WO2016119293A1 - 一种微生物发酵生产氨基葡萄糖的菌株及方法 - Google Patents

一种微生物发酵生产氨基葡萄糖的菌株及方法 Download PDF

Info

Publication number
WO2016119293A1
WO2016119293A1 PCT/CN2015/075174 CN2015075174W WO2016119293A1 WO 2016119293 A1 WO2016119293 A1 WO 2016119293A1 CN 2015075174 W CN2015075174 W CN 2015075174W WO 2016119293 A1 WO2016119293 A1 WO 2016119293A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucosamine
fermentation
medium
acetyl
culture
Prior art date
Application number
PCT/CN2015/075174
Other languages
English (en)
French (fr)
Inventor
邹季虹
Original Assignee
邹季虹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邹季虹 filed Critical 邹季虹
Priority to US15/546,720 priority Critical patent/US20180016608A1/en
Priority to JP2017540774A priority patent/JP6446141B2/ja
Publication of WO2016119293A1 publication Critical patent/WO2016119293A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Definitions

  • the invention relates to the field of biotechnology, and particularly relates to a strain for producing N-acetyl-D-glucosamine and D-glucosamine by microorganism fermentation and a method thereof.
  • N-acetyl-D-glucosamine is a monosaccharide, which is a component of the cell wall of fungi (Basidiomycetes, mold or yeast), or a component of crustaceans such as crabs and shrimp shells. Less nutrients.
  • N-acetyl-D-glucosamine has a similar effect to glucosamine, and uptake of a certain amount of N-acetyl-D-glucosamine can induce the production of new cartilage and inhibit the onset of osteoarthritis, and in some cases, N -Acetyl-D-glucosamine can also be used to treat osteoarthritis.
  • N-acetyl-D-glucosamine has a sweetness of 50% sucrose and is easy to ingest, N-acetyl-D-glucosamine has received extensive attention as an alternative to glucosamine.
  • the traditional production of N-acetyl-D-glucosamine is based on crustacean shells.
  • the production method comprises: crushing the shell of the crustacean; decalcifying the crushed shell with a dilute acid solution; purifying the chitin by removing the protein with a base; and using the chitin obtained by the acid hydrolysis to produce glucosamine; Glucose is subjected to acetylation with anhydrous acetic acid to obtain N-acetyl-D-glucosamine.
  • the method for producing glucosamine by acid hydrolysis of chitin further comprises using fungal residue (such as the slag of Aspergillus niger used in citric acid fermentation) as a raw material in high concentration hydrochloric acid.
  • fungal residue such as the slag of Aspergillus niger used in citric acid fermentation
  • the conventional method further comprises: (1) using an enzyme produced by a microorganism to degrade chitin produced from a shrimp shell material to produce N-acetyl-D-glucosamine, see U.S. Patent No. 5,998,173 issued on Dec. 7, 1999, the disclosure of which is Preparation process of N-acetyl-D-glucosamine; (2) Enzymatic hydrolysis by enzyme produced by microorganism (Trichoderma) or partial hydrolysis of acid to purify fungus residue (bacteria of Aspergillus niger used for citric acid fermentation) Chitin to produce N-acetyl-D-glucosamine, see U.S. Patent No. 20030073666 A1, issued Apr.
  • N-acetyl-D-glucosamine and its preparation (3) by cultivating green algae Chlorovirus-infected Chlorella cells or recombinant Escherichia coli derived from the Chlorella virus gene to produce N-acetyl-D-glucosamine, see Japanese Patent JP2004283144A, published on October 14, 2004, which discloses a method for preparing glucosamine and N-acetyl-D-glucosamine; (4) fermentative production of N-acetyl-D-glucosamine using genetically modified microorganisms, particularly genetically modified Escherichia coli, see January 8, 2004 WO2004/003175, which discloses the production process and materials of glucosamine and N-acetylglucosamine; (5) directly using glucose as a carbon source with Trichoderma, without the need for chitin and shell from fungal residue or shrimp shell The carbon source of the polysaccharide oligosaccharide is fermente
  • the above method for producing N-acetyl-D-glucosamine or D-glucosamine by chemical hydrolysis using crustacean shell or Aspergillus residue (citric acid residue) as a raw material usually requires high use.
  • the concentration of the acid solution and the alkali solution will result in a large amount of waste liquid.
  • the extraction of D-glucosamine from shrimp and crab shells may produce more than 100 tons of wastewater and a large amount of waste residue per ton of D-glucosamine produced.
  • citric acid slag extraction only 1 ton of D-glucosamine can be produced per 30-50 tons of citric acid slag.
  • an enzyme produced by a microorganism or a microorganism to degrade chitin derived from a crustacean such as a crab or a shrimp shell to produce N-acetyl-D-glucosamine has a problem of low yield and high cost.
  • N-acetyl-D-glucosamine By producing N-acetyl-D-glucosamine by culturing Chlorella virus-infected Chlorella cells, it is necessary to obtain N-acetyl-D-glucosamine by crushing cells, which has a problem of complicated operation.
  • the use of genetically modified micro-organisms to produce N-acetyl-D-glucosamine requires appropriate measures to avoid the spread of microorganisms within the device. It also has complex operational problems, even food safety and social threats.
  • a method for fermentative production of N-acetyl-D-glucosamine using Trichoderma directly using glucose as a carbon source although having a carbon source such as chitin or chitin oligosaccharide produced from crustacean shell or fungal residue is not required.
  • the object of the present invention is to provide a microbial fermentation for producing N-acetyl-D-glucosamine And D-glucosamine methods to overcome the aforementioned deficiencies of the prior art.
  • a non-genetically recombinant strain for microbial fermentation of N-acetyl-D-glucosamine and D-glucosamine characterized in that it has been deposited in the General Microbiology Center of the China Collection of Microorganisms Species, Bacillus subtilis NJ090259 strain, deposited under CGMCC10257, dated December 29, 2014, and a strain of Bacillus lincheniformis NJ091195, deposited under CGMCC 10258, with a deposit date of 2014 12 Month 29th.
  • primary screening medium colloidal chitin 2.5g/L, dipotassium hydrogen phosphate 0.7g/L, potassium dihydrogen phosphate 0.3g/L, magnesium sulfate 0.5 g/L, ferrous sulfate 0.01 g/L, agar 20 g/L, pH 7.0, culture temperature 37 ° C, culture time 72 h, culture, single colonies were obtained, colonies were isolated, and Bacillus subtilis and Bacillus licheniformis were obtained, and The flask is subjected to shake flask fermentation culture, the chitinase activity of the fermentation liquid is measured, and the strain is screened according to the chitinase activity of the fermentation liquid;
  • Bacillus subtilis after activation on plate medium NJ090259 and Bacillus lincheniformis NJ091195 were respectively inserted into seed culture medium, cultured under constant temperature shaker, used as seed liquid, connected to fermentation medium, cultured under constant temperature shaker, centrifuged to take supernatant, and N-acetyl was determined. -D-glucosamine content;
  • Plate medium colloid chitin 30g / L, ammonium sulfate 2g / L, potassium dihydrogen phosphate 1.0g / L, magnesium sulfate 0.5g / L, sodium chloride 0.5g / L, agar 20g / L, pH 6.5;
  • Seed medium peptone 5.0g / L, beef extract 5.0g / L, sodium chloride 5.0g / L, pH 7.0-7.2;
  • Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
  • Fermentation conditions temperature 35 ° C, fermentation time 18 h, initial pH 6.5, inoculum 10%, liquid volume 50ml / 250ml;
  • the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the fermented liquid is heated under vacuum, concentrated to supersaturation, and the concentrated fermentation broth is cooled, and 5 times of absolute ethanol is added, and the mixture is stirred and centrifuged to obtain High purity N-acetyl-D-glucosamine crystals;
  • the crude N-acetyl-D-glucosamine crystals were prepared into a saturated solution, 37% concentrated hydrochloric acid was added to a final concentration of 12-16%, and the temperature was kept at 90 ° C for 45-90 min, and cooled overnight.
  • the crystals obtained by filtration were washed with ethanol and dried under vacuum. And detection, high purity D-glucosamine hydrochloride was obtained in a yield of 86%.
