WO2005038751A1 - 立体モデル - Google Patents

立体モデル Download PDF

Info

Publication number
WO2005038751A1
WO2005038751A1 PCT/JP2004/015371 JP2004015371W WO2005038751A1 WO 2005038751 A1 WO2005038751 A1 WO 2005038751A1 JP 2004015371 W JP2004015371 W JP 2004015371W WO 2005038751 A1 WO2005038751 A1 WO 2005038751A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
film
dimensional model
dimensional
stress
Prior art date
Application number
PCT/JP2004/015371
Other languages
English (en)
French (fr)
Inventor
Seiichi Ikeda
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to EP04792540.9A priority Critical patent/EP1677273A4/en
Priority to US10/575,914 priority patent/US20070148626A1/en
Publication of WO2005038751A1 publication Critical patent/WO2005038751A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present invention relates to a three-dimensional model. More specifically, the present invention relates to a three-dimensional model reproducing a body cavity such as a blood vessel of a subject.
  • Non-Patent Document 1 a block-shaped three-dimensional model reproducing a body cavity such as a blood vessel of a subject.
  • This three-dimensional model is formed by layering a body cavity model such as a blood vessel based on tomographic image data of a subject, surrounding the body cavity model with a three-dimensional model molding material, curing the three-dimensional model molding material, and thereafter forming the body cavity model. Obtained by removal.
  • Non-Patent Document 2 a membrane-like three-dimensional model
  • Patent Document 1 refers to Patent Document 5 as documents related to the present invention.
  • Patent Document 1 JP 2003-11237 A
  • Patent Document 2 JP-A-11-73096
  • Patent Document 3 WO 03/096309 A1
  • Patent Document 4 JP-A-10-33253
  • Patent Document 5 JP-A-3-111726
  • Non-Patent Document 1 Medical Model for Surgery Trial Reproducing Cerebrovascular Lumen, Proceedings of the 20th Annual Conference of the Robotics Society of Japan, 2002.
  • Non-Patent Document 2 Study on Surgical Simulator Based on Biological Information for Cerebrovascular Surgery, Proceedings of Robotics' Mechatronics Conference, 2003
  • the film-like three-dimensional model is inferior in shape retention, and is inconvenient to handle.
  • a first aspect of the present invention has been made to solve the above problems, and has a film-like model for reproducing a body cavity such as a blood vessel therein,
  • a three-dimensional model comprising.
  • the membrane-like structure of the living blood vessel and the structure of the soft tissue surrounding the blood vessel are individually reproduced including physical characteristics.
  • a model of a flexible membrane-like structure such as a blood vessel is embedded in the substrate having elastic properties of the tissue surrounding the blood vessel.
  • the blood vessel model of the membrane structure inside the three-dimensional model can be flexibly deformed in the base material like blood vessels in the living body, and the deformation characteristics of the living blood vessel are reproduced. It becomes suitable for.
  • the film model is formed as follows.
  • the subject covers the whole or a part of the human body, but animals and plants can be used for tomography. It does not exclude corpses.
  • the tomographic image data refers to data serving as a basis for performing additive manufacturing.
  • three-dimensional shape data is constructed from tomographic data obtained by an X-ray CT device, an MRI device, an ultrasonic device, and the like, and the three-dimensional shape data is decomposed into two-dimensional data to obtain tomographic image data.
  • tomographic image data generation a case will be described in which a plurality of two-dimensional images obtained by taking images at equal intervals while moving in parallel in the body axis direction are used as input data (tomographic data). Even when a two-dimensional image or a three-dimensional image obtained by the method is used as an input image, three-dimensional shape data of a cavity can be obtained by performing similar processing.
  • Each input two-dimensional image is first accurately stacked based on the photographing interval at the time of photographing. Next, by specifying a threshold value for the image density value on each two-dimensional image, only the cavity area to be the target of the body cavity model is extracted from each two-dimensional image, while the other areas are extracted.
  • the three-dimensional shape of the part corresponding to the cavity area is given in the form of stacked two-dimensional images, and the contour of each two-dimensional image is three-dimensionally interpolated and reconstructed as a three-dimensional curved surface.
  • three-dimensional shape data of the target cavity is generated.
  • the cavity area was first extracted from the input image by specifying the threshold value for the density value, but separately from this method, the specific density value that gives the cavity surface was specified. It is also possible to directly generate a three-dimensional surface by extracting the cavity surface from the input image and performing three-dimensional interpolation.
  • the input images may be stacked after the area is extracted by specifying the threshold (or the surface is extracted by specifying the specific density value). Further, the generation of the three-dimensional surface may be performed by polygon approximation.
  • the shape of the three-dimensional shape data can be modified or changed during or after the generation of the three-dimensional shape data. For example, adding a structure that does not exist in the tomographic data, adding a support structure called a support, removing a part of the structure in the tomographic data, or changing the shape of the cavity.
  • the shape of the cavity formed inside the three-dimensional model can be freely modified or changed.
  • Three-dimensional shape data in which the additive manufacturing area is provided inside the cavity is generated in advance. These processes may be performed by an additive manufacturing system or software corresponding to the additive manufacturing system.
  • the generated three-dimensional shape data of the cavity is added to the Is converted into a format corresponding to the additive manufacturing system used, and is sent to the additive manufacturing system to be used or software corresponding to the additive manufacturing system to be used.
  • three-dimensional shape data is constructed from tomographic data.
  • three-dimensional shape data is provided as data from the beginning, it is decomposed into two dimensions and the next product is obtained. It is possible to obtain tomographic image data used in the layer forming process.
  • the present invention is intended for a body cavity such as a blood vessel, where the body cavity exists in various organs (skeleton, muscle, circulatory organ, respiratory organ, digestive organ, urogenital organ, endocrine organ, nerve, sensory organ, etc.). Cavities, as well as cavities formed by the geometric arrangement of these organs and body walls. Therefore, the lumen of the heart, the lumen of the stomach, the lumen of the intestine, the lumen of the uterus, the lumen of blood vessels, the lumen of the ureter, the oral cavity, the nasal cavity, the canal, and the middle ear Cavities, body cavities, joint cavities, pericardial cavities and the like are included in the “body cavity”.
  • the body cavity is formed from the tomographic image data.
  • the method of formation is not particularly limited, but layered molding is preferred.
  • laminated knowledge means that a desired layer is obtained by forming a thin layer based on tomographic image data and sequentially repeating the steps. That is, based on the tomographic image data of the subject, the cavity area of the subject is Is extracted, and a body cavity model corresponding to the cavity area is formed by additive manufacturing.
  • the layered body cavity model must be disassembled and removed in a later step.
  • a material having a low melting point for the additive manufacturing or a material which is easily dissolved in a solvent.
  • a low-melting thermosetting resin or wax can be used.
  • a photocurable resin commonly used in so-called stereolithography can be used if its decomposition is easy.
  • the body cavity model has a hollow structure in its interior as long as it has a strength capable of withstanding an external force such as a pressure to which an external force is also applied when the body cavity model is surrounded by the film-shaped model molding material in the next step.
  • an external force such as a pressure to which an external force is also applied when the body cavity model is surrounded by the film-shaped model molding material in the next step.
  • the additive manufacturing method include a powder sintering method, a molten resin ejection method, and a molten resin extrusion method.
  • the body cavity model produced by additive manufacturing may be subjected to various processes (such as removal polishing and adding force) such as surface polishing and addition of a surface coating after additive manufacturing. It is possible to correct or change the shape of the body cavity model. As a part of these processes, if a support that needs to be removed after additive manufacturing is added to create a body cavity model, the support will be removed.
  • the surface of the body cavity model By coating the surface of the body cavity model with another material, it is possible to prevent some or all of the components of the body cavity model material from diffusing into the film-like model molding material.
  • the surface of the body cavity model can be physically treated (heat treatment, high-frequency treatment, etc.) or chemically treated to prevent the diffusion.
  • the surface of the body cavity model is smoothed by performing surface treatment.
  • Methods of surface treatment include contacting the surface of the body cavity model with a solvent, heating to melt the surface, coating, and using these in combination.
  • a part or the whole of the body cavity model is thinly surrounded by a film-like model molding material, which is cured by polymerization or vulcanization.
  • a membrane model is formed by removing the body cavity model.
  • the film-like model molding material is appropriately selected depending on the use of the model.
  • elastomers such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer, as well as silicone resin, epoxy resin, polyurethane, unsaturated polyester, phenol resin, urea resin, etc.
  • Thermosetting resins and thermoplastic resins such as polymethyl methacrylate can be used alone or in combination.
  • These materials are thinly laminated on the surface of the body cavity model by a method such as coating, spraying, or divebing, and then vulcanized or cured by a known method.
  • the target of the membrane model is a cerebral blood vessel model
  • a material that is transparent and has elasticity and flexibility close to that of a living tissue Silicone rubber can be mentioned as such a material. Also, since silicone rubber has the same contact characteristics as living tissue, it becomes suitable for trial of surgery by inserting a medical device such as a catheter. Urethane resin and urethane elastomer can also be suitably used.
  • the film-like model forming material can be formed from a plurality of layers. Its thickness can also be set arbitrarily.
  • the substrate is made of a translucent material so that the deformation of the film model can be observed.
  • the base material has toughness.
  • the elastic modulus is as low as 2. OkPa-lOOkPa.
  • the substrate has sufficient elongation.
  • the substrate has an elongation of 2 to 15 times that when no calo is applied when the substrate is pulled in a state where the adhesiveness to the film model is secured, assuming that the unloaded state is 1.
  • the elongation refers to the maximum deformation amount at which the substrate can return to its original state.
  • the speed at which the substrate returns to its original state when the load is removed from the substrate deformed by applying a load is relatively slow.
  • the loss coefficient tan ⁇ (at 1 Hz), which is a viscoelastic parameter, can be set to 0.2-2.0.
  • the base material has properties similar to or close to tissues existing around blood vessels and the like, The deformation of the film-like model is performed in an environment closer to the actual one. That is, it becomes possible to realistically reproduce the feeling of insertion of a catheter or the like.
  • the base material has adhesion to the film model.
  • the film model is deformed, no displacement occurs between the substrate and the film model. If a gap occurs between the two, a change occurs in the stress applied to the membrane model, which may hinder, for example, simulation of catheter insertion, and may cause discomfort during insertion.
  • the adhesion (adhesion strength) between the substrate and the membrane model is preferably lkPa-20 kPa.
  • a silicone gel and a glycerin gel are used as a powerful substrate, but the material is not particularly limited. If the casing is airtight, a high-viscosity liquid can be used as the base material. This is particularly suitable as a base material for a membranous model reproducing a blood vessel surrounded by a living tissue having no elasticity. By mixing these plural kinds of fluids and further mixing them with an adhesive agent, a suitable base material can be prepared.
  • the base material can be brought closer to the living tissue by using a plurality of materials having different physical properties.
  • the base material be translucent. In order to clarify the boundary between the film model and the substrate, at least one of the film model and the substrate can be colored. In addition, it is preferable that the refractive index of the material of the film model and the refractive index of the material of the base material be substantially equal so that the dynamic behavior of the film model can be observed more accurately.
  • a part of the film-like model may be located in the gap (see FIG. 8).
  • a part of the membrane model may be in a solid substrate (having physical properties dissimilar to biological tissue) or in a fluid.
  • the casing accommodates the base material and can have any shape.
  • the whole or a part thereof is formed of a light transmitting material so that the dynamic behavior of the film model can be observed.
  • the strong casing can be formed of a light-transmitting synthetic resin (such as an acrylic plate) or a glass plate.
  • the casing is provided with a hole communicating with the cavity of the membrane model.
  • the catheter can be inserted through this hole.
  • the three-dimensional model is translucent as a whole. From the viewpoint of observing the insertion state of the catheter, it is sufficient that at least the inside of the membrane model can be visually recognized.
  • this margin can be arbitrarily selected according to the object, application, and the like of the three-dimensional model. For example, it is preferable to set the margin to 10 times to 100 times the film thickness of the film model.
  • a core in which a body cavity model is covered with a membrane model is set in a casing, and a base material is injected into the casing and gelled. After that, when the body cavity model is removed, the membranous model remains in the base material.
  • the film model is set in a casing, and then, a base material is poured into the casing, and this is gelled. Can be realized.
  • the method of removing the body cavity model is appropriately selected according to the modeling material of the body cavity model, and is not particularly limited as long as it does not affect other materials of the three-dimensional model.
  • a method for removing the body cavity model (a) a heat melting method of melting by heating, (b) a solvent dissolving method of dissolving with a solvent, (c) a hybrid method of using both melting by heating and dissolution by a solvent are employed. be able to.
  • the body cavity model is selectively fluidized, eluted out of the three-dimensional model, and removed.
  • the body cavity model may diffuse into the interior of the membrane model, causing the cloudiness of the membrane model, which may reduce the visibility.
  • the body cavity It is preferred to heat the sample again after removing the model. This heating can be performed during removal of the body cavity model.
  • the three-dimensional model of the present invention can also be formed as follows.
  • the body cavity model is buried in a gel base material as a core, and the body cavity model is removed. As a result, a cavity that reproduces the body cavity is formed in the base material. Thereafter, the material for forming the film model is attached to the peripheral wall of the cavity, and is cured by polymerization or vulcanization.
  • the film-like model forming material can be adhered to the peripheral wall of the body cavity by flowing the film-like model forming material into the cavity of the base material or dipping the base material into the film-like model forming material.
  • the peripheral wall of the cavity can be subjected to a hydrophilic treatment.
  • a water film is formed on the peripheral wall, and the insertion resistance of the catheter is reduced. That is, this water film corresponds to the film model.
  • the peripheral wall of the cavity is made hydrophilic or hydrophobic by a known method.
  • the peripheral wall of the cavity can be made hydrophilic by forming a film having a polar group such as a surfactant on the peripheral wall.
  • the peripheral wall of the cavity can be made hydrophobic.
  • the present inventors have found that the internal stress of the film model can be observed by the photoelastic effect. That is, according to another aspect of the present invention, in the three-dimensional model according to the first aspect described above, the film-like model is a light-transmitting material force, and when an external force is applied thereto, its thickness direction is increased. Has substantially no internal stress, and a first internal stress is generated in a direction along its surface,
  • the substrate has a material force that does not substantially cause internal stress
  • the film-like model has a three-dimensional shape.
  • the photoelastic effect that occurs there is exclusively due to the first internal stress (stress in the direction along the surface of the peripheral wall of the film-like model), and from the observed photoelastic effect (wavelength of light), The stress on the peripheral wall can be specified.
  • a forceful stress observation device is useful for observing the physical properties of the surrounding area of a cavity when the observation target is a membrane model (a translucent model having a cavity that reproduces a body cavity). It is effective. That is, when stress is applied to the peripheral wall of the membrane model in the simulation of insertion of a catheter or a liquid, a photoelastic effect is generated, and the stress state can be observed. This makes it possible to simulate the effect on living tissue when a catheter or liquid is inserted into a body cavity such as a blood vessel.
  • the peripheral wall is formed as a thin film having elastic material force, so that when an external force is applied thereto, the peripheral wall is not restricted in its thickness direction, and forced displacement is generated only in a direction along the surface.
  • the peripheral wall has translucency in order to obtain a photoelastic effect.
  • the thickness of the peripheral wall is not particularly limited as long as the above characteristics can be maintained, but according to the study of the present inventors, it is preferable that the thickness be 0.1-5. Omm. More preferably, it is 0.1-1. Omm.
  • the peripheral wall In order to prevent stress in the thickness direction on the peripheral wall, the peripheral wall is in a state where there is no physical regulation from the thickness direction. Specifically, the outside of the peripheral wall is in direct contact with an easily deformable base material of gel or fluid (water, etc.) or through a space, and when the peripheral wall is deformed in its thickness direction, Force No substantial resistance shall be received. A certain margin (thickness) is required for the base material so as not to apply physical resistance to the surrounding wall. Since the base material is easily deformed, the periphery thereof is surrounded by casing to secure the predetermined margin. Further, it is preferable that the molding material for the peripheral wall and the molding material for the base material have high adhesion.
  • a urethane resin or urethane elastomer can be used as a material for forming the strong peripheral wall, and a silicone gel can be used as a material for forming the base material.
  • the base material be a material that does not substantially generate internal stress, such as a gel or a fluid (eg, water).
