the modeling material storage unit 133 is supplied to the modeling region unit 135.
  • the roller 131 passes through the modeling area unit 135 together with the printer head 132, the modeling material 200 supplied to the modeling area unit 135 is stretched and flattened as shown in process P3 of FIG. A first layer of modeling material 200 is laid. Furthermore, as shown in process P ⁇ b> 3 in FIG. 3, excess modeling material 200 generated when the modeling material 200 is stretched by the roller 131 is discharged to the modeling material discharge unit 137. In the process P3 of FIG. 3, the roller 131 and the printer head 132 are shown moving to the right side of the modeling material discharge unit 137.
  • the printer head 132 converts the slice data of the first layer of the three-dimensional modeling data. Based on this, the modeling liquid 201 having the function of an adhesive is applied to a predetermined position of the modeling material 200 of the first layer. At this time, since various colors can be applied to the modeling liquid 201 applied from the printer head 132, for example, when the three-dimensional model 300-1 relating to the patient's organ is formed, the modeling liquid 201 has a shape closer to the actual one. A three-dimensional structure can be formed, and the affected part (lesioned part) can also be grasped.
  • step S4 in FIG. 3 corresponds to step S4 in FIG. Then, the modeling based on the slice data of the first layer of the three-dimensional modeling data is completed by the steps shown in the process P1 in FIG. 3 to the process P4 in FIG.
  • the printer head 132 and the roller 131 move to the left position of the modeling material storage unit 133 as shown in process P5 of FIG.
  • the piston 134 rises by a predetermined amount to push up the modeling material 200 stored in the modeling material storage unit 133, and the piston 136 descends by a predetermined amount to the modeling region unit 135.
  • a space for laying the second layer of modeling material 200 is created. Then, it transfers to the process shown to the process P1 of FIG. 3, and modeling of the 2nd layer or later is performed.
  • the process proceeds to step S7 in FIG.
  • the first heat treatment apparatus 140 in FIG. 1 predetermines the three-dimensional structure 300-1 formed by the three-dimensional structure formation apparatus 130 in accordance with the control of the information processing / control apparatus 120.
  • Heat treatment (first heat treatment) is performed at a temperature of
  • the first heat treatment apparatus 140 first heat-treats the three-dimensional structure 300-1 at a temperature of about 50 ° C. for 30 minutes to 1 hour, and then at a temperature of about 80 ° C. Heat treatment is performed for 30 minutes to 1 hour.
  • the urethane resin impregnation apparatus 150 of FIG. 1 applies to the three-dimensional structure 300-2 subjected to the first heat treatment in step S7 according to the control of the information processing / control apparatus 120.
  • a treatment for impregnating the urethane resin is performed.
  • the impregnation method by the urethane resin impregnation apparatus 150 for example, a form in which the urethane resin is impregnated using a brush, a form in which the urethane resin is sprayed and impregnated, or a container filled with the urethane resin is 3 It is possible to adopt a form in which the three-dimensional structure 300-2 is immersed and impregnated.
  • the urethane resin used in the urethane resin impregnation apparatus 150 is not particularly limited as long as it can be cured with a liquid urethane resin, but the operation is simplified by using a one-component moisture-curing urethane resin. This is preferable.
  • a urethane resin obtained by diluting a mixture of a polyol and a polyisocyanate with butyl acetate, ethyl acetate, or the like is used as a material of the urethane resin used in the urethane resin impregnation apparatus 150.
  • the second heat treatment apparatus 160 of FIG. 1 predetermines the three-dimensional structure 300-3 that has been impregnated with the urethane resin in step S8 in accordance with the control of the information processing / control apparatus 120.
  • Heat treatment (second heat treatment) is performed at a temperature of.
  • the second heat treatment apparatus 160 first heat-treats the three-dimensional structure 300-3 at a temperature of 15 ° C. or more for 12 to 24 hours, and then performs a temperature of 80 ° C. Heat treatment is performed for about 2 hours.
  • the aqueous medium immersion device 170 of FIG. 1 converts the three-dimensional structure 300-4 subjected to the second heat treatment in step S9 into the aqueous medium according to the control of the information processing / control device 120.
  • the treatment is immersed in
  • the three-dimensional structure manufacturing apparatus 100 performs a process of taking out the three-dimensional structure 300-5 from the aqueous medium immersion device 170.
  • any one of the first heat treatment in step S7 in FIG. 2 and the second heat treatment in step S9 in FIG. A mode in which one or both are omitted is also applicable to this embodiment.
  • the process of the flowchart shown in FIG. 2 is finished.
  • the three-dimensional structure 300 formed by including the gypsum and the urethane resin (and further including the antiseptic / antifungal agent) is manufactured by the powder lamination method.
  • FIG. 4 shows a first embodiment of the present invention, and a three-dimensional structure 300-5 (aqueous) manufactured by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material 200 shown in FIG. It is a characteristic view which shows the result of the tensile strength test after a medium immersion).
  • FIG. 4 shows each three-dimensional structure 300-5 immersed in an aqueous medium for one to two weeks in the aqueous medium immersion apparatus 170 of FIG. 1 (three-dimensional structure 300- of FIG. 5 described later).
  • 5 (after immersion in an aqueous medium)) is a characteristic diagram showing the results of a tensile strength test.
  • FIG. 4 shows each three-dimensional structure 300-5 immersed in an aqueous medium for one to two weeks in the aqueous medium immersion apparatus 170 of FIG. 1 (three-dimensional structure 300- of FIG. 5 described later).
  • 5 (after immersion in an aqueous medium)) is a characteristic diagram showing the results of a tens
  • FIG. 4 shows the results of a tensile strength test until each three-dimensional structure 300-5 is broken. That is, the end (upper right corner) of each graph shown in FIG. 4 indicates that each test piece was broken by the load.
  • FIG. 4 shows the results of a tensile strength test with the distance between marked lines of each test piece set to 50 mm.
  • FIG. 4 shows the results obtained by using an “AutoGraph AG-IS 50 kN” tensile strength tester manufactured by Shimadzu Corporation.
  • the three-dimensional structure 300-5 in which the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is 10%, 20%, 30%, and 40% It was found that the tensile strength was higher than that of a three-dimensional structure in which the weight ratio of the urethane resin powder to the total weight was 0% (that is, the urethane resin powder was not mixed as the modeling material 200).
  • the weight ratio of the urethane resin powder contained in the modeling material 200 to the total weight of the modeling material 200 is in the range of 5% to 60%. In this regard, FIG.
  • the three-dimensional structure 300-5 in which the weight ratio of the urethane resin powder to 5% is 0% of the weight ratio of the urethane resin powder to the total weight of the modeling material 200 (that is, the urethane resin powder is not mixed as the modeling material 200). It has been found that the tensile strength is higher than that of a three-dimensional structure.
  • the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is in the range of 20% to 40%.
  • the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is in the range of 20% to 40%.
  • FIG. 5 shows a first embodiment of the present invention, and a three-dimensional structure 300-2 (urethane produced by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material 200 shown in FIG.
  • FIG. 6 is a characteristic diagram showing the results of rubber hardness tests of a three-dimensional structure 300-3 (after urethane resin impregnation) and a three-dimensional structure 300-5 (after immersion in an aqueous medium) before resin impregnation.
  • the three-dimensional structure 300-5 (after immersion in an aqueous medium) in FIG. 5 is immersed in the aqueous medium for one to two weeks in the aqueous medium immersion apparatus 170 in FIG.
  • FIG. 5 shows the results obtained using a durometer type A rubber hardness tester.
  • each of the three-dimensional shaped objects 300-5 (after immersion in an aqueous medium) is immersed in the aqueous medium, thereby each of the three-dimensional structure 300-2 before being immersed in the aqueous medium. It was found to be significantly softer than (before urethane resin impregnation) and the three-dimensional structure 300-3 (after urethane resin impregnation). Further, from the results of the rubber hardness test shown in FIG. 5, each of the three-dimensional shaped objects 300-5 (after immersion in an aqueous medium) is 3% in which the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is 0%.
  • the three-dimensional structure 300-3 (after impregnation with the urethane resin) in which the weight ratio of the urethane resin powder to the total weight of the modeling material 200 is 5%, 20%, and 30% is It was found that the impregnation with the urethane resin is slightly softer than the three-dimensional structure 300-2 (before the impregnation with the urethane resin) before impregnation with the urethane resin.
  • FIG. 6 shows the first embodiment of the present invention, and the underwater of the three-dimensional structure 300-5 manufactured by changing the weight ratio (%) of the urethane resin powder to the total weight of the modeling material 200 shown in FIG. It is a figure which shows the propriety of the shape maintenance in storage.
  • the three-dimensional structure 300-5 that can retain the shape during underwater storage is indicated by “ ⁇ ”
  • the three-dimensional structure 300-5 that cannot retain the shape during underwater storage is indicated by “ ⁇ ”.
  • setting the upper limit of the weight ratio of the urethane resin powder to the total weight of the modeling material 200 to be 60% indicates that the three-dimensional model 300, which is a finished product when stored in an aqueous medium, from the results shown in FIG. From the standpoint of maintaining the shape of
  • a three-dimensional structure 300 is formed by a powder lamination method using a modeling material in which urethane resin powder is mixed with gypsum powder. Since the urethane resin is impregnated, as described with reference to FIG. 4, the strength is higher than that of the three-dimensional structure formed using the modeling material in which the urethane resin powder is not mixed with the gypsum powder (0%). A three-dimensional structure can be formed. In addition, as described with reference to FIG. 5, by impregnating the urethane resin, the three-dimensional structure 300 before being impregnated with the urethane resin can be slightly softened.
  • the three-dimensional structure 300 is immersed in the aqueous medium, so that it is softer as described with reference to FIG.
  • a three-dimensional structure can be formed.
  • the technique of this embodiment is applied to the medical field, it is possible to form a three-dimensional structure that reproduces an individual patient's organ in a form that is closer to the real object. It is possible to improve the quality of medical care.
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a three-dimensional structure manufacturing apparatus 400 according to the second embodiment of the present invention.
  • the same reference numerals are given to the same configurations as the schematic configuration of the three-dimensional structure manufacturing apparatus 100 according to the first embodiment shown in FIG. 1, and the detailed description thereof is omitted.
  • the three-dimensional structure manufacturing apparatus 400 includes an information input device 110, an information processing / control device 120, a three-dimensional structure formation apparatus 130, a first heat treatment apparatus 140, and urethane.
  • the apparatus includes a resin impregnation apparatus 150, a second heat treatment apparatus 160, a soft resin forming apparatus 410, a third heat treatment apparatus 420, and an aqueous medium immersion apparatus 430.
  • the information input device 110, the information processing / control device 120, the three-dimensional structure forming device 130, the first heat treatment device 140, the urethane resin impregnation device 150, and the second heat treatment device 160 are shown in FIG. Since it is the same as that of each structure in the manufacturing apparatus 100 of the three-dimensional structure based on 1 embodiment, the description is abbreviate
