WO2016117157A1 - Dc/dcコンバータ - Google Patents

Dc/dcコンバータ Download PDF

Info

Publication number
WO2016117157A1
WO2016117157A1 PCT/JP2015/074031 JP2015074031W WO2016117157A1 WO 2016117157 A1 WO2016117157 A1 WO 2016117157A1 JP 2015074031 W JP2015074031 W JP 2015074031W WO 2016117157 A1 WO2016117157 A1 WO 2016117157A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflux
reactor
circuit
rectifier circuit
semiconductor switching
Prior art date
Application number
PCT/JP2015/074031
Other languages
English (en)
French (fr)
Inventor
佳 早瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580072963.5A priority Critical patent/CN107112904B/zh
Priority to US15/525,661 priority patent/US10193460B2/en
Priority to EP15878846.3A priority patent/EP3249795B1/en
Publication of WO2016117157A1 publication Critical patent/WO2016117157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC / DC converter in which a primary side and a secondary side are insulated by a transformer, and more particularly to a DC / DC converter having a function of suppressing a surge generated by the influence of a recovery current.
  • a positive and negative rectangular wave pulse train transmitted from a primary side to a secondary side via a transformer is rectified by a rectifier circuit to be converted into a rectangular wave pulse train of the same polarity.
  • a surge voltage is generated on the secondary side of the transformer due to the influence of the recovery current when the diode of the rectifier circuit is turned off. Therefore, in order to suppress such a surge voltage, a snubber circuit is provided in the power converter.
  • JP 2013-74767 A Japanese Patent Laid-Open No. 6-14544 JP 2013-207950 A
  • the prior art has the following problems.
  • one end of the resistor of the snubber circuit is connected to the output side of the rectifier circuit via a diode, and the other end is connected to the load. Therefore, the voltage of the capacitor that clamps the surge voltage greatly depends on the voltage of the load and the resistance value of the snubber circuit. That is, when the load voltage is high, the clamp voltage is high, and when the load voltage is low, the clamp voltage is low. In addition, when the resistance value of the snubber circuit is large, the clamp voltage is high, and when the resistance value of the snubber circuit is small, the clamp voltage is low.
  • the resistance value of the snubber circuit must be reduced so that the clamp voltage does not increase.
  • the resistance value of the snubber circuit is made small, the clamp voltage becomes low and the surge voltage can be absorbed efficiently when the load voltage is low, but the loss due to the snubber circuit resistance increases.
  • the clamp voltage is never smaller than the secondary voltage of the transformer. Further, when the transformer secondary voltage is large and the load voltage is small, the loss due to the resistance of the snubber circuit is particularly large. Note that the secondary voltage of the transformer depends on the maximum value of the load voltage.
  • the snubber circuit In other words, in applications where the load voltage fluctuates greatly, when the resistance value of the snubber circuit is reduced in order to efficiently absorb the surge voltage when the load voltage is maximum, the snubber circuit There is a problem that the loss due to resistance increases. If the loss due to the resistance of the snubber circuit becomes large in this way, as a result, the efficiency of the power converter is hindered, and it is necessary to increase the physique due to the thermal problem of resistance, so the power converter can be downsized It becomes difficult.
  • the present invention has been made to solve the above-described problems, and provides a DC / DC converter capable of realizing high efficiency and downsizing of the apparatus while suppressing the occurrence of a surge due to the influence of a recovery current.
  • the purpose is to obtain.
  • the DC / DC converter according to the present invention includes a plurality of inverter semiconductor switching elements that are switched and controlled by a soft switching method, a plurality of inverter circuits that convert DC power of a DC power source connected to the input side to AC power, and a plurality of inverter circuits
  • a rectifier circuit having a rectifying semiconductor switching element, a transformer whose primary side is connected to the output side of the inverter circuit, and whose secondary side is connected to the input side of the rectifier circuit, the output side of the inverter circuit, and the primary side of the transformer DC / DC which includes a resonant reactor inserted between the two and the smoothing reactor connected to the output side of the rectifier circuit, and outputs DC power by DC / DC conversion to a load connected in series with the smoothing reactor.
  • a converter that is connected to the output side of the rectifier circuit, and the DC power supply voltage is not applied to the primary side of the transformer A secondary-side return circuit for diverting a load current flowing through the load, and a first primary whose one end is connected to a connection point between the resonance reactor and the primary side of the transformer and whose other end is connected to one end of the DC power source
  • a side-return semiconductor switching element, and a second primary-side return semiconductor switching element having one end connected to the other end of the DC power source and the other end connected to a connection point between the resonant reactor and the primary side of the transformer.
  • the series circuit in which the smoothing reactor and the load are connected in series is connected to the output side of the rectifier circuit, and the secondary-side return circuit is located between the output side of the rectifier circuit and the series circuit.
  • the DC power supply voltage is not applied to the primary side of the transformer in any one of the first primary-side return semiconductor switching element and the second primary-side return semiconductor switching element connected in parallel with the circuit During one in which diverts the current flowing through the resonance reactor.
  • the load current flowing through the load is bypassed and the load current is circulated.
  • a configuration is provided in which a secondary reflux circuit is provided.
  • FIG. 11 is a current path diagram for explaining the operation of the DC / DC converter of FIG. 10.
  • FIG. 11 is a current path diagram for explaining the operation of the DC / DC converter of FIG. 10.
  • Embodiment 1 FIG. First, effects obtained by configuring the DC / DC converter according to the first embodiment will be described. As described above, by configuring the DC / DC converter according to the first embodiment, it is possible to achieve high efficiency and downsizing of the apparatus while suppressing the occurrence of surge due to the influence of the recovery current.
  • the load current flowing in the load is bypassed while the voltage of the DC power supply is not applied to the transformer primary side.
  • a secondary-side reflux circuit for refluxing is provided.
  • a semiconductor switching element that bypasses the current flowing through the resonance reactor is provided on the primary side.
  • the DC / DC converter according to the first embodiment it is possible to suppress the occurrence of a surge due to the influence of the recovery current while ensuring the ZVS feasibility by driving with the soft switching method.
  • FIG. 1 is a circuit configuration diagram of a DC / DC converter 10 according to Embodiment 1 of the present invention.
  • a DC power supply 20 connected to the primary side of the DC / DC converter 10 a load 30 (for example, a battery) connected to the secondary side of the DC / DC converter 10
  • the DC / DC converter 10 also illustrates a control circuit 40 that controls the operations of the tenth embodiment.
  • a DC / DC converter 10 includes an inverter circuit 11, a resonant reactor 12, an insulated transformer 13, a rectifier circuit 14, a smoothing reactor 15, a smoothing capacitor 16, a primary-side freewheeling diode 17a, A primary-side return diode 17b and a secondary-side return circuit 18 are provided.
  • the inverter circuit 11 has a function as an inverter that converts the input DC voltage Vin of the DC power source 20 into an AC voltage and outputs the converted AC voltage to the transformer 13, and corresponds to a so-called single-phase inverter.
  • the inverter circuit 11 is connected to the transformer primary side 13 a of the transformer 13.
  • the transformer primary side 13 a means the primary winding side of the transformer 13.
  • the inverter circuit 11 includes a plurality of inverter semiconductor switching elements 11a to 11d.
  • Each of the inverter semiconductor switching elements 11a to 11d includes a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in which a body diode is built in between a source and a drain.
  • the inverter circuit 11 has a full-bridge circuit configuration using the inverter semiconductor switching elements 11a to 11d.
  • the inverter semiconductor switching elements 11a to 11d are referred to as switching elements 11a to 11d.
  • Resonant capacitors 111a to 111d are connected in parallel to the switching elements 11a to 11d.
  • the resonant capacitors 111a to 111d reduce the switching loss of the MOSFETs of the switching elements 11a to 11d.
  • the resonant reactor 12 is inserted between the output side of the inverter circuit 11 and the transformer primary side 13a to reduce the switching loss of the MOSFETs of the switching elements 11a to 11d.
  • the rectifier circuit 14 applies a DC voltage after converting the AC voltage input from the transformer 13 to the load 30.
  • the voltage of the load 30 at this time is defined as an output DC voltage Vout.
  • the rectifier circuit 14 is connected to the transformer secondary side 13 b of the transformer 13.
  • the transformer secondary side 13b referred to here means the secondary winding side of the transformer 13.
  • the rectifier circuit 14 includes a plurality of diodes 14a to 14d that function as rectifier elements.
  • the rectifier circuit 14 has a full-bridge circuit configuration using diodes 14a to 14d.
  • the smoothing reactor 15 and the smoothing capacitor 16 are connected to the output side of the rectifier circuit 14 and smooth the output current of the rectifier circuit 14.
  • the primary-side freewheeling diode 17a and the primary-side freewheeling diode 17b are connected in series to bypass the current flowing through the resonant reactor 12. That is, the current flowing through the resonant reactor 12 is bypassed by flowing to either the primary-side freewheeling diode 17a or the primary-side freewheeling diode 17b.
  • the anode In the primary-side reflux diode 17a, the anode is connected to the connection point between the resonant reactor 12 and the transformer primary side 13a, and the cathode is connected to the positive terminal of the DC power supply 20.
  • the anode In the primary-side reflux diode 17b, the anode is connected to the negative terminal of the DC power supply 20, and the cathode is connected to the connection point between the resonant reactor 12 and the transformer primary side 13a.
  • the secondary-side reflux circuit 18 has a series circuit in which a secondary-side reflux diode 181 and a reflux reactor 182 are connected in series.
  • the secondary-side return diode 181 bypasses the load current flowing through the load 30 to return the load current.
  • the reflux reactor 182 is provided to ensure that the load current flows through the secondary-side reflux diode 181.
  • the anode is connected to one end of the reflux reactor 182 and the cathode is connected to the positive output terminal of the rectifier circuit 14.
  • the other end of the reflux reactor 182 is connected to the negative output terminal of the rectifier circuit 14.
  • the reflux reactor 182 is magnetically coupled to the smoothing reactor 15 in order to pass a current in the same direction as the smoothing reactor 15.
  • the control circuit 40 is arranged outside the main circuit, and the detection result of the input DC voltage Vin and the output DC voltage Vout is input to the control circuit 40.
  • the control circuit 40 switches and controls each of the switching elements 11a to 11d of the inverter circuit 11 by the soft switching method so that the input output DC voltage Vout becomes the target voltage.