  • anything can be inserted into the inside of the peripheral wall, that is, into the hollow portion when observing the photoelastic effect.
  • a catheter or a liquid can be inserted.
  • the peripheral wall of the hollow portion is preferably formed in an annular cross section having substantially the same thickness.
  • the same photoelastic effect (wavelength of light) can be obtained regardless of the direction in which the peripheral wall is observed.
  • the width of the material related to the first internal stress on the peripheral wall is constant, the stress can be easily specified.
  • the film model In order to observe the stress state of the film model by photoelasticity, at least a part of the film model where the observation of the stress state is required is formed of an isotropic material.
  • the film model has translucency.
  • Materials having strong photoelasticity include, for example, elastomers such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer, as well as silicone resin, epoxy resin, polyurethane, unsaturated polyester, and phenol.
  • elastomers such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer, as well as silicone resin, epoxy resin, polyurethane, unsaturated polyester, and phenol.
  • Thermosetting resins such as resin and urea resin and thermoplastic resins such as polymethyl methacrylate can be used alone or in combination.
  • the peripheral wall When a catheter or a liquid is inserted into the cavity of the membrane model, at least the peripheral wall must be formed of an elastically deformable material so that the stress state on the peripheral wall is observed as a photoelastic effect.
  • the film model can be entirely formed of a material that can be elastically deformed.
  • a material for forming a strong membrane-like model As a material for forming a strong membrane-like model, it can be easily deformed (that is, its longitudinal elastic modulus is small) when a catheter or the like is inserted, and a large change in the photoelastic effect can be observed even with a slight deformation (that is, light Materials having a large elastic modulus) are preferred.
  • a powerful material is polyurethane elastomer. Gelling agents for polysaccharides such as gelatin (vegetable cantan), vegetable cantan, carrageenan, and locust bean gum can also be used.
  • the substrate is formed from materials that do not create internal stress! / ⁇ . To reproduce living tissue Requires appropriate elasticity and adhesion to the film model.
  • the most preferred combination of the film model and the base material is to form the film model with a polyurethane elastomer and employ a silicone gel as the base material.
  • the photoelastic effect is that when internal stress occurs in a translucent material, it temporarily becomes birefringent, and the refractive index differs in the direction of the maximum principal stress and the minimum principal stress. It refers to dividing and proceeding. Interference fringes occur due to the phase difference between the two waves, and the state of the internal stress of the translucent material can be known by observing the interference fringes.
  • an orthogonal-Col method, a parallel-Col method, a sensitive color method, and the like are known.
  • a method for detecting a photoelastic effect by interposing a 1Z4 polarizing plate between a polarizing plate and a three-dimensional model a circular polarization method, a Senarmont method, and the like are known.
  • the observation target 100 has a hollow portion 101, and a region 103 around the hollow portion 101 is made of an elastic material having a photoelastic effect in the form of a thin film (thickness: 0). 1— 5. Om m).
  • the surrounding area 103 is surrounded by a translucent substrate 105 such as a gel.
  • the substrate 105 is easily deformed and does not substantially exhibit a photoelastic effect.
  • by securing a sufficient thickness (with a margin) on the base material 105 there is no resistance to the deformation of the surrounding region 103.
  • the thickness of the base material 105 to be pressed is arbitrarily selected depending on the material thereof.
  • the base material 105 having such a thickness easily loses its shape, it is preferable to cover the base material 105 with a translucent case 107.
  • the shape of the case 107 is arbitrary.
  • an external force corresponding to a catheter
  • the surrounding area 103 is deformed.
  • the internal stress ⁇ 3 in the thickness direction of the peripheral region 103 hardly occurs in the deformed portion. This is because there is substantially no repulsion from the base material 105 against external force. Therefore, substantially only the internal stress ⁇ ⁇ (first internal stress) in the direction along the surface of the surrounding region 103 is generated in the deformed portion.
  • the present inventors have earnestly studied a method of specifying the first internal stress ⁇ ⁇ using a wavelength generated in incident light due to a photoelastic effect, in other words, a change in the color of the observed light.
  • the internal stress ⁇ ⁇ on the surrounding area 103 was changed between the part existing in the contour area of the hollow part 101 during observation (contour area) and the part existing before the hollow part 101 during observation. (Front area) and found that they can be specified by different methods.
  • the direction of the first internal stress ⁇ ⁇ is parallel to the observation direction, that is, the direction of the incident light. Will be present widely.
  • the photoelastic effect caused by the first internal stress ⁇ observed in the contour region is the sum of the wavelength changes on the material existing in the width W. Therefore, as shown in FIG. 2A, the wavelength change in the specific region 1031 (unit region) having the unit width w can be obtained by dividing the wavelength change obtained from the observed photoelastic effect by the width W.
  • the peripheral region 103 is formed in an annular shape with substantially the same thickness, the width W is fixed, so that the wavelength change of the unit region can be determined from the observed photoelastic effect.
  • the internal stress in the contour region can be easily obtained. Specifically, if a conversion table (showing the relationship between the wavelength (color) of observation light and the internal stress of the unit area) corresponding to the inner or outer diameter of the surrounding area is prepared, the observed light The internal stress generated in the unit area from the wavelength (color) of the light of the elastic effect can be grasped.
  • the width W of the surrounding area is calculated from the data. Can be specified.
  • FIG. 3 is a schematic diagram for explaining this analysis method.
  • the above-mentioned internal stress ⁇ ⁇ (solid or tensor) is described by its internal principal stresses ⁇ 1 and ⁇ 2 in the plane stress problem targeted by the present invention.
  • the observation direction that is, the incident direction of polarized light
  • the internal stresses obtained by this method that is, the internal principal stresses ⁇ 1 and ⁇ 2 are defined as stresses on the tangent plane and are orthogonal to the tangent plane. Therefore, these internal principal stresses ⁇ 1 and ⁇ 2 are in the direction along the surface of the film model, respectively, and correspond to the first internal stress specified in this specification.
  • the internal stress in the thickness direction of the film model is negligible due to the characteristics of the present invention.
  • phase difference R causing the photoelastic effect is expressed by the following equation.
  • the observed photoelastic effect includes the effects of the internal principal stresses ⁇ 1 and ⁇ 2 described above.
  • the present inventors have conducted intensive studies to obtain the internal principal stresses ⁇ 1 and ⁇ 2 independently, and as a result, by solving the following equation, the values of the internal principal stresses ⁇ 1 and ⁇ 2 were obtained. You can get it.
  • the change in the wavelength (color) observed in the front area is the cavity shown in Fig. 2 ⁇ .
  • the sum of the photoelastic effect on the film (cavity back film) present on the back surface of the portion 101 and the photoelastic effect on the film (cavity front film) present on the front surface of the cavity portion 101 is obtained by the sum of the front surface region (i.e. It is not possible to independently determine the wavelength change on the front cavity film).
  • the present inventors have made intensive studies to independently determine the wavelength change on the front region, and as a result, have found that the wavelength change on the front region can be obtained by the following method.
  • the foreground force of the observation target 100 also emits polarized light
  • the light transmitted through the cavity front membrane is reflected by the front surface of the cavity 101, and again transmitted through the cavity front membrane to the front.
  • the reflection at the front surface of the cavity 101 may be such that the inside of the cavity 101 is filled with a highly reflective liquid or a liquid mixed with a highly reflective material, or the surface of the cavity 101 (at least the front surface). This can be achieved by forming a layer made of a material having high reflectivity in (2).
  • the photoelastic effect caused by the first internal stress ⁇ ⁇ observed in the contour region is twice as large as the sum of wavelength changes on the film thickness of the cavity front film. Therefore, the wavelength change with respect to the unit width w ′ within the film thickness can be obtained by dividing the observed wavelength change obtained by the photoelastic effect force by twice the width W ′ of the film thickness.
  • the front region has a curved surface
  • the peripheral region 103 has an annular shape with substantially the same thickness. Formed into
  • the wavelength change of the unit width w ′ can be immediately obtained from the observed photoelastic effect, and thereby the internal stress of the front surface region can be reduced. It can be easily obtained.
  • a conversion table shown the relationship between the wavelength (color) of the observation light and the internal stress of the unit area
  • the observed photoelastic effect can be obtained.
  • Light wavelength (color) force The internal stress generated in the unit area can be grasped. If there is three-dimensional data representing the surrounding area 103, the width W 'at each point in the front area can be specified from the data.
  • FIG. 23 is a schematic diagram for explaining this analysis method. Assuming a tangent plane for each point 110 on the front surface region 109 of the film model obtained in accordance with each observation direction (that is, each point on the peripheral wall forming the front surface of the film model), The required internal principal stress (a component of the internal stress ⁇ ⁇ (vector or tensor)) ⁇ 1 and ⁇ 2 are defined as the stress on the tangent plane, and are orthogonal to the tangent plane. Therefore, these internal principal stresses ⁇ 1 and ⁇ 2 are in the direction along the surface of the film model, respectively, and correspond to the first internal stress specified in this specification. Note that the internal stress in the thickness direction of the film model is negligible due to the characteristics of the present invention.
  • ⁇ ⁇ vector or tensor
  • the front region 109 exists on the surface of the cavity 101, it has a curved surface, and the photoelastic effect is observed on the curved surface.
  • the phase difference R at each point on the plane is expressed by the following equation.
  • the observed photoelastic effect includes the effects of the internal principal stresses ⁇ 1 and ⁇ 2 described above.
  • the internal principal stresses ⁇ 1 and ⁇ 2 are perpendicular to the observation direction. Since it is in a plane, one can be optically erased by adjusting the orientation of the polarizing plate for detecting the photoelastic effect, and the values of the internal principal stresses ⁇ 1 and ⁇ 2 can be obtained.
  • An observation object having a hollow portion, wherein a region around the hollow portion is made of a translucent elastic material.
  • An object to be observed having a hollow portion, wherein a peripheral region of the hollow portion is a thin film made of a light-transmitting elastic material, and is substantially formed in a thickness direction when an external force is applied to the peripheral region. Observation object where the first internal stress is generated in the direction along the surface without internal stress being generated,
  • the stress observation device configured as described above, even if the peripheral region of the hollow portion has a three-dimensional shape, the photoelastic effect generated there is exclusively caused by the first internal stress (the surface region of the peripheral region). (Stress in the direction along the surface), and the observed photoelastic effect (wavelength of light) force can specify the stress in the surrounding area.
  • a strong stress observation device When a strong stress observation device is used as a three-dimensional model (a translucent model that has a cavity that reproduces a body cavity) as its observation target, it is effective in observing the physical characteristics of the surrounding area of the cavity. It is. That is, when a stress is applied to a region around the cavity of the three-dimensional model in the simulation of insertion of a catheter or a liquid, a photoelastic effect is generated, and the stress state can be observed. This makes it possible to simulate the effect on living tissue when a catheter or liquid is inserted into a body cavity such as a blood vessel.
  • the peripheral region is a thin film that also has elastic material force.
  • an external force is applied to the thin film, it is not constrained in the thickness direction, and the forcible displacement occurs only in the direction along the surface. To do.
  • the first internal stress is generated in the peripheral region, and the stress in the photoelastic effect film-shaped peripheral region can be specified.
  • the surrounding area has translucency.
  • the thickness of the peripheral region is not particularly limited as long as the above characteristics can be maintained, but according to the study of the present inventors, it is preferable that the thickness be 0.1 to 5 Omm. More preferably, it is 0.1 mm. Omm.
  • the surrounding area in order not to generate stress in the thickness direction in the surrounding area, the surrounding area is in a state where there is no physical regulation in the thickness direction.
  • the outside of the surrounding area is in direct contact with an easily deformable base material of gel or fluid (water, etc.) or through a space, and when the surrounding area is deformed in its thickness direction.
  • Substrate force It shall not receive substantial resistance.
  • the substrate must have a certain margin (thickness) in order not to provide physical resistance to the surrounding area. Since the base material is easily deformed, its periphery is surrounded by a casing in order to secure the predetermined margin. It is preferable that the molding material in the surrounding area and the molding material of the base material have high adhesion.
  • Urethane resin or urethane elastomer can be used as a material for forming the peripheral region, and silicone gel can be used as a material for forming the base material.
  • the base material is a material that does not substantially generate internal stress, such as a gel or a fluid (water or the like).
  • any object can be inserted into the inside of the surrounding area, that is, into the hollow part when observing the photoelastic effect.
  • a catheter or a liquid can be inserted.
  • the peripheral region of the hollow portion is preferably formed in an annular cross section having substantially the same thickness.
  • the same photoelastic effect (wavelength of light) can be obtained regardless of the direction in which the surrounding area is observed.
  • the width of the material related to the first internal stress in the surrounding area is constant (the radial force of the surrounding area can be specified), the stress in the unit area (having the unit width) in the surrounding area can be easily reduced. It becomes identifiable.
  • Another aspect of the present invention is defined as follows. That is, Acquiring the photoelastic effect caused by the first internal stress by the detecting means,
  • Means for obtaining a width of the surrounding area in the direction of generation of the first internal stress, and means for calculating a stress in a unit area of the surrounding area from the acquired photoelastic effect and the width of the surrounding area are further provided. .
  • the width of the peripheral region in the direction in which the first internal stress is generated is determined, so that the photoelastic effect (the change in the wavelength of light) acquired by the detection unit is obtained.
  • the width By dividing by the width, it becomes possible to specify a wavelength change of a unit area (having a unit width) in the surrounding area. As a result, the stress state occurring in the surrounding area can be specified more accurately.
  • At least a part of the peripheral region of the cavity where the body cavity is reproduced is formed of a film-like elastic material having a photoelastic effect, and the periphery of the film-like elastic material is a gel force that does not substantially generate a photoelastic effect.
  • a three-dimensional model stress observation device comprising:
  • the periphery of the film-like elastic material is surrounded by the gel-like base material. Therefore, in the three-dimensional model, the photoelastic effect exclusively generates the partial force of the elastic material, and the partial force of the gel base does not generate the photoelastic effect. Therefore, the stress state of the film-like elastic material can be accurately observed.
  • a first model of a peripheral region of a body cavity is created by additive manufacturing
  • the polyurethane elastomer is injected into the cavity of the female mold and cured, and the female mold is removed to obtain a film model composed of the polyurethane elastomer.
  • a contrast agent was administered to the inside of the blood vessel in the imaging area, and 0.35 Images were taken with a helical scan X-ray CT device with a spatial resolution of X 0.35 X 0.5 mm.
  • the three-dimensional data obtained by the photographing is transferred to three-dimensional CAD software, and 500 two-dimensional images of 256 gradations with a resolution of 512 ⁇ 512 arranged at equal intervals in the body axis direction (tomography)
  • the image data corresponding to each two-dimensional image was stored in a 5.25-inch magneto-optical disk by a drive built in the X-ray CT apparatus in the order corresponding to the imaging direction.
  • the image data was loaded into a storage device inside the computer by a 5.25-inch magneto-optical drive externally connected to a personal computer, and the image data was stacked using commercially available three-dimensional CAD software.
  • We generated 3D shape data in STL format (a format that expresses a 3D surface as a set of triangular patches) required for modeling.
  • the input two-dimensional images are stacked based on the photographing interval to construct a three-dimensional scalar field whose density value is a scalar amount, and a specific scalar field that gives an intravascular surface on the scalar field
  • a three-dimensional scalar field whose density value is a scalar amount
  • a specific scalar field that gives an intravascular surface on the scalar field
  • the guide section 13 is a hollow columnar member as shown in FIG.
  • the provision of the hollow portion 31 reduces the time required for additive manufacturing.
  • the distal end of the guide portion 13 is enlarged in diameter, and this portion is exposed on the surface of the three-dimensional model to form a large-diameter opening 25 (see FIG. 7).
  • the generated STL-format three-dimensional shape data is then transferred to a molten resin injection type additive manufacturing system, and the arrangement of the model, the stacking direction, and the stack thickness in the modeling system are determined. Added support for models.
  • the data for the additive manufacturing thus generated was sliced into a predetermined additive thickness (13 m) on a computer to generate a large number of slice data. Then, based on each slice data obtained in this manner, a molding material (melting point: about 100 degrees, easily dissolved in acetone) containing ⁇ -toluenesulfonamide and ⁇ -ethylbenzenesulfonamide as main components was obtained.
