WO2016117473A1 - ポリエステルの製造方法 - Google Patents

ポリエステルの製造方法 Download PDF

Info

Publication number
WO2016117473A1
WO2016117473A1 PCT/JP2016/051156 JP2016051156W WO2016117473A1 WO 2016117473 A1 WO2016117473 A1 WO 2016117473A1 JP 2016051156 W JP2016051156 W JP 2016051156W WO 2016117473 A1 WO2016117473 A1 WO 2016117473A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening polymerization
group
polymerization catalyst
ring
carbon atoms
Prior art date
Application number
PCT/JP2016/051156
Other languages
English (en)
French (fr)
Inventor
高橋 栄治
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to US15/543,932 priority Critical patent/US10577460B2/en
Priority to EP16740080.3A priority patent/EP3248998A4/en
Priority to JP2016570610A priority patent/JP6298545B2/ja
Priority to CN201680004351.7A priority patent/CN107108871B/zh
Publication of WO2016117473A1 publication Critical patent/WO2016117473A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof

Definitions

  • the present invention relates to a method for producing polyester. More specifically, the present invention relates to a method for producing a polyester by ring-opening polymerization of a cyclic ester.
  • Polyesters include those produced by chemical synthesis (aliphatic polyesters such as polylactones, polylactides and lactone lactide copolymers) and biopolyesters produced by microorganisms (polyhydroxycarboxylic acids and the like). Biopolyesters and aliphatic polyesters are known as biodegradable plastics. Polylactones, polylactides, or lactone lactide copolymers can be produced by direct polycondensation of hydroxycarboxylic acids, by ring-opening polymerization of lactones or lactides, or by biosynthetic reactions by bacteria.
  • Synthesis methods such as polylactones, polylactides, and lactone lactide copolymers by ring-opening polymerization are easier to obtain high molecular weight polyesters than other synthesis methods, and are said to have a high degree of freedom in molecular design.
  • Patent Document 1 discloses a method for producing polylactic acid, which includes ring-opening polymerization of lactide using an alkylaluminum compound such as triethylaluminum as a ring-opening polymerization catalyst.
  • Patent Document 2 discloses the production of polylactic acid having a ring-opening polymerization reaction by adding a condensation product composed of aluminum isopropoxide, silicon tetrachloride, and tributyl phosphate to a solution containing L-lactide and triethylaluminum. A method is disclosed.
  • An object of the present invention is to produce a polyester by simply inactivating water or a hydroxycarboxylic acid so as not to affect polymerization and stably ring-opening a cyclic ester without providing a dehydration facility. It is to provide a method that can.
  • a cyclic ester and an alkylaluminum compound represented by the formula [I] are mixed in an organic solvent, and then an organic lithium-based ring-opening polymerization catalyst, an organic sodium-based ring-opening polymerization catalyst, and an organic potassium-based ring-opening polymerization catalyst
  • An organic zinc-based ring-opening polymerization catalyst, an organic magnesium-based ring-opening polymerization catalyst, an organotin-based ring-opening polymerization catalyst, an organic calcium-based ring-opening polymerization catalyst, an organic titanium-based ring-opening polymerization catalyst, and an amine-based ring-opening polymerization catalyst A method for producing a polyester, comprising mixing at least one ring-opening polymerization catalyst selected from the group with the mixture and subjecting the cyclic ester to ring-opening polymerization.
  • R n AlX 3-n [I] (In the formula [I], n represents an integer of 1 to 3, each R independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, and each X independently represents a halogen atom or Indicates a hydrogen atom.)
  • the alkylaluminum compound is trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-butylaluminum, tri-n-octylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, And the method for producing a polyester according to [1] or [2], which is at least one selected from the group consisting of diisobutylaluminum hydride.
  • R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched haloalkyl group having 1 to 20 carbon atoms, carbon A linear or branched alkenyl group having 2 to 20 carbon atoms, a linear or branched alkynyl group having 2 to 20 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a linear or branched alkylcarbonyl group having 1 to 20 carbon atoms A linear or branched alkoxycarbonyl group having 1 to 20 carbon atoms, a linear or branched haloalkylcarbonyl group having 1 to 20 carbon atoms, a linear or branched alkenylcarbonyl group having 2 to 20 carbon atoms, 2 carbon atoms -20 linear or branched alkynylcarbonyl group, cycloalkylcarbonyl group having 4 to 6
  • the ring-opening polymerization catalyst is an organic lithium-based ring-opening polymerization catalyst, an organic sodium-based ring-opening polymerization catalyst, an organic potassium-based ring-opening polymerization catalyst, dialkylzinc, bis (2,2,6,6-tetramethylpiperidi Nyl) zinc, alkylzinc halide, substituted alkylzinc halide, cycloalkylzinc halide, arylzinc halide, 2-norbornylzinc bromide, dialkylmagnesium, organomagnesium halide, tin alkoxide, and amine ring-opening polymerization catalyst
  • the method of the present invention it is possible to produce a polyester by stably ring-opening polymerization of a cyclic ester without particularly providing equipment for removing impurities affecting the polymerization in the cyclic ester.
  • a reaction raw material such as a cyclic ester
  • the polyester can be produced by more stable ring-opening polymerization.
  • an effect is caused by the fact that the alkylaluminum compound reacts with water or a hydroxycarboxylic acid that may be contained in an organic solvent containing a cyclic ester to inhibit the ring-opening polymerization reaction. It is assumed that this is because the hydroxycarboxylic acid is inactivated.
  • the method for producing a polyester according to the present invention includes mixing a cyclic ester and an alkylaluminum compound in an organic solvent, and then mixing a ring-opening polymerization catalyst with the mixture to cause ring-opening polymerization of the cyclic ester.
  • the cyclic ester used in the present invention is a compound containing an ester bond as shown in the formula [IIa].
  • the cyclic ester represented by the formula [IIa] is a compound containing one ester bond, but the cyclic ester used in the present invention may be a compound containing two or more ester bonds.
  • a cyclic ester can be used individually by 1 type or in combination of 2 or more types.
  • it is preferable that cyclic ester is what was dehydrated by well-known methods, such as adsorption and distillation.
  • the cyclic ester used in the present invention may have an arbitrary substituent as long as it does not inhibit the ring-opening polymerization reaction.
  • substituents include a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched haloalkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, and carbon.
  • cyclic ester examples include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ , ⁇ -dimethyl- ⁇ -propiolactone, ⁇ -methyl- ⁇ -valero Lactone, ⁇ -ethyl- ⁇ -valerolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, 3,3,5-trimethyl- ⁇ -caprolactone, ⁇ -penta Lactones such as decalactone; glycolide, dilactide, 3,6-diethyl-1,4-dioxane-2,5-dione, 1,4-dioxepane-2,5-dione, 1,5-dioxocan-2,6 -Dione, 1,5-dioxonan-2,6-dione, 1,6-d
  • Cyclic esters preferably used in the present invention are lactides. Lactides are compounds containing two ester bonds as shown in the formula [IIb].
  • R 1 and R 2 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched haloalkyl group having 1 to 20 carbon atoms, a carbon number A linear or branched alkenyl group having 2 to 20 carbon atoms, a linear or branched alkynyl group having 2 to 20 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a linear or branched alkylcarbonyl group having 1 to 20 carbon atoms A linear or branched alkoxycarbonyl group having 1 to 20 carbon atoms, a linear or branched haloalkylcarbonyl group having 1 to 20 carbon atoms, a linear or
  • the compound represented by the formula [III] is preferably one in which R 1 and R 2 are the same.
  • the cyclic ester most preferably used in the present invention is dilactide or 3,6-bis (2- (methylthio) ethyl) -1,4-dioxane-2,5-dione.
  • the cyclic ester may have an asymmetric carbon atom. Therefore, the cyclic ester used in the present invention can be any one isomer or a mixture of at least two isomers. More specifically, the compound represented by the formula [III] has two asymmetric carbon atoms. Therefore, the compound represented by the formula [III] is an (R, R) isomer, (S, S) isomer, (R, S) isomer, or a mixture comprising at least two of these isomers. Can do.
  • the cyclic ester used in the present invention may be commercially available or may be synthesized by a known method.
  • Lactones can be obtained by intramolecular dehydration condensation of hydroxycarboxylic acids.
  • Lactides can be obtained by depolymerizing oligomers obtained by intermolecular dehydration condensation of hydroxycarboxylic acids.
  • a compound having a 1,4-dioxane-2,5-dione structure can be obtained by depolymerizing an oligomer obtained by intermolecular dehydration condensation of ⁇ -hydroxycarboxylic acid.
  • ⁇ -hydroxycarboxylic acid examples include glycolic acid, L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ -hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid , ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, 2-hydroxy-4- (methylthio) butanoic acid, 2-hydroxy-4- ( Examples thereof include methylsulfinyl) butanoic acid and 2-hydroxy-4- (methylsulfonyl) butanoic acid.
  • the alkylaluminum compound used in the present invention is a compound having a structure in which an alkyl group is bonded to aluminum.
  • the alkylaluminum compound used in the present invention is preferably a compound represented by the formula [I].
  • an alkyl aluminum compound can be used individually by 1 type or in combination of 2 or more types.
  • each R independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, and each X independently represents a halogen atom or a hydrogen atom.
  • n represents an integer of 1 to 3.
  • an alkylaluminum compound in which n in the formula [I] is 3 is preferably used.
  • alkylaluminum compound used in the present invention include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-butylaluminum, tri-n-octylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride. , Ethylaluminum dichloride, diisobutylaluminum hydride and the like.
  • the organic solvent used in the present invention is not particularly limited as long as it does not inhibit the ring-opening polymerization reaction.
  • Specific examples of the organic solvent include ether solvents such as dioxane, 1,2-dimethoxyethane, tetrahydrofuran, cyclopentylmethyl ether, and ethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as toluene, benzene, and xylene; n-pentane.
  • Aliphatic hydrocarbon solvents such as n-hexane and n-heptane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; N, N-dimethylformamide, N, N— Examples thereof include amide solvents such as dimethylacetamide and N-methylpyrrolidone; nitrile solvents such as acetonitrile and benzonitrile; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate.
  • An organic solvent can be used individually by 1 type or in combination of 2 or more types.
  • ether solvents aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents are preferred, ether solvents and aromatic hydrocarbon solvents are more preferred, and cyclopentyl methyl ether and toluene are more preferred.
  • the organic solvent is preferably dehydrated by a known method such as adsorption or distillation.