  • the carbon source and the nitrogen source of the medium are as follows: the carbon source includes glucose, One or more of Aspergillus bacteria residue, Trichoderma residue, Black fungus production waste, Mushroom production waste, fructose, sucrose, galactose, dextrin, glycerin, starch, syrup and molasses, the nitrogen source includes One or more of ammonia water, soy flour, malt, corn syrup, cottonseed meal, yeast extract, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium acetate, sodium nitrate and urea.
  • the carbon source includes glucose, One or more of Aspergillus bacteria residue, Trichoderma residue, Black fungus production waste, Mushroom production waste, fructose, sucrose, galactose, dextrin, glycerin, starch, syrup and molasses
  • the nitrogen source includes One or more of ammonia water, soy flour, malt, corn syrup, cotton
  • the fungus is one or more of basidiomycetes, molds, and yeast species.
  • the invention screens Bacillus subtilis NJ090259 and Bacillus lincheniformis NJ091195 from soil under different environmental conditions, and the bacteriology characteristics of the NJ090259 strain and NJ091195 are as follows:
  • NJ090259 strain is a purulent pale yellow translucent colony when growing, the surface of the colony is smooth; the colony is round, 4-7mm in diameter; low convex, regular, radial, edge leaflike; surface wrinkle, dull, grayish white, with scales It is opaque; when it grows to a certain extent, it becomes a milky white colony, umbrella-shaped, with wrinkles on the surface of the colony, large colonies, and central protrusions; single-rod-shaped, blunt ends, single arrangement, occasionally 2-3 bacterial rows Short-chained, smear-dried stained bacteria 0.7-0.8 ⁇ 2-3 ⁇ m, Gram-positive, spores appear after 24 h of liquid fermentation, spores are born or end-produced, elliptical, not significantly swell; in liquid matrix It is evenly turbid in the middle, and does not form a bacterial membrane and a fungus ring;
  • NJ090259 strain is obligate aerobic, does not have curd effect, catalase test, nitrate reduction test, VP test positive; phenylalanine deaminase test, egg yolk lecithin enzyme test negative; decomposition of glucose acid production does not produce gas , can break down arabinose, mannitol, casein, Gelatin, starch.
  • the colony of NJ091195 When cultured on broth agar plate, the colony of NJ091195 is approximately round, milky white, dark surface, opaque, irregular edges, rough; colony and medium are close to each other, difficult to pick; liquid culture has bacterial membrane, no turbidity, No precipitation; single bacteria are short rods, blunt ends, single or 2 arranged side by side, the length of the bacteria is 1.5-3.0 ⁇ m, the width of the bacteria is 0.6-1.0 ⁇ m, Gram is positive, the spores are oval, the middle is inflated, the spores In the middle or at one end;
  • NJ091195 strain is positive for contact enzyme test, can grow on medium containing 7% NaCl, can grow at 50 °C, has motility, can use citrate, hydrolyzable starch, methyl red test is negative, leather Positive for Langer staining, negative for lecithinase test, positive for VP test, can be grown under nutrient broth with pH 5.7, fermentable chitin, D-glucose, L-arabinose, D-xylose and D-mannitol produces acid which can liquefy gelatin.
  • the invention has the beneficial effects of providing a novel strain for producing N-acetyl-D-glucosamine and D-glucosamine and a production method thereof, and the method can realize stable production of N-acetyl-D-glucosamine and It is capable of producing non-animal, safe N-acetyl-D-glucosamine and D-glucosamine with short production cycle, low cost and more environmental protection.
  • a strain for producing N-acetyl-D-glucosamine by microbial fermentation and a method thereof.
  • a strain of microbial fermentation of N-acetyl-D-glucosamine has been deposited in the General Microbiology Center of the China Collection of Microorganisms, a strain of Bacillus subtilis NJ090259, with the accession number CGMCC10257, and the deposit date is 2014. On December 29, and a strain of Bacillus lincheniformis NJ091195, the accession number was CGMCC10258, and the deposit date was December 29, 2014.
  • the primary screening medium colloidal chitin 2.5g/L, dipotassium hydrogen phosphate 0.7g/L, potassium dihydrogen phosphate 0.3g/ L, magnesium sulfate 0.5g / L, ferrous sulfate 0.01g / L, agar 20g / L, pH 7.0, culture temperature 37 ° C, culture time 72h, cultured, single colonies were obtained, colonies were isolated, 11 colony transparent circles were obtained Large, bright, well-grown strains, depending on the colony morphology of the strain Identification, Gram staining, physiological and biochemical identification test to identify the obtained strain, to obtain 3 strains of Bacillus subtilis and 2 strains of Bacillus licheniformis;
  • the activated slanted species were inoculated in a 250 ml volume shake flask containing 50 ml of seed medium, and the cultured liquid strain was inoculated with a 10% inoculum in a 500 ml volume shake flask containing 100 ml of the medium.
  • the medium is cultured, and the strain is screened according to the chitinase activity of the fermentation liquid;
  • Seed medium peptone 10g / L, beef extract 3g / L, sodium chloride 5g / L;
  • Culture conditions pH 7.4, culture temperature 37 ° C, shaking speed 200 rpm, culture time 8 h;
  • Fermentation medium fine powder chitin l0g / L, corn flour 5g / L, starch 3g / L, sodium nitrate 3g / L, dipotassium hydrogen phosphate 1.05g / L, potassium dihydrogen phosphate 0.45g / L, chlorination Sodium 0.1g / L, magnesium sulfate 0.5g / L, ferrous sulfate 0.03g / L;
  • Culture conditions pH 7.0, culture temperature 37 ° C, shaking speed 220 rpm, culture time 72 h;
  • Determination of chitinase activity in fermentation broth Weigh 10 g of fine powder chitin, prepare a suspension with a concentration of 10% with phosphate buffer, and add the fermentation after centrifugation at a ratio of 1:1 (V/V). The solution was reacted at 45 ° C for 4 h, then the enzyme was centrifuged at 3000 rpm for 10 min, the supernatant was taken, and then 2 volumes of absolute ethanol were added, and the mixture was allowed to stand overnight, and the precipitate was removed by centrifugation, and the supernatant was concentrated under reduced pressure to a reducing sugar concentration of 1 %, HPLC determination of N-acetyl-D-glucosamine content;
  • Enzyme unit definition The amount of enzyme required to produce a reducing sugar equivalent to 1 ⁇ mol of N-acetyl-D-glucosamine per minute under enzymatic reaction conditions, defined as an enzyme activity unit (IU);
  • Test results The results of the enzyme production activities of three strains of Bacillus subtilis and two strains of Bacillus licheniformis are shown in Table 1.
  • Bacillus subtilis NJ090259 was selected as the highest enzyme producing activity, and N0.1 B. licheniformis with the highest enzyme activity was selected as Bacillus lincheniformis NJ091195.
  • Bacillus subtilis NJ090259, Bacillus lincheniformis NJ091195 and the standard strain Bacillus licheniformi ACCC02569 were activated on plate medium, respectively, and then inserted into seed culture medium, 30 ° C constant temperature shaker After culturing for 18 hours, it was used as a seed solution. When inoculated, it was inserted into the fermentation medium at a ratio of 1:10. The medium was incubated at 30 ° C for 72 h at a constant temperature shaker, centrifuged at 12,000 rpm for 5 min, and the supernatant was centrifuged to determine N-acetyl by HPLC. -D-glucosamine The amount and test results are shown in Table 2.
  • Plate medium colloidal chitin 30g / L, ammonium sulfate 2.0g / L, potassium dihydrogen phosphate 1.0g / L, magnesium sulfate 0.5g / L, sodium chloride 0.5g / L, agar 20g / L, pH 6.5 ;
  • Seed medium peptone 5.0g / L, beef extract 5.0g / L, sodium chloride 5.0g / L, pH 7.0-7.2;
  • Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
  • Fermentation conditions temperature 35 ° C, fermentation time 18 h, initial pH 6.5, inoculum 10%, liquid volume 50ml / 250ml.
  • the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.01 mol/L, the flow rate of the light fermentation broth was 40 L/h, and the flow rate of the concentrated chamber fermentation liquid was 40 L/h.
  • the voltage of the single membrane pair is 0.5V.
  • the fermentation broth is heated to 50 ° C under vacuum conditions (0.095 MPa), concentrated for 8 hours, and supersaturated.