  • Laminating molding was performed by forming a resin-cured layer of a specified thickness having a shape corresponding to each slice data by laminating one surface at a time by melting and jetting it out by heating. By removing the support after the formation of the final layer, an additive manufacturing model (body cavity model 12) of the cerebral vascular lumen region was created.
  • body cavity model 12 body cavity model 12
  • the surface of the body cavity model 12 is treated to be smooth.
  • a silicone rubber layer 15 was formed to a thickness of approximately lmm on the entire surface of the body cavity model 12 (see Fig. 6).
  • the silicone rubber layer 15 is obtained by subjecting the body cavity model 12 to a silicone rubber bath and drying the taken body cavity model while rotating it. This silicone rubber layer becomes a film model.
  • a desired portion of the body cavity model 12 in which the entire surface of the body cavity model 12 is covered with the silicone rubber layer 15 can be partially covered with the silicone rubber layer 15.
  • the core 11 in which the body cavity model 12 is covered with a film-like model composed of the silicone rubber layer 15 is set in a rectangular parallelepiped casing 24.
  • This casing 24 is made of a transparent acrylic plate.
  • the material of the base material 22 is injected into the casing and gelled.
  • a two-component mixed type silicone gel was used as a material of the base material 22 as a material of the base material 22.
  • the silicone gel is transparent and has physical properties very close to the soft tissue surrounding the blood vessels.
  • a condensation polymerization type silicone gel can also be used.
  • the physical properties of the material of the base material 22 are adjusted so as to conform to the physical properties of the surrounding tissue such as a blood vessel, which is the target of the film model.
  • the physical properties are brought close to the living tissue by touching the operator (feeling of inserting a catheter) by using the index of penetration, fluidity, adhesiveness, stress relaxation, etc. as indexes. And then.
  • silicone gel not only the skeleton of the polymer is prepared but also the silicone gel.
  • the physical properties can be adjusted by blending the resin.
  • a silicone elastomer manufactured by Asahi Kasei Ecker Silicone Co., Ltd., trade name: RT601
  • a silicone gel made by Asahi Kasei Kacker Silicone Co., Ltd., trade name: SilGel612
  • This silicone gel has a longitudinal modulus of about 5.
  • OkPa a loss factor tan ⁇ (viscoelastic parameter) of about 1.0, and an elongation of about 1000%.
  • the adhesion (adhesion strength) to silicone elastomer is about 8 kPa.
  • a glycerin gel can also be used.
  • This glycerin gel is obtained as follows. That is, gelatin is immersed in water, and glycerin and phenolic acid are calored in the water and dissolved by heating. Filter while the temperature is high, and when it reaches a temperature that does not affect the core, inject it into the casing and let it cool.
  • the body cavity model 12 inside the core 11 is removed.
  • the hybrid method was used as the removal method. That is, the sample is heated to allow the material of the body cavity model to flow out of the opening 25, and then acetone is injected into the cavity to dissolve and remove the material of the body cavity model.
  • the sample was heated in a thermostatic chamber set at 120 ° C. for about 1 hour to remove the cloudiness of the film model (silicone rubber layer 15).
  • the three-dimensional model 21 obtained in this manner has a configuration in which the film model 15 is embedded in a base material 22 made of silicone gel, as shown in Figs. Since the silicone gel has physical properties close to that of biological tissue, the membrane model 15 shows dynamic behavior equivalent to that of a blood vessel.
  • FIG. 9 shows a three-dimensional model 41 of another embodiment.
  • the same elements as those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted.
  • the base material was formed into a multilayer structure so as to correspond to the actual brain tissue, and base materials 42, 43, and 44 having different physical characteristics depending on each part of the brain were laminated.
  • Substrate 42 corresponds to the physical properties of the subarachnoid space around the cerebral artery
  • substrate 43 corresponds to the physical properties of soft tissue around the communicating artery
  • substrate 44 corresponds to the sponge around the carotid artery.
  • the other substrates 46 and 47 were the same substrates as in FIG.
  • the base material may be other than gel (solid or the like).
  • FIG. 8 shows a three-dimensional model 51 of another embodiment.
  • a void 53 is provided in a base material 52, and a part of the film-like model 55 exists in the void 53.
  • the void 53 corresponds to the subarachnoid space.
  • the void portion 53 covers the core (body cavity model + membrane model) with a cover corresponding to the void portion 53, and fills the surroundings with a base material 52 made of silicone gel. Then, the configuration shown in FIG. 9 can be obtained by removing the body cavity model and the cover.
  • FIG. 11 is a cross-sectional view taken along the line CC of FIG. 10, and shows that the film model 55 is embedded in the base material 51 having a silicone gel force.
  • the space 53 may be filled with a material having physical properties different from those of the base material 52 (preferably, a material (eg, gel) having the same physical properties as the biological tissue constituting the subarachnoid space).
  • This filling material preferably has a refractive index substantially equal to that of the substrate 52.
  • the shape of the gap can be arbitrarily formed.
  • FIG. 12 shows a configuration of a stress observation device 60 according to an embodiment of the present invention.
  • the stress observation device 60 of this embodiment is roughly composed of a light source 61, a pair of polarizing plates 62 and 63, the three-dimensional model 21 shown in FIG.
  • the first polarizing plates 62 and 63 have polarization directions orthogonal to each other. Thereby, as described in FIG. 1, the photoelastic effect caused by the internal stress of the three-dimensional model 21 in the contour region can be observed on the second polarizing plate 63 side.
  • the film-like model is formed of polyurethane elastomer
  • the equipment uses silicone gel. This makes it possible to observe the change in the internal stress of the film model as a photoelastic effect.
  • the light source 61, the first polarizer 62, the three-dimensional model 21, and the second polarizer 63 are arranged on a straight line, but the second polarizer 63 is shifted (ie, (The force is also shifted on a straight line). Since light is diffusely reflected in the cavity of the three-dimensional model 21, the photoelastic effect can be more clearly observed when the second polarizing plate 63 is shifted and arranged in the shape of the cavity. .
  • FIG. 19 shows a stress observation device 360 of another embodiment related to stress observation device 60 shown in FIG. 12 (the same elements as those shown in FIG. Is omitted).
  • the light source 61 and the first polarizing plate 62, and the second polarizing plate 63 and the light receiving unit 70 are respectively combined as a set, moved to one side of the three-dimensional model 21, and arranged in parallel. You. Thereby, the optical effect caused by the internal stress on the front surface region of the three-dimensional model 21 can be observed on the second polarizing plate 63 side.
  • the light emitted from the light source 61 passes through the first polarizing plate 62, enters the three-dimensional model 21, and further passes through the film part of the three-dimensional model 21 (film-like model).
  • the light is reflected by the surface, passes through the film part of the three-dimensional model 21 (film-like model) again, and is observed at the light receiving unit 70 via the polarizing plate 63 and the second 1Z4 polarizing plate 83. According to this method, the photoelastic effect on the projection surface by the light source 61 on the surface of the gap can be observed.
  • the inside of the gap is filled with a liquid having a high reflectance or a liquid mixed with a material having a high reflectance, or a layer made of a material having a high reflectance is provided on the surface of the gap.
  • the formation reflects the incident light from the light source 61 on the surface of the gap.
  • the light receiving section 70 is provided with an imaging device 71 having a uniform force of a CCD and an imaging device 71
  • the following processing is performed in the image processing device 73 (see FIG. 13).
  • any external force is applied to the three-dimensional model 21. Import as an image (Step 1).
  • the three-dimensional model 21 is formed of a material having a high photoluminescence coefficient, a photoelastic effect may be generated by its own weight. Therefore, after irradiating light from the light source 61 and capturing an interference fringe image due to the photoelastic effect when external force is further reduced (for example, when a catheter is inserted) (step 3), the background image is subjected to differential processing. Yes (step 5).
  • the image processing device 73 quantifies the internal stress by counting the number of the patterns per unit area (Step 7). Then, in the image relating to the shape of the three-dimensional model 21 obtained via the second polarizing plate 63, a portion corresponding to the numerical value is given to the portion where the internal stress has occurred, and is externally displayed (step 9).
  • the interference fringes due to the photoelastic effect are image-processed by the light receiving unit 70, but the interference fringes may be observed directly by the observer or via the imaging device 71.
  • FIG. 14 shows a stress observation device 80 according to another embodiment. Elements that are the same as the elements shown in FIG. 12 are given the same reference numerals, and descriptions thereof will be omitted.
  • a first 1Z4 polarizing plate 82 is interposed between the first polarizing plate 62 and the three-dimensional model 21, and a second 1Z4 polarizing plate 83 is provided between the three-dimensional model 21 and the second polarizing plate 63. Is interposed.
  • the photoelastic effect in the contour region can be observed by the circular polarization method.
  • the influence of the relative direction between the polarizing plate and the internal principal stress does not appear on the interference fringes, so that the attitude control of the three-dimensional model becomes easy.
  • a stress observation device 380 of another embodiment shown in FIG. 20 (the same components as those shown in FIG. 12 are denoted by the same reference numerals and description thereof will be omitted), a light source 61 and a first polarizing plate 62, And the second polarizing plate 63 and the light receiving unit 70 are respectively set as a set and are arranged in parallel on one side of the three-dimensional model 21. Further, the first 1Z4 polarizing plate 82 is further combined with the first polarizing plate 62 and the three-dimensional model 21. , And the second 1Z4 polarizing plate 83 is interposed between the three-dimensional model 21 and the second polarizing plate 63.
  • the photoelastic effect caused by the internal stress on the front surface region of the three-dimensional model 21 can be observed on the second polarizing plate 63 side by the circular polarization method.
  • the light emitted from the light source 61 passes through the first polarizing plate 62 and the first 1Z4 polarizing plate 82 and is incident on the three-dimensional model 21, and the film portion of the three-dimensional model 21 (film-like model) After further passing through the film, the light is reflected on the surface of the void in the film model, passes through the film part of the three-dimensional model 21 (film model) again, and passes through the polarizing plate 63 and the second 1Z4 polarizing plate 83. And is observed at the light receiving unit 70.
  • the photoelastic effect on the projection plane by the light source 61 on the gap surface can be observed without being affected by the stress direction.
  • the inside of the gap is filled with a liquid having a high reflectivity or a liquid mixed with a material having a high reflectivity, or a layer made of a material having a high reflectivity is provided on the surface of the gap.
  • the formation reflects the incident light from the light source 61 on the surface of the gap.
  • FIG. 15 shows a stress observation device 90 according to another embodiment. Elements that are the same as the elements shown in FIG. 12 are given the same reference numerals, and descriptions thereof will be omitted.
  • the three-dimensional model 21 is held on a rotating / tilting stage 91, and the three-dimensional model 21 can be rotated and Z or tilted. Thereby, the incident direction of the light on the three-dimensional model 21 is changed, and the stress distribution in the contour region of the three-dimensional model 21 can be three-dimensionally observed. Therefore, simulation in the three-dimensional model is exempted in more detail.
  • this rotation / tilt stage 91 can also be applied to the three-dimensional model 21 in the example of FIG.
  • the three-dimensional model 21 is rotated and / or tilted.
  • the same operation and effect can be obtained even if the posture of the three-dimensional model 21 is fixed and the surrounding elements are rotated and Z or tilted. can get.
  • the stress observation device 390 of the other embodiment shown in FIG. 21 (the same components as those shown in FIG. 12 are denoted by the same reference numerals and description thereof is omitted) is the stress observation device 90 shown in FIG.
  • the three-dimensional model 21 is held on a rotation / tilt stage 91, and the three-dimensional model 21 can be rotated and Z or tilted. According to the device, by changing the incident direction of light on the three-dimensional model 21, the stress distribution in the front surface region of the three-dimensional model 21 can be three-dimensionally observed. In this embodiment, the force of rotating and Z or tilting the three-dimensional model 21 is maintained while the posture of the three-dimensional model 21 is fixed. Alternatively, the same operation and effect can be obtained even if the inclination is performed.
  • FIG. 16 shows the configuration of a stress observation device 200 according to another embodiment.
  • the same elements as those in FIG. 12 are denoted by the same reference numerals, and description thereof will be omitted.
  • the image processing device 273 of the stress observation device 200 that enables the stress distribution in the contour region includes data (surrounding region data) 205 expressing the surrounding region 103 shown in FIG.
  • the stress observation device 400 of the embodiment (the same elements as those shown in FIG. 12 are denoted by the same reference numerals and description thereof is omitted) is the same as the stress observation device 200 shown in FIG.
  • Data (surrounding area data) 205 representing the area 103 is provided to enable stress distribution in the front area.
  • an image including the photoelastic effect captured by the imaging device 71 is captured, and The data is stored in the memory 201.
  • the captured image is analyzed and associated with the surrounding area data 205.
  • the observation direction is specified along with the obtained position of the photoelastic effect.
  • a marker is provided in the three-dimensional model, and the captured image can be associated with the surrounding area data based on the position of the force.
  • the internal stress calculation device 207 obtains a material width W of the peripheral region in the first internal stress direction in which the photoelastic effect is caused from the peripheral region data 205 (see FIG. 2). Then, the value of the photoelastic effect (apparent internal stress) obtained by the imaging device is divided by the material width W to calculate the internal stress in the unit area of the surrounding area.
  • step 200 shown in FIG. 17 is completed. That is, the internal stress numerically adjusted in step 7 is corrected based on the width W of the surrounding region, and the internal stress can be specified for each unit region of the surrounding region.
  • the same steps as those in FIG. 13 are denoted by the same elements, and description thereof will be omitted.
  • FIG. 18 shows a method of manufacturing a film model suitable for observing the photoelastic effect.
  • a body cavity model is prepared in process I, and PVA is coated on the entire surface of the body cavity model by the immersion method (process 11).
  • Process III the sample obtained in Process II is coated with polyurethane elastomer by immersion. After that, consider the affinity with the polyurethane elastomer film In consideration of this, the PVA is coated twice by the dipping method (Processes V and VI). Thus, the polyurethane elastomer film is completely covered with the PVA film in the vertical direction.
  • the surface of the body cavity model is coated with a water-soluble material film, a layer of polyurethane elastomer is formed on the surface of the film, the surface of the polyurethane elastomer layer is coated with a water-soluble material layer, and the body cavity model is coated with an organic solvent. Dissolve and then.
  • a film-like model made of a translucent material and having a cavity therein for reproducing a body cavity such as a blood vessel formed based on tomographic image data of the subject;
  • a membrane model having a cavity that reproduces a body cavity such as a blood vessel formed based on tomographic image data of the subject is embedded in a gel base material, and the cavity of the membrane model is visually recognized.
  • the three-dimensional model according to (4), wherein the base material also has a silicone gel or glycerin gel force.
  • Translucent gel-like first material A cavity that reproduces a body cavity is provided on a base material, and a translucent second material is formed in a film shape on the peripheral wall of the cavity.
  • a three-dimensional model characterized by the following.
  • a three-dimensional body characterized in that a cavity that reproduces a body cavity is provided on a transparent gel-like first material base material, and the peripheral wall of the cavity is subjected to a hydrophilic treatment or a hydrophobic treatment. model.
  • a step of forming a body cavity model such as a blood vessel based on tomographic image data of a subject a step of forming a core by surrounding the body cavity model in a film shape with a model molding material, and forming the core.
  • a method of manufacturing a three-dimensional model comprising:
  • a method for producing a stereo model comprising: forming a light-transmitting second material in a film shape on an inner peripheral surface of the cavity.
  • a method for producing a three-dimensional model wherein the inner peripheral surface of the cavity is subjected to a hydrophilic treatment or a hydrophobic treatment.
  • FIG. 1 is an explanatory diagram of a photoelastic effect.
  • FIG. 2 is a conceptual diagram showing the operation of the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between internal stress and incident light.
  • FIG. 4 is a perspective view showing a core 11 of the embodiment.
  • FIG. 5 is a perspective view showing a guide portion.
  • FIG. 6 is a cross-sectional view taken along line AA of FIG. 2, showing the configuration of a core.
  • FIG. 7 shows a three-dimensional model according to an embodiment of the present invention.
  • Fig. 8 is a sectional view taken along the line BB of Fig. 7, showing a state in which the film-like model is embedded in the base material.
  • FIG. 9 shows a three-dimensional model of another embodiment.
  • FIG. 10 shows a three-dimensional model of another embodiment.
  • FIG. 8 is a cross-sectional view taken along the line CC of FIG. 10, and shows a state in which the film-like model is embedded in the base material.
  • FIG. 12 is a schematic diagram showing a configuration of a stress observation device according to an embodiment of the present invention.
  • FIG. 13 is a flowchart showing an operation of the light receiving unit of the stress observation device of the embodiment.
  • FIG. 14 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing the configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 17 is a flowchart showing the operation of the stress observation device in the same manner.
  • FIG. 18 is a flowchart showing a method for manufacturing a film-like model suitable for photoelastic observation.
  • FIG. 19 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 21 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing a configuration of a stress observation device according to another embodiment of the present invention.
  • FIG. 23 is a conceptual diagram showing the operation of the present invention.