  • the control circuit 40 outputs the gate signal 41 to the switching elements 11a to 11d, thereby controlling the on duty (that is, the on period) of each of the switching elements 11a to 11d.
  • the switching elements 11a to 11d are not limited to MOSFETs, and may be self-extinguishing semiconductor switching elements such as IGBTs (Insulated Gate Bipolar Transistors) in which diodes are connected in antiparallel.
  • the resonance capacitors 111a to 111d may be configured to use parasitic capacitances of the switching elements 11a to 11d.
  • the first embodiment exemplifies a case where semiconductor switching elements such as the diodes 14a to 14d, the primary side freewheeling diodes 17a and 17b, the secondary side freewheeling diode 181 and the diode 19 described later are used.
  • Another semiconductor switching element such as a transistor element may be used.
  • FIG. 2 is a waveform diagram showing changes in parameters of each part of the DC / DC converter 10 for explaining the operation of the DC / DC converter 10 according to the first embodiment of the present invention.
  • FIG. 2 shows a timing chart of the gate signal 41 output by the control circuit 40 to each of the switching elements 11a to 11d of the inverter circuit 11.
  • FIG. 2 shows the change in parameters of each part of the DC / DC converter 10 in the form of a waveform when the switching elements 11a to 11d are controlled to be switched by the soft switching method according to the gate signal 41.
  • Vds drain-source voltages
  • the current flowing through the primary-side reflux diode 17b and the diodes 14b and 14c is indicated by a one-dot chain line.
  • the switching elements 11a and 11b each have a duty close to 50%, and both are turned on alternately with a period during which the switching elements are turned off.
  • the switching elements 11c and 11d each have a duty close to 50%, and both of them are alternately turned on by providing a period during which both are turned off.
  • the output control is performed by varying the phase difference between the switching elements 11a and 11b and the switching elements 11c and 11d in a range from 0 ° to 180 °.
  • FIGS. 3A to 3G are current path diagrams for explaining the operation of DC / DC converter 10 according to the first embodiment of the present invention.
  • the gate signals 41 of the switching elements 11a and 11d are in the on state. Therefore, as shown in FIG. 3A, on the primary side, a current flows through the path of the DC power supply 20, the switching element 11a, the resonance reactor 12, the transformer primary side 13a, the switching element 11d, and the DC power supply 20. On the secondary side, a current flows through the path of the transformer secondary side 13b, the diode 14a, the smoothing reactor 15, the load 30, the diode 14d, and the transformer secondary side 13b. For this reason, the current from the DC power supply 20 is supplied to the load 30.
  • the gate signal 41 of the switching element 11d is turned off.
  • the current that has been flowing through the switching element 11d flows in the direction of charging the resonant capacitor 111d. Therefore, the drain-source voltage Vds of the switching element 11d gradually increases.
  • a current for discharging the resonant capacitor 111c flows through the path of the resonant reactor 12, the transformer primary side 13a, the resonant capacitor 111c, the switching element 11a, and the resonant reactor 12. Therefore, the drain-source voltage Vds of the switching element 11c gradually decreases.
  • ZVS is established by turning on the gate signal 41 of the switching element 11c at time t2 in a state where current flows through the body diode of the switching element 11c through the current path shown in FIG. 3C after time t1.
  • N1 is the number of turns of the smoothing reactor 15
  • N2 is the number of turns of the return reactor 182
  • Vout is the output DC voltage
  • Vf10 is the secondary side return diode 181. Is the forward voltage.
  • the number of turns N1 and the number of turns N2 are set so that Vc> 0, a reverse voltage is applied to the rectifier circuit 14, and the diodes 14a to 14d are turned off. Accordingly, no current flows through the rectifier circuit 14 and the transformer secondary side 13b. That is, the number of turns N1 of the smoothing reactor 15 and the number of turns N2 of the reflux reactor 182 are set so that a positive voltage is applied to the output side of the rectifier circuit 14 and no current flows to the rectifier circuit 14 and the transformer secondary side 13b. Will be set.
  • the secondary side return circuit 18 bypasses the load current and returns the load current to the load 30.
  • the flowing load current is suppressed. That is, the load current flows not through the rectifier circuit 14 but through a series circuit in which the return reactor 182 and the secondary side return diode 181 are connected in series as a circulation path. Therefore, a surge occurs due to the effect of the recovery current of one secondary-side return diode 181 instead of the two diodes (that is, the diodes 14a and 14d) in the return path of the rectifier circuit 14. Can be reduced.
  • the gate signal 41 of the switching element 11a is turned off.
  • the current that has been flowing through the switching element 11a flows in the direction of charging the resonant capacitor 111a. Therefore, the drain-source voltage Vds of the switching element 11a gradually increases.
  • a current for discharging the resonant capacitor 111b flows through the path of the resonant reactor 12, the primary-side reflux diode 17a, the DC power supply 20, the resonant capacitor 111b, and the resonant reactor 12. Therefore, the drain-source voltage Vds of the switching element 11b gradually decreases.
  • the gate signal 41 of the switching element 11b is turned on. In this case, ZVS is established. Further, in the period from time t5 to time t6, as shown in FIG. 3G, on the primary side, the path of the DC power supply 20, the switching element 11c, the transformer primary side 13a, the resonance reactor 12, the switching element 11b, and the DC power supply 20 is used. Current flows. On the other hand, on the secondary side, current flows through the path of the transformer secondary side 13b, the diode 14c, the smoothing reactor 15, the load 30, the diode 14b, and the transformer secondary side 13b. For this reason, the current from the DC power supply 20 is supplied to the load 30.
  • the period from time t0 to time t6 described above is a half cycle, and the switching elements 11a and 11d are turned off and the switching elements 11b and 11c are turned on in the half cycle.
  • the remaining half cycle is a period from time t6 to time t12, and the switching elements 11b and 11c are turned off by performing the same control as the period from time t0 to time t6 in the remaining half cycle.
  • the switching elements 11a and 11d are turned on.
  • the secondary side is connected to the output side of the rectifier circuit and bypasses the load current flowing through the load during the period when the voltage of the DC power supply is not applied to the primary side of the transformer.
  • the first return side semiconductor switching element one end of which is connected to the connection point between the resonance reactor and the primary side of the transformer and the other end is connected to one end of the DC power source, and the other end of the DC circuit
  • a second primary-side return semiconductor switching element connected to the end and having the other end connected to a connection point between the resonant reactor and the primary side of the transformer.
  • one of the first primary-side free-wheeling semiconductor switching element and the second primary-side free-wheeling semiconductor switching element generates a current flowing through the resonance reactor during a period in which the DC power supply voltage is not applied to the primary side of the transformer. Detour.
  • the series circuit in which the smoothing reactor and the load are connected in series is connected to the output side of the rectifier circuit, and the secondary-side return circuit is located between the output side of the rectifier circuit and the series circuit. Connected in parallel.
  • the secondary-side freewheeling diode 181 may be designed to have a characteristic that the magnitude of the recovery current generated at the time of switching is smaller than the diodes 14a to 14d of the rectifier circuit 14.
  • the secondary-side reflux diode 181 may be formed of a wide band gap semiconductor (for example, silicon carbide, gallium nitride-based material, diamond, or the like).
  • the secondary-side return diode 181 is a Schottky barrier diode or the like formed of a wide bandgap semiconductor, surge due to the influence of the recovery current can be further reduced.
  • the number of turns N1 and the number of turns N2 current is prevented from flowing through the rectifier circuit 14 and the transformer secondary side 13b during a period when the voltage of the DC power supply 20 is not applied to the transformer primary side 13a.
  • the case of setting was illustrated.
  • an allowable range of current that may flow through the rectifier circuit 14 and the transformer secondary side 13b may be defined, and the number of turns N1 and the number of turns N2 may be set so as to be within this allowable range.
  • FIGS. 4 to 10 are configuration diagrams showing modifications of the secondary side of the DC / DC converter 10 according to the first embodiment of the present invention.
  • the anode of the secondary-side return diode 181 is connected to one end of the return reactor 182, the cathode is connected to the positive output terminal of the rectifier circuit 14, and the other end of the return reactor 182 is connected to the rectifier circuit 14.
  • the cathode of the secondary reflux diode 181 is connected to one end of the reflux reactor 182, the anode is connected to the negative output terminal of the rectifier circuit 14, and the other end of the reflux reactor 182 is the rectifier circuit. It is good also as a structure connected to 14 positive side output terminals.
  • each of the reactors connected to the positive side on the output side of the rectifier circuit 14 can be shared by the smoothing reactor 15 and the reflux reactor 182 that are magnetically coupled.
  • the number of terminals as a coupling reactor between the smoothing reactor 15 and the reflux reactor 182 can be reduced.
  • the smoothing reactor 15 is between the positive output terminal of the rectifier circuit 14 and the positive terminal of the load 30 is illustrated, but the negative output terminal of the rectifier circuit 14 and the load It may be between 30 negative terminals.
  • one end of the smoothing reactor 15 a is connected to the positive output terminal of the rectifier circuit 14, and the other end is connected to the positive terminal of the load 30.
  • one end of the smoothing reactor 15 b is connected to the negative side output terminal of the rectifier circuit 14, and the other end is connected to the negative side terminal of the load 30.
  • all of the smoothing reactor 15a, the smoothing reactor 15b, and the reflux reactor 182 may be magnetically coupled.
  • all of the smoothing reactor 15a, the smoothing reactor 15b, and the reflux reactor 182 may be magnetically coupled.
  • only the smoothing reactor 15a and the reflux reactor 182 may be magnetically coupled.
  • only the smoothing reactor 15b and the reflux reactor 182 may be magnetically coupled.
  • a reflux reactor 182a magnetically coupled to the smoothing reactor 15a and a reflux reactor 182b magnetically coupled to the smoothing reactor 15b may be provided in the secondary-side reflux circuit 18 as the reflux reactor 182.
  • one end of the reflux reactor 182 a is connected to the positive output terminal of the rectifier circuit 14, and the other end is connected to the cathode of the secondary reflux diode 181.
  • one end of the reflux reactor 182 b is connected to the negative output terminal of the rectifier circuit 14, and the other end is connected to the anode of the secondary reflux diode 181.