  • the ring-opening polymerization catalyst used in the present invention is an organic lithium-based ring-opening polymerization catalyst, an organic sodium-based ring-opening polymerization catalyst, an organic potassium-based ring-opening polymerization catalyst, an organic zinc-based ring-opening polymerization catalyst, or an organic magnesium-based ring-opening polymerization catalyst.
  • Ring polymerization catalyst organic sodium-based ring-opening polymerization catalyst, organic potassium-based ring-opening polymerization catalyst, dialkylzinc, bis (2,2,6,6-tetramethylpiperidinyl) zinc, alkylzinc halide, substituted alkylzinc halide, Cycloalkylzinc halide, arylzinc halide, 2-norbornylzinc bromide, dialkylmagnesium, organomagnesium And at least one selected from the group consisting of amine-based ring-opening polymerization catalysts, more preferably at least one selected from the group consisting of dialkylzinc, dialkylmagnesium, and amine-based ring-opening polymerization catalysts. is there.
  • a ring-opening polymerization catalyst can be used individually by 1 type or in combination of 2 or more types.
  • organolithium ring-opening polymerization catalysts include methyllithium, ethyllithium, isopropyllithium, isobutyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, and alkyllithium such as 2-ethylhexyllithium.
  • Aryl lithium such as phenyl lithium; lithium amide such as lithium bis (trimethylsilyl) amide and lithium diisopropylamide; lithium alkoxide such as lithium ethoxide and lithium t-butoxide; (trimethylsilyl) methyllithium; 2-methoxycarbonylisopropyl lithium; etc. Can be mentioned.
  • organic sodium-based ring-opening polymerization catalyst examples include sodium amides such as sodium bis (trimethylsilyl) amide; sodium alkoxides such as sodium ethoxide and sodium t-butoxide; and the like.
  • organic potassium ring-opening polymerization catalyst examples include potassium amides such as potassium bis (trimethylsilyl) amide; potassium alkoxides such as potassium ethoxide and potassium t-butoxide; and the like.
  • organozinc ring-opening polymerization catalysts include dialkyl zinc such as dimethyl zinc, diethyl zinc, diisopropyl zinc, dicyclopentyl zinc, and dicyclohexyl zinc; bis (2,2,6,6-tetramethylpiperidinyl) zinc; methyl zinc Chloride, 2-propyl zinc bromide, n-propyl zinc bromide, n-butyl zinc bromide, isobutyl zinc bromide, sec-butyl zinc bromide, tert-butyl zinc bromide, 1,1-dimethylpropyl zinc bromide, 1-ethylpropyl zinc Bromide, 1-methylbutyl zinc bromide, 3-methylbutyl zinc bromide, n-pentyl zinc bromide, 1-ethylbutyl zinc bromide, 2-ethylbutyl zinc bromide, n-hexyl zinc bromide, 1-ethylpentyl zinc
  • organomagnesium ring-opening catalysts include dialkylmagnesium such as diethylmagnesium and di-n-butylmagnesium; magnesium alkoxides such as magnesium diethoxide and magnesium ditert-butoxide; methylmagnesium bromide, methylmagnesium chloride, methylmagnesium iodide , Ethynyl magnesium bromide, ethynyl magnesium chloride, vinyl magnesium bromide, vinyl magnesium chloride, ethyl magnesium bromide, ethyl magnesium chloride, 1-propynyl magnesium bromide, allyl magnesium bromide, allyl magnesium chloride, cyclopropyl magnesium bromide, isopropenyl magnesium bromide, isopropyl Magnesium bromide, iso Propylmagnesium chloride, n-propylmagnesium chloride, 2-thienylmagnesium bromide, 3-thienylmagnesium bromide, 1-
  • organotin ring-opening polymerization catalyst examples include tin alkoxides such as dimethoxytin, diethoxytin, tert-butoxytin, and diisopropoxytin; and tin (II) 2-ethylhexanoate.
  • Examples of the organic calcium-based ring-opening polymerization catalyst include calcium alkoxides such as calcium dimethoxide, calcium diethoxide, and calcium diisopropoxide.
  • organotitanium ring-opening polymerization catalyst examples include alkoxytitanium such as tetramethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, and tetraisobutoxytitanium; titanium cyclohexyl; titanium phenoxide and the like.
  • Examples of amine ring-opening polymerization catalysts include 1,5,7-triazabicyclo [4.4.0] -5-dodecene, N-methyl-1,5,7-triazabicyclo [4.4.0]. Examples include -5-dodecene, 1,8-diazabicyclo [5.4.0] -7-undecene, 4-dimethylaminopyridine and the like.
  • a cyclic ester and an alkylaluminum compound are mixed in an organic solvent.
  • the mixing order of the cyclic ester, the alkylaluminum compound and the organic solvent is not particularly limited.
  • a cyclic ester may be added to an organic solvent and then an alkylaluminum compound may be added, an alkylaluminum compound may be added to an organic solvent and then a cyclic ester may be added, or a cyclic ester and an alkylaluminum may be added to the organic solvent.
  • the compound may be added almost simultaneously.
  • the temperature at which the cyclic ester and the alkylaluminum compound are mixed is not particularly limited, but is preferably 75 ° C. or less, more preferably 70 ° C. or less.
  • the minimum of the temperature at the time of mixing cyclic ester and the said alkyl aluminum compound will not be restrict
  • the amount of the alkylaluminum compound to be mixed is not particularly limited, but is preferably 0.5 mol to 5 mol, more preferably 1 mol to 3 mol, relative to 1 mol of the cyclic ester.
  • the ring-opening polymerization catalyst is mixed with the mixture obtained in the previous step.
  • the ring-opening polymerization catalyst and the mixture are preferably mixed when the cyclic ester and the alkylaluminum compound are mixed, preferably when 15 minutes to 10 hours have elapsed, and more preferably 30 minutes. This can be done after 3 minutes to 3 hours.
  • the amount of the ring-opening polymerization catalyst to be mixed is not particularly limited, but is preferably 0.01 mol to 10 mol, more preferably 0.1 mol to 5 mol, relative to 1 mol of the cyclic ester.
  • the ring-opening polymerization can be performed by mixing the ring-opening polymerization catalyst and the mixture.
  • the temperature during the ring-opening polymerization is not particularly limited, but is preferably adjusted according to the strength of the activity of the ring-opening polymerization catalyst.
  • the temperature during ring-opening polymerization is preferably, for example, from room temperature to reflux temperature, more preferably from room temperature to 100 ° C., and even more preferably from room temperature to 70 ° C.
  • the reaction product polyester can be purified by a known method.
  • the purification method is not particularly limited.
  • the reaction product solution is washed with an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, an aqueous acid solution such as hydrochloric acid, nitric acid or phosphoric acid, water, etc., and then separated by standing separation, centrifugation or the like. May be.
  • the reaction product solution is contacted with a poor solvent to precipitate the reaction product, the reaction product solution is dispersed in warm water and the solvent is distilled off, the reaction product solution is applied to an adsorption column, etc. The method of making it distribute etc. is mentioned.
  • the polyester in the solution after purification can be taken out by, for example, precipitating with a poor solvent such as water or alcohol, and distilling off the solvent by means such as hot water, hot air or reduced pressure.
  • the purified solution can be taken out of the solution by removing the solvent from the solution using a thin film dryer, a vacuum dryer, a vented extruder, or the like.
  • the polyester in the solution after purification can be precipitated with a poor solvent such as water or alcohol, and the slurry of the precipitate can be taken out as a solid by a centrifuge, a filter or the like.
  • the polyester taken out from the solution can be dried at a temperature lower than the decomposition temperature of the polyester.
  • the drying rate can be increased by reducing the pressure during the drying process.
  • the drying treatment can usually be carried out until the residual solvent is preferably 1000 ppm or less, more preferably 300 ppm or less, and even more preferably 100 ppm or less.
  • a homopolyester obtained from one cyclic ester and a copolyester obtained from two or more cyclic esters can be obtained as desired.
  • a high molecular weight polyester can also be obtained.
  • a polyester having a weight average molecular weight of preferably 1,000 to 1,000,000 can be obtained.
  • a narrow molecular weight distribution to a wide molecular weight distribution can be obtained.
  • a polyester having a ratio of the weight average molecular weight to the number average molecular weight is preferably 1.01 to 3.00, more preferably 1.01 to 2.50.
  • the weight average molecular weight and number average molecular weight are values obtained by converting the measurement results by GPC using tetrahydrofuran as an eluent to the molecular weight of standard polystyrene.
  • the polyester obtained by the present invention can be used as a biodegradable polymer.
  • the polyester obtained by the present invention can be processed into a fiber, a spinning, a nonwoven fabric, a capsule, a container, a tube, a tube, a film, a sheet and the like by a known method.
  • the polyester obtained by the present invention can be used as drug sustained release system materials, medical materials, agricultural materials, fishery materials, general-purpose resin substitutes, paints, coating agents, adhesives, binders, and the like.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values obtained by converting the measurement results by GPC using tetrahydrofuran as an eluent into the molecular weight of standard polystyrene.
  • Example 1 Dilactide 5.81 g (40.3 mmol) and toluene 27.83 g were added to a 200 mL eggplant flask and heated to 50 ° C. To this, 0.55 g of 1.0 M triethylaluminum hexane solution (manufactured by Aldrich, specific gravity 0.692) was added at 50 ° C., and the mixture was stirred at 50 ° C. for 80 minutes. The solution was analyzed. No polymer was detected that could be detected by GPC.
  • 1.0 M triethylaluminum hexane solution manufactured by Aldrich, specific gravity 0.692
  • Example 2 Dilactide 5.95 g (41.3 mmol) and cyclopentyl methyl ether 38.9 g were added to a 200 mL eggplant flask and heated to 60 ° C. To this, 0.34 g of 1.0 M triethylaluminum hexane solution (manufactured by Aldrich, specific gravity 0.692) was added at 60 ° C., and the mixture was stirred at 60 ° C. for 30 minutes. The solution was analyzed. No polymer was detected that could be detected by GPC.
  • Example 3 Dilactide 5.82g (40.4mmol), toluene 25.46g, and tetrahydrofuran 15.12g were added to a 200 mL eggplant flask, and it heated at 60 degreeC. To this, 0.55 g of 1.0M triethylaluminum hexane solution (manufactured by Aldrich, specific gravity 0.692) was added at 60 ° C., and the mixture was stirred at 60 ° C. for 30 minutes. The solution was analyzed. No polymer was detected that could be detected by GPC.
  • 1.0M triethylaluminum hexane solution manufactured by Aldrich, specific gravity 0.692
  • Example 4 To a 200 mL eggplant flask, add 10.70 g (40.5 mmol) of 3,6-bis (2- (methylthio) ethyl) -1,4-dioxane-2,5-dione and 50.02 g of toluene, and heat to 50 ° C. Warm up. To this, 0.14 g of 1.0 M triethylaluminum hexane solution (manufactured by Aldrich, specific gravity 0.692) was added at 50 ° C., and the mixture was stirred at 50 ° C. for 8 hours. The solution was analyzed. No polymer was detected that could be detected by GPC.
  • Reference example 1 Dilactide 5.78 g (40.10 mmol) and toluene 25.73 g were added to a 200 mL eggplant flask and heated to 70 ° C. To this, 0.66 g of 1.0 M triethylaluminum hexane solution (manufactured by Aldrich, specific gravity 0.692) was added at 70 ° C., and the mixture was stirred at 70 ° C. for 6 hours. The solution was analyzed. No polymer was detected that could be detected by GPC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