  • the soft resin forming apparatus 410 is an apparatus that forms soft resin softer than the three-dimensional structure in the hollow area of the three-dimensional structure 300-4 according to the control of the information processing / control device 120.
  • the soft resin 500 used in the soft resin forming apparatus 410 is formed using a urethane resin in which a polyisocyanate compound or the like is mixed with a polyol compound as a main material.
  • the soft resin 500 in this embodiment includes a main component of a polyol compound and a curing agent such as a polyisocyanate compound (for example, a curing agent including polyisocyanate, diisononyl phthalate (DINP) and hexamethylene diisocyanate). And a two-component mixed urethane resin as a main material.
  • the polyisocyanate preferably has a weight ratio in the range of 10% to 20% with respect to the total weight of the curing agent, and diisononyl phthalate is the total of the curing agent.
  • the weight ratio with respect to the weight is preferably in the range of 80% to 90%, and the weight ratio of hexamethylene diisocyanate with respect to the total weight of the curing agent and the like is preferably 0.15% or less.
  • the soft resin 500 is an ultrasonic scattering material for projecting the soft resin formed in the hollow region of the three-dimensional structure 300 in ultrasonic imaging. It shall be formed including.
  • urethane resin powder is used as the ultrasonic scattering material.
  • the present invention is not limited to this.
  • carbon powder or gypsum powder is used.
  • a pigment may be mixed with the soft resin 500 in the present embodiment so that various colors can be applied to the soft resin formed on the three-dimensional structure 300.
  • the ultrasonic scattering material contained in the soft resin 500 is a two-component mixed urethane contained in the soft resin 500 from the viewpoint of projecting the soft resin formed in the hollow region of the three-dimensional structure 300 in ultrasonic imaging.
  • the weight ratio with respect to the total weight of the resin is preferably in the range of 10% to 25%. This is because, when the weight ratio of the ultrasonic scattering material to the total weight of the two-component mixed urethane resin contained in the soft resin 500 is less than 10% or more than 25%, three-dimensional modeling is performed in ultrasonic imaging. This is because it becomes difficult to project the soft resin formed in the hollow region of the object 300.
  • the third heat treatment apparatus 420 heat-treats the three-dimensional structure 300-6 on which the soft resin sr is formed in the soft resin forming apparatus 410 at a predetermined temperature according to the control of the information processing / control apparatus 120 (third heat treatment). It is a device to do.
  • the third heat treatment apparatus 420 performs heat treatment on the three-dimensional structure 300-6 at a temperature of about 60 ° C. for about 3 hours.
  • the soft resin sr in the three-dimensional structure 300-6 is cured by the third heat treatment by the third heat treatment apparatus 420.
  • the aqueous medium immersion apparatus 430 is an apparatus for immersing the three-dimensional structure 300-7 heat-treated by the third heat treatment apparatus 420 in the aqueous medium under the control of the information processing / control apparatus 120.
  • the aqueous medium is not particularly limited as long as the strength and softness of the three-dimensional structure 300 are not impaired, but water, physiological saline, buffer solution, aqueous organic solvent such as glycerin and ethylene glycol, or A mixture of these can be mentioned, and a water-soluble substance can also be dissolved in them.
  • an antiseptic / antifungal agent can be added to the aqueous medium described above.
  • the antiseptic / antifungal agent has a preservative / antifungal function for the three-dimensional structure 300-7 and an aqueous medium, and does not affect the strength and softness of the three-dimensional structure 300.
  • an antifungal agent in consideration of handling, surgical training, etc., those with low irritation are preferable, such as hydrogen peroxide, hypochlorous acid, sodium hypochlorite, phenoxyethanol, benzoic acid Examples thereof include sodium acid, paraoxybenzoic acid ester, and salts thereof, and can be used at appropriate concentrations that exhibit antiseptic and antifungal functions, respectively.
  • the aqueous medium immersion device 430 for example, immerses the three-dimensional structure 300-7 in an aqueous medium having a temperature of 80 ° C. to 95 ° C. for about 1 hour.
  • the three-dimensional structure manufacturing apparatus 400 performs a process of taking out the three-dimensional structure 300-8 from the aqueous medium immersion device 430.
  • FIG. 7 an embodiment in which three heat treatment apparatuses, the first heat treatment apparatus 140, the second heat treatment apparatus 160, and the third heat treatment apparatus 420 are provided, is shown in the present embodiment.
  • one heat treatment apparatus is provided, and the first heat treatment by the first heat treatment apparatus 140, the second heat treatment by the second heat treatment apparatus 160, and the first heat treatment apparatus are provided in one heat treatment apparatus.
  • a mode in which the third heat treatment by the third heat treatment apparatus 420 is also applicable to this embodiment.
  • at least one of the first heat treatment apparatus 140, the second heat treatment apparatus 160, and the third heat treatment apparatus 420, or its A mode in which not all are provided is also applicable to this embodiment.
  • the soft resin sr in the three-dimensional structure 300-6 is reacted for a long time without providing the third heat treatment apparatus 420, a reaction of about 24 hours is required at room temperature.
  • FIG. 8 is a flowchart showing an example of a processing procedure in the method for manufacturing a three-dimensional structure executed by the three-dimensional structure manufacturing apparatus 400 according to the second embodiment of the present invention.
  • the processing of the flowchart shown in FIG. 8 will be described below with reference to FIG.
  • the same step numbers are assigned to the same processing steps as the processing of the flowchart in the first embodiment shown in FIG. 2, and detailed description thereof is omitted.
  • the soft resin forming apparatus 410 of FIG. 7 is softer than the three-dimensional structure in the hollow region of the three-dimensional structure 300-4 according to the control of the information processing / control apparatus 120.
  • a process of forming a resin is performed.
  • the soft resin 500 used in the soft resin forming apparatus 410 includes, as a main material, a urethane resin that is a two-component mixture of a main component of a polyol compound and a curing agent such as a polyisocyanate compound.
  • an ultrasonic scattering material for projecting the soft resin formed in the hollow region of the three-dimensional structure 300 in ultrasonic imaging is included.
  • the third heat treatment apparatus 420 of FIG. 7 performs the three-dimensional structure 300- in which the soft resin sr is formed in the soft resin forming apparatus 410 according to the control of the information processing / control apparatus 120. 6 is heat-treated at a predetermined temperature (third heat treatment).
  • the third heat treatment apparatus 420 performs heat treatment on the three-dimensional structure 300-6 at a temperature of about 60 ° C. for about 3 hours.
  • the aqueous medium immersion device 430 of FIG. 7 converts the three-dimensional structure 300-7 heat-treated by the third heat treatment device 420 according to the control of the information processing / control device 120 to the aqueous medium.
  • the treatment is immersed in
  • the three-dimensional structure manufacturing apparatus 400 performs a process of taking out the three-dimensional structure 300-8 from the aqueous medium immersion device 430.
  • a mode in which at least one or all of the third heat treatments in step S22 are omitted is also applicable to this embodiment.
  • the soft resin sr in the three-dimensional structure 300-6 is reacted over a long period of time without performing the third heat treatment in step S22 of FIG. 8, a reaction of about 24 hours is required at room temperature.
  • a three-dimensional structure 300 including gypsum and urethane resin (further including an antiseptic / antifungal agent) and a soft resin sr is manufactured by a powder lamination method. Is done.
  • the ultrasonic imaging described below was performed using an ultrasonic diagnostic apparatus “LogiQ-S8” manufactured by GE Healthcare, with a frequency Fq of 8 MHz and a frame rate FR of 36 at the time of imaging. Is.
  • FIG. 9A is a diagram illustrating a three-dimensional structure 300 obtained by ultrasonic imaging. Specifically, FIG. 9A shows three-dimensional structure divided pieces 300a and 300b obtained by dividing a three-dimensional structure 300 obtained by ultrasonic imaging into two. FIG. 9B shows a comparative example of a three-dimensional structure 300 manufactured without forming a hollow region (that is, without forming a soft resin, and using a modeling material in which all soft resin portions are mixed with powder). It is an external view.
  • FIG. 9C shows a comparative example, and the three-dimensional structure 300 of FIG. 9B manufactured without forming a hollow region (that is, with a modeling material in which all of the soft resin is mixed with powder without forming a soft resin). It is a figure which shows the result of having carried out ultrasonic imaging
  • the inside of the three-dimensional structure 300 cannot be projected in ultrasonic imaging.
  • the inside of the three-dimensional structure 300 obtained as a result shown in FIG. 9C is a modeling material in which a hollow region is not formed (that is, a soft resin portion is not formed and all soft resin portions are mixed with powder).
  • the ultrasonic wave is absorbed in the vicinity of the surface of the three-dimensional structure 300 and is not propagated to the inside, so that only the contour is displayed.
  • FIG. 9D is a diagram showing a result of ultrasonic imaging of the three-dimensional structure 300 of FIG. 9A in which the soft resin sr is formed in the hollow region according to the second embodiment of the present invention.
  • the region where the soft resin sr is formed in the three-dimensional structure 300 can be projected in ultrasonic imaging. This is considered to be obtained as a result of including the above-described ultrasonic scattering material in the soft resin 500.
  • the three-dimensional structure that produced the ultrasonic imaging result of FIG. 9C was manufactured only with the modeling material mixed with the powder, and the ultrasonic wave did not propagate to the inside, whereas the ultrasonic imaging result of FIG. 9D. Since the three-dimensional structure provided with the hollow region is provided inside, the thickness of the surface portion made of the molding material mixed with the powder is thin, and the ultrasonic wave reaches the soft resin sr formed in the hollow region.
  • the vertical black belt-like region near the center in FIG. 9D corresponds to the upper portion of the black belt and is formed in the outer shell portion of the hollow region made of the modeling material mixed with the powder and the hollow region below the hollow region. Since air entered during the ultrasonic imaging between the formed soft resin and ultrasonic waves did not propagate to the soft resin, the soft resin containing the ultrasonic scattering material could not be projected and was black. This is a band-like region. If air does not enter, the ultrasonic wave propagates through the soft resin and the part where the ultrasonic wave is scattered appears in white just like the left and right sides of the black belt-like region. It has no effect.
  • the soft resin sr that is softer than the three-dimensional structure is formed in the hollow region of the three-dimensional structure 300, in addition to the effects of the first embodiment.
  • the three-dimensional structure 300 having portions with different softness can be formed.
  • the soft resin includes an ultrasonic scattering material for projecting the soft resin formed in the hollow region of the three-dimensional structure 300 in ultrasonic imaging. Therefore, it is possible to form the three-dimensional structure 300 that can be imaged by the ultrasonic diagnostic apparatus.
  • the technique of the present embodiment is applied to the medical field, for example, by reproducing a lesion portion with a soft resin sr, it is possible to form a three-dimensional structure that reproduces an individual patient's organ in a form closer to the real thing. Therefore, for example, the three-dimensional structure can be used for general surgical training, surgical training using an ultrasonic diagnostic apparatus, and the like, and it is possible to improve medical quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