  • the concentrated fermentation broth is first cooled to 25 ° C at 25 ° C, and then 0. °C water is cooled for 1 h, to 0 ° C, 5 times absolute ethanol is added, and stirred for 15 min. Centrifugation at 700 rpm for 15 min, stirring an equal volume of absolute ethanol at 10 rpm for 0.5 h, thereby obtaining N-acetyl-D-glucosamine crystals having a purity of 90%;
  • the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 12%, kept at 90 ° C for 45 min, and cooled to 4 ° C overnight. The crystals present were filtered and washed with ethanol, dried in vacuo and tested to give 97.5% D-glucosamine hydrochloride, white, with a total yield of 82%.
  • step (3) of the N-acetyl-D-glucosamine fermentation broth purification step is as follows:
  • the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.03 mol/L, the flow rate of the fermentation broth of the light chamber was 60 L/h, and the flow rate of the fermentation broth of the concentrated chamber was 60 L/h.
  • the voltage of the single membrane pair is 0.5-1.4V.
  • the fermentation broth is heated at 65 ° C under vacuum conditions (0.095 MPa), concentrated for 11 h, to supersaturated, and the concentrated fermentation broth is first cooled to 30 ° C at 25 ° C, and then The temperature was lowered with 0 ° C water for 2 h, to 5 ° C, 5 times absolute ethanol was added, and stirred for 37 min.
  • Step (4) N-acetyl-D-glucosamine hydrolysis hydrolysis step is as follows:
  • the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 14%, kept at 90 ° C for 67 min, cooled to 4 ° C, overnight, filtered. The crystals present were washed with ethanol, vacuum dried and tested to give 98.0% D-glucosamine hydrochloride, white, with a total yield of 84%.
  • step (3) of the N-acetyl-D-glucosamine fermentation broth purification step is as follows:
  • the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.05 mol/L, the flow rate of the light fermentation broth was 80 L/h, and the flow rate of the concentrated chamber fermentation liquid was: 80L/h, the voltage of the single membrane pair is 1.4V.
  • the fermentation broth is heated at 80 ° C under vacuum conditions (0.095 MPa), concentrated for 15 h, to supersaturated, and the concentrated fermentation broth is first cooled to 35 ° C at 25 ° C.
  • Step (4) N-acetyl-D-glucosamine hydrolysis hydrolysis step is as follows:
  • the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 16%, kept at 90 ° C for 90 min, cooled to 4 ° C, overnight, filtered. The crystals present were washed with ethanol, vacuum dried and tested to give 98.5% D-glucosamine hydrochloride, white, with a total yield of 86%.
  • Chitin medium colloidal chitin 30g / L, ammonium sulfate 2.0g / L, magnesium sulfate 0.5g / L, potassium dihydrogen phosphate 1.0g / L, sodium chloride 0.5g / L;
  • Culture conditions pH 6.5, culture temperature 32 ° C, culture time 5 days;
  • the Bacillus subtilis NJ090259 mutant was inoculated by ultraviolet irradiation, and the fermentation culture test was carried out, and the culture supernatant was analyzed by HPLC, and the results showed that the culture was cultured.
  • the base contains 5.5 g/L of N-acetyl-D-glucosamine;
  • the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h.
  • N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to At 4 ° C, overnight, the crystals present were filtered and washed with ethanol, dried in vacuo and tested to give 98.0% D-glucosamine hydrochloride, white, with a total yield of 85%.
  • the ultraviolet-induced mutant of Bacillus subtilis NJ090259 was activated on a plate medium, and then inserted into a seed culture medium, and cultured at 30 ° C for 7 hours under a constant temperature shaker to be used as a seed liquid;
  • the amount of 10 was connected to a 250 mL baffled conical flask containing 50 ml of fermentation medium, and 2.5 ml of the feed medium was added at 24 h, 36 h, 48 h, and 60 h, respectively;
  • Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
  • Feeding medium colloidal chitin 100g/L, glucose 100g/L, pH 6.0.
  • Culture conditions pH 6.5, culture temperature 35 ° C, constant temperature shaker culture, culture time 72h.
  • the mixture was centrifuged at 12,000 rpm for 5 min, and the supernatant was centrifuged, and the N-acetyl-D-glucosamine content was determined by HPLC.
  • the Bacillus subtilis NJ090259 mutant was inoculated by ultraviolet irradiation, and the fermentation fermentation test was carried out, and the culture supernatant was analyzed by HPLC, and the result showed that the culture produced
  • the medium contains 24.0 g/L of N-acetyl-D-glucosamine;
  • the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth is heated under the vacuum condition (0.095MPa), 50-80 °C, concentrated for 8-15h, to supersaturated, concentrated hair
  • the fermentation broth should be cooled to 25-35 ° C at 25 ° C, then cooled with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, and stir for 15 min -1 h. Centrifugation at 700-1500 rpm, 15-60 min, stirring an equal volume of absolute ethanol at 10-100 rpm for 0.5-2 h, thereby obtaining N-acetyl-D-gluco
  • N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to The crystals were filtered at 4 ° C overnight, washed with ethanol, dried in vacuo and then purified to give 98.7% D-glucosamine hydrochloride, white, with a total yield of 86.5%.
  • Bacillus lincheniformis NJ091195 was activated and cultured to log phase culture solution, and the supernatant was centrifuged to prepare a bacterial suspension with a cell number of about 10 8 /mL, and 0.5 mL of 400 mL was taken first. 800, 1000 ⁇ g / mL of N-methyl-N-nitro-N-nitrosoguanidine was added to the test tube, and 0.5 mL of each prepared bacterial suspension was added to the above test tube, and immediately placed after mixing.
  • the reaction was terminated by dilution, and the chitin medium plate was diluted in the dark, and cultured at 37 ° C for 5 days, the growth rate was selected.
  • the chitin hydrolyzed circle and the colony diameter ratio were greater than 10% of the starting bacteria and the largest mutant was tested for enzyme activity.
  • the mutagen-induced Bacillus lincheniformis NJ091195 mutant was inoculated and subjected to fermentation culture test.
  • the culture supernatant was analyzed by HPLC, and it was found that the culture produced a medium containing 3.0 g/L of N-acetyl-D-glucosamine;
  • the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h. Centrifugation at 700-1500 rpm for 15-60 min, stirring an equal volume of absolute ethanol at 10-100 rpm for 0.5-2 h, thereby obtaining N-acetyl-D-glucosamine
  • N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to The resulting crystals were filtered at 4 ° C overnight, washed with ethanol, dried in vacuo and dried to give 98.6% D-glucosamine hydrochloride, white, with a total yield of 86.6%.
  • Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
  • Feeding medium colloidal chitin 100g/L, glucose 100g/L, pH 6.0.
  • Culture conditions pH 6.5, culture temperature 35 ° C, culture time 72 h, constant temperature shaker culture.
  • the Bacillus lincheniformis NJ091195 mutant modified by ultraviolet irradiation was inoculated, and the fermentation fermentation test was carried out, and the culture supernatant was analyzed by HPLC, and the result showed that the culture was produced.
  • the medium contains 19.0 g/L of N-acetyl-D-glucosamine;
  • the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h.
  • N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to At 4 ° C, overnight, the crystals were filtered and washed with ethanol, dried in vacuo and tested to give 98.8% D-glucosamine hydrochloride, white, with a total yield of 87%.
  • Instruments and equipment Shimadzu LC-15C high performance liquid chromatograph; detector: variable wavelength UV detector.
  • the above-mentioned Bacillus subtilis NJ090259 and Bacillus licheniformis NJ091195 capable of producing N-acetyl-D-glucosamine and D-glucosamine are mutagenized and mutagenized.
  • the method is a known natural mutation method or a common artificial mutation method, such as ultraviolet irradiation, X-ray irradiation or a mutagen (for example, N-methyl-N-nitro-N-nitrosoguanidine), which induces bacterial strain mutation. .
  • a mutagen for example, N-methyl-N-nitro-N-nitrosoguanidine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