ラクチド類などの環状エステルとトリメチルアルミニウム、トリエチルアルミニウムなどのアルキルアルミニウム化合物とを有機溶媒中で混ぜ合わせ、次いで 有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、有機亜鉛系開環重合触媒、有機マグネシウム系開環重合触媒、有機スズ系開環重合触媒、有機カルシウム系開環重合触媒、有機チタン系開環重合触媒、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つを前記混合物に混ぜ合わせて環状エステルを開環重合させることを含む方法によってポリエステルを得る。

Description

ポリエステルの製造方法
 本発明は、ポリエステルの製造方法に関する。より詳細に、本発明は、環状エステルを開環重合してポリエステルを製造する方法に関する。
 ポリエステルには化学合成で作られるもの(ポリラクトン類、ポリラクチド類、ラクトンラクチド共重合体などの脂肪族ポリエステル)と、微生物が作るバイオポリエステル(ポリヒドロキシカルボン酸など)とがある。バイオポリエステルや脂肪族ポリエステルは生分解性プラスチックとして知られている。
 ポリラクトン類、ポリラクチド類、またはラクトンラクチド共重合体は、ヒドロキシカルボン酸の直接重縮合反応によって、ラクトン類またはラクチド類の開環重合反応によって、または細菌による生合成反応によって製造することができる。
 開環重合反応によるポリラクトン類、ポリラクチド類、ラクトンラクチド共重合体などの合成方法は、他の合成方法にくらべて高分子量のポリエステルを得やすく、分子設計の自由度が高いといわれている。
 ポリラクトン類、ポリラクチド類などの環状エステルの開環重合方法が種々提案されている。例えば、特許文献1は、トリエチルアルミニウムなどのアルキルアルミニウム化合物を開環重合触媒として用いてラクチドを開環重合させることを有するポリ乳酸の製造方法を開示している。特許文献2は、L-ラクチドとトリエチルアルミニウムとを含む溶液に、アルミニウムイソプロポキシド、四塩化ケイ素、およびトリブチルホスフェートからなる縮合生成物を添加して開環重合反応させることを有するポリ乳酸の製造方法を開示している。
WO2010/087422A 特開平8-193127号公報
 ポリエステルを製造するための開環重合反応において、反応系に環状エステルの原料であるヒドロキシカルボン酸が存在すると、ポリマーの分子量が大きくなりにくくなる。このためラクチド類と反応して開環させてしまう水やヒドロキシカルボン酸は反応系からできるかぎり取り除くことが必要である。反応原料から水やヒドロキシカルボン酸を取り除くための方法として、吸着、蒸留、再結晶などによる方法が一般的に知られているが、それらの方法を行うための設備を設ける必要がある。また、ラクチドを分解しない状態で水を完全に取り除くことは困難である。
 本発明の課題は、脱水用の設備を特に設けなくても、簡便に水やヒドロキシカルボン酸を重合に影響しないように不活性化し、環状エステルを安定的に開環重合させてポリエステルを製造することができる方法を提供することである。
 上記課題を解決するために鋭意検討を重ねた結果、以下の形態を包含する本発明を完成するに至った。
〔1〕 環状エステルと式〔I〕で表されるアルキルアルミニウム化合物とを有機溶媒中で混ぜ合わせ、次いで
 有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、有機亜鉛系開環重合触媒、有機マグネシウム系開環重合触媒、有機スズ系開環重合触媒、有機カルシウム系開環重合触媒、有機チタン系開環重合触媒、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つの開環重合触媒を前記混合物に混ぜ合わせて環状エステルを開環重合させることを含む、ポリエステルの製造方法。