 3次元造形物の製造装置(100)は、石膏粉末にウレタン樹脂粉末を混合させた造形材料(200)を用いて、粉体積層法により3次元造形物(300)を形成する3次元造形物形成装置(130)と、3次元造形物(300)に対してウレタン樹脂を含浸させるウレタン樹脂含浸装置(150)を備える。さらに、3次元造形物の製造装置(100)は、ウレタン樹脂含浸装置(150)によるウレタン樹脂の含浸が終了した後、3次元造形物(300)を水性媒体に浸漬する水性媒体浸漬装置(170)を備える。これにより、粉体積層法による3次元造形物の形成において、強度が高い3次元造形物を形成することができる。さらには、柔らかい3次元造形物を形成することもできる。

Description

3次元造形物の製造方法、3次元造形物の製造装置、3次元造形物及び造形材料
 本発明は、3Dプリンタによる造形法の一種である粉体積層法により形成された3次元造形物、その製造方法及びその製造装置、並びに、粉体積層法により3次元造形物を形成する際に用いる造形材料に関するものである。
 3Dプリンタによる造形法の一種である粉体積層法は、平坦に配置された造形材料に対して接着剤の機能を有する造形液を吐出して固化することで3次元造形物の1つの層を形成し、この層を積層することによって3次元造形物を形成する手法である。
 従来の粉体積層法による技術として、例えば下記の特許文献1には、造形材料の主材料として石膏粉末を用いる技術が記載されている。
特開2014-188888号公報
 しかしながら、特許文献1に記載の技術では、造形材料の主材料として石膏粉末を用いるため、完成品である3次元造形物がとても脆い(強度が低い)物となる。即ち、従来の技術では、粉体積層法による3次元造形物の形成において、強度が高く、更には、柔らかく、超音波診断装置による画像撮影が可能な3次元造形物を形成することが困難であるという問題があった。
 本発明は、このような問題点に鑑みてなされたものであり、粉体積層法による3次元造形物の形成において、強度が高く、更には、柔らかく、超音波診断装置による画像撮影が可能な3次元造形物を形成できるようにすることを目的とする。
 本発明の3次元造形物の製造方法は、石膏粉末にウレタン樹脂粉末を混合させた造形材料を用いて、粉体積層法により3次元造形物を形成する工程と、前記3次元造形物に対してウレタン樹脂を含浸させる工程とを有する。
 本発明の3次元造形物の製造方法における他の態様は、前記ウレタン樹脂を含浸させる工程が終了した後、前記3次元造形物を水性媒体に浸漬する工程を更に有する。
 また、本発明の3次元造形物の製造方法におけるその他の態様は、前記水性媒体には、防腐・防カビ剤が溶解されている。
 また、本発明の3次元造形物の製造方法におけるその他の態様は、前記ウレタン樹脂を含浸させる工程が終了した後であって前記水性媒体に浸漬する工程の前に、前記3次元造形物の中空領域に当該3次元造形物よりも柔らかい軟質樹脂を形成する工程を更に有する。
 また、本発明の3次元造形物の製造方法におけるその他の態様は、前記軟質樹脂は、ウレタン樹脂を主材料として形成されている。
 また、本発明の3次元造形物の製造方法におけるその他の態様は、前記軟質樹脂は、前記主材料に加えて、超音波撮影において前記中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されている。
 また、本発明の3次元造形物の製造方法におけるその他の態様は、前記ウレタン樹脂粉末は、前記造形材料の総重量に対する重量比率が5%~60%である。
 また、本発明は、上述した3次元造形物の製造方法を実行する3次元造形物の製造装置、上述した3次元造形物の製造方法により製造された3次元造形物、及び、上述した3次元造形物の製造方法で用いる造形材料を含む。
 本発明によれば、粉体積層法による3次元造形物の形成において、強度が高い3次元造形物を形成することができる。さらに、本発明によれば、柔らかい3次元造形物を形成することもできる。加えて、本発明によれば、超音波診断装置による画像撮影が可能な3次元造形物を形成することもできる。例えば本発明の技術を医療分野に適用すれば、個々の患者の臓器をより実物に近い形で再現した3次元造形物を形成することができるため、例えばその3次元造形物を一般の手術トレーニングや超音波診断装置を利用した手術トレーニング等に用いることができ、医療の質の向上を図ることが可能となる。
図1は、本発明の第1の実施形態に係る3次元造形物の製造装置の概略構成の一例を示すブロック図である。 図2は、本発明の第1の実施形態に係る3次元造形物の製造装置により実行される3次元造形物の製造方法における処理手順の一例を示すフローチャートである。 図3は、図1に示す3次元造形物形成装置の具体的な動作の一例を示す模式図である。 図4は、本発明の第1の実施形態を示し、図1に示す造形材料の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物(水性媒体浸漬後)の引張強度試験の結果を示す特性図である。 図5は、本発明の第1の実施形態を示し、図1に示す造形材料の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物(ウレタン樹脂含浸前)、3次元造形物(ウレタン樹脂含浸後)、及び、3次元造形物(水性媒体浸漬後)のゴム硬度試験の結果を示す特性図である。 図6は、本発明の第1の実施形態を示し、図1に示す造形材料の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物の水中保管における形状保持の可否を示す図である。 図7は、本発明の第2の実施形態に係る3次元造形物の製造装置の概略構成の一例を示すブロック図である。 図8は、本発明の第2の実施形態に係る3次元造形物の製造装置により実行される3次元造形物の製造方法における処理手順の一例を示すフローチャートである。 図9Aは、超音波撮影を行った3次元造形物を示す図である。 図9Bは、比較例を示し、中空領域を形成せずに(即ち軟質樹脂を形成せずに軟質樹脂の部分も全て粉末を混合させた造形材料で)製造した3次元造形物の外観図である。 図9Cは、比較例を示し、中空領域を形成せずに(即ち軟質樹脂を形成せずに軟質樹脂の部分も全て粉末を混合させた造形材料で)製造した図9Bの3次元造形物を超音波撮影した結果を示す図である。 図9Dは、本発明の第2の実施形態を示し、中空領域に軟質樹脂を形成した図9Aの3次元造形物を超音波撮影した結果を示す図である。
 以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。
(第1の実施形態)
 まず、本発明の第1の実施形態に係る3次元造形物の製造装置の概略構成について説明する。
 図1は、本発明の第1の実施形態に係る3次元造形物の製造装置100の概略構成の一例を示すブロック図である。
 本実施形態に係る3次元造形物の製造装置100は、図1に示すように、情報入力装置110、情報処理・制御装置120、3次元造形物形成装置130、第1の熱処理装置140、ウレタン樹脂含浸装置150、第2の熱処理装置160、及び、水性媒体浸漬装置170を有して構成されている。
 情報入力装置110は、各種のデータを含む各種の情報を情報処理・制御装置120に対して入力する装置である。この情報入力装置110は、例えば、パーソナルコンピュータにおけるキーボード及びマウスから構成されていても、また、コンピュータネットワークに接続するための通信インターフェイスであってもよい。
 情報処理・制御装置120は、情報入力装置110から入力された各種の情報を処理し、また、3次元造形物の製造装置100における動作を統括的に制御する装置である。例えば、情報処理・制御装置120は、情報入力装置110から入力された各種の情報に基づいて、3次元造形物の製造装置100における各装置(130~170)を制御する。
 3次元造形物形成装置130は、情報処理・制御装置120の制御に従って、石膏粉末にウレタン樹脂粉末を混合させた造形材料200を用いて、粉体積層法により3次元造形物300-1を形成する装置である。なお、本実施形態においては、造形材料200には、石膏粉末にウレタン樹脂粉末に加えて更に防腐・防カビ剤が混合されている。
 ここで、造形材料200について詳しく説明する。
 本実施形態における造形材料200は、上述したように、石膏粉末にウレタン樹脂粉末及び防腐・防カビ剤が混合されている。具体的に、本実施形態では、造形材料200に含まれる防腐・防カビ剤として、銀含有非晶質ガラス粉末を用いる。
 以下に、造形材料200に含まれる各粉末の重量比率について記載する。
 造形材料200に含まれるウレタン樹脂粉末は、造形材料200の総重量に対する重量比率が5%~60%の範囲であることが好適である。これは、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が5%未満になると、石膏が支配的になって完成品である3次元造形物300が強度不足で脆くなるという不具合が生じ、また、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が60%を超えると、完成品である3次元造形物300を保管(水性媒体中の保管)する際にその3次元造形物300の形状が保てず崩れてしまうという不具合が生じるためである。さらに、完成品である3次元造形物300の強度を高くするという観点からは、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が20%~40%の範囲であることが最適である。また、造形材料200に含まれる防腐・防カビ剤は、造形材料200の総重量に対する重量比率が0.1%~5%の範囲であることが好適である。これは、造形材料200の総重量に対する防腐・防カビ剤の重量比率が0.1%未満になると、完成品である3次元造形物300の防腐・防カビ機能が不十分になるという不具合が生じるためである。また、造形材料200に含まれる石膏粉末は、造形材料200の総重量に対する重量比率が35%~94.9%の範囲であることが好適である。
 第1の熱処理装置140は、情報処理・制御装置120の制御に従って、3次元造形物形成装置130で形成された3次元造形物300-1を所定の温度で熱処理(第1の熱処理)する装置である。本実施形態においては、第1の熱処理装置140は、3次元造形物300-1に対して、最初に、温度50℃程度で30分~1時間の熱処理を行い、次いで、温度80℃程度で30分~1時間の熱処理を行う。本例では、この第1の熱処理装置140による第1の熱処理により、3次元造形物300-1の全体の水分をとばして石膏粒子間を固着させる。
 ウレタン樹脂含浸装置150は、情報処理・制御装置120の制御に従って、第1の熱処理装置140で熱処理された3次元造形物300-2に対してウレタン樹脂を含浸させる装置である。ここで、ウレタン樹脂含浸装置150による含浸方法としては、例えば、刷毛を用いてウレタン樹脂を含浸させる形態や、ウレタン樹脂をスプレーで吹き付けて含浸させる形態、或いは、ウレタン樹脂で満たされた容器に3次元造形物300-2を浸漬して含浸させる形態等を採ることが可能である。また、本実施形態においては、ウレタン樹脂含浸装置150で用いるウレタン樹脂としては、液状のウレタン樹脂で硬化可能であれば特に限定されないが、1液湿気硬化型ウレタン樹脂を用いることにより作業の簡素化を図ることができ好ましい。また、本実施形態においては、ウレタン樹脂含浸装置150で用いるウレタン樹脂の材料として、ポリオールとポリイソシアネートの混合物を酢酸ブチルや酢酸エチルなどで希釈したウレタン樹脂を用いる。