提供了发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的非遗传重组菌株,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种是枯草芽孢杆菌NJ090259菌株,保藏号为CGMCC10257,另一种是地衣芽孢杆菌NJ091195菌株,保藏号为CGMCC10258,保藏日期均为2014年12月29日。还提供了使用所述菌株生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的方法。

Description

一种微生物发酵生产氨基葡萄糖的菌株及方法 技术领域
本发明涉及生物技术领域,具体涉及一种微生物发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的菌株及其方法。
背景技术
N-乙酰-D-氨基葡萄糖是单糖,是真菌(担子菌、霉菌或酵母)菌体细胞壁几丁质,或甲壳类动物如蟹、虾类壳的组成成份,也可作为食品内含量极少的营养成份。N-乙酰-D-氨基葡萄糖具有与氨基葡萄糖相似的效果,摄取一定量的N-乙酰-D-氨基葡萄糖可以诱导新软骨的产生,并抑制骨关节炎的发作,而在一些病例中,N-乙酰-D-氨基葡萄糖也可用来治疗骨关节炎。由于氨基葡萄糖有苦味,而N-乙酰-D-氨基葡萄糖有蔗糖50%的甜味并且很容易摄取,因此,N-乙酰-D-氨基葡萄糖作为氨基葡萄糖的替代物质已经收到了广泛的关注。
传统的N-乙酰-D-氨基葡萄糖的生产是以甲壳类动物壳作为原料。其生产方法包括:压碎甲壳类动物的壳;采用稀释酸溶液对压碎的壳脱钙;利用碱去除蛋白质得到纯化的甲壳素;利用酸水解得到的甲壳素以生产氨基葡萄糖;然后对氨基葡萄糖进行无水醋酸乙酰化,从而得到N-乙酰-D-氨基葡萄糖。利用酸水解甲壳素生产氨基葡萄糖的方法,还包括以真菌渣(如柠檬酸发酵使用的黑曲霉菌的菌渣)为原料,在高浓度盐酸作 用下水解生产氨基葡萄糖,参见2006年5月23日公告的美国专利US7049433B2,其公开了氨基葡萄糖及从微生物量中制备氨基葡萄糖的方法。
此外,传统方法还包括:(1)利用微生物产生的酶降解来自虾壳原料产生的甲壳素以生产N-乙酰-D-氨基葡萄糖,参见1999年12月7日公告的美国专利US5998173,其公开了N-乙酰-D-氨基葡萄糖的制备过程;(2)利用微生物(木霉菌)产生的酶进行酶解或用酸部分水解纯化来自真菌渣(柠檬酸发酵使用的黑曲霉菌的菌渣)的甲壳素以生产N-乙酰-D-氨基葡萄糖,参见2003年4月17日公告的美国专利US20030073666A1,其公开了N-乙酰-D-氨基葡萄糖及其制备方法;(3)通过培养绿藻病毒(Chlorovirus)感染的小球藻细胞或者导入了源自绿藻病毒基因的重组大肠杆菌来生产N-乙酰-D-氨基葡萄糖,参见2004年10月14日公告的日本专利JP2004283144A,其公开了制备氨基葡萄糖和N-乙酰-D-氨基葡萄糖的方法;(4)采用遗传修饰的微生物,特别是遗传修饰的大肠杆菌,发酵生产N-乙酰-D-氨基葡萄糖,参见2004年1月8日公告的WO2004/003175,其公开了氨基葡萄糖和N-乙酰氨基葡萄糖的生产工艺及材料;(5)用木霉菌直接使用葡萄糖为碳源,不需要来自真菌渣或虾壳产生的甲壳素和壳多糖寡糖的碳源,发酵生产N-乙酰-D-氨基葡萄糖,参见2011年3月10日公告的美国专利US20110059489A1,其公开了利用微生物发酵生产N-乙酰-D-氨基葡萄糖的方法。
上述采用甲壳类动物壳或曲霉菌渣(柠檬酸渣)为原料通过化学水解生产N-乙酰-D-氨基葡萄糖或D-氨基葡萄糖的方法,通常需要使用高 浓度的酸溶液和碱溶液,因此会产生大量废液。而利用虾蟹壳为原料提取D-氨基葡萄糖,每生产1吨D-氨基葡萄糖就可能产生100吨以上废水和大量废渣。而通过柠檬酸渣提取,每30-50吨柠檬酸渣仅能产1吨D-氨基葡萄糖。并且,使用微生物或微生物产生的酶来降解源自甲壳类动物如蟹、虾类壳的甲壳素以生产N-乙酰-D-氨基葡萄糖的方法存在产量低和成本高的问题。
而通过培养绿藻病毒感染的小球藻细胞生产N-乙酰-D-氨基葡萄糖,需要通过压碎细胞获取N-乙酰-D-氨基葡萄糖,存在操作复杂的问题。利用遗传修饰的微生物生产N-乙酰-D-氨基葡萄糖的方法则需要采取适当措施来避免微生物在设备内的扩散,同样存在操作复杂的问题,甚至关乎食品安全及威胁社会的问题。
此外,用木霉菌直接使用葡萄糖为碳源发酵生产N-乙酰-D-氨基葡萄糖的方法,虽然具有不需要使用来自甲壳类动物壳或真菌渣产生的甲壳素或壳多糖寡糖等碳源的优点,但是由于木霉菌等真菌发酵温度低、时间长、产量偏低,从而导致其存在生产周期长、成本高、易污染等缺点,并严重限制了该方法的工业化应用。
因此,针对传统的N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖生产方法存在的上述缺点,亟需寻找一种新的,同时具有工业化应用前景的N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的生产方法。
发明内容
本发明的目的是提供一种微生物发酵生产N-乙酰-D-氨基葡萄糖 和D-氨基葡萄糖的方法,以克服目前现有技术存在的上述不足。
本发明的目的是通过以下技术方案来实现:
根据本发明的一方面,提供了一种微生物发酵N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的非遗传重组菌株,其特征在于,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种枯草芽孢杆菌(Bacillus subtilis)NJ090259菌株,保藏号为CGMCC10257,保藏日期为2014年12月29日,以及一种地衣芽孢杆菌(Bacillus lincheniformis)NJ091195菌株,保藏号为CGMCC10258,保藏日期为2014年12月29日。
根据本发明的另一方面,利用上述菌株发酵生产非动物源性N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的方法,以该菌为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖,包括以下步骤:
(1)菌株筛选、鉴定与培养
采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到枯草芽孢杆菌和地衣芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;
(2)发酵培养
将在平板培养基上活化后的枯草芽孢杆菌(Bacillus subtilis) NJ090259、地衣芽孢杆菌(Bacillus lincheniformis)NJ091195分别接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;
平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
将N-乙酰-D-氨基葡萄糖结晶粗品配制成饱和溶液,加入37%浓盐酸至终浓度为12-16%,90℃保温45-90min,冷却过夜,过滤得到的晶体用乙醇洗涤、真空干燥并检测,得到高纯度D-氨基葡萄糖盐酸盐,收率为86%。
进一步的,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、 黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
进一步的,所述真菌为担子菌、霉菌和酵母菌种的一种或几种。
本发明从不同环境条件下的土壤中筛选出枯草芽孢杆菌(Bacillus subtilis)NJ090259和地衣芽孢杆菌(Bacillus lincheniformis)NJ091195,所述NJ090259菌株和NJ091195的细菌学特性如下:
1、NJ090259菌株的细菌学特性
(1)培养学/形态学特性
NJ090259菌株生长时是脓状浅黄色半透明菌落,菌落表面光滑;菌落圆形,直径4-7mm;低凸起,规则,放射状,边缘叶状;表面皱褶,无光泽,灰白色,带有鳞片,不透明;生长到一定程度后就变成奶白色菌落,伞形,菌落表面有褶皱,菌落较大,中央突起;单菌杆状,两端钝圆,单个排列,偶尔2-3个细菌排成短链,经涂片干燥的染色的细菌0.7-0.8×2-3μm,革兰氏阳性,液体发酵24h后有芽孢出现,芽孢中生或端生,椭圆形,不明显膨胀;在液体基质中呈均匀混浊,不形成菌膜和菌环;
(2)生理生化特性
NJ090259菌株专性好氧,不具凝乳作用,过氧化氢酶实验、硝酸盐还原实验、V-P实验阳性;苯丙氨酸脱氨酶实验、卵黄卵磷脂酶实验阴性;分解葡萄糖产酸不产气,能分解阿拉伯糖、甘露醇、酪素、 明胶、淀粉。
2、NJ091195菌株的细菌学特性
(1)培养学/形态学特性
NJ091195菌株当培养于肉汤琼脂平板上时,菌落近似圆形,乳白色,表面暗,不透明,边缘不整齐,粗糙;菌落与培养基紧贴,不易挑取;液体培养有菌膜,无浑浊,无沉淀;单菌呈短棒状,两端钝圆,单个或2个并排排列,菌体长度1.5-3.0μm,菌体宽度0.6-1.0μm,革兰阳性,芽孢呈椭圆形,中间膨大,芽孢在中间或偏一端;
(2)生理学特性
NJ091195菌株接触酶试验呈阳性,可在含7%NaCl的培养基上生长,可在50℃条件下生长,具有运动性,可利用柠檬酸盐,可水解淀粉,甲基红试验呈阴性,革兰氏染色阳性,卵磷脂酶试验阴性,V.P试验阳性,可利用硝酸盐,pH 5.7的营养肉汤下可生长,可发酵几丁质、D-葡萄糖、L-阿拉伯糖、D-木糖和D-甘露醇产酸,可使明胶液化。