  • the reflux reactor 182 a in the series circuit constituted by the reflux reactors 182 a and 182 b and the secondary-side reflux diode 181, the reflux reactor 182 a, the secondary-side reflux diode 181, the reflux from the positive output terminal of the rectifier circuit 14.
  • the order which connects these may be arbitrary.
  • the smoothing reactor 15a, the smoothing reactor 15b, the reflux reactor 182a, and the reflux reactor 182b may all be magnetically coupled.
  • the secondary side return circuit 18 was comprised so that it might have a series circuit with which the secondary side return diode 181 and the return reactor 182 were connected in series was illustrated.
  • the secondary-side reflux circuit 18 may be configured to have a series circuit in which a reflux capacitor 183 and a secondary-side reflux diode 181 are connected in series.
  • one end of the reflux capacitor 183 is connected to the cathode of the secondary side reflux diode 181, and the other end is connected to the positive side output terminal of the rectifier circuit 14.
  • the anode of the secondary side return diode 181 is connected to the negative side output terminal of the rectifier circuit 14.
  • the anode of the bypass diode 19 is connected to the connection point between the cathode of the secondary side return diode 181 and the return capacitor 183, and the cathode is connected to the connection point between the smoothing reactor 15 and the load 30.
  • FIG. 11A and 11B are current path diagrams for explaining the operation of the DC / DC converter 10 of FIG.
  • FIG. 11A shows a current path during a period in which the input DC voltage Vin of the DC power supply 20 is applied to the transformer primary side 13a (that is, before time t0 in FIG. 2). Specifically, FIG. 11A shows a current path when the switching elements 11a and 11d are turned on.
  • a current flows through the path of the DC power supply 20, the switching element 11a, the resonant reactor 12, the transformer primary side 13a, the switching element 11d, and the DC power supply 20.
  • a current flows through a path of the transformer secondary side 13b, the diode 14a, the reflux capacitor 183, the diode 19, the load 30, the diode 14d, and the transformer secondary side 13b. For this reason, the current from the DC power supply 20 is supplied to the load 30. Furthermore, a current also flows through the smoothing reactor 15 that is connected in parallel with each of the reflux capacitor 183 and the diode 19.
  • FIG. 11B shows a current path during a period in which the input DC voltage Vin of the DC power supply 20 is not applied to the transformer primary side 13a (ie, corresponding to the period from time t2 to time t3 in FIG. 2). Yes.
  • the return current flowing through the rectifier circuit 14 can be reduced to reduce recovery. Can suppress the occurrence of surge. At the same time, the reflux current flowing on the primary side can be maintained, and the ZVS establishment can be maintained.
  • the present invention is not limited to phase shift soft switching, and the voltage of the DC power supply 20 is applied to the transformer primary side 13a. A similar effect can be expected if the return current flows through the transformer primary side 13a during a period when the transformer is not connected.
  • Embodiment 2 FIG. In the first embodiment, the case where the DC / DC converter 10 is driven by the phase shift soft switching method has been described. On the other hand, in the second embodiment of the present invention, a case where the DC / DC converter 10 is driven by a hard switching method will be described. In the second embodiment, the description of the same points as in the first embodiment will be omitted, and the description will focus on the points different from the first embodiment.
  • FIG. 12 is a circuit configuration diagram of a DC / DC converter 10A according to the second embodiment of the present invention.
  • the DC power supply 20, the load 30, and the control circuit 40 that controls the operation of the DC / DC converter 10A are shown together.
  • the DC / DC converter 10A includes an inverter circuit 11, an insulated transformer 13, a rectifier circuit 14, a smoothing reactor 15, a smoothing capacitor 16, and a secondary-side return circuit 18.
  • the difference between the DC / DC converter 10A and the DC / DC converter 10 in the first embodiment is as follows. That is, on the primary side, the resonant capacitors 111a to 111d, the resonant reactor 12, and the primary-side reflux diodes 17a and 17b are not provided.
  • the control circuit 40 controls the switching of each of the switching elements 11a to 11d not by the soft switching method but by the hard switching method. A specific control example of switching control of each of the switching elements 11a to 11d by the hard switching method will be described with reference to FIG. 13 described later.
  • FIG. 13 is a waveform diagram showing changes in parameters of each part of the DC / DC converter 10A for explaining the operation of the DC / DC converter 10A according to the second embodiment of the present invention.
  • FIG. 13 shows a timing chart of the gate signal 41 output from the control circuit 40 to each of the switching elements 11a to 11d of the inverter circuit 11.
  • the change in the parameters of each part of the DC / DC converter 10 when the switching elements 11a to 11d are controlled to be switched by the hard switching method according to the gate signal 41 is shown as a waveform.
  • the currents flowing through the diodes 14b and 14c are indicated by alternate long and short dash lines.
  • the combination of the switching elements 11a and 11d is simultaneously turned on.
  • the combination of the switching elements 11b and 11c is turned on simultaneously.
  • a period during which all the elements are turned off is provided, and the combination of the switching elements 11a and 11d and the combination of the switching elements 11b and 11c are alternately turned on. Note that output control is performed by varying the duty of each of the switching elements 11a and 11d and the switching elements 11b and 11c.
  • FIGS. 14A to 14C are current path diagrams for explaining the operation of DC / DC converter 10A according to the second embodiment of the present invention.
  • the gate signals 41 of the switching elements 11a and 11d are in the on state. Therefore, as shown in FIG. 14A, on the primary side, a current flows through the path of the DC power supply 20, the switching element 11a, the transformer primary side 13a, the switching element 11d, and the DC power supply 20. On the secondary side, a current flows through the path of the transformer secondary side 13b, the diode 14a, the smoothing reactor 15, the load 30, the diode 14d, and the transformer secondary side 13b. For this reason, the current from the DC power supply 20 is supplied to the load 30.
  • the gate signals 41 of the switching elements 11a and 11d are turned off. In this case, no current flows on the primary side, and the drain-source voltage of the switching elements 11a to 11d becomes Vin / 2.
  • the secondary side as shown in FIG. 14B, no voltage is applied to the transformer primary side 13a, and therefore no voltage is generated on the transformer secondary side 13b. Therefore, the secondary side freewheeling diode 181 is turned on, and the voltage Vc shown in the above equation (1) is applied to the output side of the rectifier circuit 14.
  • the secondary-side return circuit 18 bypasses the load current and returns the load current. Is suppressed. That is, the load current flows not in the rectifier circuit 14 but in a series circuit in which the return reactor 182 and the secondary side return diode 181 are connected in series. Therefore, a surge occurs due to the effect of the recovery current of one secondary-side return diode 181 instead of the two diodes (that is, the diodes 14a and 14d) in the return path of the rectifier circuit 14. Can be reduced.
  • the gate signals 41 of the switching elements 11b and 11c are turned on.
  • the primary side current flows through the path of the DC power supply 20, the switching element 11c, the transformer primary side 13a, the switching element 11b, and the DC power supply 20.
  • the secondary side current flows through the path of the transformer secondary side 13b, the diode 14c, the smoothing reactor 15, the load 30, the diode 14b, and the transformer secondary side 13b. Therefore, the current from the DC power supply 20 is supplied to the load 30.
  • the period from time t0 to time t2 described above is a half cycle, and the switching elements 11a and 11d are turned off and the switching elements 11b and 11c are turned on in the half cycle.
  • the remaining half cycle is a period from time t2 to time t4, and switching elements 11b and 11c are turned off by performing the same control as the period from time t0 to time t2 in the remaining half cycle.
  • the switching elements 11a and 11d are turned on.