 RnAlX3-n   〔I〕

(式〔I〕中、nは1~3の整数を示し、Rは、それぞれ独立に、炭素数1~20の直鎖または分岐のアルキル基を示し、Xは、それぞれ独立に、ハロゲン原子または水素原子を示す。)
〔2〕 環状エステルと前記アルキルアルミニウム化合物とを混ぜ合わせる際の温度が、70℃以下である、〔1〕に記載のポリエステルの製造方法。
〔3〕 前記アルキルアルミニウム化合物が、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-ブチルアルミニウム、トリn-オクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、およびジイソブチルアルミニウムハイドライドからなる群より選ばれる少なくとも一つである、〔1〕または〔2〕に記載のポリエステルの製造方法。
〔4〕 環状エステルがラクチド類である、〔1〕~〔3〕のいずれか一つに記載のポリエステルの製造方法。
〔5〕 環状エステルが1,4-ジオキサン-2,5-ジオン構造を有する化合物である、〔1〕~〔3〕のいずれか一つに記載のポリエステルの製造方法。
〔6〕 環状エステルが式〔III〕で表される化合物である、〔1〕~〔3〕のいずれか一つに記載のポリエステルの製造方法。

Figure JPOXMLDOC01-appb-I000002

(式〔III〕中、R1およびR2は、それぞれ独立に、水素原子、炭素数1~20の直鎖または分岐のアルキル基、炭素数1~20の直鎖または分岐のハロアルキル基、炭素数2~20の直鎖または分岐のアルケニル基、炭素数2~20の直鎖または分岐のアルキニル基、炭素数4~6のシクロアルキル基、炭素数1~20の直鎖または分岐のアルキルカルボニル基、炭素数1~20の直鎖または分岐のアルコキシカルボニル基、炭素数1~20の直鎖または分岐のハロアルキルカルボニル基、炭素数2~20の直鎖または分岐のアルケニルカルボニル基、炭素数2~20の直鎖または分岐のアルキニルカルボニル基、炭素数4~6のシクロアルキルカルボニル基、2-(メチルチオ)エチル基、2-(メチルスルフィニル)エチル基、2-(メチルスルホニル)エチル基、ベンジル基、またはフェニル基で表される基を示す。)
〔7〕 開環重合触媒が、有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、ジアルキル亜鉛、ビス(2,2,6,6-テトラメチルピペリジニル)亜鉛、アルキル亜鉛ハライド、置換アルキル亜鉛ハライド、シクロアルキル亜鉛ハライド、アリール亜鉛ハライド、2-ノルボルニル亜鉛ブロミド、ジアルキルマグネシウム、有機マグネシウムハライド、スズアルコキシド、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つである、〔1〕~〔6〕のいずれか一つに記載のポリエステルの製造方法。
〔8〕 開環重合触媒が、ジアルキル亜鉛、ジアルキルマグネシウム、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つである、〔1〕~〔6〕のいずれか一つに記載のポリエステルの製造方法。
〔9〕 アルキルアルミニウム化合物の量が、環状エステル1モルに対して0.5モル~5モルである、〔1〕~〔8〕のいずれかひとつに記載のポリエステルの製造方法。
〔10〕 開環重合触媒の量が、環状エステル1モルに対して0.01モル~10モルである、〔1〕~〔9〕のいずれかひとつに記載のポリエステルの製造方法。
 本発明の方法によれば、環状エステル中の重合に影響する不純物を除去する設備を特に設けなくとも、環状エステルを安定的に開環重合させてポリエステルを製造することができる。環状エステルなどの反応原料を吸着、蒸留、再結晶などの公知の方法で脱水するとさらに安定的に開環重合させてポリエステルを製造することができる。
 詳細は不明だが、このような効果は、アルキルアルミニウム化合物が、環状エステルを含む有機溶媒中に含まれていることがある水やヒドロキシカルボン酸と反応して、開環重合反応を阻害する水やヒドロキシカルボン酸を不活性化するからであると推測する。
 本発明に係るポリエステルの製造方法は、環状エステルとアルキルアルミニウム化合物とを有機溶媒中で混ぜ合わせ、次いで開環重合触媒を前記混合物に混ぜ合わせて環状エステルを開環重合させることを含むものである。
 本発明に用いられる環状エステルは、式〔IIa〕に示すような、エステル結合を含む化合物である。式〔IIa〕に示す環状エステルは一つのエステル結合を含む化合物であるが、本発明に用いられる環状エステルは、2以上のエステル結合を含む化合物であってもよい。環状エステルは、一種を単独で若しくは二種以上を組み合わせて用いることができる。また、環状エステルは、吸着や蒸留などの公知の方法で脱水処理されたものであることが好ましい。

Figure JPOXMLDOC01-appb-I000003
 本発明に用いられる環状エステルは、開環重合反応を阻害しないものであれば、任意の置換基を有してもよい。置換基としては、例えば、炭素数1~20の直鎖または分岐のアルキル基、炭素数1~20の直鎖または分岐のハロアルキル基、炭素数2~20の直鎖または分岐のアルケニル基、炭素数2~20の直鎖または分岐のアルキニル基、炭素数4~6のシクロアルキル基、炭素数1~20の直鎖または分岐のアルキルカルボニル基、炭素数1~20の直鎖または分岐のアルコキシカルボニル基、炭素数1~20の直鎖または分岐のハロアルキルカルボニル基、炭素数2~20の直鎖または分岐のアルケニルカルボニル基、炭素数2~20の直鎖または分岐のアルキニルカルボニル基、炭素数4~6のシクロアルキルカルボニル基、2-(メチルチオ)エチル基、2-(メチルスルフィニル)エチル基、2-(メチルスルホニル)エチル基、ベンジル基、フェニル基などを挙げることができる。
 環状エステルの具体例としては、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、α,α-ジメチル-β-プロピオラクトン、β-メチル-δ-バレロラクトン、β-エチル-δ-バレロラクトン、α-メチル-ε-カプロラクトン、β-メチル-ε-カプロラクトン、γ-メチル-ε-カプロラクトン、3,3,5-トリメチル-ε-カプロラクトン、ω-ペンタデカラクトンなどのラクトン類;グリコリド、ジラクチド、3,6-ジエチル-1,4-ジオキサン-2,5-ジオン、1,4-ジオキセパン-2,5-ジオン、1,5-ジオキソカン-2,6-ジオン、1,5-ジオキソナン-2,6-ジオン、1,6-ジオキセカン-2,7-ジオン、3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオンなどのラクチド類を挙げることができる。
 本発明に好ましく用いられる環状エステルはラクチド類である。ラクチド類は、式〔IIb〕に示すような、二つのエステル結合を含む化合物である。

Figure JPOXMLDOC01-appb-I000004
 本発明に用いられるラクチド類のうち、1,4-ジオキサン-2,5-ジオン構造を有する化合物が好ましく、式〔III〕で表される化合物がより好ましい。