 第2の熱処理装置160は、情報処理・制御装置120の制御に従って、ウレタン樹脂含浸装置150でウレタン樹脂含浸処理がなされた3次元造形物300-3を所定の温度で熱処理(第2の熱処理)する装置である。本実施形態においては、第2の熱処理装置160は、3次元造形物300-3に対して、最初に、温度15℃以上の温度で12時間~24時間の熱処理を行い、次いで、温度80℃程度で2時間程度の熱処理を行う。本例では、この第2の熱処理装置160による第2の熱処理により、ウレタン樹脂含浸装置150で含浸させたウレタン樹脂を硬化させる。
 水性媒体浸漬装置170は、情報処理・制御装置120の制御に従って、第2の熱処理装置160で熱処理された3次元造形物300-4を水性媒体に浸漬する装置である。ここで、水性媒体とは、3次元造形物300の強度と柔らかさを損なうことがなければ特に限定されないが、水、生理食塩水、緩衝液、グリセリンやエチレングリコール等の水性有機溶媒、または、これらの混合物等を挙げることができ、それらに水溶性の物質を溶解させることもできる。また、1つの態様として、上述した水性媒体に防腐・防カビ剤を添加することができる。防腐・防カビ剤は、3次元造形物300-4及び水性媒体の防腐・防カビ機能を有し、3次元造形物300の強度と柔らかさに影響を及ぼすことがない、水溶性の防腐・防カビ剤であれば特に限定されないが、取扱いや手術トレーニング等を行うことを考慮すれば、刺激性の低いものが好ましく、過酸化水素、次亜塩素酸、次亜塩素酸ナトリウム、フェノキシエタノール、安息香酸ナトリウム、パラオキシ安息香酸エステルまたはその塩等を挙げることができ、それぞれ防腐・防カビ機能を発揮する適切な濃度で使用できる。本実施形態においては、水性媒体浸漬装置170は、例えば、3次元造形物300-4を、温度80℃~95℃の水性媒体に1時間程度浸漬させることが好適である。そして、例えば手術トレーニング等を行う際には、3次元造形物の製造装置100は、水性媒体浸漬装置170から3次元造形物300-5を取り出す処理を行う。
 なお、図1に示す例では、第1の熱処理装置140と第2の熱処理装置160との2つの熱処理装置を設ける態様を示しているが、本実施形態においては、この態様に限定されるものではなく、例えば1つの熱処理装置を設けて、この1つの熱処理装置において第1の熱処理装置140による第1の熱処理と第2の熱処理装置160による第2の熱処理の両方を行う態様も、本実施形態に適用可能である。また、3次元造形物300を長時間かけて自然乾燥させる場合等には、第1の熱処理装置140及び第2の熱処理装置160のうちのいずれか一方或いは両方を設けない態様も、本実施形態に適用可能である。
 次に、本発明の第1の実施形態に係る3次元造形物の製造装置100により実行される3次元造形物の製造方法の処理手順について説明する。
 図2は、本発明の第1の実施形態に係る3次元造形物の製造装置100により実行される3次元造形物の製造方法における処理手順の一例を示すフローチャートである。以下に、この図2に示すフローチャートの処理を、図1を参照しながら説明する。
 まず、図2のステップS1において、図1の情報入力装置110は、情報処理・制御装置120に対して、3次元造形データを入力する処理を行う。そして、情報処理・制御装置120は、例えば、情報入力装置110から入力された3次元造形データを情報処理して積層数Nのスライスデータとする。また、情報処理・制御装置120は、積層数Nの設定を行う。その後、情報処理・制御装置120は、3次元造形物形成装置130に対して、3次元造形データの各層のスライスデータに係る情報と3次元造形データの積層数Nに係る情報等を送信する。そして、情報処理・制御装置120から3次元造形データの各層のスライスデータに係る情報と3次元造形データの積層数Nに係る情報等を受信した3次元造形物形成装置130は、図2において破線枠で囲んだ以下のステップS2~ステップS6の処理を行う。
 図2のステップS2において、図1の3次元造形物形成装置130は、形成対象の層を示す積層番号nに1を設定する。
 続いて、図2のステップS3において、図1の3次元造形物形成装置130は、情報処理・制御装置120の制御に従って、造形領域部に、n層目の造形材料200の供給を行う。
 続いて、図2のステップS4において、図1の3次元造形物形成装置130は、情報処理・制御装置120の制御に従って、3次元造形データのn層目のスライスデータに基づいて、n層目の造形材料200の所定位置に、接着剤の機能を有する造形液を塗布する。
 続いて、図2のステップS5において、図1の3次元造形物形成装置130は、現在設定されている積層番号nが、ステップS1で設定された積層数Nより小さいか否かを判断する。
 ステップS5の判断の結果、現在設定されている積層番号nが、ステップS1で設定された積層数Nより小さい場合には(S5/YES)、全ての層のスライスデータにおける処理は未だ完了していないと判断し、図2のステップS6に進む。
 図2のステップS6に進むと、図1の3次元造形物形成装置130は、形成対象の層を示す積層番号nに1を加算して、形成対象の層を示す積層番号nを変更する。その後、ステップS3に戻り、変更した積層番号nに基づく処理を行う。即ち、図2に示すフローチャートの処理では、ステップS3~ステップS6の処理は、ステップS1で設定された積層数Nの数だけ繰り返し行われることになる。
 また、ステップS5の判断の結果、現在設定されている積層番号nが、ステップS1で設定された積層数Nより小さくない場合には(S5/NO)、全ての層のスライスデータにおける処理が完了したと判断し、図2のステップS7に進む。
 ここで、図2のステップS7の説明を行う前に、上述したステップS2~ステップS6における3次元造形物形成装置130の具体的な動作について説明する。
 図3は、図1に示す3次元造形物形成装置130の具体的な動作の一例を示す模式図である。具体的に、図3は、粉体積層法により3次元造形物300-1を形成する際の3次元造形物形成装置130の具体的な動作の一例を示すものである。
 3次元造形物形成装置130は、図3のプロセスP1に示すように、ローラー131、プリンタヘッド132、造形材料貯蔵部133、ピストン134、造形領域部135、ピストン136、及び、造形材料排出部137を有して構成されている。
 ローラー131は、造形領域部135に1層ごとの造形材料200を供給するための動作を行うものである。
 プリンタヘッド132は、3次元造形データの各層のスライスデータに基づいて、造形領域部135に供給された当該各層の造形材料200の所定位置に、接着剤の機能を有する造形液を塗布する。ここで、図3に示す例では、プリンタヘッド132は、ローラー131と一体となって動作するものとする。
 造形材料貯蔵部133は、粉体積層法により3次元造形物300-1を形成する際に用いる造形材料200を貯蔵するものである。
 ピストン134は、造形材料貯蔵部133に貯蔵されている造形材料200を造形領域部135に供給する際に動作するものである。
 造形領域部135は、3次元造形物300-1を形成する領域部である。
 ピストン136は、3次元造形物300-1を形成する際に動作するものである。
 造形材料排出部137は、造形領域部135に供給された造形材料200のうち、余分な造形材料200を排出するためのものである。
 まず、図3のプロセスP1では、ローラー131とプリンタヘッド132は、造形材料貯蔵部133の左側に位置している。そして、図3のプロセスP1において、ローラー131は、回転を行いながら、プリンタヘッド132とともに紙面右側に移動する。
 そうすると、図3のプロセスP2に示すように、造形材料貯蔵部133に貯蔵されている所定量の造形材料200が造形領域部135に供給される。
 そして、ローラー131がプリンタヘッド132とともに造形領域部135を通過すると、図3のプロセスP3に示すように、造形領域部135に供給された造形材料200が引き伸ばされて平坦となり、造形領域部135に1層目の造形材料200が敷かれる。さらに、図3のプロセスP3に示すように、ローラー131で造形材料200を引き伸ばした際に生じた余分な造形材料200は、造形材料排出部137に排出される。図3のプロセスP3では、ローラー131とプリンタヘッド132が造形材料排出部137の右側に移動した様子を示している。
 この図3のプロセスP1~図3のプロセスP3に示す工程は、図2のステップS3に相当する。
 次いで、図3のプロセスP4に示すように、プリンタヘッド132がローラー131とともに紙面左側に移動して造形領域部135に到着すると、プリンタヘッド132は、3次元造形データの1層目のスライスデータに基づいて、1層目の造形材料200の所定位置に、接着剤の機能を有する造形液201を塗布する。この際、プリンタヘッド132から塗布する造形液201には、各種の色を付けることができるため、例えば患者の臓器に係る3次元造形物300-1を形成する場合にはより実物に近い形で3次元造形物を形成することができ、更に患部(病変部)等を把握することも可能となる。
 この図3のプロセスP4に示す工程は、図2のステップS4に相当する。そして、図3のプロセスP1~図3のプロセスP4に示す工程により、3次元造形データの1層目のスライスデータに基づく造形が終了する。
 プリンタヘッド132による造形液201の塗布が終了すると、図3のプロセスP5に示すように、プリンタヘッド132とローラー131は、造形材料貯蔵部133の左側の位置に移動する。次いで、2層目の造形に備えて、ピストン134が所定量上昇して造形材料貯蔵部133に貯蔵されている造形材料200を押し上げ、また、ピストン136が所定量下降して造形領域部135に2層目の造形材料200を敷くスペースを作る。その後、図3のプロセスP1に示す工程に移行し、2層目以降の造形が行われる。
 図2に示すように積層数Nのスライスデータが存在する場合には、図3のプロセスP1~図3のプロセスP5の工程が、積層数Nの数だけ繰り返し行われることになる。
 ここで、再び、図2の説明に戻る。
 全ての層のスライスデータにおける処理が完了すると、図2のステップS7に進む。
 図2のステップS7に進むと、図1の第1の熱処理装置140は、情報処理・制御装置120の制御に従って、3次元造形物形成装置130で形成された3次元造形物300-1を所定の温度で熱処理(第1の熱処理)を行う。本実施形態においては、第1の熱処理装置140は、3次元造形物300-1に対して、最初に、温度50℃程度で30分~1時間の熱処理を行い、次いで、温度80℃程度で30分~1時間の熱処理を行う。
 続いて、図2のステップS8において、図1のウレタン樹脂含浸装置150は、情報処理・制御装置120の制御に従って、ステップS7で第1の熱処理がされた3次元造形物300-2に対してウレタン樹脂を含浸させる処理を行う。ここで、ウレタン樹脂含浸装置150による含浸方法としては、例えば、刷毛を用いてウレタン樹脂を含浸させる形態や、ウレタン樹脂をスプレーで吹き付けて含浸させる形態、或いは、ウレタン樹脂で満たされた容器に3次元造形物300-2を浸漬して含浸させる形態等を採ることが可能である。また、本実施形態においては、ウレタン樹脂含浸装置150で用いるウレタン樹脂としては、液状のウレタン樹脂で硬化可能であれば特に限定されないが、1液湿気硬化型ウレタン樹脂を用いることにより作業の簡素化を図ることができ好ましい。また、本実施形態においては、ウレタン樹脂含浸装置150で用いるウレタン樹脂の材料として、ポリオールとポリイソシアネートの混合物を酢酸ブチルや酢酸エチルなどで希釈したウレタン樹脂を用いる。
 続いて、図2のステップS9において、図1の第2の熱処理装置160は、情報処理・制御装置120の制御に従って、ステップS8でウレタン樹脂含浸処理がなされた3次元造形物300-3を所定の温度で熱処理(第2の熱処理)を行う。本実施形態においては、第2の熱処理装置160は、3次元造形物300-3に対して、最初に、温度15℃以上の温度で12時間~24時間の熱処理を行い、次いで、温度80℃程度で2時間程度の熱処理を行う。
 続いて、図2のステップS10において、図1の水性媒体浸漬装置170は、情報処理・制御装置120の制御に従って、ステップS9で第2の熱処理がされた3次元造形物300-4を水性媒体に浸漬する処理を行う。そして、例えば手術トレーニング等を行う際には、3次元造形物の製造装置100は、水性媒体浸漬装置170から3次元造形物300-5を取り出す処理を行う。
 なお、3次元造形物300を長時間かけて自然乾燥させる場合等には、必要に応じて、図2のステップS7における第1の熱処理及び図2のステップS9における第2の熱処理のうちのいずれか一方或いは両方を省略する態様も、本実施形態に適用可能である。
 図2のステップS10の処理が終了すると、図2に示すフローチャートの処理が終了する。図2に示すフローチャートの処理により、粉体積層法により石膏とウレタン樹脂とを含み(更には防腐・防カビ剤を含み)形成されて成る3次元造形物300が製造される。
 次に、本発明者が行った試験の結果について説明する。
 図4は、本発明の第1の実施形態を示し、図1に示す造形材料200の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物300-5(水性媒体浸漬後)の引張強度試験の結果を示す特性図である。具体的に、図4は、図1の水性媒体浸漬装置170において、1週間~2週間、水性媒体に浸漬させた各3次元造形物300-5(後述する図5の3次元造形物300-5(水性媒体浸漬後))の引張強度試験の結果を示す特性図である。また、図4では、各3次元造形物300-5が破断するまでの引張強度試験の結果を示している。即ち、図4に示す各グラフの終端(右上端)は、その荷重で各試験片が破断したことを示している。また、図4は、各試験片の標線間距離を50mmとして引張強度試験を行った結果である。また、図4は、島津製作所社製の「AutoGraph AG-IS 50kN」の引張強度試験装置を用いて得られた結果である。
 図4に示す引張強度試験の結果から、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が10%,20%,30%及び40%の3次元造形物300-5は、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が0%(即ち造形材料200としてウレタン樹脂粉末を混合させない)の3次元造形物よりも、引張強度が高くなることが分かった。上述したように、本実施形態では、造形材料200に含まれるウレタン樹脂粉末は、造形材料200の総重量に対する重量比率が5%~60%の範囲であることが好適であるとしている。この点、図4には、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が5%の場合の引張強度試験の結果が示されていないが、本発明者は、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が5%の3次元造形物300-5は、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が0%(即ち造形材料200としてウレタン樹脂粉末を混合させない)の3次元造形物よりも、引張強度が高くなるという知見を得ている。
 また、上述したように、本実施形態では、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が20%~40%の範囲であることが最適であるとしている。この点、図4に示す引張強度試験の結果から、完成品である3次元造形物300の強度を高くするという観点からは妥当であると言える。
 図5は、本発明の第1の実施形態を示し、図1に示す造形材料200の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物300-2(ウレタン樹脂含浸前)、3次元造形物300-3(ウレタン樹脂含浸後)、及び、3次元造形物300-5(水性媒体浸漬後)のゴム硬度試験の結果を示す特性図である。具体的に、図5の3次元造形物300-5(水性媒体浸漬後)は、図1の水性媒体浸漬装置170において、1週間~2週間、水性媒体に浸漬させたものである。また、図5は、デュロメーター・タイプAのゴム硬度試験装置を用いて得られた結果である。
 図5に示すゴム硬度試験の結果から、3次元造形物300-5(水性媒体浸漬後)は、水性媒体に浸漬させることにより、それぞれ、水性媒体に浸漬させる前の3次元造形物300-2(ウレタン樹脂含浸前)や3次元造形物300-3(ウレタン樹脂含浸後)よりも、著しく柔らかくなることが分かった。さらに、図5に示すゴム硬度試験の結果から、各3次元造形物300-5(水性媒体浸漬後)は、いずれも、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が0%の3次元造形物300-2(ウレタン樹脂含浸前)よりも、柔らかくなることが分かった。また、図5に示すゴム硬度試験の結果から、造形材料200の総重量に対するウレタン樹脂粉末の重量比率が5%,20%及び30%の3次元造形物300-3(ウレタン樹脂含浸後)は、ウレタン樹脂を含浸させることにより、それぞれ、ウレタン樹脂を含浸させる前の3次元造形物300-2(ウレタン樹脂含浸前)よりも、若干ではあるが柔らかくなることが分かった。
 図6は、本発明の第1の実施形態を示し、図1に示す造形材料200の総重量に対するウレタン樹脂粉末の重量比率(%)を変化させて製造した3次元造形物300-5の水中保管における形状保持の可否を示す図である。図6では、水中保管において形状を保持できた3次元造形物300-5を「○」で示し、水中保管において形状を保持できなかった3次元造形物300-5を「×」で示している。
 図6に示すように、図1に示す造形材料200の総重量に対するウレタン樹脂粉末の重量比率が60%までの3次元造形物300-5は、水性媒体中の保管の際にその3次元造形物300-5の形状を保持することができるのに対し、図1に示す造形材料200の総重量に対するウレタン樹脂粉末の重量比率が80%の3次元造形物は、水性媒体中の保管の際にその3次元造形物の形状が保てず崩れてしまうという結果が得られた。上述したように、本実施形態では、造形材料200に含まれるウレタン樹脂粉末は、造形材料200の総重量に対する重量比率が5%~60%の範囲であることが好適であるとしている。この点、造形材料200の総重量に対するウレタン樹脂粉末の重量比率の上限を60%とすることは、図6に示す結果から、水性媒体中に保管する際に完成品である3次元造形物300の形状を保持するという観点からは妥当であると言える。
 本発明の第1の実施形態によれば、石膏粉末にウレタン樹脂粉末を混合させた造形材料を用いて粉体積層法により3次元造形物300を形成し、当該3次元造形物300に対してウレタン樹脂を含浸させるようにしたので、図4を用いて説明したように、石膏粉末にウレタン樹脂粉末を混合させない(0%)造形材料を用いて形成した3次元造形物よりも、強度が高い3次元造形物を形成することができる。また、図5を用いて説明したように、ウレタン樹脂を含浸させることにより、ウレタン樹脂を含浸させる前の3次元造形物300よりも、若干ではあるが柔らかくすることもできる。さらに、本発明の第1の実施形態によれば、ウレタン樹脂を含浸させた後、3次元造形物300を水性媒体に浸漬するようにしたので、図5を用いて説明したように、より柔らかい3次元造形物を形成することができる。例えば本実施形態の技術を医療分野に適用すれば、個々の患者の臓器をより実物に近い形で再現した3次元造形物を形成することができるため、例えばその3次元造形物を手術トレーニング等に用いることができ、医療の質の向上を図ることが可能となる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る3次元造形物の製造装置の概略構成について説明する。
 図7は、本発明の第2の実施形態に係る3次元造形物の製造装置400の概略構成の一例を示すブロック図である。この図7において、図1に示す第1の実施形態に係る3次元造形物の製造装置100の概略構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。
 本実施形態に係る3次元造形物の製造装置400は、図7に示すように、情報入力装置110、情報処理・制御装置120、3次元造形物形成装置130、第1の熱処理装置140、ウレタン樹脂含浸装置150、第2の熱処理装置160、軟質樹脂形成装置410、第3の熱処理装置420、及び、水性媒体浸漬装置430を有して構成されている。
 図7において、情報入力装置110、情報処理・制御装置120、3次元造形物形成装置130、第1の熱処理装置140、ウレタン樹脂含浸装置150及び第2の熱処理装置160は、図1に示す第1の実施形態に係る3次元造形物の製造装置100における各構成と同様であるため、その説明は省略する。但し、情報処理・制御装置120は、情報入力装置110から入力された各種の情報に基づいて、3次元造形物の製造装置400における各装置(130~160,410~430)を制御する。
 軟質樹脂形成装置410は、情報処理・制御装置120の制御に従って、3次元造形物300-4の中空領域に当該3次元造形物よりも柔らかい軟質樹脂を形成する装置である。
 ここで、軟質樹脂形成装置410で用いる軟質樹脂500について説明する。
 本実施形態における軟質樹脂500は、ポリオール化合物にポリイソシアネート化合物などを混合したウレタン樹脂を主材料として形成されている。具体的に、本実施形態における軟質樹脂500は、ポリオール化合物の主剤と、ポリイソシアネート化合物などの硬化剤等(例えば、ポリイソシアネート、ジイソノニールフタレート(DINP)及びヘキサメチレンジイソシアネートを含む硬化剤等)との2液混合のウレタン樹脂を主材料として含み形成されている。この際、上述した硬化剤等において、ポリイソシアネートは当該硬化剤等の総重量に対する重量比率が10%~20%の範囲であることが好適であり、ジイソノニールフタレートは当該硬化剤等の総重量に対する重量比率が80%~90%の範囲であることが好適であり、ヘキサメチレンジイソシアネートは当該硬化剤等の総重量に対する重量比率が0.15%以下であることが好適である。さらに、本実施形態においては、軟質樹脂500は、上述した主材料に加えて、超音波撮影において3次元造形物300の中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されているものとする。この際、本実施形態においては、超音波散乱材料として、ウレタン樹脂粉末を用いるものとするが、本発明においてはこれに限定されるものではなく、例えば、カーボン粉末や石膏粉末を用いるようにしてもよい。さらに、本実施形態における軟質樹脂500に顔料を混ぜて、3次元造形物300に形成される軟質樹脂に各種の色を付けることができるようにしてもよい。