  • the secondary side is connected to the output side of the rectifier circuit and bypasses the load current flowing through the load during a period when the voltage of the DC power supply is not applied to the primary side of the transformer. It has a configuration including a reflux circuit. Further, the series circuit in which the smoothing reactor and the load are connected in series is connected to the output side of the rectifier circuit, and the secondary-side return circuit is located between the output side of the rectifier circuit and the series circuit. Connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 複数の整流用半導体スイッチング素子を有する整流回路の出力側に接続される平滑リアクトルと直列に接続される負荷に直流電源の直流電力をDC/DC変換して出力するDC/DCコンバータの二次側において、直流電源の電圧がトランスの一次側に印加されていない期間に、負荷に流れる負荷電流を迂回させて負荷電流を還流させる、二次側還流ダイオードと還流リアクトルとが直列に接続された直列回路を有する二次側還流回路を設けて構成する。

Description

DC/DCコンバータ
 本発明は、トランスによって一次側と二次側とが絶縁されたDC/DCコンバータに関し、特に、リカバリ電流の影響によって発生するサージを抑制する機能を備えたDC/DCコンバータに関するものである。
 従来の電力変換装置では、トランスを介して、一次側から二次側に伝送された正負の矩形波状パルス列を、整流回路で整流することで、同一極性の矩形波状パルス列に変換する。このとき、トランスの二次側では、整流回路のダイオードがオフする際のリカバリ電流の影響によってサージ電圧が発生する。そこで、このようなサージ電圧を抑制するために、電力変換装置にスナバ回路を設ける。
 このようにスナバ回路を設けることで、トランスの二次側に発生するサージ電圧は、スナバ回路のダイオードによって、コンデンサの電圧にクランプされる。その結果、このコンデンサに蓄電されるので、整流回路の各素子を過電圧から保護することが可能となる(例えば、特許文献1参照)。
特開2013-74767号公報 特開平6-14544号公報 特開2013-207950号公報
 しかしながら、従来技術には以下のような課題がある。
 特許文献1に記載の従来技術では、スナバ回路の抵抗において、一端がダイオードを介して整流回路の出力側に接続され、他端が負荷に接続されている。したがって、サージ電圧をクランプするコンデンサの電圧は、負荷の電圧と、スナバ回路の抵抗値とに大きく依存する。すなわち、負荷の電圧が高い場合には、クランプ電圧が高く、負荷の電圧が低い場合には、クランプ電圧が低くなる。また、スナバ回路の抵抗値が大きい場合には、クランプ電圧が高く、スナバ回路の抵抗値が小さい場合にはクランプ電圧が低くなる。
 したがって、負荷の電圧が高い場合に、サージ電圧を効率よく吸収するためには、クランプ電圧が高くならないように、スナバ回路の抵抗値を小さくしなければならない。一方、スナバ回路の抵抗値を小さくすれば、負荷の電圧が低いときに、クランプ電圧が低くなり、サージ電圧を効率よく吸収することはできるが、スナバ回路の抵抗による損失が大きくなる。
 ここで、クランプ電圧は、トランスの二次側電圧よりも小さくなることはない。また、トランスの二次側電圧が大きく、かつ負荷の電圧が小さい場合に、特にスナバ回路の抵抗による損失が大きくなる。なお、トランスの二次側電圧は、負荷の電圧の最大値に依存する。
 換言すると、負荷の電圧が大きく変動する用途において、負荷の電圧が最大のときにサージ電圧を効率よく吸収するためにスナバ回路の抵抗値を小さくした場合、負荷の電圧が小さくなると、スナバ回路の抵抗による損失が大きくなるという問題がある。このようにスナバ回路の抵抗による損失が大きくなれば、結果として、電力変換装置の高効率化の妨げになるととともに、抵抗の熱的問題から体格を大きくする必要があるので電力変換装置の小型化が困難となる。
 本発明は、前記のような課題を解決するためになされたものであり、リカバリ電流の影響によるサージの発生を抑制しつつ、装置の高効率化および小型化を実現可能なDC/DCコンバータを得ることを目的とする。
 本発明におけるDC/DCコンバータは、ソフトスイッチング方式で切り替え制御される複数のインバータ用半導体スイッチング素子を有し、入力側に接続される直流電源の直流電力を交流電力に変換するインバータ回路と、複数の整流用半導体スイッチング素子を有する整流回路と、一次側がインバータ回路の出力側に接続され、二次側が整流回路の入力側に接続されるトランスと、インバータ回路の出力側と、トランスの一次側との間に挿入される共振リアクトルと、整流回路の出力側に接続される平滑リアクトルと、を備え、平滑リアクトルと直列に接続される負荷に直流電力をDC/DC変換して出力するDC/DCコンバータであって、整流回路の出力側に接続され、トランスの一次側に直流電源の電圧が印加されていない期間に、負荷に流れる負荷電流を迂回させるための二次側還流回路と、一端が共振リアクトルとトランスの一次側との接続点に接続され、他端が直流電源の一端に接続される第1の一次側還流用半導体スイッチング素子と、一端が直流電源の他端に接続され、他端が共振リアクトルとトランスの一次側との接続点に接続される第2の一次側還流用半導体スイッチング素子と、をさらに備え、平滑リアクトルと負荷とが直列に接続された直列回路は、整流回路の出力側に接続され、二次側還流回路は、整流回路の出力側と直列回路との間に位置し、直列回路と並列に接続され、第1の一次側還流用半導体スイッチング素子および第2の一次側還流用半導体スイッチング素子のいずれか一方は、トランスの一次側に直流電源の電圧が印加されていない期間に、共振リアクトルに流れる電流を迂回させるものである。
 本発明によれば、DC/DCコンバータの二次側において、直流電源の電圧がトランスの一次側に印加されていない期間に、負荷に流れる負荷電流を迂回させて負荷電流を還流させるための二次側還流回路が設けられた構成を備えている。これにより、リカバリ電流の影響によるサージの発生を抑制しつつ、装置の高効率化および小型化を実現可能なDC/DCコンバータを得ることができる。
本発明の実施の形態1によるDC/DCコンバータの回路構成図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための、DC/DCコンバータの各部のパラメータの変化を示す波形図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 本発明の実施の形態1におけるDC/DCコンバータの二次側の変形例を示す構成図である。 図10のDC/DCコンバータの動作を説明するための電流経路図である。 図10のDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態2によるDC/DCコンバータの回路構成図である。 本発明の実施の形態2によるDC/DCコンバータの動作を説明するための、DC/DCコンバータの各部のパラメータの変化を示す波形図である。 本発明の実施の形態2によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態2によるDC/DCコンバータの動作を説明するための電流経路図である。 本発明の実施の形態2によるDC/DCコンバータの動作を説明するための電流経路図である。
 以下、本発明によるDC/DCコンバータを、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。
 実施の形態1.
 はじめに、本実施の形態1におけるDC/DCコンバータを構成することで得られる効果について説明する。前述したように、本実施の形態1におけるDC/DCコンバータを構成することで、リカバリ電流の影響によるサージの発生を抑制しつつ、装置の高効率化および小型化を実現可能となる。
 また、本実施の形態1におけるDC/DCコンバータを構成することで、前述した効果に加え、さらなる別の効果を得ることができる。このようなさらなる別の効果について、特許文献2、3に記載の従来技術と比較しながら説明する。
 ここで、特許文献2、3に記載の従来技術では、整流回路に流れる還流電流を減少させることで、リカバリ電流の影響によるサージの発生を抑制する。
 しかしながら、特許文献2、3に記載の従来技術をソフトスイッチング方式(より具体的には、位相シフトソフトスイッチング方式)で駆動するDC/DCコンバータに適用した場合、以下のような問題がある。
 すなわち、整流回路に流れる還流電流が減少するのと同時に、トランス一次側に流れる還流電流も減少する。また、一次側に流れる還流電流が減少すると、一次側の半導体スイッチング素子と並列に接続されているコンデンサの電圧がゼロになりにくくなり、ZVS(Zero Volt Swiching)の成立性が確保できない。その結果として、一次側の半導体スイッチング素子のスイッチング損失が大きくなってしまう。
 これに対して、本実施の形態1におけるDC/DCコンバータでは、二次側において、直流電源の電圧がトランス一次側に印加されていない期間に、負荷に流れる負荷電流を迂回させて負荷電流を還流させるための二次側還流回路を設ける。また、一次側において、共振リアクトルに流れる電流を迂回させる半導体スイッチング素子を設ける。
 このように構成することで、整流回路に流れる還流電流を減少させることができるので、リカバリ電流の影響によるサージの発生を抑制することができる。また、それと同時に、ソフトスイッチング方式でDC/DCコンバータを駆動させた場合であっても、一次側に流れる還流電流の減少を抑制することができるので、ZVS成立性を確保することができる。
 換言すると、本実施の形態1におけるDC/DCコンバータでは、ソフトスイッチング方式での駆動によるZVS成立性を確保しつつ、リカバリ電流の影響によるサージの発生を抑制することができる。
 次に、本実施の形態1におけるDC/DCコンバータ10について、図1を参照しながら説明する。図1は、本発明の実施の形態1によるDC/DCコンバータ10の回路構成図である。なお、図1では、DC/DCコンバータ10の一次側に接続される直流電源20と、DC/DCコンバータ10の二次側に接続される負荷30(例えば、バッテリ等)と、DC/DCコンバータ10の動作を制御する制御回路40とを併せて図示している。
 図1において、DC/DCコンバータ10は、インバータ回路11と、共振リアクトル12と、絶縁されたトランス13と、整流回路14と、平滑リアクトル15と、平滑コンデンサ16と、一次側還流ダイオード17aと、一次側還流ダイオード17bと、二次側還流回路18とを備える。
 インバータ回路11は、直流電源20の入力直流電圧Vinを交流電圧に変換し、変換後の交流電圧をトランス13に出力するインバータとしての機能を有し、いわゆる単相インバータに相当する。また、インバータ回路11は、トランス13のトランス一次側13aに接続される。なお、ここでいうトランス一次側13aとは、トランス13の一次巻線側を意味する。