Figure JPOXMLDOC01-appb-I000005

 式〔III〕中、R1およびR2は、それぞれ独立に、水素原子、炭素数1~20の直鎖または分岐のアルキル基、炭素数1~20の直鎖または分岐のハロアルキル基、炭素数2~20の直鎖または分岐のアルケニル基、炭素数2~20の直鎖または分岐のアルキニル基、炭素数4~6のシクロアルキル基、炭素数1~20の直鎖または分岐のアルキルカルボニル基、炭素数1~20の直鎖または分岐のアルコキシカルボニル基、炭素数1~20の直鎖または分岐のハロアルキルカルボニル基、炭素数2~20の直鎖または分岐のアルケニルカルボニル基、炭素数2~20の直鎖または分岐のアルキニルカルボニル基、炭素数4~6のシクロアルキルカルボニル基、2-(メチルチオ)エチル基、2-(メチルスルフィニル)エチル基、2-(メチルスルホニル)エチル基、ベンジル基、またはフェニル基を示す。
 式〔III〕で表される化合物は、R1とR2とが同じであるものが好ましい。本発明において最も好ましく用いられる環状エステルは、ジラクチドまたは3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオンである。
 環状エステルは、不斉炭素原子を有することがある。よって、本発明に用いられる環状エステルは、いずれか一つの異性体または少なくとも二つの異性体からなる混合物であることができる。より具体的に、式〔III〕で表される化合物は、二つの不斉炭素原子を有する。よって、式〔III〕で表される化合物は、(R,R)体、(S,S)体、(R,S)体、またはそれら異性体のうちの少なくとも二つからなる混合物であることができる。
 本発明に用いられる環状エステルは、市販されているものであってもよいし、公知の方法で合成したものであってもよい。ラクトン類はヒドロキシカルボン酸の分子内脱水縮合によって得ることができる。ラクチド類は、ヒドロキシカルボン酸の分子間脱水縮合により得られるオリゴマーを解重合することによって得ることができる。
 1,4-ジオキサン-2,5-ジオン構造を有する化合物は、α-ヒドロキシカルボン酸の分子間脱水縮合により得られるオリゴマーを解重合することによって得ることができる。α-ヒドロキシカルボン酸としては、例えば、グリコール酸、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、2-ヒドロキシ-4-(メチルチオ)ブタン酸、2-ヒドロキシ-4-(メチルスルフィニル)ブタン酸、2-ヒドロキシ-4-(メチルスルホニル)ブタン酸などを挙げることができる。
 本発明に用いられるアルキルアルミニウム化合物は、アルミニウムにアルキル基が結合した構造を有する化合物である。本発明に用いられるアルキルアルミニウム化合物は、好ましくは式〔I〕で表される化合物である。本発明において、アルキルアルミニウム化合物は、一種を単独で若しくは二種以上を組み合わせて用いることができる。