 以下に、軟質樹脂500に含まれる超音波散乱材料の重量比率について記載する。軟質樹脂500に含まれる超音波散乱材料は、超音波撮影において3次元造形物300の中空領域に形成された当該軟質樹脂を映出させるという観点から、軟質樹脂500に含まれる2液混合のウレタン樹脂の総重量に対する重量比率が10%~25%の範囲であることが好適である。これは、軟質樹脂500に含まれる2液混合のウレタン樹脂の総重量に対する超音波散乱材料の重量比率が、10%未満になる場合及び25%を超える場合には、超音波撮影において3次元造形物300の中空領域に形成された当該軟質樹脂を映出させることが困難になるという不具合が生じるためである。
 第3の熱処理装置420は、情報処理・制御装置120の制御に従って、軟質樹脂形成装置410において軟質樹脂srが形成された3次元造形物300-6を所定の温度で熱処理(第3の熱処理)する装置である。本実施形態においては、第3の熱処理装置420は、3次元造形物300-6に対して、温度60℃程度で3時間程度の熱処理を行う。本例では、この第3の熱処理装置420による第3の熱処理により、3次元造形物300-6における軟質樹脂srを硬化させる。
 水性媒体浸漬装置430は、情報処理・制御装置120の制御に従って、第3の熱処理装置420で熱処理された3次元造形物300-7を水性媒体に浸漬する装置である。ここで、水性媒体とは、3次元造形物300の強度と柔らかさを損なうことがなければ特に限定されないが、水、生理食塩水、緩衝液、グリセリンやエチレングリコール等の水性有機溶媒、または、これらの混合物等を挙げることができ、それらに水溶性の物質を溶解させることもできる。また、1つの態様として、上述した水性媒体に防腐・防カビ剤を添加することができる。防腐・防カビ剤は、3次元造形物300-7及び水性媒体の防腐・防カビ機能を有し、3次元造形物300の強度と柔らかさに影響を及ぼすことがない、水溶性の防腐・防カビ剤であれば特に限定されないが、取扱いや手術トレーニング等を行うことを考慮すれば、刺激性の低いものが好ましく、過酸化水素、次亜塩素酸、次亜塩素酸ナトリウム、フェノキシエタノール、安息香酸ナトリウム、パラオキシ安息香酸エステルまたはその塩等を挙げることができ、それぞれ防腐・防カビ機能を発揮する適切な濃度で使用できる。本実施形態においては、水性媒体浸漬装置430は、例えば、3次元造形物300-7を、温度80℃~95℃の水性媒体に1時間程度浸漬させることが好適である。そして、例えば手術トレーニング等を行う際には、3次元造形物の製造装置400は、水性媒体浸漬装置430から3次元造形物300-8を取り出す処理を行う。
 なお、図7に示す例では、第1の熱処理装置140と第2の熱処理装置160と第3の熱処理装置420との3つの熱処理装置を設ける態様を示しているが、本実施形態においては、この態様に限定されるものではなく、例えば1つの熱処理装置を設けて、この1つの熱処理装置において第1の熱処理装置140による第1の熱処理と第2の熱処理装置160による第2の熱処理と第3の熱処理装置420による第3の熱処理とを行う態様も、本実施形態に適用可能である。また、3次元造形物300を長時間かけて自然乾燥させる場合等には、第1の熱処理装置140、第2の熱処理装置160及び第3の熱処理装置420のうちの少なくともいずれか1つ或いはその全てを設けない態様も、本実施形態に適用可能である。例えば、第3の熱処理装置420を設けずに、3次元造形物300-6における軟質樹脂srを長時間かけて反応させる場合等には、室温で24時間程度の反応を要する。
 次に、本発明の第2の実施形態に係る3次元造形物の製造装置400により実行される3次元造形物の製造方法の処理手順について説明する。
 図8は、本発明の第2の実施形態に係る3次元造形物の製造装置400により実行される3次元造形物の製造方法における処理手順の一例を示すフローチャートである。以下に、この図8に示すフローチャートの処理を、図7を参照しながら説明する。また、図8に示すフローチャートの処理において、図2に示す第1の実施形態におけるフローチャートの処理と同様の処理ステップについては同じステップ番号を付しており、その詳細な説明は省略する。
 図8に示すフローチャートの処理においては、まず、図2に示す第1の実施形態におけるフローチャートのステップS1~S9の処理を行う。これにより、図7に示す3次元造形物300-4が得られる。
 続いて、図8のステップS21において、図7の軟質樹脂形成装置410は、情報処理・制御装置120の制御に従って、3次元造形物300-4の中空領域に当該3次元造形物よりも柔らかい軟質樹脂を形成する処理を行う。ここで、軟質樹脂形成装置410で用いる軟質樹脂500は、上述したように、ポリオール化合物の主剤とポリイソシアネート化合物などの硬化剤等との2液混合のウレタン樹脂を主材料として含むとともに、この主材料に加えて、超音波撮影において3次元造形物300の中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されているものとする。
 続いて、図8のステップS22において、図7の第3の熱処理装置420は、情報処理・制御装置120の制御に従って、軟質樹脂形成装置410において軟質樹脂srが形成された3次元造形物300-6を所定の温度で熱処理(第3の熱処理)を行う。本実施形態においては、第3の熱処理装置420は、3次元造形物300-6に対して、温度60℃程度で3時間程度の熱処理を行う。
 続いて、図8のステップS23において、図7の水性媒体浸漬装置430は、情報処理・制御装置120の制御に従って、第3の熱処理装置420で熱処理された3次元造形物300-7を水性媒体に浸漬する処理を行う。そして、例えば手術トレーニング等を行う際には、3次元造形物の製造装置400は、水性媒体浸漬装置430から3次元造形物300-8を取り出す処理を行う。
 なお、3次元造形物300を長時間かけて自然乾燥させる場合等には、必要に応じて、図8のステップS7における第1の熱処理、図8のステップS9における第2の熱処理及び図8のステップS22における第3の熱処理のうちの少なくともいずれか1つ或いはその全てを省略する態様も、本実施形態に適用可能である。例えば、図8のステップS22における第3の熱処理を行わずに、3次元造形物300-6における軟質樹脂srを長時間かけて反応させる場合等には、室温で24時間程度の反応を要する。
 図8のステップS23の処理が終了すると、図8に示すフローチャートの処理が終了する。図8に示すフローチャートの処理により、粉体積層法により石膏とウレタン樹脂とを含み(更には防腐・防カビ剤を含み)、且つ、軟質樹脂srが形成されて成る3次元造形物300が製造される。
 次に、本発明者が行った超音波撮影の結果について説明する。具体的に、以下に説明する超音波撮影は、GEヘルスケア社製の「LogiQ-S8」の超音波診断装置を用いて、撮影時の周波数Fqを8MHz、フレームレートFRを36として行われたものである。
 図9Aは、超音波撮影を行った3次元造形物300を示す図である。具体的に、図9Aには、超音波撮影を行った3次元造形物300を2つに分割した3次元造形物分割片300a及び300bが示されている。
 また、図9Bは、比較例を示し、中空領域を形成せずに(即ち軟質樹脂を形成せずに軟質樹脂の部分も全て粉末を混合させた造形材料で)製造した3次元造形物300の外観図である。
 図9Cは、比較例を示し、中空領域を形成せずに(即ち軟質樹脂を形成せずに軟質樹脂の部分も全て粉末を混合させた造形材料で)製造した図9Bの3次元造形物300を超音波撮影した結果を示す図である。
 図9Cに示す結果から、3次元造形物300の内部は超音波撮影において映出できていないことが分かる。これは、図9Cに示す結果を得た3次元造形物300の内部は、中空領域を形成せずに(即ち軟質樹脂を形成せずに軟質樹脂の部分も全て粉末を混合させた造形材料で)製造されたため、超音波が3次元造形物300の表面近傍で吸収されてしまい、内部に伝播していかないために輪郭しか映出されていないためである。
 図9Dは、本発明の第2の実施形態を示し、中空領域に軟質樹脂srを形成した図9Aの3次元造形物300を超音波撮影した結果を示す図である。
 図9Dに示す結果から、3次元造形物300において軟質樹脂srを形成した領域は超音波撮影において映出できていることが分かる。これは、軟質樹脂500に、上述した超音波散乱材料を含ませている結果得られたものと考えられる。また、図9Cの超音波撮影結果をもたらした3次元造形物は粉末を混合させた造形材料のみで製造され、内部まで超音波が伝播していなかったのに対し、図9Dの超音波撮影結果をもたらした3次元造形物は内部に中空領域を設けたので、粉末を混合させた造形材料で製造された表面部分の厚みが薄く、超音波が中空領域に形成された軟質樹脂srに到達して伝播し、また軟質樹脂500に上述した超音波散乱材料を含ませている結果、適度に超音波が散乱されて得られたものと考えられる。なお、図9Dの中央付近の縦の黒い帯状の領域は、この黒い帯の上部に相当し粉末を混合させた造形材料で製造された中空領域の外殻部分と、その下側の中空領域に形成された軟質樹脂との間に、この超音波撮影の際に空気が入ってしまい軟質樹脂に超音波が伝播しなかったため、超音波散乱材料を含ませた軟質樹脂が映出できずに黒い帯状の領域となったものである。空気が入らなければ軟質樹脂に超音波が伝播して黒い帯状の領域の左右と同じように超音波が散乱した部分が白く映出されるため、この黒い帯状の領域は発明の効果の説明には影響しないものである。
 本発明の第2の実施形態によれば、3次元造形物300の中空領域に当該3次元造形物よりも柔らかい軟質樹脂srを形成するようにしたので、第1の実施形態における効果に加えて、柔らかさの異なる部分を有する3次元造形物300を形成することができる。さらに、本発明の第2の実施形態によれば、軟質樹脂に、超音波撮影において3次元造形物300の中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成するようにしたので、超音波診断装置による画像撮影が可能な3次元造形物300を形成することもできる。例えば本実施形態の技術を医療分野に適用すれば、例えば病変部分を軟質樹脂srで再現することにより、個々の患者の臓器をより実物に近い形で再現した3次元造形物を形成することができるため、例えばその3次元造形物を一般の手術トレーニングや超音波診断装置を利用した手術トレーニング等に用いることができ、医療の質の向上を図ることが可能となる。
 なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。