 具体的には、インバータ回路11は、複数のインバータ用半導体スイッチング素子11a~11dを有する。また、インバータ用半導体スイッチング素子11a~11dのそれぞれは、ソースおよびドレイン間にボディダイオードが内蔵されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を含んで構成される。また、インバータ回路11は、インバータ用半導体スイッチング素子11a~11dを用いたフルブリッジ型の回路構成となっている。なお、以下では、インバータ用半導体スイッチング素子11a~11dを、スイッチング素子11a~11dと称す。
 スイッチング素子11a~11dには、共振コンデンサ111a~111dが並列に接続されている。共振コンデンサ111a~111dは、スイッチング素子11a~11dのMOSFETのスイッチング損失を低減する。
 共振リアクトル12は、インバータ回路11の出力側と、トランス一次側13aとの間に挿入され、スイッチング素子11a~11dのMOSFETのスイッチング損失を低減する。
 整流回路14は、トランス13から入力された交流電圧を変換した後の直流電圧を、負荷30に印加する。このときの負荷30の電圧を、出力直流電圧Voutとする。また、整流回路14は、トランス13のトランス二次側13bに接続される。なお、ここでいうトランス二次側13bとは、トランス13の二次巻線側を意味する。
 具体的には、整流回路14は、整流素子としての機能を有する複数のダイオード14a~14dを有する。また、整流回路14は、ダイオード14a~14dを用いたフルブリッジ型の回路構成となっている。
 平滑リアクトル15および平滑コンデンサ16は、整流回路14の出力側に接続され、整流回路14の出力電流を平滑する。
 一次側還流ダイオード17aおよび一次側還流ダイオード17bは、互いに直列に接続され、共振リアクトル12に流れる電流を迂回させる。すなわち、共振リアクトル12に流れる電流は、一次側還流ダイオード17aおよび一次側還流ダイオード17bのいずれか一方に流れることで迂回する。
 一次側還流ダイオード17aにおいて、アノードは、共振リアクトル12とトランス一次側13aとの接続点に接続され、カソードは、直流電源20の正側端子に接続される。また、一次側還流ダイオード17bにおいて、アノードは、直流電源20の負側端子に接続され、カソードは、共振リアクトル12とトランス一次側13aとの接続点に接続される。
 二次側還流回路18は、二次側還流ダイオード181と還流リアクトル182とが直列に接続された直列回路を有する。二次側還流ダイオード181は、負荷30に流れる負荷電流を迂回させて負荷電流を還流させる。還流リアクトル182は、二次側還流ダイオード181に負荷電流が確実に流れるようにするために設けられる。
 二次側還流ダイオード181において、アノードは、還流リアクトル182の一端と接続され、カソードは、整流回路14の正側出力端子に接続される。還流リアクトル182の他端は、整流回路14の負側出力端子に接続される。また、還流リアクトル182は、平滑リアクトル15と同じ方向に電流を流すために、平滑リアクトル15と磁気的に結合する。
 制御回路40は、主回路の外部に配置され、制御回路40には、入力直流電圧Vinおよび出力直流電圧Voutの検出結果が入力される。制御回路40は、入力された出力直流電圧Voutが目標電圧となるように、インバータ回路11のスイッチング素子11a~11dのそれぞれをソフトスイッチング方式で切り替え制御する。具体的には、制御回路40は、スイッチング素子11a~11dにゲート信号41を出力することで、スイッチング素子11a~11dのそれぞれのオンDuty(すなわち、オン期間)を制御する。なお、スイッチング素子11a~11dのそれぞれをソフトスイッチング方式で切り替え制御する具体的な制御例については、後述の図2を参照しながら説明する。
 ここで、スイッチング素子11a~11dは、MOSFETに限らず、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)等の自己消弧型半導体スイッチング素子であってもよい。また、共振コンデンサ111a~111dは、スイッチング素子11a~11dの寄生容量を利用するように構成してもよい。
 なお、本実施の形態1では、ダイオード14a~14dと、一次側還流ダイオード17a、17bと、二次側還流ダイオード181と、後述するダイオード19といった半導体スイッチング素子を用いる場合を例示しているが、トランジスタ素子等といった別の半導体スイッチング素子を用いてもよい。
 次に、本実施の形態1におけるDC/DCコンバータ10の動作について、図2を参照しながら説明する。図2は、本発明の実施の形態1によるDC/DCコンバータ10の動作を説明するための、DC/DCコンバータ10の各部のパラメータの変化を示す波形図である。
 図2では、インバータ回路11のスイッチング素子11a~11dのそれぞれに、制御回路40によって出力されるゲート信号41のタイミングチャートが図示されている。また、図2では、このようなゲート信号41に従って、スイッチング素子11a~11dがソフトスイッチング方式で切り替え制御された場合の、DC/DCコンバータ10の各部のパラメータの変化を波形で示している。
 具体的には、スイッチング素子11a~11dのそれぞれのドレイン-ソース間電圧(Vds)と、トランス13、一次側還流ダイオード17a、17b、整流回路14のダイオード14a~14d、および二次側還流ダイオード181のそれぞれに流れる電流との変化を示している。
 なお、図2において、一次側還流ダイオード17bと、ダイオード14b、14cとに流れる電流は、一点鎖線で表している。また、インバータ回路11において、スイッチング素子11a、11bは、それぞれデューティが50%に近く、どちらもオフする期間を設けて交互にオンする。スイッチング素子11c、11dも同様に、それぞれデューティが50%に近く、どちらもオフする期間を設けて交互にオンする。さらに、スイッチング素子11a、11bと、スイッチング素子11c、11dとの間の位相差を、0°から180°までの範囲で可変して出力制御が行われる。
 次に、図2に示すゲート信号41に従って、スイッチング素子11a~11dが切り替え制御された場合の、各タイミングで回路に流れる電流について、図3A~図3Gを参照しながら説明する。図3A~図3Gは、本発明の実施の形態1によるDC/DCコンバータ10の動作を説明するための電流経路図である。
 時刻t0よりも前の期間では、スイッチング素子11a、11dのそれぞれのゲート信号41がオン状態である。したがって、図3Aに示すように、一次側では、直流電源20、スイッチング素子11a、共振リアクトル12、トランス一次側13a、スイッチング素子11d、直流電源20の経路で電流が流れる。また、二次側では、トランス二次側13b、ダイオード14a、平滑リアクトル15、負荷30、ダイオード14d、トランス二次側13bの経路で電流が流れる。そのため、負荷30に直流電源20からの電流が供給されることとなる。
 時刻t0において、スイッチング素子11dのゲート信号41をオフとする。この場合、時刻t0から時刻t1までの期間では、図3Bに示すように、スイッチング素子11dに流れていた電流が共振コンデンサ111dを充電する方向に流れる。したがって、スイッチング素子11dのドレイン-ソース間電圧Vdsは、徐々に増加する。同時に、共振リアクトル12、トランス一次側13a、共振コンデンサ111c、スイッチング素子11a、共振リアクトル12の経路で、共振コンデンサ111cを放電する電流が流れる。したがって、スイッチング素子11cのドレイン-ソース間電圧Vdsは、徐々に減少する。
 ここで、スイッチング素子11c、11dのそれぞれのドレイン-ソース間電圧Vdsが直流電源20の電圧の半分(=Vin/2)となった場合を考える。このような場合であっても、共振リアクトル12が持つエネルギーによって、図3Bに示す電流経路で電流が流れ続けるとともに、時刻t1において、スイッチング素子11c、11dのドレイン-ソース間電圧Vdsは、それぞれゼロ、Vinとなる。このとき、図3Cに示すように、一次側では、共振リアクトル12、トランス一次側13a、スイッチング素子11cのボディダイオード、スイッチング素子11a、共振リアクトル12の経路で電流が流れる。
 時刻t1以降の、図3Cに示す電流経路でスイッチング素子11cのボディダイオードに電流が流れている状態で、時刻t2において、スイッチング素子11cのゲート信号41をオンとすることで、ZVSが成立する。
 また、t1以降で、トランス一次側13aに印加される電圧がほぼなくなるので、二次側還流ダイオード181がオンとなる。整流回路14の出力側には、互いに磁気的に結合された平滑リアクトル15および還流リアクトル182の巻数比に応じた電圧Vcが印加される。なお、電圧Vcは、下式(1)に従って算出される。
Figure JPOXMLDOC01-appb-M000001
 ここで、上式(1)において、N1は、平滑リアクトル15の巻数であり、N2は、還流リアクトル182の巻数であり、Voutは、出力直流電圧であり、Vf10は、二次側還流ダイオード181の順方向電圧である。
 また、Vc>0となるように、巻数N1および巻数N2を設定すると、整流回路14に逆電圧が印加され、ダイオード14a~14dがオフとなる。したがって、整流回路14およびトランス二次側13bに電流が流れなくなる。すなわち、整流回路14の出力側に正の電圧が印加されるとともに、整流回路14およびトランス二次側13bに電流が流れなくなるように、平滑リアクトル15の巻数N1と、還流リアクトル182の巻数N2とを設定することとなる。
 その結果、図3Dに示すように、二次側では、平滑リアクトル15、負荷30、還流リアクトル182、二次側還流ダイオード181、平滑リアクトル15の経路で電流が流れる。また、一次側では、トランス一次側13aに電流が流れなくなる。しかしながら、一次側還流ダイオード17aがあるので、共振リアクトル12、一次側還流ダイオード17a、スイッチング素子11a、共振リアクトル12の経路で電流が流れ続ける。
 なお、時刻t2から時刻t3までの期間において、ダイオード14a、14dに電流が流れなくなり、オフする際にリカバリ電流が発生する。しかしながら、この場合、整流回路14の出力側には、電圧Vcが印加されているのみである。したがって、電圧Vcを整流回路14のダイオード14a~14dの耐圧よりも十分小さく設定しておけば、リカバリ電流の影響によるサージは、問題とはならない。
 このように、直流電源20の電圧がトランス一次側13aに印加されていない期間に、二次側還流回路18は、負荷電流を迂回させて負荷電流を負荷30に還流させるので、整流回路14に流れる負荷電流が抑制される。すなわち、負荷電流は、整流回路14ではなく、還流リアクトル182と二次側還流ダイオード181とが直列に接続された直列回路を環流経路として流れる。したがって、整流回路14の還流経路にあるダイオード二つ分(すなわち、ダイオード14aおよび14d)ではなく、二次側還流ダイオード181一つ分のリカバリ電流の影響によるサージが発生するので、全体としてサージを低減することができる。
 時刻t3において、スイッチング素子11aのゲート信号41をオフとする。この場合、時刻t3から時刻t4までの期間では、図3Eに示すように、スイッチング素子11aに流れていた電流が共振コンデンサ111aを充電する方向に流れる。したがって、スイッチング素子11aのドレイン-ソース間電圧Vdsは、徐々に増加する。同時に、共振リアクトル12、一次側還流ダイオード17a、直流電源20、共振コンデンサ111b、共振リアクトル12の経路で、共振コンデンサ111bを放電する電流が流れる。したがって、スイッチング素子11bのドレイン-ソース間電圧Vdsは、徐々に減少する。