 RnAlX3-n    〔I〕

 式〔I〕中、Rは、それぞれ独立に、炭素数1~20の直鎖または分岐状のアルキル基を示し、Xは、それぞれ独立に、ハロゲン原子または水素原子を示す。
 式〔I〕中、nは1~3の整数を示す。本発明においては、式〔I〕中のnが3であるアルキルアルミニウム化合物が好ましく用いられる。
 本発明に用いられるアルキルアルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-ブチルアルミニウム、トリn-オクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジイソブチルアルミニウムハイドライドなどを挙げることができる。
 本発明に用いられる有機溶媒は、開環重合反応を阻害しないものであれば特に限定されない。係る有機溶媒の具体例としては、ジオキサン、1,2-ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテル、エチレングリコールジメチルエーテルなどのエーテル系溶媒;トルエン、ベンゼン、キシレンなどの芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、N-メチルピロリドンなどのアミド系溶媒;アセトニトリル、ベンゾニトリルなどのニトリル系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチルなどのエステル系溶媒などを挙げることができる。有機溶媒は、一種を単独で若しくは二種以上を組み合わせて用いることができる。
 これらのうち、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒が好ましく、エーテル系溶媒、芳香族炭化水素系溶媒がより好ましく、シクロペンチルメチルエーテル、トルエンがさらに好ましい。有機溶媒は、吸着や蒸留などの公知の方法で脱水処理されたものであることが好ましい。
 本発明に用いられる開環重合触媒は、有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、有機亜鉛系開環重合触媒、有機マグネシウム系開環重合触媒、有機スズ系開環重合触媒、有機カルシウム系開環重合触媒、有機チタン系開環重合触媒、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つであり、好ましくは有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、ジアルキル亜鉛、ビス(2,2,6,6-テトラメチルピペリジニル)亜鉛、アルキル亜鉛ハライド、置換アルキル亜鉛ハライド、シクロアルキル亜鉛ハライド、アリール亜鉛ハライド、2-ノルボルニル亜鉛ブロミド、ジアルキルマグネシウム、有機マグネシウムハライド、スズアルコキシド、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つであり、より好ましくはジアルキル亜鉛、ジアルキルマグネシウム、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つである。本発明において、開環重合触媒は、一種を単独で若しくは二種以上を組み合わせて用いることができる。
 有機リチウム系開環重合触媒としては、メチルリチウム、エチルリチウム、イソプロピルリチウム、イソブチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、2-エチルヘキシルリチウムなどのアルキルリチウム;フェニルリチウムなどのアリールリチウム;リチウムビス(トリメチルシリル)アミド、リチウムジイソプロピルアミドなどのリチウムアミド;リチウムエトキシド、リチウムt-ブトキシドなどのリチウムアルコキシド、(トリメチルシリル)メチルリチウム;2-メトキシカルボニルイソプロピルリチウム;などを挙げることができる。
 有機ナトリウム系開環重合触媒としては、ナトリウムビス(トリメチルシリル)アミドなどのナトリウムアミド;ナトリウムエトキシド、ナトリウムt-ブトキシドなどのナトリウムアルコキシド;などを挙げることができる。
 有機カリウム系開環重合触媒としては、カリウムビス(トリメチルシリル)アミドなどのカリウムアミド;カリウムエトキシド、カリウムt-ブトキシドなどのカリウムアルコキシド;などを挙げることができる。
 有機亜鉛系開環重合触媒としては、ジメチル亜鉛、ジエチル亜鉛、ジイソプロピル亜鉛、ジシクロペンチル亜鉛、ジシクロヘキシル亜鉛などのジアルキル亜鉛;ビス(2,2,6,6-テトラメチルピペリジニル)亜鉛;メチル亜鉛クロリド、2-プロピル亜鉛ブロミド、n-プロピル亜鉛ブロミド、n-ブチル亜鉛ブロミド、イソブチル亜鉛ブロミド、sec-ブチル亜鉛ブロミド、tert-ブチル亜鉛ブロミド、1,1-ジメチルプロピル亜鉛ブロミド、1-エチルプロピル亜鉛ブロミド、1-メチルブチル亜鉛ブロミド、3-メチルブチル亜鉛ブロミド、n-ペンチル亜鉛ブロミド、1-エチルブチル亜鉛ブロミド、2-エチルブチル亜鉛ブロミド、n-ヘキシル亜鉛ブロミド、1-エチルペンチル亜鉛ブロミド、1-メチルヘキシル亜鉛ブロミド、1-プロピルブチル亜鉛ブロミド、n-ヘプチル亜鉛ブロミド、2-エチルヘキシル亜鉛ブロミドなどのアルキル亜鉛ハライド;3-シアノプロピル亜鉛ブロミド、2-シアノエチル亜鉛ブロミド、(1,3-ジオキソラン-2-イル)メチル亜鉛ブロミド、4-クロロブチル亜鉛ブロミド、4-シアノブチル亜鉛ブロミド、3-メトキシ-2-メチル-3-オキソプロピル亜鉛ブロミド、2-(1,3-ジオキソラン-2-イル)エチル亜鉛ブロミド、3-エトキシ-3-オキソプロピル亜鉛ブロミド、5-クロロペンチル亜鉛ブロミド、4-アセトキシブチル亜鉛ブロミド、4-エトキシ-4-オキソブチル亜鉛ブロミド、4-ペンテニル亜鉛ブロミド、5-ヘキセニル亜鉛ブロミド、6-クロロヘキシル亜鉛ブロミド、6-シアノヘキシル亜鉛ブロミド、(シクロヘキシルメチル)亜鉛ブロミド、5-アセトキシペンチル亜鉛ブロミド、5-エトキシ-5-オキソペンチル亜鉛ブロミド、ベンジル亜鉛ブロミド、フェネチル亜鉛ブロミド、α-メチルベンジル亜鉛ブロミド、6-アセトキシヘキシル亜鉛ブロミド、6-エトキシ-6-オキソヘキシル亜鉛ブロミド、(2-ナフチルメチル)亜鉛ブロミドなどの置換アルキル亜鉛ハライド;シクロプロピル亜鉛ブロミド、シクロブチル亜鉛ブロミド、シクロペンチル亜鉛ブロミド、シクロヘキシル亜鉛ブロミドなどのシクロアルキル亜鉛ハライド;フェニル亜鉛ブロミドなどのアリール亜鉛ハライド;2-ノルボルニル亜鉛ブロミド;乳酸亜鉛などを挙げることができる。
 有機マグネシウム系開環触媒としては、ジエチルマグネシウム、ジ-n-ブチルマグネシウムなどのジアルキルマグネシウム;マグネシウムジエトキシド、マグネシウムジtert-ブトキシドなどのマグネシウムアルコキシド;メチルマグネシウムブロミド、メチルマグネシウムクロリド、メチルマグネシウムヨージド、エチニルマグネシウムブロミド、エチニルマグネシウムクロリド、ビニルマグネシウムブロミド、ビニルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、1-プロピニルマグネシウムブロミド、アリルマグネシウムブロミド、アリルマグネシウムクロリド、シクロプロピルマグネシウムブロミド、イソプロペニルマグネシウムブロミド、イソプロピルマグネシウムブロミド、イソプロピルマグネシウムクロリド、n-プロピルマグネシウムクロリド、2-チエニルマグネシウムブロミド、3-チエニルマグネシウムブロミド、1-メチル-1-プロペニルマグネシウムブロミド、2-メチル-1-プロペニルマグネシウムブロミド、2-メチルアリルマグネシウムブロミド、2-メチルアリルマグネシウムクロリド、3-ブテニルマグネシウムブロミド、(1,3-ジオキソラン-2-イルメチル)マグネシウムブロミド、1-メチル-2-プロペニルマグネシウムクロリド、2-ブテニルマグネシウムクロリド、イソブチルマグネシウムブロミド、イソブチルマグネシウムクロリド、n-ブチルマグネシウムクロリド、sec-ブチルマグネシウムクロリド、tert-ブチルマグネシウムクロリド、トリメチルシリルメチルマグネシウムクロリド、4-ペンテニルマグネシウムブロミド、シクロペンチルマグネシウムブロミド、シクロペンチルマグネシウムクロリド、2-ペンチルマグネシウムブロミド、3-ペンチルマグネシウムブロミド、イソペンチルマグネシウムブロミド、n-ペンチルマグネシウムブロミド、n-ペンチルマグネシウムクロリド、ペンタメチレンビス(マグネシウムブロミド) 、1,1-ジメチルプロピルマグネシウムクロリド、2,2-ジメチルプロピルマグネシウムクロリド、2,2-ジメチルプロピルマグネシウムクロリド、2-メチルブチルマグネシウムクロライド、(1,3-ジオキサン-2-イルエチル)マグネシウムブロミド、シクロヘキシルマグネシウムクロリド、n-ヘキシルマグネシウムブロミド、n-ヘキシルマグネシウムクロリド、2-エチルブチルマグネシウムクロライド、ベンジルマグネシウムクロリド、(シクロヘキシルメチル)マグネシウムブロミド、n-ヘプチルマグネシウムブロミド、シクロヘプチルマグネシウムブロミド、フェネチルマグネシウムクロリド、(2-エチルヘキシル)マグネシウムブロミド、n-オクチルマグネシウムブロミド、n-オクチルマグネシウムクロリド、n-ノニルマグネシウムブロミド、2-メチル-2-フェニルプロピルマグネシウムクロリド、3,7-ジメチルオクチルマグネシウムブロミド、n-デシルマグネシウムブロミド、(2-ナフチルメチル) マグネシウムブロミド、n-ドデシルマグネシウムブロミド、n-テトラデシルマグネシウムクロリド、n-ペンタデシルマグネシウムブロミド、n-オクタデシルマグネシウムクロリド、フェニルマグネシウムブロミド、フェニルマグネシウムクロライドなどの有機マグネシウムハライド;などを挙げることができる。
 有機スズ系開環重合触媒としては、ジメトキシスズ、ジエトキシスズ、tert-ブトキシスズ、ジイソプロポキシスズなどのスズアルコキシド;2-エチルヘキサン酸スズ(II)などを挙げることができる。
 有機カルシウム系開環重合触媒としては、カルシウムジメトキシド、カルシウムジエトキシド、カルシウムジイソプロポキシドなどのカルシウムアルコキシドなどを挙げることができる。
 有機チタン系開環重合触媒としては、テトラメトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトライソブトキシチタンなどのアルコキシチタン;チタニウムシクロヘキシド;チタニウムフェノキシドなどを挙げることができる。
 アミン系開環重合触媒としては、1,5,7-トリアザビシクロ[4.4.0]-5-ドデセン、N-メチル-1,5,7-トリアザビシクロ[4.4.0]-5-ドデセン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、4-ジメチルアミノピリジンなどを挙げることができる。
 本発明のポリエステルの製造方法においては、先ず、環状エステルとアルキルアルミニウム化合物とを有機溶媒中で混ぜ合わせる。環状エステル、アルキルアルミニウム化合物および有機溶媒の混合順序は特に限定されない。例えば、有機溶媒に環状エステルを添加し次いでアルキルアルミニウム化合物を添加してもよいし、有機溶媒にアルキルアルミニウム化合物を添加し次いで環状エステルを添加してもよいし、有機溶媒に環状エステルとアルキルアルミニウム化合物とをほぼ同時に添加してもよい。
 本発明において、環状エステルと前記アルキルアルミニウム化合物とを混ぜ合わせる際の温度は、特に限定されないが、好ましくは75℃以下、より好ましくは70℃以下である。なお、環状エステルと前記アルキルアルミニウム化合物とを混ぜ合わせる際の温度の下限は、得られる混合物が液体状態になる温度であれば特に制限されない。
 混ぜ合わせられるアルキルアルミニウム化合物の量は、特に限定されないが、環状エステル1モルに対して、好ましくは0.5モル~5モル、より好ましくは1モル~3モルである。
 本発明のポリエステルの製造方法においては、次に、前記の開環重合触媒を前工程で得られた混合物に混ぜ合わせる。
 本発明において、前記開環重合触媒と前記混合物との混ぜ合わせは、環状エステルと前記アルキルアルミニウム化合物との混ぜ合わせが完了した時から、好ましくは15分間~10時間経過した時、より好ましくは30分間~3時間経過した時に行うことができる。
 混ぜ合わせられる開環重合触媒の量は、特に制限されないが、環状エステル1モルに対して、好ましくは0.01モル~10モル、より好ましくは0.1モル~5モルである。
 前記開環重合触媒と前記混合物との混ぜ合わせによって、環状エステルを開環重合させることができる。開環重合の際の温度は、特に制限されないが、開環重合触媒の活性の強さに応じて調整することが好ましい。開環重合の際の温度は、例えば、常温以上還流温度以下が好ましく、常温以上100℃以下がより好ましく、常温以上70℃以下がさらに好ましい。
 開環重合が完了した後、公知の方法によって反応生成物であるポリエステルを精製することができる。精製方法は特に制限されない。例えば、反応生成物の溶液を、水酸化ナトリウム,水酸化カリウム等のアルカリ水溶液,塩酸,硝酸,リン酸等の酸水溶液,水等で洗浄した後、静置分離,遠心分離等により分液しても良い。また、反応生成物の溶液を貧溶媒に接触させて反応生成物を析出させる方法、反応生成物の溶液を温水中に分散させ溶媒を留去する方法、反応生成物の溶液を吸着カラム等に流通させる方法などが挙げられる。
 精製後の溶液中のポリエステルは、例えば、水、アルコールなどの貧溶媒によって析出させ、該析出物を温水、熱風、減圧などの手段で溶媒を留去することによって取り出すことができる。また、精製後の溶液を薄膜乾燥機、減圧乾燥機、ベント付押し出し機などを用いて該溶液から溶媒を除去してポリエステルを取り出すことができる。精製後の溶液中のポリエステルは、水、アルコールなどの貧溶媒によって析出させ、該析出物のスラリーを遠心分離器,濾過器等により固体として取り出すこともできる。
 溶液から取り出されたポリエステルは、ポリエステルの分解温度以下の温度で乾燥処理することができる。乾燥処理時に減圧して乾燥率を上げることができる。乾燥処理は、通常、残存溶媒が、好ましくは1000ppm以下、より好ましくは300ppm以下、さらに好ましくは100ppm以下になるまで行うことができる。
 本発明の製造方法によれば、一つの環状エステルから得られるホモポリエステル、二つ以上の環状エステルから得られるコポリエステルを、所望に応じて得ることができる。
 本発明の製造方法によれば、高分子量のポリエステルも得ることができる。本発明の製造方法によれば、例えば、重量平均分子量が好ましくは1000~1000000のポリエステルを得ることができる。
 また、本発明の製造方法によれば、狭い分子量分布のものから広い分子量分布のものまで得ることができる。本発明の製造方法によれば、例えば、数平均分子量に対する重量平均分子量の比(Mw/Mn)が、好ましくは1.01~3.00、より好ましくは1.01~2.50のポリエステルを得ることができる。
 なお、重量平均分子量および数平均分子量は、テトラヒドロフランを溶離液として用いたGPCによる測定結果を標準ポリスチレンの分子量に換算して得られる値である。
 本発明によって得られるポリエステルは生分解性ポリマーとして利用することができる。本発明によって得られるポリエステルは、公知の方法によって加工して、繊維、紡糸、不織布、カプセル、容器、管、チューブ、フィルム、シートなどにすることができる。本発明によって得られるポリエステルは、薬剤徐放システム材料、医療用材料、農業資材、漁業資材、汎用樹脂代替品、塗料、コーティング剤、接着剤、結着剤などとして用いることができる。
 以下に実施例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本実施例において、重量平均分子量(Mw)および数平均分子量(Mn)は、テトラヒドロフランを溶離液として用いたGPCによる測定結果を標準ポリスチレンの分子量に換算して得た値である。
実施例1
 200mLナスフラスコにジラクチド5.81g(40.3mmol)とトルエン27.83gを添加し、50℃に加温した。これに、50℃にて、1.0M トリエチルアルミニウムへキサン溶液(アルドリッチ社製、比重0.692)0.55gを添加し、50℃にて80分間攪拌した。該溶液を分析した。GPCにて検出できるポリマーは生成していなかった。
 この溶液に、50℃にて、1.0M ジブチルマグネシウムヘプタン溶液(アルドリッチ社製、比重0.713)0.20gを添加し、50℃にて5時間攪拌した。その後、室温まで放冷した。得られた溶液を分析した。重量平均分子量(Mw)24400、分子量分布(Mw/Mn)1.74であるポリエステルが検出された。
実施例2
 200mLナスフラスコにジラクチド5.95g(41.3mmol)とシクロペンチルメチルエーテル38.9gを添加し、60℃に加温した。これに、60℃にて、1.0M トリエチルアルミニウムへキサン溶液(アルドリッチ社製、比重0.692)0.34gを添加し、60℃で30分間攪拌した。該溶液を分析した。GPCにて検出できるポリマーは生成していなかった。
 この溶液に、60℃にて、1.0M ジエチル亜鉛へキサン溶液(アルドリッチ社製、比重0.726)0.27gを添加し、60℃にて30時間攪拌した。その後、室温まで放冷した。得られた溶液を分析した。重量平均分子量(Mw)27100、分子量分布(Mw/Mn)2.50であるポリエステルが検出された。
実施例3
 200mLナスフラスコにジラクチド5.82g(40.4mmol)とトルエン25.46gとテトラヒドロフラン15.12gを添加し、60℃に加温した。これに、60℃にて、1.0M トリエチルアルミニウムへキサン溶液(アルドリッチ社製、比重0.692)0.55gを添加し、60℃で30分間攪拌した。該溶液を分析した。GPCにて検出できるポリマーは生成していなかった。
 この溶液に、60℃にて、1,5,7-トリアザビシクロ[4.4.0]-5-ドデセン0.517質量部をテトラヒドロフラン9.61質量部に溶解して成る溶液0.56gを添加し、60℃にて8時間攪拌した。その後、室温まで放冷した。得られた溶液を分析した。重量平均分子量(Mw)13800、分子量分布(Mw/Mn)1.54であるポリエステルが検出された。
比較例1
 200mLナスフラスコに3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオン10.71g(40.5mmol)とトルエン49.96gを添加し、50℃に加温した。これに、50℃にて、1.0M ジブチルマグネシウムヘプタン溶液(アルドリッチ社製、比重0.713)0.11gを添加し、50℃にて8時間攪拌した。その後、室温まで放冷した。得られた溶液を分析した。GPCにて検出できるポリマーは生成していなかった。
 3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオン10.71g(40.5mmol)とトルエン49.96gとからなる溶液を得た。この溶液に含まれる水分量は110ppmであった。比較例1では、この水がジブチルマグネシウムを不活性化し、重合反応が阻害されて、ポリエステルを得ることができなかったものと思われる。
実施例4
 200mLナスフラスコに3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオン10.70g(40.5mmol)とトルエン50.02gを添加し、50℃に加温した。これに、50℃にて、1.0M トリエチルアルミニウムへキサン溶液(アルドリッチ社製、比重0.692)0.14gを添加し、50℃で8時間攪拌した。該溶液を分析した。GPCにて検出できるポリマーは生成していなかった。
 この溶液に、50℃にて、1.0M ジブチルマグネシウムヘプタン溶液(アルドリッチ社製、比重0.713)0.11gを添加し、50℃にて8時間攪拌した。その後、室温まで放冷した。得られた溶液を分析した。重量平均分子量(Mw)46300、分子量分布(Mw/Mn)1.68である、ポリエステルが検出された。
 3,6-ビス(2-(メチルチオ)エチル)-1,4-ジオキサン-2,5-ジオン10.70g(40.5mmol)とトルエン50.02gとからなる溶液を得た。この溶液に含まれる水分量は110ppmであった。溶液中に含まれていたと思われる水がトリエチルアルミニウムによって捕捉され、重合反応が阻害されずに安定的に進んだからであると思われる。
参考例1
 200mLナスフラスコにジラクチド5.78g(40.10mmol)とトルエン25.73gを添加し、70℃に加温した。これに、70℃にて、1.0M トリエチルアルミニウムへキサン溶液(アルドリッチ社製、比重0.692)0.66gを添加し、70℃にて6時間攪拌した。該溶液を分析した。GPCにて検出できるポリマーは生成していなかった。