Abstract

 血管等の体腔部分の動特性を再現可能な立体モデルを提案する。被検体の断層像データに基づき形成された血管などの体腔を再現した腔所をその内部に有する膜状モデルが生体組織に類似した物理特性を有する基材に埋設されている。基材にはシリコーンゲル等の柔軟かつ弾性のある材料が採用される。  

Description

明 細 書
立体モデル
技術分野
[0001] この発明は立体モデルに関する。更に詳しくは、被検体の血管などの体腔を再現し た立体モデルに関する。
技術背景
[0002] 本発明者らは、被検体の血管などの体腔を再現したブロック状の立体モデルを提 案している(非特許文献 1)。この立体モデルは被検体の断層像データに基づき血管 などの体腔モデルを積層造形し、該体腔モデルの周囲を立体モデル成形材料で囲 繞して該立体モデル成形材料を硬化させ、その後体腔モデルを除去することにより 得られる。
更に、膜状の立体モデル (非特許文献 2)を提案して!/ヽる。
更には、本件発明に関連する文献として特許文献 1一特許文献 5を参照されたい。
[0003] 特許文献 1 :特開 2003— 11237号公報
特許文献 2:特開平 11—73096号公報
特許文献 3 :WO 03/096309 A1
特許文献 4:特開平 10— 33253号公報
特許文献 5:特開平 3-111726号公報
非特許文献 1:脳血管内腔を再現した手術試行用医療モデル、第 20回ロボット学会 学術講演会予稿集、 2002.
非特許文献 2 :脳血管内手術を対象とした生体情報に基づく手術シミュレータに関す る研究、ロボテイクス 'メカトロニクス講演会予稿集、 2003
発明の開示
発明が解決しょうとする課題
[0004] 上記の各立体モデルによれば脳血管等の体腔の複雑かつ微妙な立体形状が正確 に再現されるので、患部の確認やカテーテル挿入シミュレーション用として好適なも のとなる。しカゝしながら、ブロック状の立体モデルでは、血管の膜状構造と血管周囲 領域の構造が個別に再現されないためにモデル内部の血管形状は拘束されており 、医療機器や流体の挿入シミュレーションに対して、手術時に認められるような血管 の動的な変形を表現することはできな 、。
また、膜状立体モデルは保形性に劣るので、取り扱いが不便である。
課題を解決するための手段
[0005] この発明の第 1の局面は上記課題を解決すべくなされたものであり、その構成は、 血管などの体腔をその内部に再現する膜状モデルと、
該膜状モデルを囲繞する透光性の基材であって、弾性を有しかつ前記膜状モデル に対して密着性のある基材と、
を備えてなる立体モデル。
発明の効果
[0006] このように構成された立体モデルによれば、生体血管の有する膜状構造と血管周 囲の軟組織の構造が物理特性も含めて個別に再現される。これにより、血管等の柔 軟性を有する膜状構造のモデルが、血管周囲組織の弾性特性を有する基材に埋設 された状態となる。このため、医療器具や流体の挿入シミュレーションに際して、立体 モデル内部の膜状構造の血管モデルが基材内で生体内における血管と同様に柔軟 に変形することができ、生体血管の変形特性を再現するのに好適なものとなる。 発明を実施するための最良の形態
[0007] 以下、発明の各構成要素を詳細に説明する。
(膜状モデル)
膜状モデルは次のようにして形成される。
被検体は人体の全体若しくは一部を対象とするが、動物や植物を断層撮影の対象 とすることができる。また、死体を除くものではない。
断層像データは積層造形を実行するための基礎となるデータをいう。一般的に、 X 線 CT装置、 MRI装置、超音波装置などによって得られた断層撮影データから三次 元形状データを構築し、当該三次元形状データを二次元に分解して断層像データと する。
以下、断層像データ生成の一例を説明する。 [0008] ここでは、体軸方向に平行移動しながら等間隔に撮影することによって得られた複 数の二次元画像を入力データ(断層撮影データ)として使用する場合について説明 するが、他の撮影方法によって得られた二次元画像、或いは三次元画像を入力画像 とする場合でも同様な処理を行うことによって腔所の三次元形状データを得ることが できる。入力された各二次元画像は、まず撮影時の撮影間隔に基づいて正確に積 層される。次に、各二次元画像上に、画像濃度値に関しての閾値を指定することによ り、体腔モデルの対象とする腔所領域のみを各二次元画像中より抽出し、一方で他 の領域を積層された二次元画像中より削除する。これにより腔所領域に相当する部 分の三次元形状が二次元画像を積層した形で与えられ、この各二次元画像の輪郭 線を三次元的に補間し、三次元曲面として再構成することにより対象とする腔所の三 次元形状データが生成される。尚、この場合は濃度値に関しての閾値を指定すること によって、まず入力画像中より腔所領域の抽出を行ったが、この方法とは別に、腔所 表面を与える特定濃度値を指定することによって入力画像中より腔所表面の抽出し、 三次元補間することによって直接的に三次元曲面を生成することも可能である。また 、閾値指定による領域抽出 (或いは特定濃度値指定による表面抽出)を行った後に 入力画像の積層を行ってもよい。また、三次元曲面の生成はポリゴン近似によって行 つてもよい。
[0009] 尚、前記三次元形状データには、該三次元形状データの生成中、或いは生成後 において、形状の修正や変更を施すことが可能である。例えば、断層撮影データ中 には存在しな 、構造を付加することや、サポートと呼ばれる支持構造を付加すること や、或いは断層撮影データ中の構造を一部除去することや、腔所の形状を変更する ことなどが可能であり、これによつて、立体モデルの内部に形成される腔所の形状を 自由に修正或いは変更することができる。さらには、腔所の内部に非積層造形領域 を設けることも可能であり、後に説明する内部を中空の構造とし、非積層造形領域を 設けた体腔モデルを作製する場合には、そのような非積層造形領域を腔所の内部に 設けた三次元形状データを生成しておく。尚、これらの処理は、積層造形システム、 或いは積層造形システムに対応したソフトウェアにお 、て行ってもょ 、。
[0010] 次に、生成した腔所の三次元形状データを、必要に応じて体腔モデルの積層造形 に使用する積層造形システムに対応した形式に変換し、使用する積層造形システム 、或いは使用する積層造形システムに対応したソフトウェアへと送る。
積層造形システム (或いは積層造形システムに対応したソフトウェア)では、積層造 形時の体腔モデルの配置や積層方向などの各種設定項目の設定を行うと同時に、 積層造形中における形状保持などの目的で、サポート (支持構造)をサポートが必要 な箇所に付加する(必要なければ付加する必要はない)。最後に、このようにして得ら れた造形用データを積層造形時の造形厚さに基づいてスライスすることによって、積 層造形に直接利用されるスライスデータ(断層像データ)を生成する。尚、上記の手 順とは逆に、スライスデータの生成を行った後にサポートの付加を行ってもよい。また 、スライスデータが使用する積層造形システム(或いは積層造形システムに対応した ソフトウェア)によって自動的に生成される場合には、この手順を省略することができ る。但し、この場合でも積層造形厚さの設定を行っても良い。サポートの付カ卩につい ても同様であり、積層造形システム (或いは積層造形システムに対応したソフトウェア )によってサポートが自動的に生成される場合には、手動で生成する必要はない(手 動で生成してもよい)。
[0011] 上記の例では、断層撮影データから三次元形状データを構築しているが、データと して最初から三次元形状データが与えられた場合もこれを二次元に分解して次の積 層造形工程に用いる断層像データを得ることができる。
[0012] この発明では血管などの体腔を対象としており、ここに体腔とは諸器官 (骨格、筋、 循環器、呼吸器、消化器、泌尿生殖器、内分泌器、神経、感覚器など)に存在する 腔所、並びに、これらの諸器官や体壁などの幾何学的配置によって構成される腔所 を指す。したがって、心臓の内腔、胃の内腔、腸の内腔、子宮の内腔、血管の内腔、 尿管の内腔などの諸器官の内腔や、口腔、鼻腔、ロ峡、中耳腔、体腔、関節腔、囲 心腔などが「体腔」に含まれる。
[0013] 上記の断層像データから上記体腔を形成する。
形成の方法は特に限定されるものではないが、積層造形が好ましい。ここに積層造 詣とは、断層像データに基づき薄い層を形成し、これを順次繰り返すことにより所望 の造形を得ることをいう。即ち、被検体の断層像データに基づき、被検体の腔所領域 を抽出して該腔所領域に相当する体腔モデルを積層造形する。
積層造形された体腔モデルは後の工程で分解除去されなければならな ヽ。除去を 容易にするため、積層造形に用いる材料を低い融点の材料とするカゝ、若しくは溶剤 に容易に溶解する材料とすることが好ま 、。力かる材料としては低融点の熱硬化性 榭脂若しくはワックス等を用いることができる。 V、わゆる光造形法 (積層造形に含まれ る)において汎用される光硬化性榭脂においてもその分解が容易であれば、これを 用!/、ることができる。
[0014] 前記体腔モデルは、次の工程において膜状モデル成形材料で囲繞する際に外部 力も付加される圧力等の外力に耐え得る強度を有する範囲であれば、その内部を中 空構造とし薄肉化することができる。これによつて、積層造形に所要される時間や造 形に伴うコストが低減されるだけでなぐ後の溶出行程において体腔モデルの溶出を 簡素化できる。
具体的な積層造形の方式として、例えば粉末焼結方式、溶融榭脂噴出方式、溶融 榭脂押出方式等を挙げることができる。
[0015] 尚、積層造形によって作製された体腔モデルには、積層造形の後に、表面研磨や 、表面コーティングの付加など各種の加工(除去カ卩工及び付加力卩ェ)をカ卩えることが 可能であり、これによつて体腔モデルの形状を修正或 、は変更することが可能である 。これらの加工の一環として、体腔モデルの作製にあたって、積層造形後の除去が 必要なサポートを付加した場合には、サポートの除去を行っておく。
体腔モデルの表面を他の材料でコーティングすることにより、体腔モデルの材料の 一部の成分又は全部の成分が膜状モデル成形材料中に拡散することを防止するこ とができる。その他、体腔モデルの表面を物理的に処理 (熱処理、高周波処理等)、 若しくは化学的に処理することにより、当該拡散を防止することもできる。
[0016] 表面処理することにより体腔モデルの表面の段差を円滑ィ匕することが好ましい。こ れにより、膜状モデルの内腔表面が円滑になり、より実際の血管等の体腔内表面を 再現できることとなる。表面処理の方法として、体腔モデルの表面を溶剤に接触させ ること、加熱して表面を溶融すること、コーティングすること及びこれらを併用すること が挙げられる。 [0017] 体腔モデルの一部又は全部を膜状モデル成形材料で薄く囲繞してこれを重合若し くは加硫等により硬化する。体腔モデルを除去することにより膜状モデルが形成され る。
[0018] 膜状モデル成形材料は当該モデルの用途に応じて適宜選択される。例えば、シリ コーンゴム(シリコーンエラストマ一)や熱硬化性のポリウレタンエラストマ一等のエラス トマ一の他、シリコーン榭脂、エポキシ榭脂、ポリウレタン、不飽和ポリエステル、フエノ ール榭脂、ユリア榭脂等の熱硬化性榭脂や、ポリメタクリル酸メチル等の熱可塑性榭 脂を単独で、或いは複数組み合わせて使用することができる。これらの材料を塗布、 吹き付け、若しくはデイツビング等の方法で体腔モデルの表面へ薄く積層し、その後 周知の方法で加硫若しくは硬化させる。
膜状モデルの対象を脳血管モデルとするときには、透明でかつ生体組織に近い弾 力性及び柔軟性を備える材料を採用することが好ま ヽ。かかる材料としてシリコー ンゴムを挙げることができる。また、シリコーンゴムは生体組織と同等の接触特性を有 するので、カテーテル等の医療器具を挿入し手術の試行に適したものとなる。ウレタ ン榭脂やウレタンエラストマ一も好適に使用できる。
膜状モデル形成材料を複数層から形成することができる。その厚みも任意に設定 できる。
[0019] (基材)
基材は透光性材料製として膜状モデルの変形を観察可能とする。
基材は弹性を有するものとする。好ましくは、縦弾性係数が 2. OkPa— lOOkPaの 低弾性とする。更に好ましくは、基材は充分な伸びを有する。これにより、膜状モデル が大きく変形しても、膜状モデル力も基材が剥離することがない。例えば、無負荷時 を 1として、膜状モデルに対する接着性を確保した状態で引っ張ったときに基材は無 付カロ時の 2— 15倍の伸び率を有することが好ましい。ここで伸び率とは、基材が元に 戻ることの出来る最大変形量を指す。また、荷重を加えて変形させた基材から荷重を 除去したときに基材が元に戻る速度は比較的緩やかであることが好ましい。例えば、 粘弾性パラメータである損失係数 tan δ (1Hz時)は 0. 2-2. 0とすることができる。 これにより、血管等の周囲に存在する組織と同等若しくは近い特性を基材が持ち、 膜状モデルの変形がより実際に近い環境で行われることとなる。即ち、カテーテル等 の揷入感をリアルに再現可能となる。
基材は膜状モデルに対して密着性を有するものとする。これにより、膜状モデルへ カテーテル等を挿入して膜状モデルを変形させも基材と膜状モデルとの間にズレの 生じることがない。両者の間にズレが生じると、膜状モデルに力かる応力に変化が生 じるので、例えばカテーテルの挿入シミュレーションをする場合に支障をきたし、その 挿入時に違和感を生じるおそれがある。
膜状モデルとして脳血管モデルを対象としたとき、基材と膜状モデルとの密着性( 接着強度)は lkPa— 20kPaとすることが好ましい。
力かる基材として実施例ではシリコーンゲル及びグリセリンゲルを用いて 、るが、そ の材質が特に限定されるものではない。なお、ケーシングに気密性を確保できれば 高粘度の液体を基材として用いることもできる。これは特に、弾性を有さない生体組 織に囲まれる血管を再現した膜状モデルに対する基材として好適である。これら複数 種類の流動体を混合し、さらにはこれらへ接着性の薬剤を混合することにより、好適 な基材を調製することもできる。
基材の材料としてゲルを用いた場合、物理特性の異なる複数の材料を用いて基材 をより生体組織に近づけることができる。
膜状モデルの動的な挙動を観察するため、基材は透光性とすることが好ましい。膜 状モデルと基材との境界を明確にするため、膜状モデル若しくは基材の少なくとも一 方を着色することができる。また、膜状モデルの動的挙動をより正確に観察できるよう に、膜状モデルの材料の屈折率と基材の材料の屈折率とを実質的に等しくすること が好ましい。
膜状モデルの全部が当該基材内に埋設される必要はない。即ち、膜状モデル一部 は空隙部内に位置していてもよい(図 8参照)。また、膜状モデルの一部はソリッド基 材 (生体組織と非類似の物理特性を有する)内又は流体内にあってもよい。
(ケーシング)
ケーシングは基材を収容するものであり任意の形状をとることができる。膜状モデル の動的挙動を観察できるように全体若しくはその一部が透光性材料で形成される。 力かるケーシングは透光性の合成樹脂(アクリル板等)やガラス板で形成することがで きる。
ケーシングには膜状モデルの腔所に連通する穴が空けられている。この穴からカテ 一テルを挿入することができる。
立体モデルは全体として透光性であることが好まし 、。カテーテルの挿入状態を観 察する点からいえば、少なくともその膜状モデルの内部が視認できればよい。
ケーシングと膜状モデルとの間には充分な距離を設ける。これにより、弾性を有する 基材に充分なマージン (厚さ)が確保され、カテーテル挿入等により膜状モデルへ外 力がかけられたときその外力に応じて膜状モデルは自由に変形できることとなる。な お、このマージンは立体モデルの対象、用途等に応じて任意に選択できるものであ る力 例えば膜状モデルの膜厚の 10倍一 100倍以上とすることが好ましい。
[0021] (立体モデルの製造方法)
体腔モデルを膜状モデルで被覆した状態の中子をケーシング中にセットし、該ケー シングへ基材材料を注入し、ゲル化する。その後、体腔モデルを除去すると膜状モ デルが基材中に残された状態となる。
[0022] 或いは、基材材料の注入に先んじて体腔モデルを除去し、膜状モデルを得た後に
、該膜状モデルをケーシング内にセットし、その後、該ケーシング内に基材材料を注 入し、これをゲルイ匕させることによつても、膜状モデルが基材中に埋没された状態を 実現することができる。
[0023] 体腔モデルの除去の方法は体腔モデルの造形材料に応じて適宜選択され、立体 モデルの他の材料に影響の出ない限り、特に限定されない。体腔モデルを除去する 方法として、 (a)加熱により溶融する加熱溶融法、 (b)溶剤により溶解する溶剤溶解法 、 (c)加熱による溶融と溶剤による溶解とを併用するハイブリッド法等を採用することが できる。これらの方法により体腔モデルを選択的に流動化し、立体モデルの外部へ 溶出してこれを除去する。
[0024] (拡散除去工程)
体腔モデルの材料の成分の一部が膜状モデルの内部へと拡散し、膜状モデルに 曇りが生じて、その視認性が低下するおそれがある。この曇りを除去するため、体腔 モデルを除去した後に試料を再度加熱することが好まし 、。この加熱は体腔モデル 除去の途中で実行することもできる。
[0025] この発明の立体モデルは、また、次のようにして形成することもできる。
体腔モデルを中子としてゲル状の基材へ埋設し、当該体腔モデルを除去する。こ れにより、基材中に体腔を再現した腔所が形成される。その後、腔所の周壁へ膜状 モデルの形成材料を付着させ重合若しくは加硫等により硬化する。膜状モデル形成 材料を基材の腔所へ流すこと、若しくは基材を膜状モデル形成材料にデイツビング することにより、膜状モデル形成材料を基材の体腔周壁へ付着させることができる。
[0026] また、当該腔所の周壁へ膜状モデル形成材料を付着する代わりに当該腔所の周 壁を親水化処理することができる。これにより、立体モデルの腔所へ水若しくは水溶 液を充填したとき周壁に水膜が形成され、カテーテルの挿入抵抗が緩和される。即 ち、この水膜が膜状モデルに対応することとなる。
当該腔所の周壁を疎水化処理 (親油化処理)した場合も同様に、腔所へ油を充填 したとき周壁に油膜が形成され、カテーテルの挿入抵抗が緩和される。即ち、この油 膜が膜状モデルに対応する。
[0027] 腔所の周壁は周知の方法で親水化若しくは疎水化される。例えば基材としてシリコ ーンゲルを採用した場合、界面活性剤等の極性基を有する膜を当該周壁に形成す ることによりその腔所の周壁を親水化することができる。同様に、オイルやワックス等 の油性膜を腔所の周壁に形成することによりその腔所の周壁を疎水化することができ る。
[0028] 本発明者らは膜状モデルの内部応力が光弾性効果により観察可能であることを見 出した。即ち、本発明の他の局面によれば、既述の第 1の局面の立体モデルにおい て、前記膜状モデルは透光性材料力 なり、これに外力が加えられたときその厚さ方 向には実質的に内部応力が発生せず、その表面に沿う方向に第 1の内部応力が発 生し、
前記基材は実質的に内部応力を生じない材料力 なり、
光弾性効果の観察に用いられる。
[0029] このように構成された立体モデルによれば、膜状モデルが三次元的な形状であつ ても、そこで生じる光弾性効果が専ら第 1の内部応力(膜状モデルの周壁の表面に 沿った方向の応力)に起因するものとなり、観察された光弾性効果 (光の波長)から当 該周壁における応力を特定することができる。
力かる応力観察装置は、その観察対象を膜状モデル (体腔を再現した腔所を有す る透光性のモデル)としたとき、その腔所の周囲領域の物理特性を観察することに有 効である。即ち、カテーテルや液体の挿入シミュレーションにおいて膜状モデルの周 壁に応力が力かったとき、光弾性効果が生じてその応力状態を観察することができる 。これにより、カテーテルや液体を血管等の体腔へ挿入したときの生体組織に与える 影響をシミュレートすることができる。
上記において、周壁は弾性材料力もなる薄膜として、これに外力が掛カつたときそ の厚さ方向には拘束されず、その表面に沿う方向にのみ強制変位が生じるようにす る。これにより、周壁に生じる応力が第 1の内部応力のみとなり、光弾性効果から膜状 周壁の応力を特定可能となる。勿論、光弾性効果を得るために周壁は透光性を有す る。
周壁の厚さは、上記の特性が維持できれば、特に限定されるものではないが、本発 明者らの検討によれば、 0. 1-5. Ommとすることが好ましい。更に好ましくは 0. 1— 1. Ommである。
また、周壁に厚さ方向の応力を生じさせないためには、当該周壁はその厚さ方向か ら物理的な規制がない状態とする。具体的には、周壁の外側はゲル、流体 (水等)の 容易に変形可能な基材に直接、若しくは空間を介して、接しており、周壁がその厚さ 方向へ変形したときに基材力 実質的な抵抗を受けないものとする。周壁へ物理的 な抵抗を与えないためには、基材には所定のマージン (厚さ)が必要となる。この基 材は容易に変形するため、当該所定のマージンを確保するためにはその周囲がケ 一シングで囲繞されることとなる。また、周壁の成形材料と基材の成形材料との間に は高い密着性のあることが好ましい。両者の間にすべりが生じると摩擦抵抗が生じて 不規則な内部抵抗の生じるおそれがあるからである。力かる周壁の形成材料としてゥ レタン樹脂又はウレタンエラストマ一を、基材の形成材料としてシリコーンゲルを挙げ ることがでさる。 また、基材カも光弾性効果が生じると、周壁の光弾性効果のノイズとなるので好まし くない。よって、基材はゲルや流体 (水等)のような実質的に内部応力を生じさせない 材料とすることが好ましい。