 ここで、スイッチング素子11a、11bのそれぞれのドレイン-ソース間電圧Vdsが直流電源20の電圧の半分(=Vin/2)となった場合を考える。このような場合であっても、共振リアクトル12が持つエネルギーによって、図3Eに示す電流経路で電流が流れ続けるとともに、時刻t4において、スイッチング素子11a、11bのドレイン-ソース間電圧は、それぞれVin、ゼロとなる。このとき、時刻t4から時刻t5までの期間において、図3Fに示すように、一次側では、共振リアクトル12、一次側還流ダイオード17a、直流電源20、スイッチング素子11bのボディダイオード、共振リアクトル12の経路で電流が流れる。
 時刻t5において、スイッチング素子11bのゲート信号41をオンとする。この場合、ZVSが成立する。また、時刻t5から時刻t6までの期間において、図3Gに示すように、一次側では、直流電源20、スイッチング素子11c、トランス一次側13a、共振リアクトル12、スイッチング素子11b、直流電源20の経路で電流が流れる。一方、二次側では、トランス二次側13b、ダイオード14c、平滑リアクトル15、負荷30、ダイオード14b、トランス二次側13bの経路で電流が流れる。そのため、負荷30に直流電源20からの電流が供給されることとなる。
 以上で説明した時刻t0から時刻t6までの期間が半周期であり、その半周期の中でスイッチング素子11a、11dをオフし、スイッチング素子11b、11cをオンする。残りの半周期が時刻t6から時刻t12までの期間であり、その残りの半周期の中で、時刻t0から時刻t6までの期間と同様の制御を行うことで、スイッチング素子11b、11cをオフし、スイッチング素子11a、11dをオンする。このような時刻t0~時刻t12までの期間を一周期として、同様の制御を繰り返すことで、負荷30に流れる負荷電流が継続して流れる。
 以上、本実施の形態1によれば、整流回路の出力側に接続され、トランスの一次側に直流電源の電圧が印加されていない期間に、負荷に流れる負荷電流を迂回させるための二次側還流回路と、一端が共振リアクトルとトランスの一次側との接続点に接続され、他端が直流電源の一端に接続される第1の一次側還流用半導体スイッチング素子と、一端が直流電源の他端に接続され、他端が共振リアクトルとトランスの一次側との接続点に接続される第2の一次側還流用半導体スイッチング素子と、を備える構成を有する。また、第1の一次側還流半導体スイッチング素子および第2の一次側還流半導体スイッチング素子のいずれか一方は、トランスの一次側に直流電源の電圧が印加されていない期間に、共振リアクトルに流れる電流を迂回させる。さらに、平滑リアクトルと負荷とが直列に接続された直列回路は、整流回路の出力側に接続され、二次側還流回路は、整流回路の出力側と直列回路との間に位置し、直列回路と並列に接続される。
 これにより、ソフトスイッチング方式での駆動によるZVS成立性を確保しつつ、リカバリ電流の影響によるサージの発生を抑制することができる。また、スナバ回路を設けていないので、スナバ回路等の二次側のサージ対策が不要となるとともに、一次側の半導体スイッチング素子の損失を低減することができる。その結果、DC/DCコンバータの高効率化および小型化が実現可能となる。
 なお、本実施の形態1では、二次側還流ダイオード181は、整流回路14のダイオード14a~14dよりも、スイッチング時に発生するリカバリ電流の大きさが小さい特性を有するように設計すればよい。また、二次側還流ダイオード181は、ワイドバンドギャップ半導体(例えば、炭化珪素、窒化ガリウム系材料またはダイヤモンド等)で形成されていてもよい。特に、二次側還流ダイオード181をワイドバンドギャップ半導体で形成されたショットキーバリアダイオード等とすることで、リカバリ電流の影響によるサージをより低減することができる。
 また、本実施の形態1では、巻数N1および巻数N2について、直流電源20の電圧がトランス一次側13aに印加されていない期間に、整流回路14およびトランス二次側13bに電流が流れないように設定する場合を例示した。しかしながら、整流回路14およびトランス二次側13bに流してもよい電流の許容範囲を規定し、この許容範囲となるように、巻数N1および巻数N2を設定してもよい。二次側に流れる還流電流を、整流回路14のダイオード14a~14dと二次側還流ダイオード181とに分流させることで、リカバリの発生に起因するフォワード電流を低減することができる。
 また、本実施の形態1では、DC/DCコンバータ10の二次側の具体的な回路構成について、様々な変形例が挙げられる。以下、図4~図10を参照しながら説明する。図4~図10は、本発明の実施の形態1におけるDC/DCコンバータ10の二次側の変形例を示す構成図である。
 本実施の形態1では、二次側還流ダイオード181のアノードが還流リアクトル182の一端と接続され、カソードが整流回路14の正側出力端子に接続され、還流リアクトル182の他端が整流回路14の負側出力端子に接続される場合を例示した。しかしながら、図4に示すように、二次側還流ダイオード181のカソードが還流リアクトル182の一端と接続され、アノードが整流回路14の負側出力端子に接続され、還流リアクトル182の他端が整流回路14の正側出力端子に接続された構成としてもよい。
 このように構成することで、磁気的に結合している平滑リアクトル15と還流リアクトル182とにおいて、各リアクトルが整流回路14の出力側の正側と接続する端子を共用することができる。この結果、平滑リアクトル15と還流リアクトル182との結合リアクトルとしての端子数を削減することができる。
 本実施の形態1では、平滑リアクトル15は、整流回路14の正側出力端子と、負荷30の正側端子との間にある場合を例示したが、整流回路14の負側出力端子と、負荷30の負側端子との間にあってもよい。
 また、整流回路14の正側出力端子と負荷30の正側端子との間と、整流回路14の負側出力端子と負荷30の負側端子との間との両方にあってもよい。この場合、図5に示すように、平滑リアクトル15aの一端が整流回路14の正側出力端子に接続され、他端が負荷30の正側端子に接続される。また、平滑リアクトル15bの一端が整流回路14の負側出力端子に接続され、他端が負荷30の負側端子に接続される。
 このような構成において、図5に示すように、平滑リアクトル15aと平滑リアクトル15bと還流リアクトル182とは、すべて磁気的に結合していてもよい。また、図6に示すように、平滑リアクトル15aと還流リアクトル182のみが磁気的に結合していてもよい。さらに、図7に示すように、平滑リアクトル15bと還流リアクトル182のみが磁気的に結合していてもよい。
 また、平滑リアクトル15aと磁気的に結合した還流リアクトル182aと、平滑リアクトル15bと磁気的に結合した還流リアクトル182bとを、還流リアクトル182として、二次側還流回路18に設けてもよい。この場合、図8に示すように、還流リアクトル182aの一端が整流回路14の正側出力端子に接続され、他端が二次側還流ダイオード181のカソードに接続される。また、還流リアクトル182bの一端が整流回路14の負側出力端子に接続され、他端が二次側還流ダイオード181のアノードに接続される。
 なお、図8では、還流リアクトル182aおよび182bと、二次側還流ダイオード181とで構成される直列回路において、整流回路14の正側出力端子から、還流リアクトル182a、二次側還流ダイオード181、還流リアクトル182bの順で接続されている場合を例示したが、これらを接続する順番は任意でよい。また、図9に示すように、平滑リアクトル15aと、平滑リアクトル15bと、還流リアクトル182aと、還流リアクトル182bとは、すべて磁気的に結合していてもよい。
 本実施の形態1では、二次側還流ダイオード181と還流リアクトル182とが直列に接続された直列回路を有するように二次側還流回路18を構成する場合を例示した。しかしながら、図10に示すように、還流コンデンサ183と二次側還流ダイオード181とが直列に接続された直列回路を有するように二次側還流回路18を構成してもよい。
 具体的には、還流コンデンサ183の一端が二次側還流ダイオード181のカソードに接続され、他端が整流回路14の正側出力端子に接続される。また、二次側還流ダイオード181のアノードは、整流回路14の負側出力端子に接続される。さらに、バイパス用のダイオード19のアノードが二次側還流ダイオード181のカソードと還流コンデンサ183との接続点に接続され、カソードが平滑リアクトル15と負荷30との接続点に接続される。
 ここで、図10におけるDC/DCコンバータ10の構成において、先の図2に示すゲート信号41に従って、スイッチング素子11a~11dが切り替え制御された場合の、各タイミングで回路に流れる電流について、図11Aおよび図11Bを参照しながら説明する。図11Aおよび図11Bは、図10のDC/DCコンバータ10の動作を説明するための電流経路図である。
 図11Aには、トランス一次側13aに直流電源20の入力直流電圧Vinが印加されている期間(すなわち、先の図2の時刻t0以前に相当)の電流経路が示されている。具体的には、図11Aには、スイッチング素子11a、11dがオンしている場合の電流経路が示されている。
 図11Aに示すように、一次側では、直流電源20、スイッチング素子11a、共振リアクトル12、トランス一次側13a、スイッチング素子11d、直流電源20の経路で電流が流れる。
 また、二次側では、トランス二次側13b、ダイオード14a、還流コンデンサ183、ダイオード19、負荷30、ダイオード14d、トランス二次側13bの経路で電流が流れる。そのため、負荷30に直流電源20からの電流が供給されることとなる。さらに、還流コンデンサ183およびダイオード19のそれぞれと並列接続の関係にある平滑リアクトル15にも電流が流れる。
 図11Bには、トランス一次側13aに直流電源20の入力直流電圧Vinが印加されていない期間(すなわち、先の図2の時刻t2から時刻t3までの期間に相当)の電流経路が示されている。
 図11Bに示すように、二次側では、還流コンデンサ183が充電されているので、還流コンデンサ183、平滑リアクトル15、負荷30、二次側還流ダイオード181、還流コンデンサ183の経路で電流が流れ、整流回路14の出力側には、正電圧が印加される。したがって、整流回路14およびトランス二次側13bには電流が流れず、トランス一次側13aにも電流が流れない。
 また、一次側では、トランス一次側13aに電流が流れなくなるが、一次側還流ダイオード17aがあるので、共振リアクトル12、一次側還流ダイオード17a、スイッチング素子11a、共振リアクトル12の経路で電流が流れ続ける。
 以上のように、二次側還流回路18として、還流コンデンサ183と二次側還流ダイオード181とを直列接続した構成としても、整流回路14に流れる還流電流を減少させて、リカバリを低減することができ、サージの発生を抑制する。またそれと同時に、一次側に流れる還流電流を維持することができ、ZVS成立性を維持することができる。
 なお、本実施の形態1では、位相シフトソフトスイッチング方式でDC/DCコンバータ10が駆動する場合について説明したが、位相シフトソフトスイッチングに限らず、トランス一次側13aに直流電源20の電圧が印加されていない期間に、トランス一次側13aに還流電流が流れる方式ならば、同様の効果が期待できる。
 実施の形態2.