Claims (10)

  1.  環状エステルと、
     式〔I〕 :

     RnAlX3-n

    (式〔I〕中、nは1~3の整数を示し、Rは、それぞれ独立に、炭素数1~20の直鎖または分岐のアルキル基を示し、Xは、それぞれ独立に、ハロゲン原子または水素原子を示す。)で表されるアルキルアルミニウム化合物とを、有機溶媒中で混ぜ合わせ、次いで
     有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、有機亜鉛系開環重合触媒、有機マグネシウム系開環重合触媒、有機スズ系開環重合触媒、有機カルシウム系開環重合触媒、有機チタン系開環重合触媒、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つの開環重合触媒を前記混合物に混ぜ合わせて環状エステルを開環重合させることを含む、ポリエステルの製造方法。
  2.  環状エステルと前記アルキルアルミニウム化合物とを混ぜ合わせる際の温度が、70℃以下である、請求項1に記載のポリエステルの製造方法。
  3.  前記アルキルアルミニウム化合物が、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-ブチルアルミニウム、トリn-オクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、およびジイソブチルアルミニウムハイドライドからなる群より選ばれる少なくとも一つである、請求項1または2に記載のポリエステルの製造方法。
  4.  環状エステルがラクチド類である、請求項1~3のいずれか一つに記載のポリエステルの製造方法。
  5.  環状エステルが1,4-ジオキサン-2,5-ジオン構造を有する化合物である、請求項1~3のいずれか一つに記載のポリエステルの製造方法。
  6.  環状エステルが式〔III〕:

    Figure JPOXMLDOC01-appb-I000001

    (式〔III〕中、R1およびR2は、それぞれ独立に、水素原子、炭素数1~20の直鎖または分岐のアルキル基、炭素数1~20の直鎖または分岐のハロアルキル基、炭素数2~20の直鎖または分岐のアルケニル基、炭素数2~20の直鎖または分岐のアルキニル基、炭素数4~6のシクロアルキル基、炭素数1~20の直鎖または分岐のアルキルカルボニル基、炭素数1~20の直鎖または分岐のアルコキシカルボニル基、炭素数1~20の直鎖または分岐のハロアルキルカルボニル基、炭素数2~20の直鎖または分岐のアルケニルカルボニル基、炭素数2~20の直鎖または分岐のアルキニルカルボニル基、炭素数4~6のシクロアルキルカルボニル基、2-(メチルチオ)エチル基、2-(メチルスルフィニル)エチル基、2-(メチルスルホニル)エチル基、ベンジル基、またはフェニル基で表される基を示す。)で表される化合物である、請求項1~3のいずれか一つに記載のポリエステルの製造方法。
  7.  開環重合触媒が、有機リチウム系開環重合触媒、有機ナトリウム系開環重合触媒、有機カリウム系開環重合触媒、ジアルキル亜鉛、ビス(2,2,6,6-テトラメチルピペリジニル)亜鉛、アルキル亜鉛ハライド、置換アルキル亜鉛ハライド、シクロアルキル亜鉛ハライド、アリール亜鉛ハライド、2-ノルボルニル亜鉛ブロミド、ジアルキルマグネシウム、有機マグネシウムハライド、スズアルコキシド、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つである、請求項1~6のいずれか一つに記載のポリエステルの製造方法。
  8.  開環重合触媒が、ジアルキル亜鉛、ジアルキルマグネシウム、およびアミン系開環重合触媒からなる群より選ばれる少なくとも一つである、請求項1~6のいずれか一つに記載のポリエステルの製造方法。
  9.  アルキルアルミニウム化合物の量が、環状エステル1モルに対して、0.5モル~5モルである、請求項1~8のいずれかひとつに記載のポリエステルの製造方法。
  10.  開環重合触媒の量は、環状エステル1モルに対して0.01モル~10モルである、請求項1~9のいずれかひとつに記載のポリエステルの製造方法。
PCT/JP2016/051156 2015-01-19 2016-01-15 ポリエステルの製造方法 WO2016117473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/543,932 US10577460B2 (en) 2015-01-19 2016-01-15 Method for producing polyester
EP16740080.3A EP3248998A4 (en) 2015-01-19 2016-01-15 Method for producing polyester
JP2016570610A JP6298545B2 (ja) 2015-01-19 2016-01-15 ポリエステルの製造方法
CN201680004351.7A CN107108871B (zh) 2015-01-19 2016-01-15 聚酯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015008009 2015-01-19
JP2015-008009 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117473A1 true WO2016117473A1 (ja) 2016-07-28