Claims (20)

  1.  石膏粉末にウレタン樹脂粉末を混合させた造形材料を用いて、粉体積層法により3次元造形物を形成する工程と、
     前記3次元造形物に対してウレタン樹脂を含浸させる工程と
     を有することを特徴とする3次元造形物の製造方法。
  2.  前記ウレタン樹脂を含浸させる工程が終了した後、前記3次元造形物を水性媒体に浸漬する工程を更に有することを特徴とする請求項1に記載の3次元造形物の製造方法。
  3.  前記水性媒体には、防腐・防カビ剤が溶解されていることを特徴とする請求項2に記載の3次元造形物の製造方法。
  4.  前記ウレタン樹脂を含浸させる工程が終了した後であって前記水性媒体に浸漬する工程の前に、前記3次元造形物の中空領域に当該3次元造形物よりも柔らかい軟質樹脂を形成する工程を更に有することを特徴とする請求項2または3に記載の3次元造形物の製造方法。
  5.  前記軟質樹脂は、ウレタン樹脂を主材料として形成されていることを特徴とする請求項4に記載の3次元造形物の製造方法。
  6.  前記軟質樹脂は、前記主材料に加えて、超音波撮影において前記中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されていることを特徴とする請求項5に記載の3次元造形物の製造方法。
  7.  前記ウレタン樹脂粉末は、前記造形材料の総重量に対する重量比率が5%~60%であることを特徴とする請求項1乃至6のいずれか1項に記載の3次元造形物の製造方法。
  8.  石膏粉末にウレタン樹脂粉末を混合させた造形材料を用いて、粉体積層法により3次元造形物を形成する3次元造形物形成手段と、
     前記3次元造形物に対してウレタン樹脂を含浸させるウレタン樹脂含浸手段と
     を有することを特徴とする3次元造形物の製造装置。
  9.  前記ウレタン樹脂含浸手段による前記ウレタン樹脂の含浸が終了した後、前記3次元造形物を水性媒体に浸漬する水性媒体浸漬手段を更に有することを特徴とする請求項8に記載の3次元造形物の製造装置。
  10.  前記水性媒体には、防腐・防カビ剤が溶解されていることを特徴とする請求項9に記載の3次元造形物の製造装置。
  11.  前記ウレタン樹脂含浸手段による前記ウレタン樹脂の含浸が終了した後であって前記水性媒体浸漬手段による前記水性媒体に浸漬する前に、前記3次元造形物の中空領域に当該3次元造形物よりも柔らかい軟質樹脂を形成する軟質樹脂形成手段を更に有することを特徴とする請求項9または10に記載の3次元造形物の製造装置。
  12.  前記軟質樹脂は、ウレタン樹脂を主材料として形成されていることを特徴とする請求項11に記載の3次元造形物の製造装置。
  13.  前記軟質樹脂は、前記主材料に加えて、超音波撮影において前記中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されていることを特徴とする請求項12に記載の3次元造形物の製造装置。
  14.  前記ウレタン樹脂粉末は、前記造形材料の総重量に対する重量比率が5%~60%であることを特徴とする請求項8乃至13のいずれか1項に記載の3次元造形物の製造装置。
  15.  粉体積層法により石膏とウレタン樹脂とを含み形成されていることを特徴とする3次元造形物。
  16.  前記粉体積層法により石膏とウレタン樹脂とを含み形成されてなる3次元造形物の中空領域に当該3次元造形物よりも柔らかい軟質樹脂が形成されていることを特徴とする請求項15に記載の3次元造形物。
  17.  前記軟質樹脂は、ウレタン樹脂を主材料として形成されていることを特徴とする請求項16に記載の3次元造形物。
  18.  前記軟質樹脂は、前記主材料に加えて、超音波撮影において前記中空領域に形成された当該軟質樹脂を映出させるための超音波散乱材料を含み形成されていることを特徴とする請求項17に記載の3次元造形物。
  19.  粉体積層法により3次元造形物を形成する際に用いる造形材料であって、
     石膏粉末にウレタン樹脂粉末を混合させたことを特徴とする造形材料。
  20.  前記ウレタン樹脂粉末は、当該造形材料の総重量に対する重量比率が5%~60%であることを特徴とする請求項19に記載の造形材料。
     