なお、周壁の内側、即ち中空部には、光弾性効果の観察時に任意のものを挿入可 能である。例えば、膜状モデルの場合、カテーテルや液体を挿入可能である。
[0031] 中空部の周壁は実質的に同一の厚さの円環状断面に形成されることが好ましい。
これにより、周壁をどの方向から観察しても同じ光弾性効果 (光の波長)を得ることが できる。また、周壁において第 1の内部応力に関係する材料の幅が一定となるので、 応力を容易に特定可能となる。
[0032] 膜状モデルの応力状態を光弾性により観察するには、膜状モデルにおいて少なく とも応力状態の観察が必要な部位を等方性材料で形成する。膜状モデルは透光性 を有するものとする。
力かる光弾性を有する材料として、例えば、シリコーンゴム (シリコーンエラストマ一) や熱硬化性のポリウレタンエラストマ一等のエラストマ一の他、シリコーン榭脂、ェポ キシ榭脂、ポリウレタン、不飽和ポリエステル、フエノール榭脂、ユリア榭脂等の熱硬 化性榭脂や、ポリメタクリル酸メチル等の熱可塑性榭脂を単独で、或いは複数組み合 わせて使用することができる。
カテーテルや液体を膜状モデルの腔所へ挿入したとき、当該周壁における応力状 態が光弾性効果として観察されるためには、少なくとも当該周壁が弾性変形可能な 材料で形成される必要がある。勿論、膜状モデルを全体的に弾性変形可能な材料 で形成することができる。
力かる膜状モデルの形成材料として、カテーテル等の挿入にともなって変形しやす く(即ち、縦弾性係数が小さく)、かつ僅かな変形でも大きな光弾性効果の変化を観 察できる(即ち、光弾性係数が大きい)材料が好ましい。力かる材料としてポリウレタン エラストマ一を挙げることができる。また、ゼラチン (植物性かんてん)、植物性かんて ん、カラギーナン、ローカストビーンガムのような多糖類のゲル化剤を採用することも できる。
基材は内部応力を生じさせな!/ヽ材料から形成される。生体組織を再現するために は適当な弾性と膜状モデルに対する密着性が要求される。
膜状モデルと基材との最も好ましい組合せは膜状モデルをポリウレタンエラストマ一 で形成し、基材としてシリコーンゲルを採用する。
[0033] (光弾性効果)
光弾性効果とは、透光性材料において内部応力が生じると、一時的に複屈折性を おび、最大主応力と最小主応力の方向で屈折率が異なるため、入射光が 2つの平面 偏光に分かれて進むことをいう。当該 2つの波の位相差により干渉縞が生じ、この干 渉縞を観察することにより透光性材料の内部応力の状態を知ることができる。
この光弾性効果を生じさせるには、図 1に示すように、光源力 の光を第 1の偏光板 (偏光フィルタ)に通して偏光させ、立体モデルにこの直線偏光を通す。立体モデル にお 、て内部応力が生じて!/、ると内部応力に強さに応じて複屈折が生じ、最大主応 力(acos φ sin ω t)と最小主応力(acos φ sin ( ω t— A) )が生成する。これらの光は速 度が異なるため位相差を生じ、第 2の偏光板 (偏光フィルタ)を通して観察すると、干 渉縞が現れる。なお、この第 2の偏光板の偏光方向は第 1の偏光板の変更方向と実 質的に直交している。
一対の偏光板に間に立体モデルを介在させ、立体モデルを透過する光に生じる光 弾性効果を観察する方法として、直交-コル法、平行-コル法、鋭敏色法等が知ら れている。また、偏光板と立体モデルとの間に 1Z4偏光板を介在させることにより光 弾性効果を検出する方法として、円偏光法やセナルモン法等が知られて 、る。
[0034] この発明では、図 2Bに示すように、観察対象 100が中空部 101を有し、該中空部 1 01の周囲領域 103が光弾性効果を有する弾性材料で薄膜状 (膜厚 : 0. 1— 5. Om m)に形成されている。周囲領域 103はゲル等の透光性の基材 105に囲繞されてい る。基材 105は変形容易であり、光弾性効果を実質的に奏しない。また、基材 105に 充分な厚み (マージンを)を確保することにより周囲領域 103の変形に対して無抵抗 となる。力かる基材 105の厚さはその材質により任意に選択されるものである力 周囲 領域 103の厚さの 10倍以上、好ましくは 100倍以上とすることが好ましい。かかる肉 厚の基材 105は型崩れし易いので、透光性のケース 107で覆うことが好ましい。ケー ス 107の形状は任意である。 [0035] 図 2Bの観察対象 100にお 、て、図中矢印で示すように外力(カテーテルに対応) が加えられたとき周囲領域 103が変形する。このとき、変形部には周囲領域 103の厚 さ方向の内部応力 σ 3が殆ど生じない。これは、外力に対して基材から 105からの反 発力が実質的に無いからである。従って、変形部には実質的に周囲領域 103の表面 に沿う方向の内部応力 σ ρ (第 1の内部応力)のみが生じることとなる。
[0036] 力かる観察対象 100に偏光を透過すると、第 1の内部応力 σ ρに起因する光弾性 効果が生じて、当該第 1の内部応力 σ ρの大きさに応じた波長光が観察される。
[0037] 本発明者らは、光弾性効果により入射光に生じた波長、換言すれば、観察された 光の色変化を利用して、上記第 1の内部応力 σ ρを特定する方法について鋭意検討 を重ねてきた結果、周囲領域 103上の内部応力 σ ρを、観察時において中空部 101 の輪郭領域に存在する部分 (輪郭領域)と、観察時において中空部 101の手前に存 在する部分 (前面領域)とに分けて、それぞれ異なる方法により特定できることを見出 した。
[0038] (前記輪郭領域の応力観察方法)
周囲領域 103の内、前記輪郭領域の観察時には、第 1の内部応力 σ ρの方向は、 観察方向、即ち入射光の方向に平行となるため、周囲領域 103の材料が内部応力 σ ρの方向に広幅に存在することになる。この場合、前記輪郭領域に観察される第 1 の内部応力 σ ρに起因する光弾性効果は、当該幅 Wに存在する材料上の波長変化 の総和となる。従って、図 2Βに示すように、単位幅 wを有する特定領域 1031 (単位 領域)の波長変化は、観察された光弾性効果から得られた波長変化を幅 Wで除すこ とにより得られる。
[0039] ここに、周囲領域 103が実質的に同一の厚さで円環状に形成されていれば、当該 幅 Wが固定されるので、観察された光弾性効果から、単位領域の波長変化を求める ことができ、これによつて前記輪郭領域の内部応力を容易に求めることができる。具 体的には、周囲領域の内径又は外径に応じた換算表 (観察光の波長 (色)と単位領 域の内部応力との関係を示す)を準備しておけば、観察された光弾性効果の光の波 長 (色)から単位領域に生じて 、る内部応力を把握できる。
周囲領域 103を表す三次元的なデータがあれば、当該データより周囲領域の幅 W を特定することちできる。
[0040] 次に膜状モデルの前記輪郭領域における内部応力の三次元的な解析方法につ!、 て説明する。
図 3は、この解析方法を説明するための模式図である。上記の内部応力 σ ρ (ベタト ルもしくはテンソル)は、本発明の対象とする平面応力問題においては、その構成要 素である内部主応力 σ 1と σ 2により記述される。そして、それぞれの観察方向に応じ て得られる膜状モデルの前記輪郭領域 107上の各点 108 (即ち、膜状モデルの輪郭 をなす周壁上の各点)について、観察方向、即ち偏光の入射方向に平行な接平面を 仮定すると、この方法で求められる内部応力、即ち内部主応力 σ 1及び σ 2は該接 平面上の応力として定義され、当該接平面上で直行している。従って、これらの内部 主応力 σ 1及び σ 2はそれぞれ膜状モデルの表面に沿う方向にあり、この明細書で 規定する第 1の内部応力に相当する。なお、膜状モデルの厚さ方向の内部応力はこ の発明の特性上無視できるものとする。
光弾性効果を生じさせる位相差 Rは次の式で表される。
R= α ( σ lcos2 θ + σ 2si θ ) D
(但し Dは偏光の通過長さである)
従って、観察される光弾性効果は上記の内部主応力 σ 1と σ 2の影響が含まれたも のとなる。
[0041] そこで本発明者らは、上記内部主応力 σ 1と σ 2を独立して求めるべく鋭意検討を 重ねてきた結果、下記の方程式を解くことにより内部主応力 σ 1と σ 2の値を得られる ご見出した。
[数 1]
ν R^t - 2R2/D2 +R, D3 «、 v、
σ, = ^" {^"(l + cosec2の +舍(卜 cosec2^) }
び2 = { ( 1— cosec 2の + ( 1 + cosec 2の } 上記式を解くに当たり、偏光を 3つの異なる入射角度で入射し、そのときの偏光の 通過長さを Dl, D2、 D3とする。観察された光弾性効果より位相差 Rl, R2及び R3 を求める。なお、 R2は Θ = 90度のときの位相差である。
上記式を解くことにより、内部主応力 σ 1及び σ 2を独立かつ容易に求めることがで きる。
[0042] (前記前面領域の応力観察方法)
観察対象 100の背後力も偏光を投光し、観察対象 100の手前にて光弾性効果の観 測を行った場合に、前記前面領域に観測される波長 (色)変化は、図 2Αに示す空洞 部 101の背面に存在する膜 (空洞背膜)上の光弾性効果と、該空洞部 101の前面に 存在する膜 (空洞前膜)上の光弾性効果の総和となり、前記前面領域 (即ち、空洞前 膜)上における波長変化を独立して求めることはできない。
[0043] そこで本発明者らは、前記前面領域上の波長変化を独立して求めるべく鋭意検討 を重ねてきた結果、次の方法により前記前面領域上の波長変化を得られること見出 した。
即ち、この場合には、観測対象 100の手前力も偏光を投光し、前記空洞前膜を透過 した光を、空洞部 101の前面にて反射させ、再び該空洞前膜を透過して手前に戻つ てきた光を、観察対象 100の前面で観測することによって、前記前面領域上における 波長変化を独立して求めることができ、
そのような空洞部 101の前面における反射は、空洞部 101の内部を反射率の高い液 体、或いは反射率の高い材料を混入させた液体で満たすか、或いは、空洞部 101の 表面 (少なくとも前面)に反射率の高い材料からなる層を形成することによって実現す ることがでさる。
[0044] この場合、前記輪郭領域に観察される第 1の内部応力 σ ρに起因する光弾性効果は 、前記空洞前膜の膜厚上の波長変化の総和の 2倍となる。従って、当該膜厚内の単 位幅 w'に対する波長変化は、観察された光弾性効果力 得られた波長変化を膜厚 の 2倍の幅 W'で除すことにより得られる。
[0045] より厳密には、前記前面領域は曲面をなすため、観察方向の膜厚は、曲面上の各 点で異なるが、ここに、周囲領域 103が実質的に同一の厚さで円環状に形成されて いれば、当該幅 W'の分布が固定されるので、観察された光弾性効果から、単位幅 w 'の波長変化を即座に求めることができ、これによつて前記前面領域の内部応力を容 易に求めることができる。具体的には、前記前面領域内の位置に応じた換算表 (観察 光の波長 (色)と単位領域の内部応力との関係を示す)を準備しておけば、観察され た光弾性効果の光の波長 (色)力 単位領域に生じて 、る内部応力を把握できる。 周囲領域 103を表す三次元的なデータがあれば、当該データより前記前面領域内 の各点における幅 W'を特定することもできる。
[0046] 次に膜状モデルの前記前面領域における内部応力の三次元的な解析方法につい て説明する。
図 23は、この解析方法を説明するための模式図である。それぞれの観察方向に応 じて得られる膜状モデルの前記前面領域 109上の各点 110 (即ち、膜状モデルの前 面をなす周壁上の各点)について接平面を仮定すると、この方法で求められる内部 主応力(内部応力 σ ρ (ベクトルもしくはテンソル)の構成要素) σ 1及び σ 2は該接平 面上の応力として定義され、当該接平面上で直行している。従って、これらの内部主 応力 σ 1及び σ 2はそれぞれ膜状モデルの表面に沿う方向にあり、この明細書で規 定する第 1の内部応力に相当する。なお、膜状モデルの厚さ方向の内部応力はこの 発明の特性上無視できるものとする。
[0047] 前記前面領域 109は、空洞部 101表面に存在するため曲面をなし、光弾性効果は 当該曲面上に観察される。同曲面上の光弾性分布を、平面上に投影した場合、該平 面状の各点における位相差 Rは、次の式で表される。
R= α ( σ l- σ 2) D
(但し Dは、各点における偏光の通過長さである)
従って、観察される光弾性効果は上記の内部主応力 σ 1と σ 2の影響が含まれたも のとなるが、この場合には、内部主応力 σ 1と σ 2は観測方向に垂直な平面内にある ので、光弾性効果を検出するための偏光板の向きを調整することによって、一方を光 学的に消去でき、内部主応力 σ 1と σ 2の値を得ることができる。
つまりこの発明の他の局面は次のように表される。
中空部を有する観察対象であって、該中空部の周囲領域は透光性の弾性材料か らなる薄膜状であり、前記周囲領域に外力が加えられたときその厚さ方向には実質 的に内部応力が発生せず、その表面に沿う方向に第 1の内部応力が発生する観察 対象と、
前記周囲領域の内周面を反射面とする手段と、
前記内周面を通過して前記反射面で反射した光に生じる光弾性効果を検出する 手段と、
を備えてなり、前記光弾性効果は専ら前記第 1の内部応力に起因するものである、 ことを特徴とする被検体の応力観察装置。
[0048] この発明の他の局面について説明する。
中空部を有する観察対象であって、該中空部の周囲領域は透光性の弾性材料か らなる薄膜状であって、前記周囲領域に外力が加えられたときその厚さ方向には実 質的に内部応力が発生せず、その表面に沿う方向に第 1の内部応力が発生する観 察対象と、
該観察対象の周囲領域を通過する光に生じる光弾性効果を検出する手段と、 を備えてなり、前記光弾性効果は専ら前記第 1の内部応力に起因するものである、 ことを特徴とする被検体の応力観察装置。
[0049] このように構成された応力観察装置によれば、中空部の周囲領域はこれが三次元 的な形状であっても、そこで生じる光弾性効果が専ら第 1の内部応力(周囲領域の表 面に沿った方向の応力)に起因するものとなり、観察された光弾性効果 (光の波長) 力 当該周囲領域における応力を特定することができる。
力かる応力観察装置は、その観察対象を立体モデル (体腔を再現した腔所を有す る透光性のモデル)としたとき、その腔所の周囲領域の物理特性を観察することに有 効である。即ち、カテーテルや液体の挿入シミュレーションにおいて立体モデルの腔 所の周囲領域に応力が力かったとき、光弾性効果が生じてその応力状態を観察する ことができる。これにより、カテーテルや液体を血管等の体腔へ挿入したときの生体 組織に与える影響をシミュレートすることができる。
[0050] 上記において、周囲領域は弾性材料力もなる薄膜として、これに外力が掛カつたと きその厚さ方向には拘束されず、その表面に沿う方向にのみ強制変位が生じるように する。これにより、周囲領域に生じる応力が第 1の内部応力のみとなり、光弾性効果 力 膜状周囲領域の応力を特定可能となる。勿論、光弾性効果を得るために周囲領 域は透光性を有する。
周囲領域の厚さは、上記の特性が維持できれば、特に限定されるものではないが、 本発明者らの検討によれば、 0. 1-5. Ommとすることが好ましい。更に好ましくは 0 . 1一丄. Ommである。
また、周囲領域に厚さ方向の応力を生じさせないためには、当該周囲領域はその 厚さ方向力 物理的な規制がない状態とする。具体的には、周囲領域の外側はゲル 、流体 (水等)の容易に変形可能な基材に直接、若しくは空間を介して、接しており、 周囲領域がその厚さ方向へ変形したときに基材力 実質的な抵抗を受けないものと する。周囲領域へ物理的な抵抗を与えないためには、基材には所定のマージン (厚 さ)が必要となる。この基材は容易に変形するため、当該所定のマージンを確保する ためにはその周囲がケーシングで囲繞されることとなる。また、周囲領域の成形材料 と基材の成形材料との間には高い密着性のあることが好ましい。両者の間にすべりが 生じると摩擦抵抗が生じて不規則な内部抵抗の生じるおそれがある力もである。かか る周囲領域の形成材料としてウレタン榭脂又はウレタンエラストマ一を、基材の形成 材料としてシリコーンゲルを挙げることができる。
また、基材カも光弾性効果が生じると、周囲領域の光弾性効果のノイズとなるので 好ましくない。よって、基材はゲルや流体 (水等)のような実質的に内部応力を生じさ せな 、材料とすることが好ま U、。
なお、周囲領域の内側、即ち中空部には、光弾性効果の観察時に任意のものを挿 入可能である。例えば、立体モデルの場合、カテーテルや液体を挿入可能である。
[0051] 中空部の周囲領域は実質的に同一の厚さの円環状断面に形成されることが好まし い。これにより、周囲領域をどの方向から観察しても同じ光弾性効果 (光の波長)を得 ることができる。また、周囲領域において第 1の内部応力に関係する材料の幅が一定 (周囲領域の径力 当該幅を特定可能)となるので、周囲領域の単位領域 (単位幅を 有する)の応力を容易に特定可能となる。
[0052] この発明の他の局面は次のように規定される。即ち、 検出手段により第 1の内部応力に起因して生じた光弾性効果を取得し、
前記周囲領域における第 1の内部応力の発生方向の幅を求める手段と、取得され た光弾性効果と前記周囲領域の幅とから前記周囲領域の単位領域における応力を 演算する手段とが更に備えられる。
[0053] このように構成された応力観察装置によれば、周囲領域における第 1の内部応力の 発生方向の幅が求められるので、検出手段により取得された光弾性効果 (光の波長 変化)を当該幅で除算することにより、周囲領域における単位領域 (単位幅を有する) の波長変化を特定可能となる。これにより、周囲領域に生じる応力状態をより正確に 特定可能となる。
[0054] この発明の他の局面は次のように規定される。即ち、
少なくとも体腔を再現した腔所の周囲領域の少なくとも一部が光弾性効果を有する 膜状の弾性材料で形成され、該膜状の弾性材料の周囲が、実質的に光弾性効果を 生じないゲル力 なり前記周囲領域の厚さ方向に対して実質的に無抵抗の基材で 囲繞される透光性の立体モデルと、
該立体モデルを通過する光に生じる光弾性効果を検出する手段と、
を備えてなる立体モデルの応力観察装置。
[0055] このように構成された応力観察装置によれば、膜状の弾性材料の周囲がゲル状基 材で囲繞されている。したがって、当該立体モデルにおいて光弾性効果は専ら弾性 材料部分力も生じてゲル状基体部分力も光弾性効果が生じない。よって、膜状弾性 材料の応力状態を正確に観察することができる。
[0056] さらに他の局面によれば、積層造形により体腔の周囲領域の第一次モデルを作成 し、
該第一次モデルを型材料で囲繞してめす型を形成し、
前記第一次モデルを前記めす型から除去し、
前記めす型のキヤビティへポリウレタンエラストマ一を注入してこれを硬化し、 前記めす型を除去してポリウレタンエラストマ一力ゝらなる膜状モデルを得て、 該膜状モデルの周囲をシリコーンゲルカゝらなり前記膜状モデルの厚さ方向に対し て実質的に無抵抗の基材で囲繞する、ことにより光弾性効果の観察に適した立体モ デルを製造する。
実施例
[0057] (第 1実施例)
立体モデル化の対象とする脳血管及び患部である脳動脈の形状に関する三次元 データを得るため、撮影領域の血管内部へ造影剤を投与しながら、患者の頭部に対 して、 0. 35 X 0. 35 X 0. 5mmの空間分解能を持つヘリカルスキャン方式の X線 CT 装置により撮影を行った。撮影により得られた三次元データは、 3次元 CADソフトへ の受け渡しのため、体軸方向に等間隔に配列された 500枚の 512 X 512の解像度 をもつ 256階調の二次元画像 (断層撮影データ)に再構成した後、各二次元画像に 対応する画像データを撮影方向に一致する順序で前記 X線 CT装置に内蔵されたド ライブにより 5. 25インチ光磁気ディスクへ保存した。
[0058] 次に、パーソナルコンピュータに外部接続した 5. 25インチ光磁気ドライブによって 、前記画像データをコンピュータ内部の記憶装置へ取り込み、この画像データから、 市販の三次元 CADソフトを利用して、積層造形に必要とされる STL形式 (三次元曲 面を三角形パッチの集合体として表現する形式)の三次元形状データを生成した。こ の変換では、入力された二次元画像を撮影間隔に基づいて積層することによって、 濃度値をスカラー量とする三次元のスカラー場を構築し、そのスカラー場上に血管内 表面を与える特定の濃度値を指定することによって、アイソサーフェス (特定スカラー 値の境界面)として血管内腔の三次元形状データを構築した後、構築されたアイソサ 一フェスに対して三角形ポリゴン近似のレンダリングが行われる。
なお、この段階で、三次元形状データに付加データを加え、体腔モデルの端部か らガイド部 13を膨出させた。このガイド部 13は、図 4に示すように、中空柱状の部材 である。中空部 31を備えることにより、積層造形時間の短縮を図っている。このガイド 部 13の先端は拡径されており、この部分が立体モデル表面に表出して、大径な開口 部 25 (図 7参照)を形成することとなる。
[0059] 生成した STL形式の三次元形状データを、次に溶融榭脂噴出方式の積層造形シ ステムへと転送し、造形システム内でのモデルの配置や積層方向、積層厚さを決定 すると同時にモデルに対してサポートを付加した。 このようにして生成された積層造形用のデータをコンピュータ上で所定の積層造形 厚さ(13 m)にスライスして多数のスライスデータを生成した。そして、このようにして 得られた各スライスデータに基づ 、て、 ρ—トルエンスルホンアミドと ρ—ェチルベンゼン スルホンアミドを主成分とした造形材料 (融点:約 100度、アセトンに容易に溶解)を 加熱により溶融して噴出することにより、各スライスデータに一致する形状を有する指 定厚さの榭脂硬化層を一面ずつ積層形成することよって積層造形を行った。最終層 の形成の後にサポートを除去することによって、脳血管内腔領域の積層造形モデル( 体腔モデル 12)を作成した。
更に、この体腔モデル 12の表面を処理して円滑にする。
[0060] この体腔モデル 12の全表面へシリコーンゴム層 15をほぼ lmmの厚さに形成した( 図 6参照)。このシリコーンゴム層 15は、体腔モデル 12をシリコーンゴム槽ヘディツビ ングし取出した体腔モデルを回転させながら乾燥させることにより得られる。このシリコ ーンゴム層が膜状モデルとなる。
この実施例では、体腔モデル 12の全表面をシリコーンゴム層 15で被覆した力 体 腔モデル 12の所望の部分を部分的にシリコーンゴム層 15で被覆することも可能であ る。
[0061] 体腔モデル 12をシリコーンゴム層 15からなる膜状モデルで被覆してなる中子 11を 直方体のケーシング 24にセットする。このケーシング 24は透明なアクリル板からなる 。ケーシング内に基材 22の材料を注入して、これをゲル化する。
基材 22の材料として、 2液混合型のシリコーンゲルを用いた。このシリコーンゲルは 透明であり、かっ血管周囲の軟組織に極めて近い物理特性を有している。縮合重合 型のシリコーンゲルを用いることもできる。
[0062] 基材 22の材料の物理特性は、膜状モデルの対象である血管等の周囲の組織の物 理特性に適合するように、調整される。
なお、この実施例では針入度、流動性、粘着性、応力緩和性などを指標にして、最 終的にはオペレータの手触り(カテーテルの挿入感覚)によりその物理特性を生体組 織に近づけるようにして 、る。
シリコーンゲルの場合、そのポリマーの骨格を調製することはもとより、シリコーンォ ィルを配合することにより当該物理特性を調整することができる。
この実施例では膜状モデルの成形材料にシリコーンエラストマ一 (旭化成ヮッカー シリコーン株式会社製、商品名: RT601)を選択し、基材にシリコーンゲル (旭化成ヮ ッカーシリコーン株式会社製、商品名: SilGel612)を選択した。このシリコーンゲル の縦弾性係数は約 5. OkPa、損失係数 tan δ (粘弾性パラメータ)は約 1. 0であり、 およそ 1000%の伸びを有する。またシリコーンエラストマに対する密着力(接着強度 )は約 8kPaである。
[0063] シリコーンゲルの外に、グリセリンゲルを用いることもできる。このグリセリンゲルは次 のようにして得られる。即ち、ゼラチンを水に浸漬して、これにグリセリンと石炭酸をカロ え、加熱溶解する。温度が高い間に濾過し、中子に影響の出ない温度になったらケ 一シング内に注入し、放冷する。
[0064] その後、中子 11内の体腔モデル 12を除去する。除去の方法としてハイブリット法を 採用した。即ち、試料を加熱して開口部 25から体腔モデルの材料を外部へ流出させ 、更に、空洞部へアセトンを注入して体腔モデルの材料を溶解除去する。
その後、試料を 120°Cに設定された恒温層内で約 1時間加熱して、膜状モデル (シ リコーンゴム層 15)の曇りをとつた。
[0065] このようにして得られた立体モデル 21は、図 7及び図 8に示すように、シリコーンゲ ルカゝらなる基材 22中に膜状モデル 15が埋設された構成となる。シリコーンゲルが生 体組織に近い物理特性を有するので、膜状モデル 15は血管と同等の動的挙動を示 こととなる。
[0066] (第 2実施例)
図 9に他の実施例の立体モデル 41を示す。なお、図 7と同一の要素には同一の符 号を付してその説明を省略する。
この例では、実際の脳の組織に対応するように、基材を多層構造として、脳の各部 位に応じて異なる物理特性の基材 42、 43、 44を積層した。基材 42は大脳動脈部の 周囲のくも膜下腔の物理特性に対応し、基材 43は交通動脈部の周囲の軟組織の物 理特性に対応し、基材 44は頸動脈部の周囲の海綿静脈筒の物理特性に対応する。 他の部分の基材 46、 47は図 7と同一の基材とした。また、当該他の部分 46、 47の 基材はこれをゲル以外(固体等)とすることもできる。
[0067] (第 3実施例)
図 8に他の実施例の立体モデル 51を示す。
この立体モデル 51では、基材 52中に空隙部 53が設けられており、膜状モデル 55 の一部は当該空隙部 53内に存在している。当該空隙部 53はくも膜下腔に対応して いる。
この空隙部 53は、中子 (体腔モデル +膜状モデル)へ空隙部 53に対応するカバー を被せ、その周りにシリコーンゲルカゝらなる基材 52を充填する。そして、体腔モデルと 当該カバーを除去することにより図 9に示した構成を得ることができる。
図 11は、図 10の C C線断面図であり、膜状モデル 55がシリコーンゲル力もなる基 材 51に埋設されて ヽることを示す。
なお、空隙部 53には基材 52と異なる物性 (好ましくは、くも膜下腔を構成する生体 組織と等 Uヽ物性を有する (ゲル等) )の材料を充填してもよ!ヽ。この充填物質は基材 52と実質的に等 、屈折率を有することが好ま 、。
空隙部の形状は任意に形成することができる。
[0068] 図 12はこの発明の実施例の応力観察装置 60の構成を示す。
この実施例の応力観察装置 60は、光源 61、一対の偏光板 62及び 63、図 7に示し た立体モデル 21、受光部 70から大略構成される。
光源 61には白色光源を用いることが好ま 、。太陽光を光源として用いることもで きる。また、単色光源を用いることも可能である。第 1の偏光板 62及び 63は相互に直 交した偏光方向を有する。これにより、図 1に説明したように、前記輪郭領域における 立体モデル 21の内部応力に起因する光弾性効果を第 2の偏光板 63側において観 察することができる。
例えば立体モデル 21の腔所へカテーテルを挿入したとき、カテーテルと腔所の周 壁とが干渉すると、当該腔所周壁に応力が生じそこに光弾性効果 (干渉縞)が現れる 。また、コイル塞栓時の動脈瘤の変形に伴う当該動脈瘤周囲領域の応力状態も光弹 性効果力 シミュレートすることができる。
なお、この立体モデルにぉ 、て膜状モデルはポリウレタンエラストマ一で形成され、 機材にはシリコーンゲルを採用する。これにより膜状モデルの内部応力変化が光弾 性効果として観察可能となる。
[0069] この実施例では光源 61、第 1の偏光板 62、立体モデル 21及び第 2の偏光板 63を 直線上に配置させたが、第 2の偏光板 63を偏移して (即ち、直線上力もずらして)配 置することができる。立体モデル 21の腔所において光が乱反射するので、腔所の形 状においては第 2の偏光板 63を偏移して配置したほうが、光弾性効果をより鮮明に 観察できる場合があるからである。
[0070] 図 19には、図 12に示す応力観察装置 60に関連する他の実施例の応力観察装置 3 60 (図 12に示す要素と同一の要素には同一の符号を付してその説明を省略する)を 示す。この実施例では、光源 61と第 1の偏光板 62、及び第 2の偏光板 63と受光部 7 0をそれぞれ一組にして立体モデル 21の片側に移動させて、並列させて配置して ヽ る。これにより、立体モデル 21の前記前面領域上における内部応力に起因する光弹 性効果を第 2の偏光板 63側において観察することができる。
光源 61から発せられた光は、第 1の偏光板 62を通過して立体モデル 21に入射し、 立体モデル 21 (膜状モデル)の膜部分をさらに通過した後に、膜状モデル内の空隙 部表面で反射され、再び立体モデル 21 (膜状モデル)の膜部分を通過して、偏光板 63と第 2の 1Z4偏光板 83を経由して受光部 70にて観測される。この方法によれば、 前記空隙部表面上の光源 61による投影面上の光弾性効果を観察することができる。 なお当該実施例においては、空隙部内部を反射率の高い液体、或いは反射率の高 い材料を混入させた液体で満たすカゝ、或いは、空隙部表面に反射率の高い材料か らなる層を形成することにより、空隙部表面において光源 61からの入射光を反射させ る。
[0071] これらの 2つの実施例(図 12に示す応力観察装置 60、及び図 19に示す応力観察 装置 360)において、受光部 70は、 CCD等力もなる撮像装置 71と当該撮像装置 71 で撮像した光弾性効果の画像を処理する画像処理装置 70、並びに画像処理部 70 の処理結果を出力するディスプレイ 75及びプリンタ 77を備えてなる。
画像処理装置 73では次のような処理が行われる(図 13参照)。
まず、立体モデル 21へ何ら外力をカ卩えて 、な 、初期状態の画像をバックグラウンド 画像として取り込む (ステップ 1)。立体モデル 21が高 ヽ光弹性係数の材料で形成さ れている場合、自重で光弾性効果を生じる場合がある。従って、光源 61から光を照 射し、更に外力をカ卩えたとき(例えばカテーテルを挿入したとき)の光弾性効果による 干渉縞画像を取り込んだ後 (ステップ 3)、これからバックグランド画像を差分処理する (ステップ 5)。
[0072] 立体モデル 21が高い光弾性係数の材料で形成されている場合、内部応力の如何 によっては細カゝ ヽ干渉縞が繰返しパターンで現れる。画像処理装置 73は単位面積 あたりの当該パターンの数をカウントすることにより、当該内部応力を数値化する (ス テツプ 7)。そして、第 2の偏光板 63を介して得られる立体モデル 21の形状に関する 画像において、内部応力の生じた部分に当該数値に対応した色を与えて外部表示 する (ステップ 9)。
この実施例では受光部 70により光弾性効果による干渉縞を画像処理しているが、 当該干渉縞を観察者が直接若しくは撮像装置 71を介して観察してもよい。
[0073] 図 14に他の実施例の応力観察装置 80を示す。図 12に示す要素と同一の要素に は同一の符号を付してその説明を省略する。
この実施例では第 1の偏光板 62と立体モデル 21との間に第 1の 1Z4偏光板 82を 介在させ、立体モデル 21と第 2の偏光板 63との間に第 2の 1Z4偏光板 83を介在さ せている。これにより、前記輪郭領域における光弾性効果を、円偏光法により観察す ることができる。円偏光法に基づく光弾性効果の観察によれば、干渉縞に、偏光板と 内部主応力間の相対方向の影響が現れないので、立体モデルの姿勢制御が容易 になる。
図 20に示す他の実施例の応力観察装置 380 (図 12に示す要素と同一の要素には 同一の符号を付してその説明を省略する)では、光源 61と第 1の偏光板 62、及び第 2の偏光板 63と受光部 70をそれぞれ一組にして立体モデル 21の片側に並列して配 置させ、さらに第 1の 1 Z4偏光板 82を第 1の偏光板 62と立体モデル 21との間に介 在させ、第 2の 1Z4偏光板 83を立体モデル 21と第 2の偏光板 63との間に介在させ ている。これにより、立体モデル 21の前記前面領域上における内部応力に起因する 光弾性効果を、円偏光法により、第 2の偏光板 63側において観察することができる。 この実施例では、光源 61から発せられた光は、第 1の偏光板 62と第 1の 1Z4偏光板 82を通過して立体モデル 21に入射し、立体モデル 21 (膜状モデル)の膜部分をさら に通過した後に、膜状モデル内の空隙部表面で反射され、再び立体モデル 21 (膜 状モデル)の膜部分を通過して、偏光板 63と第 2の 1Z4偏光板 83を経由して受光 部 70にて観測される。この方法によれば、前記空隙部表面上の光源 61による投影 面上の光弾性効果を、応力方向の影響を受けることなく観察することができる。なお 当該実施例においては、空隙部内部を反射率の高い液体、或いは反射率の高い材 料を混入させた液体で満たすか、或いは、空隙部表面に反射率の高い材料カゝらなる 層を形成することにより、空隙部表面において光源 61からの入射光を反射させる。 図 15に他の実施例の応力観察装置 90を示す。図 12に示す要素と同一の要素に は同一の符号を付してその説明を省略する。
この実施例では、立体モデル 21を回転'傾斜ステージ 91に保持させ、立体モデル 21を回転及び Z又は傾斜可能としたものである。これにより、立体モデル 21に対す る光の入射方向を変更し、立体モデル 21の前記輪郭領域における応力分布を三次 元的に観察可能となる。もって、立体モデルにおけるシミュレーションをより詳細に行 免ることとなる。
なお、図 15の例の立体モデル 21にこの回転'傾斜ステージ 91を適用することもで きる。
この実施例では立体モデル 21を回転及び/又は傾斜させて ヽるが、立体モデル 2 1の姿勢は固定しておいて、周囲の要素を回転及び Z又は傾斜させても同様の作用 •効果が得られる。
また、図 21に示す他の実施例の応力観察装置 390 (図 12に示す要素と同一の要素 には同一の符号を付してその説明を省略する)は、図 15に示す応力観察装置 90と 同じぐ立体モデル 21を回転'傾斜ステージ 91に保持させ、立体モデル 21を回転及 び Z又は傾斜可能としたものである。当該装置によれば、立体モデル 21に対する光 の入射方向を変更することで、立体モデル 21の前記前面領域における応力分布を 三次元的に観察可能となる。この実施例では立体モデル 21を回転及び Z又は傾斜 させている力 立体モデル 21の姿勢は固定しておいて、周囲の要素を回転及び Z 又は傾斜させても同様の作用 ·効果が得られる。
[0075] 図 16に他の実施例の応力観察装置 200の構成を示す。図 12と同一の要素には同 一の符号を付してその説明を省略する。
前記輪郭領域の応力分布を可能にする、この応力観察装置 200の画像処理装置 273は、図 2に示す周囲領域 103を表現するデータ (周囲領域データ) 205を備える また、図 22に示す他の実施例の応力観察装置 400 (図 12に示す要素と同一の要素 には同一の符号を付してその説明を省略する)は、図 16に示す応力観察装置 200と 同じく、図 2に示す周囲領域 103を表現するデータ (周囲領域データ) 205を備え、 前記前面領域の応力分布を可能にする。
これらの 2つの実施例(すなわち、図 16に示す応力観察装置 200と、図 22に示す応 力観察装置 400)では、撮像装置 71で撮像した光弾性効果を含んだ画像を取り込 み、画像メモリ 201へ保存する。位置特定装置 203において、取り込んだ画像を解析 して周囲領域データ 205と関連つける。これにより、得られた光弾性効果の位置並び に観察方向が特定される。例えば、立体モデル中にマーカを設けておいて、このマ 一力の位置を基準に撮像画像と周囲領域データとを関連つけることができる。内部 応力演算装置 207では、周囲領域データ 205から当該光弾性効果を生じさせた第 1 の内部応力方向の周囲領域材料幅 W (図 2参照)を求める。そして、撮像装置により 得られた光弾性効果の値 (みかけ上の内部応力)を当該材料幅 Wで除することにより 、周囲領域の単位領域における内部応力を演算する。
[0076] これにより、図 17に示したステップ 200の処理が完了する。即ち、ステップ 7で数値 ィ匕された内部応力を周囲領域の幅 Wに基づいて補正し、周囲領域の単位領域毎に 内部応力を特定可能とする。図 17において、図 13と同一のステップには同一の要素 を付してその説明を省略する。
[0077] 図 18に光弾性効果を観察するのに適した膜状モデルの製造方法を示す。
プロセス Iで体腔モデルを準備し、浸漬法により体腔モデルの全表面へ PVAを被 覆する(プロセス 11)。プロセス IIIではプロセス IIで得られた試料へ浸漬方によりポリゥ レタンエラストマ一を被覆する。その後、ポリウレタンエラストマ一皮膜との親和性を考 慮して、二度に分けて浸漬法により PVAを被覆する(プロセス V, VI) oこれによつて 、ポリウレタンエラストマ一皮膜を PVA皮膜により上下力 完全に被覆する。
その後、有機溶剤へ浸漬して体腔モデルを選択的に溶解し、溶出させた後 (プロセ ス VII)、最後に水中で PVAを溶解して(プロセス VIII)、ポリウレタンエラストマ一から なる膜状モデルを得る。
このように、体腔モデルの表面を水溶性材料膜で被覆し、この膜の表面へポリウレ タンエラストマ一層を形成し、該ポリウレタンエラストマ一層の表面を水溶性材料層で 被覆し、体腔モデルを有機溶剤で溶解し、その後。水溶性材料膜を水で溶解し、も つてポリウレタンエラストマ一からなる膜状モデルを得ることにより、全ての工程を浸漬 法により行うことができる。よって、製造方法が簡単になり、ひいては製造コストを引き 下げることができる。
[0078] この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものでは ない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。
[0079] 以下、次の事項を開示する。
(1)
透光性材料カゝらなり、被検体の断層像データに基づき形成された血管などの体腔を 再現した腔所をその内部に有する膜状モデルと、
該膜状モデルを囲繞する基材と、
該基材を収納する透光性のケーシングと、を備えてなる、ことを特徴とする立体モデ ル。
(2) 前記膜状モデルと前記基材の屈折率が実質的に等しい、ことを特徴とする(1) に記載の立体モデル。
(3) 前記基材はシリコーンゲル若しくはグリセリンゲル力もなる、ことを特徴とする(1 )又は(2)に記載の立体モデル。
(4) 被検体の断層像データに基づき形成された血管などの体腔を再現した腔所を その内部に有する膜状モデルがゲル状の基材に埋設され、前記膜状モデルの腔所 を視認できる、ことを特徴とする立体モデル。 (5) 前記基材はシリコーンゲル若しくはグリセリンゲル力もなる、ことを特徴とする(4 )に記載の立体モデル。
(6) 透光性ゲル状の第 1の材料力 なる基材に体腔を再現した腔所が設けられ、腔 所の周壁に透光性の第 2の材料が膜状に形成されている、ことを特徴とする立体モ デル。
(7) 前記第 1の材料はシリコーンゲル若しくはグリセリンゲルである、ことを特徴とす る(6)に記載の立体モデル。
(8) 透光性ゲル状の第 1の材料力 なる基材に体腔を再現した腔所が設けられ、腔 所の周壁が親水性処理若しくは疎水性処理されている、ことを特徴とする立体モデ ル。
(9) 被検体の断層像データに基づき血管などの体腔モデルを積層造形する工程と 該体腔モデルの周囲をモデル成形材料で膜状に囲繞して中子を形成する工程と、 該中子をケーシング内にセットして、該ケーシングへ基材材料を注入しゲルィ匕する 工程と、
該基材材料がゲル化した後に前記体腔モデルを除去する工程と、
を含むことを特徴とする立体モデルの製造方法。
(10) 透光性ゲル状の第 1の材料からなり、被検体の断層像データに基づき形成さ れた血管などの体腔を再現した腔所をその内部に有する基材を形成し、
前記腔所の内周面に透光性の第 2の材料を膜状に形成する、ことを特徴とする立 体モデルの製造方法。
(11) 透光性ゲル状の第 1の材料からなり、被検体の断層像データに基づき形成さ れた血管などの体腔を再現した腔所をその内部に有する基材を形成し、
前記腔所の内周面を親水性処理し若しくは疎水性処理する、ことを特徴とする立体 モデルの製造方法。
図面の簡単な説明
[図 1]図 1は光弾性効果の説明図である。
[図 2]図 2はこの発明の作用を示す概念図である。 圆 3]図 3は内部応力と入射光との関係を示す模式図である。
[図 4]図 4は実施例の中子 11を示す斜視図である。
圆 5]図 5はガイド部を示す斜視図である。
[図 6]図 6は図 2の A— A線断面図であり、中子の構成を示す。
[図 7]図 7はこの発明の実施例の立体モデルを示す。
圆 8]図 8は図 7の B— B線断面図であり、基材中に膜状モデルが埋設された状態を示 す。
[図 9]図 9は他の実施例の立体モデルを示す。
[図 10]図 10他の実施例の立体モデルを示す。
圆 11]図 8は図 10の C-C線断面図であり、基材中に膜状モデルが埋設された状態 を示す。
圆 12]図 12はこの発明の実施例の応力観察装置の構成を示す模式図である。
[図 13]図 13は実施例の応力観察装置の受光部の動作を示すフローチャートである。 圆 14]図 14はこの発明の他の実施例の応力観察装置の構成を示す模式図である。 圆 15]図 15はこの発明の他の実施例の応力観察装置の構成を示す模式図である。 圆 16]図 16はこの発明の他の実施例の応力観察装置の構成を示す模式図である。
[図 17]図 17は同じく応力観察装置の動作を示すフローチャートである。
圆 18]図 18は光弾性観察をするのに好適な膜状モデルの製造方法を示すフローチ ヤートである。
圆 19]図 19はこの発明の他の実施例の応力観察装置の構成を示す模式図である。 圆 20]図 20はこの発明の他の実施例の応力観察装置の構成を示す模式図である。 圆 21]図 21はこの発明の他の実施例の応力観察装置の構成を示す模式図である。 圆 22]図 22はこの発明の他の実施例の応力観察装置の構成を示す模式図である。
[図 23]図 23はこの発明の作用を示す概念図である。
符号の説明
11 中子
12 体腔モデル
15、 55 シリコーンゴム層(膜状モデル) 、 41、 51 立体モデル 、 42, 43、 44、 46、 47、 52 基材

Claims

請求の範囲
[1] 血管などの体腔をその内部に再現する膜状モデルと、
該膜状モデルを囲繞する透光性の基材であって、弾性を有しかつ前記膜状モデル に対して密着性のある基材と、
を備えてなる立体モデル。
[2] 前記基材を収納する透光性のケーシングが更に備えられ、該ケーシングと前記膜状 モデルとの間において、前記基材は前記膜状モデルの自由変形を許容するマージ ンを有する、ことを特徴とする請求の範囲第 1項に記載の立体モデル。
[3] 前記膜状モデルはシリコンエラストマ一若しくはウレタンエラストマ一力もなり、前記基 材はシリコーンゲル若しくはウレタンゲル力もなる、ことを特徴とする請求の範囲第 1 項に記載の立体モデル。
[4] 前記膜状モデルと前記基材の屈折率が実質的に等しい、ことを特徴とする請求の範 囲第 1項に記載の立体モデル。
[5] 前記膜状モデルは透光性材料力 なり、これに外力が加えられたときその厚さ方向 には実質的に内部応力が発生せず、その表面に沿う方向に第 1の内部応力が発生 し、
前記基材は実質的に内部応力を生じない材料力 なり、
光弾性効果の観察に用いられることを特徴とする請求の範囲第 1項に記載の立体 モデル。
[6] 前記膜状モデルは実質的に同一厚さの円環状断面に形成されている、ことを特徴 とする請求の範囲第 5項に記載の立体モデル。
PCT/JP2004/015371 2003-10-16 2004-10-18 立体モデル WO2005038751A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04792540.9A EP1677273A4 (en) 2003-10-16 2004-10-18 MODEL IN THREE DIMENSIONS
US10/575,914 US20070148626A1 (en) 2003-10-16 2004-10-18 Three-dimensional model

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-356843 2003-10-16
JP2003356843 2003-10-16
JP2004068226 2004-03-10
JP2004-068226 2004-03-10
JP2004181751 2004-06-18
JP2004-181751 2004-06-18
JP2004266779 2004-09-14
JP2004-266779 2004-09-14

Publications (1)

Publication Number Publication Date
WO2005038751A1 true WO2005038751A1 (ja) 2005-04-28

Family

ID=34468465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015371 WO2005038751A1 (ja) 2003-10-16 2004-10-18 立体モデル

Country Status (4)

Country Link
US (1) US20070148626A1 (ja)
EP (1) EP1677273A4 (ja)
KR (1) KR100713726B1 (ja)
WO (1) WO2005038751A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017929A (ja) * 2005-05-06 2007-01-25 Univ Nagoya カテーテル手術シミュレータ
JP2007121174A (ja) * 2005-10-31 2007-05-17 Univ Nagoya 応力検出装置
JP2007121811A (ja) * 2005-10-31 2007-05-17 Univ Nagoya カテーテル手術シミュレータ
JPWO2013125026A1 (ja) * 2012-02-24 2015-07-30 ファインバイオメディカル有限会社 潤滑性調整液
JP2020528800A (ja) * 2017-07-28 2020-10-01 ストラタシス リミテッド 血管の特性を具備する物体を製作するための方法及びシステム
US11696832B2 (en) 2017-07-28 2023-07-11 Stratasys Ltd. Method and system for fabricating object featuring properties of a hard tissue
US11939468B2 (en) 2017-07-28 2024-03-26 Stratasys Ltd. Formulations usable in additive manufacturing of a three-dimensional object made of a soft material

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142985A1 (en) * 2004-11-22 2006-06-29 O'donnell Paul Modelling system
US7699615B2 (en) * 2005-02-03 2010-04-20 Christopher Sakezles Joint replica models and methods of using same for testing medical devices
WO2006083963A2 (en) 2005-02-03 2006-08-10 Christopher Sakezles Models and methods of using same for testing medical devices
US7507092B2 (en) * 2005-06-30 2009-03-24 Christopher Sakezles Cell seeded models for medical testing
US8137110B2 (en) * 2005-02-03 2012-03-20 Christopher Sakezles Dielectric properties models and methods of using same
EP1903537A3 (en) * 2005-07-20 2008-06-11 Richstone Consulting LLC A system and a method for simulating a manual interventional operation by a user in a medical procedure
US20080076101A1 (en) * 2006-05-12 2008-03-27 Abbott Laboratories Forming vascular diseases within anatomical models
US20090024152A1 (en) * 2007-07-17 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Custom-fitted blood vessel sleeve
US20080172073A1 (en) * 2006-06-16 2008-07-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Active blood vessel sleeve
US8550344B2 (en) 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US8551155B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Stent customization system and method
US20080133040A1 (en) * 2006-06-16 2008-06-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for specifying a blood vessel sleeve
US8478437B2 (en) * 2006-06-16 2013-07-02 The Invention Science Fund I, Llc Methods and systems for making a blood vessel sleeve
US20080243284A1 (en) * 2007-03-28 2008-10-02 Randy-David Burce Grishaber Anatomically compliant aaa model and the method of manufacture for in vitro simulated device testing
US20090226866A1 (en) * 2008-03-07 2009-09-10 Harold Durbin Surgical teaching aid
CN101981608B (zh) * 2008-03-28 2014-08-27 泰尔茂株式会社 生物体组织立体模型及其制造方法
JP5140857B2 (ja) 2008-05-12 2013-02-13 株式会社大野興業 手術シミュレーション用軟質血管モデルの製造方法
CN102317992B (zh) * 2009-02-17 2015-01-07 泰尔茂株式会社 训练用活体模型和训练用活体模型的制造方法
WO2011137443A1 (en) * 2010-04-30 2011-11-03 The Trustees Of The University Of Pennsylvania Methods for developing breast phantoms
CA2811235C (en) 2010-10-01 2020-03-10 Applied Medical Resources Corporation Portable laparoscopic trainer
US8577693B2 (en) 2011-07-13 2013-11-05 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
JP5769194B2 (ja) * 2011-07-20 2015-08-26 朝日インテック株式会社 血管狭窄モデル
ES2640005T3 (es) 2011-10-21 2017-10-31 Applied Medical Resources Corporation Estructura de tejido simulado para entrenamiento quirúrgico
US8801438B2 (en) 2011-11-23 2014-08-12 Christopher Sakezles Artificial anatomic model
US8911238B2 (en) * 2011-11-28 2014-12-16 BrachyTech LLC Prostate brachytherapy simulator
CA2859967A1 (en) 2011-12-20 2013-06-27 Applied Medical Resources Corporation Advanced surgical simulation
KR101231469B1 (ko) 2012-02-23 2013-02-07 인텔 코오퍼레이션 이미지 처리 지원 방법, 장치, 및 이 방법을 실행하기 위한 컴퓨터 판독 가능한 기록 매체
CA2880277A1 (en) 2012-08-03 2014-02-06 Applied Medical Resources Corporation Simulated stapling and energy based ligation for surgical training
WO2014052373A1 (en) 2012-09-26 2014-04-03 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
ES2715285T3 (es) 2012-09-27 2019-06-03 Applied Med Resources Modelo de entrenamiento quirúrgico para procedimientos laparoscópicos
CA3159450A1 (en) 2012-09-27 2014-04-03 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
US10679520B2 (en) 2012-09-27 2020-06-09 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
US10395559B2 (en) 2012-09-28 2019-08-27 Applied Medical Resources Corporation Surgical training model for transluminal laparoscopic procedures
AU2013323255B2 (en) 2012-09-28 2018-02-08 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
JP5904110B2 (ja) * 2012-12-06 2016-04-13 ソニー株式会社 造形物の製造方法
EP3929895A3 (en) 2013-03-01 2022-01-12 Applied Medical Resources Corporation Advanced surgical simulation constructions and methods
AU2014265412B2 (en) 2013-05-15 2018-07-19 Applied Medical Resources Corporation Hernia model
CA3232626A1 (en) 2013-06-18 2014-12-24 Applied Medical Resources Corporation Gallbladder model
WO2015013516A1 (en) 2013-07-24 2015-01-29 Applied Medical Resources Corporation First entry model
US10198966B2 (en) 2013-07-24 2019-02-05 Applied Medical Resources Corporation Advanced first entry model for surgical simulation
CN106133808A (zh) * 2014-03-24 2016-11-16 富士胶片株式会社 生物体器官模型用水性凝胶组合物及生物体器官模型
AU2015235994B2 (en) 2014-03-26 2019-11-21 Applied Medical Resources Corporation Simulated dissectible tissue
KR102518089B1 (ko) 2014-11-13 2023-04-05 어플라이드 메디컬 리소시스 코포레이션 시뮬레이션된 조직 모델들 및 방법들
AU2016219865B2 (en) 2015-02-19 2021-07-08 Applied Medical Resources Corporation Simulated tissue structures and methods
US9361809B1 (en) * 2015-03-30 2016-06-07 Cae Inc. Tracking system
WO2016183412A1 (en) 2015-05-14 2016-11-17 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
AU2016276771B2 (en) 2015-06-09 2022-02-03 Applied Medical Resources Corporation Hysterectomy model
EP3323122B1 (en) 2015-07-16 2020-09-02 Applied Medical Resources Corporation Simulated dissectable tissue
CA2993197A1 (en) 2015-07-22 2017-01-26 Applied Medical Resources Corporation Appendectomy model
JP2017032694A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 模擬臓器
JP2017032690A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 模擬臓器
PL414009A1 (pl) * 2015-09-15 2017-03-27 Politechnika Rzeszowska im. Ignacego Łukasiewicza Sposób odwzorowania złożonych obiektów cienkościennych
KR20240037386A (ko) 2015-10-02 2024-03-21 어플라이드 메디컬 리소시스 코포레이션 자궁 절제술 모델
US10706743B2 (en) 2015-11-20 2020-07-07 Applied Medical Resources Corporation Simulated dissectible tissue
ES2946810T3 (es) 2016-06-27 2023-07-26 Applied Med Resources Pared abdominal simulada
CA3053498A1 (en) 2017-02-14 2018-08-23 Applied Medical Resources Corporation Laparoscopic training system
US10847057B2 (en) 2017-02-23 2020-11-24 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
DE112018003785T5 (de) * 2017-08-21 2020-05-14 Tohoku University Hydrogelzusammensetzung, gewebemodell und herstellungsverfahren für ein gewebemodell
US11417241B2 (en) 2018-12-01 2022-08-16 Syndaver Labs, Inc. Artificial canine model
CN110415335B (zh) * 2019-07-03 2023-01-03 武汉科技大学 一种三维重建方法及装置
WO2021087423A1 (en) * 2019-11-01 2021-05-06 ReSuture, LLC A simulated surgical system, simulated vessel, and methods of making the same and related components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249644A (ja) * 1986-04-22 1987-10-30 日石三菱株式会社 擬似生体構造物
JPH07503081A (ja) * 1992-01-15 1995-03-30 リム アンド シングズ リミティッド 外科手術・臨床装置
JP2003330358A (ja) * 2003-02-14 2003-11-19 Toshio Fukuda 内部に腔所を再現した立体モデルの製造方法及び内部に腔所を再現した立体モデル

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003141A (en) * 1975-04-01 1977-01-18 New Research And Development Lab., Inc. Intracranial pressure monitoring device
US4481001A (en) * 1983-05-26 1984-11-06 Collagen Corporation Human skin model for intradermal injection demonstration or training
US4974461A (en) * 1988-10-13 1990-12-04 The United States Of America As Represented By Department Of Health And Human Services Anthropomorphic cardiac ultrasound phantom
US5061187A (en) * 1990-04-12 1991-10-29 Ravinder Jerath Ultrasound training apparatus
US5055051A (en) * 1990-08-03 1991-10-08 Dornier Medical Systems, Inc. Semi-anthropomorphic biliary/renal training phantom for medical imaging and lithotripsy training
US5403191A (en) * 1991-10-21 1995-04-04 Tuason; Leo B. Laparoscopic surgery simulator and method of use
US5620326A (en) * 1995-06-09 1997-04-15 Simulab Corporation Anatomical simulator for videoendoscopic surgical training
GB9718377D0 (en) * 1997-08-29 1997-11-05 Ethicon Limited Simulator
DE19841248A1 (de) * 1997-09-12 1999-04-29 Fraunhofer Ges Forschung Demonstrationseinrichtung in Form eines Lebewesens
US6062866A (en) * 1998-03-27 2000-05-16 Prom; James M. Medical angioplasty model
US6511325B1 (en) * 1998-05-04 2003-01-28 Advanced Research & Technology Institute Aortic stent-graft calibration and training model
WO2002017277A1 (en) * 2000-08-23 2002-02-28 The Royal Alexandra Hospital For Children A laparoscopic trainer
US6985214B2 (en) * 2001-10-09 2006-01-10 Purdue Research Foundation Method and apparatus for enhancing visualization of mechanical stress

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249644A (ja) * 1986-04-22 1987-10-30 日石三菱株式会社 擬似生体構造物
JPH07503081A (ja) * 1992-01-15 1995-03-30 リム アンド シングズ リミティッド 外科手術・臨床装置
JP2003330358A (ja) * 2003-02-14 2003-11-19 Toshio Fukuda 内部に腔所を再現した立体モデルの製造方法及び内部に腔所を再現した立体モデル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1677273A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017929A (ja) * 2005-05-06 2007-01-25 Univ Nagoya カテーテル手術シミュレータ
JP2007121174A (ja) * 2005-10-31 2007-05-17 Univ Nagoya 応力検出装置
JP2007121811A (ja) * 2005-10-31 2007-05-17 Univ Nagoya カテーテル手術シミュレータ
JPWO2013125026A1 (ja) * 2012-02-24 2015-07-30 ファインバイオメディカル有限会社 潤滑性調整液
JP2020528800A (ja) * 2017-07-28 2020-10-01 ストラタシス リミテッド 血管の特性を具備する物体を製作するための方法及びシステム
US11696832B2 (en) 2017-07-28 2023-07-11 Stratasys Ltd. Method and system for fabricating object featuring properties of a hard tissue
JP7329498B2 (ja) 2017-07-28 2023-08-18 ストラタシス リミテッド 血管の特性を具備する物体を製作するための方法及びシステム
US11801630B2 (en) 2017-07-28 2023-10-31 Stratasys Ltd. Method and system for fabricating object featuring properties of a blood vessel
US11939468B2 (en) 2017-07-28 2024-03-26 Stratasys Ltd. Formulations usable in additive manufacturing of a three-dimensional object made of a soft material

Also Published As

Publication number Publication date
KR100713726B1 (ko) 2007-05-02
EP1677273A1 (en) 2006-07-05
EP1677273A4 (en) 2013-12-04
KR20060085692A (ko) 2006-07-27
US20070148626A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
WO2005038751A1 (ja) 立体モデル
US7583367B2 (en) Catheter surgery simulation
CA2494588C (en) Three-dimensional model
JP2008070847A (ja) カテーテル手術シミュレータ
JP2010513977A (ja) 解剖学的及び機能的に正確な軟組織ファントム並びにその製造方法
Chen et al. An anthropomorphic polyvinyl alcohol brain phantom based on Colin27 for use in multimodal imaging
JP2010029650A (ja) 医学用超音波ファントム
US20190355280A1 (en) Echogenic organ replica and method of manufacture using an additive manufacturing system
Ikeda et al. In vitro patient-tailored anatomical model of cerebral artery for evaluating medical robots and systems for intravascular neurosurgery
Nisar et al. A simple, realistic walled phantom for intravascular and intracardiac applications
JP4997385B2 (ja) カテーテル手術シミュレータ
JP3670657B1 (ja) 立体モデル
JP2007121174A (ja) 応力検出装置
JP2006113520A (ja) 応力観察装置
Ikeda et al. An in vitro patient-tailored model of human cerebral artery for simulating endovascular intervention
JP4883754B2 (ja) カテーテル手術シミュレータ
CN100559424C (zh) 立体模型
JP2006113532A (ja) 応力観察装置
Stefano et al. 3D Stereolithography for hollow cerebral aneurysm models
RU2682459C1 (ru) Способ формирования фантомов кровеносных сосудов для эндоскопической оптической когерентной эластографии
Antonuccio et al. Fabrication of deformable patient-specific AAA models by material casting techniques
Ikeda et al. An in vitro membranous arterial model based on individual information for intravascular neurosurgery
JP2016214668A (ja) ファントムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029798.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006979

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004792540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007148626

Country of ref document: US

Ref document number: 10575914

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792540

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10575914

Country of ref document: US