Family

ID=56417019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051156 WO2016117473A1 (ja) 2015-01-19 2016-01-15 ポリエステルの製造方法

Country Status (5)

Country Link
US (1) US10577460B2 (ja)
EP (1) EP3248998A4 (ja)
JP (1) JP6298545B2 (ja)
CN (1) CN107108871B (ja)
WO (1) WO2016117473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079999A (zh) * 2020-08-27 2020-12-15 中国科学院青岛生物能源与过程研究所 一种锌催化剂催化环酯开环聚合的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266512B2 (en) 2017-08-10 2019-04-23 Novus International, Inc. Processes for preparing heteroatom containing cyclic dimers
EP4134389B1 (en) * 2020-04-06 2024-05-29 Teijin Limited Method for producing aliphatic polyester, aliphatic polyester resin, and aliphatic polyester resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193127A (ja) * 1995-01-19 1996-07-30 Daiso Co Ltd 乳酸重合体の製造法
JPH11255870A (ja) * 1998-03-06 1999-09-21 Shimadzu Corp 生分解性を備えたセルロース誘導体混成グラフト化組成物の製造法
JP2008069271A (ja) * 2006-09-14 2008-03-27 Teijin Ltd ポリラクチドの製造方法
WO2010087422A1 (ja) * 2009-01-30 2010-08-05 ダイソー株式会社 ポリ乳酸の製造方法
JP2010185003A (ja) * 2009-02-12 2010-08-26 Daiso Co Ltd ポリ乳酸の製法
JP2011111461A (ja) * 2009-11-24 2011-06-09 Daiso Co Ltd ポリ乳酸の製造方法
JP2014145007A (ja) * 2013-01-28 2014-08-14 Ricoh Co Ltd ポリ乳酸組成物及びその製造方法、並びにポリ乳酸組成物製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1520759A1 (de) * 1962-03-30 1969-11-27 Shell Int Research Verfahren zur Herstellung von hochmolekularen Polyestern aus Lactonen
CH468424A (de) * 1965-07-24 1969-02-15 Kanegafuchi Spinning Co Ltd Verfahren zur Herstellung von hochmolekularen Polyestern oder Copolyestern
US4080491A (en) * 1975-08-27 1978-03-21 Showa Denko K.K. Process of producing ring-opening polymerization products
CN1331913C (zh) * 2002-02-05 2007-08-15 重庆永通信息工程实业有限公司 一种术后防粘连膜用新材料的合成和应用
US20110031312A1 (en) * 2009-08-10 2011-02-10 Kongsberg Defence & Aerospace As Remote weapon system
AU2013216828B2 (en) * 2012-02-09 2017-01-12 Novus International Inc. Functionalized polymer compositions
JP2013227457A (ja) * 2012-04-26 2013-11-07 Hiroshima Univ 環状エステルの開環重合触媒及び環状エステルの開環重合方法
CN103342800B (zh) * 2013-07-15 2015-03-18 湖南尔康制药股份有限公司 一种负载型催化剂催化合成药用聚(乳酸 乙醇酸)的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193127A (ja) * 1995-01-19 1996-07-30 Daiso Co Ltd 乳酸重合体の製造法
JPH11255870A (ja) * 1998-03-06 1999-09-21 Shimadzu Corp 生分解性を備えたセルロース誘導体混成グラフト化組成物の製造法
JP2008069271A (ja) * 2006-09-14 2008-03-27 Teijin Ltd ポリラクチドの製造方法
WO2010087422A1 (ja) * 2009-01-30 2010-08-05 ダイソー株式会社 ポリ乳酸の製造方法
JP2010185003A (ja) * 2009-02-12 2010-08-26 Daiso Co Ltd ポリ乳酸の製法
JP2011111461A (ja) * 2009-11-24 2011-06-09 Daiso Co Ltd ポリ乳酸の製造方法
JP2014145007A (ja) * 2013-01-28 2014-08-14 Ricoh Co Ltd ポリ乳酸組成物及びその製造方法、並びにポリ乳酸組成物製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248998A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079999A (zh) * 2020-08-27 2020-12-15 中国科学院青岛生物能源与过程研究所 一种锌催化剂催化环酯开环聚合的方法
CN112079999B (zh) * 2020-08-27 2021-11-16 中国科学院青岛生物能源与过程研究所 一种锌催化剂催化环酯开环聚合的方法

Also Published As

Publication number Publication date
CN107108871B (zh) 2019-04-30
US20180022867A1 (en) 2018-01-25
EP3248998A1 (en) 2017-11-29
US10577460B2 (en) 2020-03-03
CN107108871A (zh) 2017-08-29
EP3248998A4 (en) 2018-09-12
JP6298545B2 (ja) 2018-03-20
JPWO2016117473A1 (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
CN108467411B (zh) 一种磷腈和脲二元体系催化环酯类单体可控开环聚合的方法
JP5943491B2 (ja) ポリエステルを調製するプロセス
JP6298545B2 (ja) ポリエステルの製造方法
CN102491874A (zh) 金属烷氧基配合物、催化剂组合物及聚己内酯或聚丙交酯的制备方法
CN102675617A (zh) N, n-二烷基苯胺-芳胺锌催化剂及其制备方法和应用
Howard et al. Polymer-supported metal catalysts for the heterogeneous polymerisation of lactones
CN109679081B (zh) 利用双核手性胺亚胺镁配合物催化己内酯聚合的方法
CN106496538B (zh) 一种高分子量聚己内酯的合成方法
Gadomska-Gajadhur et al. Poly (lactic acid) for biomedical application–synthesis of biocompatible Mg catalyst and optimization of its use in polymerization of lactide with the aid of design of experiments
JP6100970B2 (ja) 新規の重合触媒を使用するplaの製造方法
KR101692988B1 (ko) 폴리락타이드 수지의 제조 방법
CN109705328B (zh) 苯酚-噁唑啉稀土金属催化剂、制备方法及应用
CN109705159B (zh) 一种含磷氮配体烷基铝化合物的制备方法与应用
WO2012076140A1 (en) N-heterocyclic carbene based zirconium complexes for use in lactones ring opening polymerization
CN1556128A (zh) 生物质有机胍化物催化合成医用生物降解材料的工艺方法
CN108003334A (zh) 一种利用混合催化剂合成聚乳酸的方法
CN109485840B (zh) 利用胺亚胺镁配合物催化丙交酯聚合的方法
CN109749072B (zh) 利用双核胺亚胺镁配合物催化丙交酯聚合的方法
CN101775042A (zh) 新型多齿单酚氧基配体镁络合物及其制备方法和应用
CN114015030A (zh) L-抗坏血酸和/或l-抗坏血酸钠作为催化剂催化内酯或交酯开环聚合反应的应用
CN107955030B (zh) 含有乙酰丙酮衍生物的手性铝配合物及其制备方法和应用
JP2010185003A (ja) ポリ乳酸の製法
Naz et al. Advances in cyclic ester ring‐opening polymerization using heterogeneous catalysts
JP2021519855A (ja) 有機亜鉛触媒の製造方法、及びこれから製造された有機亜鉛触媒を用いたポリアルキレンカーボネート樹脂の製造方法
CN106633006B (zh) 一种环状聚内酯类聚合物的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570610

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543932

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016740080

Country of ref document: EP