PCT/JP2015/083504 2015-01-30 2015-11-27 3次元造形物の製造方法、3次元造形物の製造装置、3次元造形物及び造形材料 WO2016121217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571790A JP6401801B2 (ja) 2015-01-30 2015-11-27 3次元造形物の製造方法、3次元造形物の製造装置及び3次元造形物
US15/547,412 US10556380B2 (en) 2015-01-30 2015-11-27 Three-dimensional molding producing method, three-dimensional molding producing apparatus, three-dimensional molding, and molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017785 2015-01-30
JP2015017785 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121217A1 true WO2016121217A1 (ja) 2016-08-04

Family

ID=56542854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083504 WO2016121217A1 (ja) 2015-01-30 2015-11-27 3次元造形物の製造方法、3次元造形物の製造装置、3次元造形物及び造形材料

Country Status (3)

Country Link
US (1) US10556380B2 (ja)
JP (1) JP6401801B2 (ja)
WO (1) WO2016121217A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107745515A (zh) * 2017-11-13 2018-03-02 山东大学 面向熔融成型与切削复合加工的数控代码生成方法和装置
JP2018076478A (ja) * 2016-11-01 2018-05-17 静岡県 ボーラスの製造方法及びボーラス
JP2020175510A (ja) * 2019-04-15 2020-10-29 丸越工業株式会社 珪藻土入り造形用材料及び珪藻土製品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310561A4 (en) * 2015-06-19 2019-02-20 Applied Materials, Inc. DISTRIBUTION AND COMPACTION OF MATERIAL IN ADDITIVE MANUFACTURE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150556A (ja) * 1999-09-14 2001-06-05 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2003515465A (ja) * 1999-11-05 2003-05-07 ズィー コーポレイション 材料システム及び3次元印刷法
JP2003531220A (ja) * 2000-04-14 2003-10-21 ゼット コーポレーション 固形物体を三次元印刷するための組成物
JP2005096199A (ja) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd 三次元造形物の製造方法及びこれに使用する製造装置
JP2011189661A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2014166733A (ja) * 2013-02-28 2014-09-11 Brother Ind Ltd 立体造形装置、造形液、及び立体造形粉体
JP2014188888A (ja) * 2013-03-27 2014-10-06 Brother Ind Ltd 粉末材料、及び造形液

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US9805624B2 (en) * 2011-09-30 2017-10-31 Regents Of The University Of Minnesota Simulated, representative high-fidelity organosilicate tissue models
JP5880050B2 (ja) * 2012-01-05 2016-03-08 ソニー株式会社 構造物の製造方法
JP6185648B2 (ja) * 2013-03-15 2017-08-23 スリーディー システムズ インコーポレーテッド 3次元印刷用材料系
JP6299072B2 (ja) 2013-03-27 2018-03-28 セイコーエプソン株式会社 液体噴射ヘッドおよび液体噴射装置
JP2015139977A (ja) * 2014-01-30 2015-08-03 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150556A (ja) * 1999-09-14 2001-06-05 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2003515465A (ja) * 1999-11-05 2003-05-07 ズィー コーポレイション 材料システム及び3次元印刷法
JP2003531220A (ja) * 2000-04-14 2003-10-21 ゼット コーポレーション 固形物体を三次元印刷するための組成物
JP2005096199A (ja) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd 三次元造形物の製造方法及びこれに使用する製造装置
JP2011189661A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2014166733A (ja) * 2013-02-28 2014-09-11 Brother Ind Ltd 立体造形装置、造形液、及び立体造形粉体
JP2014188888A (ja) * 2013-03-27 2014-10-06 Brother Ind Ltd 粉末材料、及び造形液

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076478A (ja) * 2016-11-01 2018-05-17 静岡県 ボーラスの製造方法及びボーラス
CN107745515A (zh) * 2017-11-13 2018-03-02 山东大学 面向熔融成型与切削复合加工的数控代码生成方法和装置
CN107745515B (zh) * 2017-11-13 2018-12-14 山东大学 面向熔融成型与切削复合加工的数控代码生成方法和装置
JP2020175510A (ja) * 2019-04-15 2020-10-29 丸越工業株式会社 珪藻土入り造形用材料及び珪藻土製品の製造方法
JP7272562B2 (ja) 2019-04-15 2023-05-12 丸越工業株式会社 珪藻土入り造形用材料及び珪藻土製品の製造方法

Also Published As

Publication number Publication date
US20180015665A1 (en) 2018-01-18
JP6401801B2 (ja) 2018-10-10
US10556380B2 (en) 2020-02-11
JPWO2016121217A1 (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6401801B2 (ja) 3次元造形物の製造方法、3次元造形物の製造装置及び3次元造形物
KR102058955B1 (ko) 다중-재료 적층 가공을 사용하여 신체 부분 모델을 제조하기 위한 시스템 및 방법
JP2012527265A5 (ja)
KR20130063531A (ko) 3 차원 조형 모델 제작 방법 및 의료·의학·연구·교육용 지원툴
WO2005038751A1 (ja) 立体モデル
JP2004184606A (ja) 人工骨モデルの製造方法
JP2017165040A (ja) 立体造形物、臓器モデル及びその製造方法
US20170145202A1 (en) Method, apparatus and formulation for an interpenetrating network polymer
JP2018072387A (ja) 心臓模型、心臓局部模型、心臓弁模型、冠動脈模型及び大動脈模型
Mac Murray et al. Compliant buckled foam actuators and application in patient-specific direct cardiac compression
US9778374B2 (en) Phantom and phantom system
JP6656018B2 (ja) 医用画像撮影装置による計測が可能な3次元造形物、並びに、その製造方法及びその製造装置
Vahabzadeh‐Hagh et al. Three‐dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles
CN108905003B (zh) 一种3d放疗定位膜生成方法、电子设备、存储介质及系统
WO2018231794A1 (en) Customized ventricular support device
WO2019063105A1 (de) Anatomische silicon-modelle und deren additive herstellung
JP6529950B2 (ja) 三次元実体モデルおよびその製造方法
US20220202560A1 (en) System and method for implant production
Cheng et al. Application of rapid tooling to manufacture customized nasal mask cushion for continuous positive airway pressure (CPAP) devices
JP2017107189A5 (ja)
JP6945272B2 (ja) 立体造形物及びその製造方法
KR102214911B1 (ko) 3d 프린터로 제작된 몰드를 이용한 유방 및 종양 모형 제조방법
JP4060264B2 (ja) インプラントの設計方法およびインプラント
CN105396228B (zh) 一种肿瘤放射治疗用的真空塑形垫及其使用方法
JP6446635B2 (ja) 放射線治療用ボーラスの製造方法及び放射線治療用ボーラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571790

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880109

Country of ref document: EP

Kind code of ref document: A1