 先の実施の形態1では、位相シフトソフトスイッチング方式でDC/DCコンバータ10が駆動する場合について説明した。これに対して、本発明の実施の形態2では、ハードスイッチング方式でDC/DCコンバータ10が駆動する場合について説明する。なお、本実施の形態2では、先の実施の形態1と同様の点については説明を省略し、先の実施の形態1と異なる点を中心に説明する。
 図12は、本発明の実施の形態2によるDC/DCコンバータ10Aの回路構成図である。なお、図12では、先の実施の形態1と同様に、直流電源20と、負荷30と、DC/DCコンバータ10Aの動作を制御する制御回路40とを併せて図示している。
 図12において、DC/DCコンバータ10Aは、インバータ回路11と、絶縁されたトランス13と、整流回路14と、平滑リアクトル15と、平滑コンデンサ16と、二次側還流回路18とを備える。
 ここで、先の実施の形態1におけるDC/DCコンバータ10に対するDC/DCコンバータ10Aの相違点としては、以下の点がある。すなわち、一次側において、共振コンデンサ111a~111dと、共振リアクトル12と、一次側還流ダイオード17aおよび17bとが設けられていない点である。また、制御回路40は、スイッチング素子11a~11dのそれぞれをソフトスイッチング方式ではなく、ハードスイッチング方式で切り替え制御する点である。なお、スイッチング素子11a~11dのそれぞれをハードスイッチング方式で切り替え制御する具体的な制御例については、後述の図13を参照しながら説明する。
 次に、本実施の形態2におけるDC/DCコンバータ10Aの動作について、図13を参照しながら説明する。図13は、本発明の実施の形態2によるDC/DCコンバータ10Aの動作を説明するための、DC/DCコンバータ10Aの各部のパラメータの変化を示す波形図である。
 図13では、インバータ回路11のスイッチング素子11a~11dのそれぞれに、制御回路40によって出力されるゲート信号41のタイミングチャートが図示されている。また、図13では、このようなゲート信号41に従って、スイッチング素子11a~11dがハードスイッチング方式で切り替え制御された場合の、DC/DCコンバータ10の各部のパラメータの変化を波形で示している。
 具体的には、スイッチング素子11a~11dのそれぞれのドレイン-ソース間電圧(Vds)と、トランス13、整流回路14のダイオード14a~14d、および二次側還流ダイオード181のそれぞれに流れる電流との変化を示している。
 なお、図13において、ダイオード14b、14cに流れる電流は、一点鎖線で表している。また、インバータ回路11において、スイッチング素子11a、11dの組み合わせを同時にオンする。同様に、スイッチング素子11b、11cの組み合わせを同時にオンする。また、すべてオフする期間を設けるとともに、スイッチング素子11a、11dの組み合わせと、スイッチング素子11b、11cの組み合わせとを、交互にオンする。なお、スイッチング素子11a、11dと、スイッチング素子11b、11cとのそれぞれのデューティを可変して出力制御が行われる。
 次に、図13に示すゲート信号41に従って、スイッチング素子11a~11dが切り替え制御された場合の、各タイミングで回路に流れる電流について、図14A~図14Cを参照しながら説明する。図14A~図14Cは、本発明の実施の形態2によるDC/DCコンバータ10Aの動作を説明するための電流経路図である。
 時刻t0より前の期間では、スイッチング素子11a、11dのゲート信号41がオン状態である。したがって、図14Aに示すように、一次側では、直流電源20、スイッチング素子11a、トランス一次側13a、スイッチング素子11d、直流電源20の経路で電流が流れる。また、二次側では、トランス二次側13b、ダイオード14a、平滑リアクトル15、負荷30、ダイオード14d、トランス二次側13bの経路で電流が流れる。そのため、負荷30に直流電源20からの電流が供給されることとなる。
 時刻t0において、スイッチング素子11a、11dのゲート信号41をオフとする。この場合、一次側では、電流が流れなくなり、スイッチング素子11a~11dのドレイン-ソース間電圧はVin/2となる。また、二次側では、図14Bに示すように、トランス一次側13aに電圧が印加されないので、トランス二次側13bにも電圧が発生しない。したがって、二次側還流ダイオード181がオンとなり、整流回路14の出力側には、上式(1)で示した電圧Vcが印加される。
 ここで、先の実施の形態1と同様に、Vc>0となるように巻数N1、N2を設定する場合を考える。この場合、時刻t0から時刻t1までの期間において、整流回路14に逆電圧が印加され、ダイオード14a~14dがオフとなるので、整流回路14に電流が流れなくなる。また、二次側では、平滑リアクトル15、負荷30、還流リアクトル182、二次側還流ダイオード181、平滑リアクトル15の経路を電流が流れる。
 なお、時刻t0から時刻t1までの期間において、ダイオード14a、14dに電流が流れなくなりオフする際にリカバリ電流が発生する。しかしながら、この場合、整流回路14の出力側には、電圧Vcが印加されているのみである。したがって、電圧Vcを整流回路14のダイオード14a~14dの耐圧よりも十分小さく設定しておけば、リカバリ電流の影響によるサージは、問題とはならない。
 このように、直流電源20の電圧がトランス一次側13aに印加されていない期間に、二次側還流回路18は、負荷電流を迂回させて負荷電流を還流させるので、整流回路14に流れる負荷電流が抑制される。すなわち、負荷電流は、整流回路14ではなく、還流リアクトル182と二次側還流ダイオード181とが直列に接続された直列回路に流れる。したがって、整流回路14の還流経路にあるダイオード二つ分(すなわち、ダイオード14aおよび14d)ではなく、二次側還流ダイオード181一つ分のリカバリ電流の影響によるサージが発生するので、全体としてサージを低減することができる。
 時刻t1において、スイッチング素子11b、11cのゲート信号41をオンとする。この場合、時刻t1から時刻t2までの期間において、図14Cに示すように、一次側では、直流電源20、スイッチング素子11c、トランス一次側13a、スイッチング素子11b、直流電源20の経路で電流が流れる。二次側では、トランス二次側13b、ダイオード14c、平滑リアクトル15、負荷30、ダイオード14b、トランス二次側13bの経路で電流が流れる。そのため、負荷30に直流電源20からの電流が供給される。
 以上で説明した時刻t0から時刻t2までの期間が半周期であり、その半周期の中でスイッチング素子11a、11dをオフし、スイッチング素子11b、11cをオンする。残りの半周期が時刻t2から時刻t4までの期間であり、その残りの半周期の中で、時刻t0から時刻t2までの期間と同様の制御を行うことで、スイッチング素子11b、11cをオフし、スイッチング素子11a、11dをオンする。このような時刻t0~時刻t4までの期間を一周期として、同様の制御を繰り返すことで、負荷30に流れる負荷電流が継続して流れる。
 以上、本実施の形態2によれば、整流回路の出力側に接続され、トランスの一次側に直流電源の電圧が印加されていない期間に、負荷に流れる負荷電流を迂回させるための二次側還流回路を備える構成を有する。また、平滑リアクトルと負荷とが直列に接続された直列回路は、整流回路の出力側に接続され、二次側還流回路は、整流回路の出力側と直列回路との間に位置し、直列回路と並列に接続される。
 これにより、リカバリ電流の影響によるサージの発生を抑制することができる。また、スナバ回路を設けていないので、スナバ回路等の二次側のサージ対策が不要となるとともに、一次側の半導体スイッチング素子の損失を低減することができ、その結果、DC/DCコンバータの高効率化および小型化が実現可能となる。
 なお、本実施の形態2において、DC/DCコンバータ10Aの二次側については、先の実施の形態1と同様の構成であるので、先の実施の形態1で開示した種々の変形例を適用した場合であっても同様の効果が得られる。
 また、本実施の形態1、2では、整流回路14の構成例として、フルブリッジ型の整流回路を用いた場合を例示したが、センタータップ型の整流回路を用いてもよい。

Claims (16)

  1.  ソフトスイッチング方式で切り替え制御される複数のインバータ用半導体スイッチング素子を有し、入力側に接続される直流電源の直流電力を交流電力に変換するインバータ回路と、
     複数の整流用半導体スイッチング素子を有する整流回路と、
     一次側が前記インバータ回路の出力側に接続され、二次側が前記整流回路の入力側に接続されるトランスと、
     前記インバータ回路の出力側と、前記トランスの一次側との間に挿入される共振リアクトルと、
     前記整流回路の出力側に接続される平滑リアクトルと、
     を備え、前記平滑リアクトルと直列に接続される負荷に前記直流電力をDC/DC変換して出力するDC/DCコンバータであって、
     前記整流回路の出力側に接続され、前記トランスの一次側に前記直流電源の電圧が印加されていない期間に、前記負荷に流れる負荷電流を迂回させるための二次側還流回路と、
     一端が前記共振リアクトルと前記トランスの一次側との接続点に接続され、他端が前記直流電源の一端に接続される第1の一次側還流用半導体スイッチング素子と、
     一端が前記直流電源の他端に接続され、他端が前記共振リアクトルと前記トランスの一次側との接続点に接続される第2の一次側還流用半導体スイッチング素子と、
     をさらに備え、
     前記平滑リアクトルと前記負荷とが直列に接続された直列回路は、前記整流回路の出力側に接続され、
     前記二次側還流回路は、前記整流回路の出力側と前記直列回路との間に位置し、前記直列回路と並列に接続され、
     前記第1の一次側還流用半導体スイッチング素子および前記第2の一次側還流用半導体スイッチング素子のいずれか一方は、
      前記トランスの一次側に前記直流電源の電圧が印加されていない期間に、前記共振リアクトルに流れる電流を迂回させる
     DC/DCコンバータ。
  2.  ハードスイッチング方式で切り替え制御される複数のインバータ用半導体スイッチング素子を有し、入力側に接続される直流電源の直流電力を交流電力に変換するインバータ回路と、
     複数の整流用半導体スイッチング素子を有する整流回路と、
     一次側が前記インバータ回路の出力側に接続され、二次側が前記整流回路の入力側に接続されるトランスと、
     前記整流回路の出力側に接続される平滑リアクトルと、
     を備え、前記平滑リアクトルと直列に接続される負荷に前記直流電力をDC/DC変換して出力するDC/DCコンバータであって、
     前記整流回路の出力側に接続され、前記トランスの一次側に前記直流電源の電圧が印加されていない期間に、前記負荷に流れる負荷電流を迂回させるための二次側還流回路をさらに備え、
     前記平滑リアクトルと前記負荷とが直列に接続された直列回路は、前記整流回路の出力側に接続され、
     前記二次側還流回路は、前記整流回路の出力側と前記直列回路との間に位置し、前記直列回路と並列に接続される
     DC/DCコンバータ。
  3.  前記二次側還流回路は、
      前記トランスの一次側に前記直流電源の電圧が印加されていない期間に、前記整流回路の出力側に正電圧を印加する
     請求項1または2に記載のDC/DCコンバータ。
  4.  前記二次側還流回路は、
      二次側還流用半導体スイッチング素子と、
      前記二次側還流用半導体スイッチング素子と直列に接続され、前記平滑リアクトルと磁気的に結合する還流リアクトルと、
     を有する請求項1から3のいずれか1項に記載のDC/DCコンバータ。
  5.  前記還流リアクトルの巻数は、
      前記トランスの一次側に前記直流電源の電圧が印加されていないときに、前記整流回路の出力側に正電圧が印加される巻数となるように設定される
     請求項4に記載のDC/DCコンバータ。
  6.  前記二次側還流回路は、
      前記二次側還流用半導体スイッチング素子の一端が前記還流リアクトルの一端に接続され、
      前記二次側還流用半導体スイッチング素子の他端が前記整流回路の正側出力端子に接続され、
      前記還流リアクトルの他端が前記整流回路の負側出力端子に接続される
     請求項4または5に記載のDC/DCコンバータ。
  7.  前記二次側還流回路は、
      前記二次側還流用半導体スイッチング素子の一端が前記還流リアクトルの一端に接続され、
      前記二次側還流用半導体スイッチング素子の他端が前記整流回路の負側出力端子に接続され、
      前記還流リアクトルの他端が前記整流回路の正側出力端子に接続される
     請求項4または5に記載のDC/DCコンバータ。
  8.  前記平滑リアクトルは、
      一端が前記整流回路の正側出力端子に接続され、他端が前記負荷の正側端子に接続される第1の平滑リアクトルと、
      一端が前記整流回路の負側出力端子に接続され、他端が前記負荷の負側端子に接続される第2の平滑リアクトルと、
     を有する請求項1から7のいずれか1項に記載のDC/DCコンバータ。
  9.  前記第1の平滑リアクトルは、前記第2の平滑リアクトルと磁気的に結合する
     請求項8に記載のDC/DCコンバータ。
  10.  前記還流リアクトルは、前記第1の平滑リアクトルまたは前記第2の平滑リアクトルと磁気的に結合する
     請求項8に記載のDC/DCコンバータ。
  11.  前記還流リアクトルは、
      前記第1の平滑リアクトルと磁気的に結合する第1の還流リアクトルと、
      前記第2の平滑リアクトルと磁気的に結合する第2の還流リアクトルと、
     を有する請求項8に記載のDC/DCコンバータ。
  12.  前記第1の平滑リアクトルと、前記第2の平滑リアクトルと、前記第1の還流リアクトルと、前記第2の還流リアクトルとは、磁気的に結合する
     請求項11に記載のDC/DCコンバータ。