本发明的有益效果为:提供了一种生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的新型菌株及其生产方法,利用该方法能够实现N-乙酰-D-氨基葡萄糖的稳定生产与供应,并且能够实现非动物源性的、安全的N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的生产,其生产周期短、成本低、更加环保。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的实施例,提供了一种微生物发酵生产N-乙酰-D-氨基葡萄糖的菌株及其方法。
一种微生物发酵N-乙酰-D-氨基葡萄糖的菌株,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种枯草芽孢杆菌(Bacillus subtilis)NJ090259菌株,保藏号为CGMCC10257,保藏日期为2014年12月29日,以及一种地衣芽孢杆菌(Bacillus lincheniformis)NJ091195菌株,保藏号为CGMCC10258,保藏日期为2014年12月29日。
实施例1:
根据本发明的另一方面,利用上述菌株发酵生产N-乙酰-D-氨基葡萄糖和的D-氨基葡萄糖方法,以该菌为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖,包括以下步骤:
(1)菌株筛选、鉴定与培养
采集50份土壤样品,稀释10-3倍后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到11株菌落透明圈较大且明亮,生长状况良好的菌株,根据菌株菌落形态特 征、革兰氏染色、生理生化鉴别试验对获得的菌株进行鉴别,得到3株枯草芽孢杆菌和2株地衣芽孢杆菌;
将活化的斜面菌种接种于盛有50ml种子培养基的250ml容量的摇瓶中进行培养,将培养好的液体菌种按10%的接种量接种于盛有100ml培养基的500ml容量的摇瓶中进行培养,根据发酵液含几丁质酶活力对菌株进行筛选;
种子培养基:蛋白胨10g/L,牛肉膏3g/L,氯化钠5g/L;
培养条件:pH 7.4,培养温度37℃,摇床转速200rpm,培养时间8h;
发酵培养基:细粉几丁质l0g/L,玉米粉5g/L,淀粉3g/L,硝酸钠3g/L,磷酸氢二钾1.05g/L,磷酸二氢钾0.45g/L,氯化钠0.1g/L,硫酸镁0.5g/L,硫酸亚铁0.03g/L;
培养条件:pH 7.0,培养温度37℃,摇床转速220rpm,培养时间72h;
发酵液几丁质酶活力测定:称取10g细粉几丁质,用磷酸缓冲液配制成浓度为10%的悬浊液,按照1∶1(V/V)的比例加入离心处理后的发酵液,45℃反应4h,然后将酶解液3000rpm离心10min,取上清液,再加入2倍体积的无水乙醇,放置过夜,离心去除沉淀,上清液减压浓缩至还原糖浓度达1%,HPLC测定N-乙酰-D-氨基葡萄糖含量;
HPLC测定条件:
仪器与设备:岛津LC-15C型高效液相色谱仪,RID-10A示差折 光检测器,色谱柱:Aminex Hpx-87H柱(300×7.8mm),流动相:5mmol/L硫酸水溶液,流速:0.6ml/min,柱温:40℃,进样量20μl,检测:RI;
酶活单位定义:在酶促反应条件下,每分钟产生相当于1μmol N-乙酰-D-氨基葡萄糖的还原糖所需的酶量,定义为一个酶活力单位(IU);
检测结果:三株枯草芽孢杆菌和两株地衣芽孢杆菌的产酶活力测定结果见表1。
表1·三株枯草芽孢杆菌和两株地衣芽孢杆菌几丁质酶活力
菌株及编号 几丁质酶活力(IU/ml)
No.1枯草芽孢杆菌(Bacillus·subtilis) 0.31
No.2枯草芽孢杆菌(Bacillus·subtilis) 2.44
No.3枯草芽孢杆菌(Bacillus·subtilis) 1.34
No.1地衣芽孢杆菌(Bacillus·lincheniformis) 1.75
No.2地衣芽孢杆菌(Bacillus·lincheniformis) 0.41
选择产酶活力最高的No.2枯草芽孢杆菌命名为枯草芽孢杆菌(Bacillus subtilis)NJ090259,选择产酶活力最高的N0.1地衣芽孢杆菌命名为地衣芽孢杆菌(Bacillus lincheniformis)NJ091195。
(2)发酵培养
将枯草芽孢杆菌(Bacillus subtilis)NJ090259、地衣芽孢杆菌(Bacillus lincheniformis)NJ091195和标准菌株地衣芽孢杆菌(Bacillus licheniformi)ACCC02569在平板培养基上活化后,分别接入种子培养基中,30℃恒温摇床培养18h,用作种子液,接种时按1:10的量接入发酵培养基中,30℃恒温摇床培养72h,以转速为12000rpm离心5min,离心取上清液,利用HPLC测定N-乙酰-D-氨基葡萄糖含 量,检测结果见表2。
平板培养基:胶体几丁质30g/L,硫酸铵2.0g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml。
表2·发酵培养上清液中的N-乙酰-D-氨基葡萄糖的水平
菌株 N-乙酰-D-氨基葡萄糖(g/L)
地衣芽孢杆菌(Bacillus·licheniformi)ACCC02569 1.13·g/L
枯草芽孢杆菌(Bacillus·subtilis)NJ090259 1.55·g/L
地衣芽孢杆菌(Bacillus·lincheniformis)NJ091195 1.11·g/L
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.01mol/L,淡室发酵液流速:40L/h,浓室发酵液流速:40L/h,单膜对的电压0.5V,将除盐后发酵液真空条件下(0.095MPa)加热50℃,浓缩8h,至过饱和,浓缩后的发酵液先25℃水降温至25℃,再用0℃水降温1h,至0℃,加5倍无水乙醇,搅拌15min。700rpm离心,15min,等体积无水乙醇搅拌10rpm,0.5h,由此获得纯度为90%的N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
将N-乙酰-D-氨基葡萄糖结晶粗品置于玻璃容器中,溶于水,配制成饱和溶液,加入37%浓盐酸至终浓度为12%,90℃保温45min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到97.5%D-氨基葡萄糖盐酸盐,白色,总收率为82%。
在另一实施例中,步骤(3)N-乙酰-D-氨基葡萄糖发酵液纯化步骤如下:
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.03mol/L,淡室发酵液流速:60L/h,浓室发酵液流速:60L/h,单膜对的电压0.5-1.4V,将除盐后发酵液真空条件下(0.095MPa)加热65℃,浓缩11h,至过饱和,浓缩后的发酵液先25℃水降温至30℃,再用0℃水降温2h,至5℃,加5倍无水乙醇,搅拌37min。1050rpm离心,37min,等体积无水乙醇搅拌55rpm,1.2h,由此获得纯度为93%的N-乙酰-D-氨基葡萄糖结晶;
步骤(4)N-乙酰-D-氨基葡萄糖酸化水解步骤如下:
N-乙酰-D-氨基葡萄糖结晶粗品置于玻璃容器中,溶于水,配制成饱和溶液,加入37%浓盐酸至终浓度为14%,90℃保温67min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.0%D-氨基葡萄糖盐酸盐,白色,总收率为84%。
在另一实施例中,步骤(3)N-乙酰-D-氨基葡萄糖发酵液纯化步骤如下:
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.05mol/L,淡室发酵液流速:80L/h,浓室发酵液流速: 80L/h,单膜对的电压1.4V,将除盐后发酵液真空条件下(0.095MPa)加热80℃,浓缩15h,至过饱和,浓缩后的发酵液先25℃水降温至35℃,再用0℃水降温3h,至10℃,加5倍无水乙醇,搅拌1h,1500rpm离心,60min,等体积无水乙醇搅拌100rpm,2h,由此获得纯度为95%的N-乙酰-D-氨基葡萄糖结晶;
步骤(4)N-乙酰-D-氨基葡萄糖酸化水解步骤如下:
N-乙酰-D-氨基葡萄糖结晶粗品置于玻璃容器中,溶于水,配制成饱和溶液,加入37%浓盐酸至终浓度为16%,90℃保温90min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.5%D-氨基葡萄糖盐酸盐,白色,总收率为86%。
实施例2:
(1)紫外照射诱导突变
取10ml 1×107个/ml枯草芽孢杆菌(Bacillus subtilis)NJ090259悬液置于直径9cm培养皿内,紫外灯预热20min,将培养皿至于磁力搅拌器上并使培养皿在10W紫外灯垂直距离30cm左右;开启磁力搅拌器,分别照射150,200,250,300s;菌液诱变后在冰箱中避光静置1-2h,取诱变后的菌种和出发菌种分别接种于几丁质培养基平板上,挑选生长速度快,几丁质水解圈与菌落直径比值大于出发菌10%且最大的突变体做酶活性检测;
几丁质培养基:胶体几丁质30g/L,硫酸铵2.0g/L,硫酸镁0.5g/L,磷酸二氢钾1.0g/L,氯化钠0.5g/L;
培养条件:pH 6.5,培养温度32℃,培养时间5天;
(2)N-乙酰-D-氨基葡萄糖的生产
按实施例1所述的发酵培养方法,接种经紫外照射修饰枯草芽孢杆菌(Bacillus subtilis)NJ090259突变体,进行发酵培养试验,利用HPLC分析培养物上清液,结果显示:该培养物产生的培养基中含有5.5g/L的N-乙酰-D-氨基葡萄糖;
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.01-0.05mol/L,淡室发酵液流速:40-80L/h,浓室发酵液流速:40-80L/h,单膜对的电压0.5-1.4V,将除盐后发酵液真空条件下(0.095MPa)加热50-80℃,浓缩8-15h,至过饱和,浓缩后的发酵液先25℃水降温至25-35℃,再用0℃水降温1-3h,至0-10℃,加5倍无水乙醇,搅拌15min-1h。700-1500rpm离心,15-60min,等体积无水乙醇搅拌10-100rpm,0.5-2h,由此获得纯度为94%的N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
N-乙酰-D-氨基葡萄糖结晶粗品,于玻璃容器中,溶于水,配制成饱和溶液,加入浓盐酸(37%)至终浓度为12-16%,90℃保温45-90min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.0%D-氨基葡萄糖盐酸盐,白色,总收率为85%。
实施例3:
(1)枯草芽孢杆菌(Bacillus subtilis)NJ090259紫外诱导的突变体补料发酵试验
将经紫外线诱导的枯草芽孢杆菌(Bacillus subtilis)NJ090259的最大突变体置于平板培养基上活化后,接入种子培养基中,30℃恒温摇床培养18h,用作种子液;接种时按1:10的量接入盛有50ml发酵培养基的250mL挡板式锥形瓶中,分别在第24h、36h、48h、60h时添加补料培养基2.5ml;
发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
补料培养基:胶体几丁质100g/L,葡萄糖100g/L,pH 6.0。
培养条件:pH 6.5,培养温度35℃,恒温摇床培养,培养时间72h。
发酵结束后,12000rpm,离心5min,离心取上清液,HPLC测定N-乙酰-D-氨基葡萄糖含量。
(2)N-乙酰-D-氨基葡萄糖的生产
按实施例1所述的发酵培养方法,接种经紫外照射修饰枯草芽孢杆菌(Bacillus subtilis)NJ090259突变体,进行补料发酵试验,利用HPLC分析培养物上清液,结果显示:该培养物产生的培养基中含有24.0g/L的N-乙酰-D-氨基葡萄糖;
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.01-0.05mol/L,淡室发酵液流速:40-80L/h,浓室发酵液流速:40-80L/h,单膜对的电压0.5-1.4V,将除盐后发酵液真空条件下(0.095MPa)加热50-80℃,浓缩8-15h,至过饱和,浓缩后的发 酵液先25℃水降温至25-35℃,再用0℃水降温1-3h,至0-10℃,加5倍无水乙醇,搅拌15min-1h。700-1500rpm离心,15-60min,等体积无水乙醇搅拌10-100rpm,0.5-2h,由此获得纯度为96%的N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
N-乙酰-D-氨基葡萄糖结晶粗品,于玻璃容器中,溶于水,配制成饱和溶液,加入浓盐酸(37%)至终浓度为12-16%,90℃保温45-90min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.7%D-氨基葡萄糖盐酸盐,白色,总收率为86.5%。
实施例4:
(1)诱变剂诱导突变
取地衣芽孢杆菌(Bacillus lincheniformis)NJ091195活化培养至对数期的培养液,离心去上清,制成细胞数约为108个/mL的菌悬液,先分别取0.5mL的400,600,800,1000μg/mL的N-甲基-N-硝基-N-亚硝基胍加入试管中,再取已制备好的菌悬液各0.5mL加入到上述试管中,混匀后立即置于30℃水浴保温30min(处理浓度分别为200,300,400,500μg/mL)用稀释法终止反应后,在暗处稀释涂几丁质培养基平板,37℃培养5天后,挑选生长速度快,几丁质水解圈与菌落直径比值大于出发菌10%且最大的突变体做酶活性检测。
(2)N-乙酰-D-氨基葡萄糖的生产
按实施例1发酵培养方法,接种经诱变剂诱导的地衣芽孢杆菌(Bacillus lincheniformis)NJ091195突变体,进行发酵培养试验,利 用HPLC分析培养物上清液,结果显示:该培养物产生的培养基中含有3.0g/L的N-乙酰-D-氨基葡萄糖;
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.01-0.05mol/L,淡室发酵液流速:40-80L/h,浓室发酵液流速:40-80L/h,单膜对的电压0.5-1.4V,将除盐后发酵液真空条件下(0.095MPa)加热50-80℃,浓缩8-15h,至过饱和,浓缩后的发酵液先25℃水降温至25-35℃,再用0℃水降温1-3h,至0-10℃,加5倍无水乙醇,搅拌15min-1h。700-1500rpm离心,15-60min,等体积无水乙醇搅拌10-100rpm,0.5-2h,由此获得纯度为97%的N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
N-乙酰-D-氨基葡萄糖结晶粗品,于玻璃容器中,溶于水,配制成饱和溶液,加入浓盐酸(37%)至终浓度为12-16%,90℃保温45-90min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.6%D-氨基葡萄糖盐酸盐,白色,总收率为86.6%。
实施例5:
(1)地衣芽孢杆菌(Bacillus lincheniformis)NJ091195诱变剂诱导的突变体的补料发酵试验
将在实施例4中经诱变剂诱导突变的地衣芽孢杆菌(Bacillus lincheniformis)NJ091195最大突变体置于平板培养基进行活化,活化后接入种子培养基中,30℃恒温摇床培养18h,用作种子液,接种 时按1:10的量接入盛有50ml发酵培养基的250ml挡板式锥形瓶中进行培养,分别在第24h、36h、48h、60h添加补料培养基2.5ml,发酵结束后,以转速12000rpm进行离心,离心5min,离心取上清液,利用HPLC测定N-乙酰-D-氨基葡萄糖含量。
发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
补料培养基:胶体几丁质100g/L,葡萄糖100g/L,pH 6.0。
培养条件:pH 6.5,培养温度35℃,培养时间72h,恒温摇床培养。
(2)N-乙酰-D-氨基葡萄糖的生产
按实施例1所述的发酵培养方法,接种经紫外照射修饰的地衣芽孢杆菌(Bacillus lincheniformis)NJ091195突变体,进行补料发酵试验,利用HPLC分析培养物上清液,结果显示:该培养物产生的培养基中含有19.0g/L的N-乙酰-D-氨基葡萄糖;
(3)N-乙酰-D-氨基葡萄糖发酵液纯化
将由培养基离心获得的上清液,电渗析除盐,浓室罐装入发酵液初始盐浓度:0.01-0.05mol/L,淡室发酵液流速:40-80L/h,浓室发酵液流速:40-80L/h,单膜对的电压0.5-1.4V,将除盐后发酵液真空条件下(0.095MPa)加热50-80℃,浓缩8-15h,至过饱和,浓缩后的发酵液先25℃水降温至25-35℃,再用0℃水降温1-3h,至0-10℃,加5倍无水乙醇,搅拌15min-1h。700-1500rpm离心,15-60min,等体积 无水乙醇搅拌10-100rpm,0.5-2h,由此获得纯度为97.9%的N-乙酰-D-氨基葡萄糖结晶;
(4)N-乙酰-D-氨基葡萄糖酸化水解
N-乙酰-D-氨基葡萄糖结晶粗品,于玻璃容器中,溶于水,配制成饱和溶液,加入浓盐酸(37%)至终浓度为12-16%,90℃保温45-90min,冷却至4℃,过夜,过滤存在的晶体并用乙醇洗涤、真空干燥并检测,得到98.8%D-氨基葡萄糖盐酸盐,白色,总收率为87%。
D-氨基葡萄糖盐酸盐含量HPLC测定条件:
仪器与设备:岛津LC-15C型高效液相色谱仪;检测器:可变波长紫外检测器。色谱柱:NH2色谱柱(4.6mm×15cm,5μm);流动相:乙腈-磷酸缓冲液(60∶40),流速:1.5ml/min,检测波长:195nm,柱温:35℃,进样量:10μl。
由于一般细菌的细菌学特性是极其易变和不稳定的,因此对上述能够产生N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的枯草芽孢杆菌NJ090259和地衣芽孢杆菌NJ091195进行诱变,诱变方法为已知的自然突变法或普通的人工突变法,如紫外照射、X射线照射或诱变剂(例如N-甲基-N-硝基-N-亚硝基胍),诱导细菌菌株突变。而结果显示,所有的属于上述细菌并且具有产生N-乙酰-D-氨基葡萄糖的能力的菌株,包括它的自然突变体和人工突变体,均可应用于本发明。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种微生物发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的菌株,其特征在于,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种枯草芽孢杆菌NJ090259菌株,保藏号为CGMCC10257,保藏日期为2014年12月29日。
  2. 一种微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,利用权利要求1所述的枯草芽孢杆菌NJ090259菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:
    (1)菌株筛选、鉴定与培养
    采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到枯草芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;
    (2)发酵培养
    将在平板培养基上活化后的枯草芽孢杆菌NJ090259接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;
    平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
    种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
    发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
    发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;
    (3)N-乙酰-D-氨基葡萄糖发酵液纯化
    将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶。
  3. 一种微生物发酵生产D-氨基葡萄糖的方法,其特征在于,利用权利要求1所述的枯草芽孢杆菌NJ090259菌株作为出发菌种,经种子培养和已优化的培养基发酵产生D-氨基葡萄糖,包括以下步骤:
    (1)菌株筛选、鉴定与培养
    采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到枯草芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;
    (2)发酵培养
    将在平板培养基上活化后的枯草芽孢杆菌NJ090259接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;
    平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
    种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
    发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
    发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;
    (3)N-乙酰-D-氨基葡萄糖发酵液纯化
    将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶;
    (4)N-乙酰-D-氨基葡萄糖酸化水解
    将N-乙酰-D-氨基葡萄糖结晶粗品配制成饱和溶液,加入37%浓盐酸至终浓度为12-16%,90℃保温45-90min,冷却过夜,过滤得到的晶体用乙醇洗涤、真空干燥并检测,得到高纯度D-氨基葡萄糖盐酸盐。
  4. 一种微生物发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的 菌株,其特征在于,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种地衣芽孢杆菌NJ091195菌株,保藏号为CGMCC10258,保藏日期为2014年12月29日。
  5. 一种微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,利用权利要求4所述的地衣芽孢杆菌NJ091195菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:
    (1)菌株筛选、鉴定与培养
    采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到地衣芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;
    (2)发酵培养
    将在平板培养基上活化后的地衣芽孢杆菌NJ091195接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;
    平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
    种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
    发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
    发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;
    (3)N-乙酰-D-氨基葡萄糖发酵液纯化
    将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶。
  6. 一种微生物发酵生产D-氨基葡萄糖的方法,其特征在于,利用权利要求4所述的地衣芽孢杆菌NJ091195菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:
    (1)菌株筛选、鉴定与培养
    采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到地衣芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;
    (2)发酵培养
    将在平板培养基上活化后的地衣芽孢杆菌NJ091195接入种子培 养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;
    平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;
    种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;
    发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;
    发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;
    (3)N-乙酰-D-氨基葡萄糖发酵液纯化
    将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶;
    (4)N-乙酰-D-氨基葡萄糖酸化水解
    将N-乙酰-D-氨基葡萄糖结晶粗品配制成饱和溶液,加入37%浓盐酸至终浓度为12-16%,90℃保温45-90min,冷却过夜,过滤得到的晶体用乙醇洗涤、真空干燥并检测,得到高纯度D-氨基葡萄糖盐酸盐。
  7. 根据权利要求2所述的微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括 葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
  8. 根据权利要求3所述的微生物发酵生产D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
  9. 根据权利要求5所述的微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
  10. 根据权利要求6所述的微生物发酵生产D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所 述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
PCT/CN2015/075174 2015-01-27 2015-03-27 一种微生物发酵生产氨基葡萄糖的菌株及方法 WO2016119293A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,720 US20180016608A1 (en) 2015-01-27 2015-03-27 A strain for production of glucosamine by microbial fermentation, and its methods
JP2017540774A JP6446141B2 (ja) 2015-01-27 2015-03-27 一種の微生物の発酵によるグルコサミンを生産する菌株及びその方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510040300.7A CN105039193B (zh) 2015-01-27 2015-01-27 一种微生物发酵生产氨基葡萄糖的菌株及方法
CN201510040300.7 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016119293A1 true WO2016119293A1 (zh) 2016-08-04

Family

ID=54446168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075174 WO2016119293A1 (zh) 2015-01-27 2015-03-27 一种微生物发酵生产氨基葡萄糖的菌株及方法

Country Status (4)

Country Link
US (1) US20180016608A1 (zh)
JP (1) JP6446141B2 (zh)
CN (1) CN105039193B (zh)
WO (1) WO2016119293A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206012A (zh) * 2020-03-02 2020-05-29 卜树华 一种可提高硅酸盐细菌解钾活性的培养基及培养方法
WO2023030496A1 (zh) * 2021-09-03 2023-03-09 杭州中美华东制药有限公司 一种发酵制备纽莫康定b0的方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106188167B (zh) * 2016-07-04 2018-12-11 扬州日兴生物科技股份有限公司 一种从氨糖发酵液中分离提取n-乙酰基-d-氨基葡萄糖和d-氨基葡萄糖的方法
TWI598442B (zh) * 2016-10-27 2017-09-11 元智大學 一種用於生產葡萄糖胺的培養基及其應用
CN106831895B (zh) * 2017-01-19 2019-11-01 山东润德生物科技有限公司 一种纯化n-乙酰氨基葡萄糖的方法
CN110004129B (zh) * 2018-01-04 2021-06-15 孙敬方 一种β-葡萄糖苷酶突变体及其应用
TWI676682B (zh) * 2018-08-31 2019-11-11 財團法人食品工業發展研究所 枯草芽孢桿菌分離株及其用途
CN109957558A (zh) * 2019-03-29 2019-07-02 嘉兴卓盛生物科技有限公司 中性酯酶的制备方法及用于废纸造纸工艺的胶黏物控制酶试剂
CN112779178B (zh) * 2019-11-08 2023-02-17 财团法人农业科技研究院 地衣芽孢杆菌a6菌株及其应用
CN111018926B (zh) * 2019-12-17 2023-10-10 大自然生物集团有限公司 从氨基葡萄糖发酵液中提取高纯氨基葡萄糖盐酸盐的方法
CN110760622B (zh) * 2019-12-17 2023-06-27 大自然生物集团有限公司 一种枯草芽孢杆菌发酵生产氨基葡萄糖的补料方法
CN111139277A (zh) * 2020-03-03 2020-05-12 长春工业大学 粗多糖及其制备工艺、保健口服液及其制备方法
CN111662848B (zh) * 2020-03-25 2022-02-18 济南航晨生物科技有限公司 耐盐地衣芽孢杆菌a-a2-10的培养方法及应用
CN111807893A (zh) * 2020-06-23 2020-10-23 秦皇岛禾苗生物技术有限公司 一种黄瓜专用抗重茬生物菌肥
CN112080442A (zh) * 2020-08-14 2020-12-15 上海原本生物科技有限公司 一种异位处理禽畜粪污的专用菌剂及其制备方法
CN112458022B (zh) * 2020-12-09 2022-08-16 吉林中粮生化有限公司 高产几丁质脱乙酰酶的地衣芽孢杆菌Bl22及其相关产品和应用
CN113817788B (zh) * 2021-03-10 2024-02-02 江苏澳新生物工程有限公司 氨基葡萄糖的酶催化制备方法
CN112971119A (zh) * 2021-03-17 2021-06-18 大连澎立生物科技有限公司 银耳小分子多元蛋白肽原液及制备方法和银耳蛋白肽产品
CN112961817B (zh) * 2021-04-06 2021-11-05 广西中医药大学 一种利用海盐渗透压胁迫筛选高产Macrolactins海洋芽孢杆菌的方法
CN113564212B (zh) * 2021-07-26 2024-01-16 浙江树人学院(浙江树人大学) 一种利用微生物发酵法提取杜仲叶多糖的方法
CN113475623B (zh) * 2021-09-07 2021-11-30 山东润德生物科技有限公司 一种发酵饲料及其制备方法
CN114437985B (zh) * 2022-02-18 2023-04-11 南京工业大学 一株产气肠杆菌及其在合成微生物多糖中的应用
CN115372494B (zh) * 2022-04-24 2023-10-24 浙江省农业科学院 一种发酵液中γ-氨基丁酸的测定方法
CN116731934B (zh) * 2023-08-08 2023-10-13 欧铭庄生物科技(天津)有限公司滨海新区分公司 一株大肠埃希氏菌及其在生产氨基葡萄糖中的应用
CN117586913A (zh) * 2023-11-20 2024-02-23 微康益生菌(苏州)股份有限公司 一种直投式发酵剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065569A (ja) * 2003-08-22 2005-03-17 Seikagaku Kogyo Co Ltd 新規細菌変異体
WO2012168462A1 (de) * 2011-06-10 2012-12-13 Reinmueller Johannes Antiinfektives mittel
CN102978149A (zh) * 2012-12-25 2013-03-20 江南大学 一种高产乙酰氨基葡萄糖重组枯草芽孢杆菌及其应用
CN103923869A (zh) * 2014-03-19 2014-07-16 武汉中科光谷绿色生物技术有限公司 一种产n-乙酰神经氨酸的枯草芽孢杆菌基因工程菌及其构建方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185352A (ja) * 1986-09-30 1988-07-30 Taiho Akira 腫瘍の予防効果を有する食品
USH2218H1 (en) * 2002-03-05 2008-06-03 Ki-Oh Hwang Glucosamine and method of making glucosamine from microbial biomass
JP5447761B2 (ja) * 2007-03-14 2014-03-19 公立大学法人福井県立大学 キチン・キトサンを分解する新種の微生物及びその利用方法
JP2009256445A (ja) * 2008-04-16 2009-11-05 Toyota Industries Corp ポリ乳酸及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065569A (ja) * 2003-08-22 2005-03-17 Seikagaku Kogyo Co Ltd 新規細菌変異体
WO2012168462A1 (de) * 2011-06-10 2012-12-13 Reinmueller Johannes Antiinfektives mittel
CN102978149A (zh) * 2012-12-25 2013-03-20 江南大学 一种高产乙酰氨基葡萄糖重组枯草芽孢杆菌及其应用
CN103923869A (zh) * 2014-03-19 2014-07-16 武汉中科光谷绿色生物技术有限公司 一种产n-乙酰神经氨酸的枯草芽孢杆菌基因工程菌及其构建方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206012A (zh) * 2020-03-02 2020-05-29 卜树华 一种可提高硅酸盐细菌解钾活性的培养基及培养方法
WO2023030496A1 (zh) * 2021-09-03 2023-03-09 杭州中美华东制药有限公司 一种发酵制备纽莫康定b0的方法

Also Published As

Publication number Publication date
JP2018503393A (ja) 2018-02-08
US20180016608A1 (en) 2018-01-18
CN105039193A (zh) 2015-11-11
CN105039193B (zh) 2016-08-17
JP6446141B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2016119293A1 (zh) 一种微生物发酵生产氨基葡萄糖的菌株及方法
US11149048B2 (en) High-purity D-psicose preparation method
US5232842A (en) Method for preparing chitosan
CN114214251B (zh) 一种生产d-阿洛酮糖用枯草芽孢杆菌及其培养方法和应用
CN103232963A (zh) 一种胶原蛋白酶产生菌
CN115873754A (zh) 一株肠源凝结魏茨曼氏菌rs804及其应用
US8383368B2 (en) Method for fermentative production of N-acetyl-D-glucosamine by microorganism
CN116656565B (zh) 一种地衣芽孢杆菌及其应用
CN112300953B (zh) 枯草芽孢杆菌及其在发酵生产腺苷酸脱氨酶中的应用
CN102816751B (zh) 一种高活性壳聚糖酶及其制备方法
JP4057617B2 (ja) 酢酸菌型セラミドの製造方法
CN105821098A (zh) 自絮凝发酵生产α-熊果苷
CN103740599B (zh) 一种α-转移葡萄糖苷酶的生产菌株及其应用
CN107267420A (zh) 一种高产β‑1,3‑葡聚糖枯草芽孢杆菌及其应用
CN116731874B (zh) 一株蜂蜜曲霉adm01及其应用
CN114410714B (zh) 一种两步发酵虾壳制备壳聚糖的方法
JP2011244756A (ja) セルロース分解促進剤及びその用途
Paranthaman et al. Production on tannin acyl hydrolase from pulse milling by-products using solid state fermentation
CN106929456A (zh) 一种天目不动杆菌mcda01及其制备几丁质脱乙酰酶的方法
FI89077B (fi) Foerfarande foer erhaollande av termostabila -amylaser genom odling av superproduktiva mikroorganismer vid hoeg temperatur
JP4268857B2 (ja) 微生物によるd−グルコサミンの製造法
CN116286512A (zh) 一株产壳聚糖酶的芽孢杆菌及其应用
CN117821257A (zh) 一株内生真菌帚枝霉f5及其应用
CN115786186A (zh) 一株副地衣芽孢杆菌GXU-1及其在制备γ-聚谷氨酸中的应用
JP3026312B2 (ja) キチン分解物の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540774

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879501

Country of ref document: EP

Kind code of ref document: A1