  13.  前記第1の還流リアクトルは、
      一端が前記二次側還流用半導体スイッチング素子の一端に接続され、他端が前記整流回路の正側出力端子に接続され、
     前記第2の還流リアクトルは、
      一端が前記二次側還流用半導体スイッチング素子の他端に接続され、他端が前記整流回路の負側出力端子に接続される
     請求項11または12に記載のDC/DCコンバータ。
  14.  前記二次側還流回路は、
      二次側還流用半導体スイッチング素子と、
      一端が前記二次側還流用半導体スイッチング素子の一端と直列に接続された還流コンデンサと、
      一端が前記還流コンデンサと前記二次側還流用半導体スイッチング素子との接続点に接続され、他端が前記平滑リアクトルと前記負荷との接続点に接続されたバイパス用半導体スイッチング素子と、
     を有し、
     前記還流コンデンサの他端は、前記整流回路の正側出力端子に接続され、
     前記二次側還流用半導体スイッチング素子の他端は、前記整流回路の負側出力端子に接続される
     請求項1に記載のDC/DCコンバータ。
  15.  前記二次側還流用半導体スイッチング素子は、前記整流用半導体スイッチング素子よりも、スイッチング時に発生するリカバリ電流の大きさが小さい特性を有する
     請求項3から14のいずれか1項に記載のDC/DCコンバータ。
  16.  前記二次側還流用半導体スイッチング素子は、ワイドバンドギャップ半導体によって形成された、ダイオードまたはトランジスタを用いて構成される
     請求項3から15のいずれか1項に記載のDC/DCコンバータ。
PCT/JP2015/074031 2015-01-20 2015-08-26 Dc/dcコンバータ WO2016117157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580072963.5A CN107112904B (zh) 2015-01-20 2015-08-26 Dc/dc转换器
US15/525,661 US10193460B2 (en) 2015-01-20 2015-08-26 DC/DC converter having current diversion circuit
EP15878846.3A EP3249795B1 (en) 2015-01-20 2015-08-26 Dc/dc converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015008369A JP6009003B2 (ja) 2015-01-20 2015-01-20 Dc/dcコンバータ
JP2015-008369 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117157A1 true WO2016117157A1 (ja) 2016-07-28

Family

ID=56416720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074031 WO2016117157A1 (ja) 2015-01-20 2015-08-26 Dc/dcコンバータ

Country Status (5)

Country Link
US (1) US10193460B2 (ja)
EP (1) EP3249795B1 (ja)
JP (1) JP6009003B2 (ja)
CN (1) CN107112904B (ja)
WO (1) WO2016117157A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075713B (zh) * 2016-03-15 2020-11-06 Abb瑞士股份有限公司 双向dc-dc变流器及其控制方法
KR102051570B1 (ko) * 2017-04-03 2019-12-05 한국과학기술원 멀티 패스를 가지는 컨버터 및 이의 제어 방법
WO2018186610A1 (ko) 2017-04-03 2018-10-11 한국과학기술원 멀티 패스를 가지는 컨버터 및 이의 제어 방법
KR102060244B1 (ko) * 2018-05-09 2020-02-11 한국과학기술원 결합된 출력 인덕터를 사용한 새로운 정류기 구조를 갖는 위상­천이 풀­브릿지 컨버터
JP2021132477A (ja) 2020-02-20 2021-09-09 矢崎総業株式会社 電源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198836A (ja) * 1997-09-10 1999-04-09 Korea Electrotechnol Inst 出力電流のリプル(ripple)低減の可能なフル・ブリッジDC/DCコンバータの0電圧/0電流スイッチングのための回路
US5936853A (en) * 1998-03-06 1999-08-10 Lucent Technologies Inc. Power converter having a low-loss clamp and method of operation thereof
US20080043495A1 (en) * 2006-08-16 2008-02-21 Aaron Jungreis Clamp diode reset in a power converter
JP2008187801A (ja) * 2007-01-29 2008-08-14 Tdk Corp スイッチング電源装置
US20120147629A1 (en) * 2010-12-10 2012-06-14 Futurewei Technologies, Inc. Soft Switching DC/DC Converters and Methods
JP2013207950A (ja) * 2012-03-29 2013-10-07 Denso Corp スイッチング電源
JP2013223361A (ja) * 2012-04-18 2013-10-28 Denso Corp スイッチング電源
JP2014050166A (ja) * 2012-08-30 2014-03-17 Panasonic Corp 直流電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673328B2 (ja) 1992-06-22 1997-11-05 株式会社三社電機製作所 Dc−dcコンバータ
JP2004056971A (ja) * 2002-07-23 2004-02-19 Sansha Electric Mfg Co Ltd Dc−dcコンバータ
US6992902B2 (en) * 2003-08-21 2006-01-31 Delta Electronics, Inc. Full bridge converter with ZVS via AC feedback
US7796405B2 (en) * 2008-04-07 2010-09-14 Dell Products, Lp Phase shifted DC-DC converter with improved efficiency at light load
US7859870B1 (en) * 2008-07-29 2010-12-28 Lockheed Martin Corporation Voltage clamps for energy snubbing
JP5591666B2 (ja) * 2010-11-30 2014-09-17 株式会社ダイヘン Dc−dcコンバータ
JP5472183B2 (ja) * 2011-03-31 2014-04-16 株式会社デンソー スイッチング電源装置
JP2013074767A (ja) 2011-09-29 2013-04-22 Mitsubishi Electric Corp Dc/dcコンバータ
JP5888016B2 (ja) * 2012-03-09 2016-03-16 富士電機株式会社 フルブリッジ型dc/dcコンバータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198836A (ja) * 1997-09-10 1999-04-09 Korea Electrotechnol Inst 出力電流のリプル(ripple)低減の可能なフル・ブリッジDC/DCコンバータの0電圧/0電流スイッチングのための回路
US5936853A (en) * 1998-03-06 1999-08-10 Lucent Technologies Inc. Power converter having a low-loss clamp and method of operation thereof
US20080043495A1 (en) * 2006-08-16 2008-02-21 Aaron Jungreis Clamp diode reset in a power converter
JP2008187801A (ja) * 2007-01-29 2008-08-14 Tdk Corp スイッチング電源装置
US20120147629A1 (en) * 2010-12-10 2012-06-14 Futurewei Technologies, Inc. Soft Switching DC/DC Converters and Methods
JP2013207950A (ja) * 2012-03-29 2013-10-07 Denso Corp スイッチング電源
JP2013223361A (ja) * 2012-04-18 2013-10-28 Denso Corp スイッチング電源
JP2014050166A (ja) * 2012-08-30 2014-03-17 Panasonic Corp 直流電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249795A4 *

Also Published As

Publication number Publication date
JP2016135003A (ja) 2016-07-25
EP3249795A1 (en) 2017-11-29
US20170331385A1 (en) 2017-11-16
CN107112904B (zh) 2019-08-16
EP3249795B1 (en) 2023-01-11
JP6009003B2 (ja) 2016-10-19
US10193460B2 (en) 2019-01-29
EP3249795A4 (en) 2018-10-17
CN107112904A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US9118259B2 (en) Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current
US10897210B2 (en) DC/DC converter for reducing switching loss in a case where zero voltage switching is not achieved
US9467057B2 (en) Resonant converters and methods
US6483724B1 (en) DC/DC ZVS full bridge converter power supply method and apparatus
JP6008185B2 (ja) 3レベル電力変換装置及びその制御方法
JP6009003B2 (ja) Dc/dcコンバータ
US20120044729A1 (en) Bridgeless coupled inductor boost power factor rectifiers
JP2013188015A (ja) 直流電源装置
JP6201586B2 (ja) Dc/dcコンバータ
JP5687373B1 (ja) Dc/dcコンバータ
US7505289B2 (en) Flyback DC/DC converter using clamp diode
US6487094B1 (en) High efficiency DC-DC power converter
US6477064B1 (en) High efficiency DC-DC power converter with turn-off snubber
JP6999387B2 (ja) 電力変換装置
JP6129244B2 (ja) Dc/dcコンバータ
WO2013136623A1 (ja) 電力変換器及びその制御装置
JP6607749B2 (ja) デュアルアクティブブリッジ回路
JP2017077096A (ja) 電力変換装置
JP2005318757A (ja) スイッチング電源装置
JP2015154525A (ja) 双方向フライバックコンバータ
JP5930978B2 (ja) Dc/dcコンバータ
JP2006191706A (ja) 直流変換装置
JP2017204972A (ja) 電力変換装置
WO2021156981A1 (ja) スイッチングコンバータ
WO2024088530A1 (en) Switching cell for an electric power converter, method of operating a switching cell, and electric power converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878846

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015878846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15525661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE