WO2016114041A1 - タッチ入力センサの製造方法及び感光性導電フィルム - Google Patents

タッチ入力センサの製造方法及び感光性導電フィルム Download PDF

Info

Publication number
WO2016114041A1
WO2016114041A1 PCT/JP2015/084510 JP2015084510W WO2016114041A1 WO 2016114041 A1 WO2016114041 A1 WO 2016114041A1 JP 2015084510 W JP2015084510 W JP 2015084510W WO 2016114041 A1 WO2016114041 A1 WO 2016114041A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
transparent
conductive film
photosensitive resin
photosensitive
Prior art date
Application number
PCT/JP2015/084510
Other languages
English (en)
French (fr)
Inventor
知広 山岡
面 了明
勇人 中家
西村 剛
江本 佳隆
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Priority to KR1020177000980A priority Critical patent/KR101878109B1/ko
Priority to CN201580047364.8A priority patent/CN106687892B/zh
Publication of WO2016114041A1 publication Critical patent/WO2016114041A1/ja
Priority to US15/477,937 priority patent/US9874814B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2032Simultaneous exposure of the front side and the backside
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for manufacturing a touch input sensor and a photosensitive conductive film that can be used in the manufacturing method.
  • a touch input sensor such as a touch panel is used as an input device provided in an electronic device such as a multi-function mobile phone (smart phone) or a portable game machine.
  • the touch input sensor includes, for example, a transparent substrate [substrate 20] and transparent electrodes for X coordinate detection and Y coordinate detection [transparent electrode 103] as disclosed in JP2013-156655A (Patent Document 1). , 104].
  • the touch input sensor of Patent Literature 1 is obtained by laminating a photosensitive resin layer and a conductive film on a substrate, pattern-exposing the laminate, exposing an uncured portion in the presence of oxygen, and then developing the laminate. It is manufactured through a procedure of forming a transparent electrode made of a conductive pattern.
  • a transparent electrode for X coordinate detection is formed through each of the above-described steps of “lamination ⁇ pattern exposure ⁇ exposure in the presence of oxygen ⁇ development”, and then the same process is performed to detect Y coordinate.
  • the transparent electrode is formed (see paragraph 0125 of Patent Document 1).
  • the exposure process is required four times in total and the number of processes is increased, and since it is necessary to remove the base film after pattern exposure, there are many restrictions on the apparatus, and so on. There was a lacking aspect. Further, there are cases where the alignment of the transparent electrode for X coordinate detection and the transparent electrode for Y coordinate detection is not easy.
  • a method of manufacturing a touch input sensor is as follows. Laminating the both sides of the transparent substrate from the transparent substrate side, an intermediate resin layer containing a photosensitive resin and an ultraviolet absorber, and a transparent conductive film in this order, Placing a mask so as to cover the intermediate resin layer and the transparent conductive film on both sides, and performing pattern exposure with ultraviolet rays from both sides; And developing to form transparent electrodes made of the transparent conductive film on both surfaces of the transparent substrate.
  • the photosensitive conductive film according to the present disclosure is A base film; A transparent conductive film disposed on the substrate film; And a photosensitive layer with a UV-cut function, which is disposed on the transparent conductive film and contains a photosensitive resin and an ultraviolet absorber.
  • FIG. Sectional view showing photosensitive conductive film Schematic diagram showing the deposition process
  • Schematic diagram showing pattern exposure process Schematic diagram showing the state at the completion of the pattern exposure process
  • Schematic diagram showing the development process Partial enlarged view in FIG.
  • Schematic diagram showing the overall exposure process Schematic diagram showing the state when the entire exposure process is completed
  • Sectional drawing which shows another aspect of a photosensitive conductive film and a touch input sensor Sectional drawing which shows another aspect of a photosensitive conductive film Sectional drawing which shows another aspect of a photosensitive conductive film
  • the touch input sensor 1 is a touch panel or the like that is provided in an electronic device such as a multi-function mobile phone (smart phone) or a portable game machine, and functions as an input device.
  • the touch input sensor 1 is used by being overlapped with a display device such as a liquid crystal display panel or an organic EL (electroluminescence) display panel.
  • a display device such as a liquid crystal display panel or an organic EL (electroluminescence) display panel.
  • the touch input sensor 1 includes a transparent substrate 10, support layers 12 and 22, transparent electrodes 14 and 24, and routing wires 16 and 26.
  • the first support layer 12, the first transparent electrode 14, and the first routing wiring 16 are provided on one surface (first surface 10a) side of the transparent substrate 10, and the second support layer 22, the second transparent electrode 24, and
  • the second routing wiring 26 is provided on the other surface (second surface 10 b) side of the transparent substrate 10.
  • the first support layer 12 and the first transparent electrode 14 are laminated in this order from the transparent substrate 10 side, and on the second surface 10b side of the transparent substrate 10 from the transparent substrate 10 side.
  • the second support layer 22 and the second transparent electrode 24 are laminated in this order.
  • the touch input sensor 1 according to the present embodiment includes the transparent electrodes 14 and 24 on both surfaces of a single transparent substrate 10, thereby reducing the thickness of the entire sensor.
  • the transparent substrate 10 is a member serving as a base for providing the first transparent electrode 14 and the second transparent electrode 24.
  • the transparent substrate 10 is preferably configured using a material excellent in flexibility, insulation and the like in addition to transparency.
  • the transparent substrate 10 can be made of, for example, a general-purpose resin such as polyethylene terephthalate or acrylic resin, a general-purpose engineering resin such as polyacetal resin or polycarbonate resin, a super engineering resin such as polysulfone resin or polyphenylene sulfide resin, or the like.
  • the transparent substrate 10 is composed of a polyethylene terephthalate film.
  • the transparent substrate 10 may be formed of a glass substrate or the like.
  • the thickness of the transparent substrate 10 can be set to 25 ⁇ m to 100 ⁇ m, for example.
  • the first support layer 12 is disposed on the first surface 10 a of the transparent substrate 10.
  • a plurality (five in this example) of first transparent electrodes 14 are arranged on the first support layer 12. That is, a plurality of first transparent electrodes 14 are provided on the first surface 10 a of the transparent substrate 10 via the first support layer 12.
  • each of the plurality of first transparent electrodes 14 is formed by connecting a plurality (five in this example) of rhombus electrodes arranged side by side in the X-axis direction to each other in the X-axis direction.
  • Each of the first transparent electrodes 14 is formed so as to extend along the X-axis direction as a whole.
  • the plurality of first transparent electrodes 14 are arranged in parallel to each other so as to be aligned in the Y-axis direction.
  • the second carrier layer 22 is disposed on the second surface 10 b of the transparent substrate 10.
  • a plurality (four in this example) of second transparent electrodes 24 are arranged on the second support layer 22. That is, a plurality of second transparent electrodes 24 are provided on the second surface 10 b of the transparent substrate 10 via the second support layer 22.
  • a plurality of (six in this example) a plurality of second transparent electrodes 24 are arranged side by side along the Y-axis direction intersecting (orthogonal in this example) in the X-axis direction.
  • the rhomboid electrodes are connected to each other in the Y-axis direction.
  • Each of the second transparent electrodes 24 is formed so as to extend along the Y-axis direction as a whole.
  • the plurality of second transparent electrodes 24 are arranged in parallel to each other so as to be aligned in the X-axis direction.
  • the plurality of rhombus electrodes constituting the first transparent electrode 14 and the plurality of rhombus electrodes constituting the second transparent electrode 24 are viewed in a plan view (as viewed in a direction perpendicular to the extending surface of the touch input sensor 1). They are arranged in a complementary positional relationship. That is, the rhombus electrode constituting the second transparent electrode 24 is arranged in the non-arrangement region of the rhombus electrode constituting the first transparent electrode 14, and the first transparent electrode is arranged in the non-arrangement region of the rhombus electrode constituting the second transparent electrode 24.
  • the rhombus electrode which comprises 14 is arrange
  • the plurality of first transparent electrodes 14 and the plurality of second transparent electrodes 24 are disposed so as to cover the display area of the display device almost entirely.
  • the first support layer 12 and the second support layer 22 are preferably made of a resin material that is excellent in transparency and electrical insulation. Moreover, it is preferable that the 1st support layer 12 and the 2nd support layer 22 are comprised using the resin material which has moderate hardness and mechanical strength. In the present embodiment, the support layers 12 and 22 are mainly composed of a photosensitive resin (photocurable resin) described later.
  • the first transparent electrode 14 and the second transparent electrode 24 are made of a material having excellent conductivity in addition to transparency.
  • the transparent electrodes 14 and 24 are, for example, metal oxides such as tin oxide, indium oxide, zinc oxide, and metal oxides such as ITO (Indium Tin Oxide), gold, silver, copper, nickel, and alloys thereof, carbon It is composed of nanotubes, graphene, metal mesh, conductive polymer, and the like.
  • the transparent electrodes 14 and 24 are transparent conductive layers configured using these materials. In this embodiment, the transparent electrodes 14 and 24 are comprised by silver nanowire.
  • the capacitance of the first transparent electrode 14 and the second transparent electrode 24 changes according to the proximity / separation of an object to be detected (conductor such as a user's finger or stylus).
  • Capacitance is a concept that includes both self-capacitance and mutual capacitance. That is, the first transparent electrode 14 changes its self-capacitance or the mutual capacitance between the second transparent electrode 24 and the proximity of the object to be detected. / Depending on the separation, the self-capacitance or the mutual capacitance with the first transparent electrode 14 changes.
  • Each of the first transparent electrodes 14 is connected to the first routing wiring 16.
  • Each of the second transparent electrodes 24 is connected to the second routing wiring 26.
  • the routing wirings 16 and 26 are made of a metal such as gold, silver, copper, and nickel, or a conductive paste such as carbon.
  • a connection terminal 28 is provided at the end of the routing wirings 16 and 26 opposite to the transparent electrodes 14 and 24.
  • the transparent electrodes 14 and 24 are connected to a control unit (not shown) via the lead wirings 16 and 26 and the connection terminals 28.
  • the manufacturing method of the touch input sensor 1 includes a preparation process, an adhesion process, a pattern exposure process, a development process, and an entire exposure process. Further, the present embodiment further includes a deactivation process step and a wiring formation step. The preparation process, the deposition process, the pattern exposure process, the development process, the deactivation process, the entire surface exposure process, and the wiring formation process are performed in the order described.
  • the preparation step is a step of preparing an intermediate material used in the manufacturing method of the present embodiment.
  • the transparent substrate 10 and the photosensitive conductive film 3 serving as the base of the support layers 12 and 22 and the transparent electrodes 14 and 24 are prepared.
  • the transparent substrate 10 is provided, for example, in a state where protective films are respectively attached to both surfaces (not shown).
  • a substrate having a minimum light transmittance of 80% or more (preferably 85% or more) in a wavelength region of 450 nm to 650 nm is preferably used. In this way, it is easy to increase the brightness on a touch panel display or the like.
  • the photosensitive conductive film 3 is configured as a laminate of a base film 31, a transparent conductive film 32, and an intermediate resin layer 33.
  • the photosensitive conductive film 3 includes a base film 31, a transparent conductive film 32 disposed on the base film 31, and an intermediate resin layer 33 disposed on the transparent conductive film 32.
  • the separator 39 is disposed on the intermediate resin layer 33.
  • the base film 31 can be configured using a polymer film.
  • the base film 31 is configured using a material having excellent heat resistance and solvent resistance.
  • the base film 31 can be composed of, for example, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polycarbonate film, or the like.
  • the base film 31 is composed of a polyethylene terephthalate film.
  • the thickness of the base film 31 can be set to 5 ⁇ m to 300 ⁇ m, for example.
  • the transparent conductive film 32 is a layer that serves as a base for the first transparent electrode 14 and the second transparent electrode 24.
  • the transparent conductive film 32 includes metal nanowires, carbon nanotubes, graphene, metal meshes made of metal oxides such as tin oxide, indium oxide, zinc oxide, and ITO, gold, silver, copper, nickel, and alloys thereof. And a transparent conductive layer made of a conductive polymer or the like.
  • a thin film layer of silver nanowires is used as the transparent conductive film 32.
  • a silver nanowire is a fine silver wire having an outer diameter of a nanometer unit (for example, several nm to several hundred nm).
  • the transparent conductive film 32 may be configured to have a network structure in which silver nanowires exhibiting a planar distribution are in contact with each other. In this way, the surface conductivity can be made isotropic while suppressing the thickness of the transparent conductive film 32 as much as possible. Moreover, it is suitable because it can cope with the manufacture of the touch input sensor 1 having flexibility.
  • the transparent conductive film 32 can be entirely formed on the base film 31 by, for example, a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, a roll coater method, or the like.
  • the thickness of the transparent conductive film 32 can be set to, for example, 5 nm to 5000 nm.
  • the intermediate resin layer 33 is a layer that is a base of the first support layer 12 and the second support layer 22.
  • the intermediate resin layer 33 is configured as a resin layer containing a photosensitive resin and an ultraviolet absorber.
  • the photosensitive resin composition constituting the negative photosensitive resin contains, for example, a binder resin, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.
  • binder resin examples include acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy acrylate resin obtained by reaction of epoxy resin and (meth) acrylic acid
  • An acid-modified epoxy acrylate resin obtained by a reaction between an epoxy acrylate resin and an acid anhydride can be used. These may be used alone or in combination of two or more.
  • Examples of the photopolymerizable compound having an ethylenically unsaturated bond include a compound obtained by reacting an ⁇ , ⁇ -unsaturated carboxylic acid with a polyhydric alcohol, and reacting an ⁇ , ⁇ -unsaturated carboxylic acid with a glycidyl group-containing compound.
  • a urethane monomer such as a (meth) acrylate compound having a urethane bond, a phthalic compound, a (meth) acrylic acid alkyl ester, or the like can be used. These may be used alone or in combination of two or more.
  • photopolymerization initiator examples include aromatic ketone, benzoin ether compound, benzoin compound, oxime ester compound, benzyl derivative, 2,4,5-triarylimidazole dimer, acridine derivative, N-phenylglycine, N-phenyl Radical polymerization initiators such as glycine derivatives, coumarin compounds, and oxazole compounds can be used. These may be used alone or in combination of two or more.
  • the photosensitive resin composition may further contain various additives as necessary.
  • additives include plasticizers, fillers, antifoaming agents, flame retardants, stabilizers, adhesion-imparting agents, leveling agents, peeling accelerators, antioxidants, fragrances, imaging agents, thermal crosslinking agents and the like. Can do. These may be contained alone or in combination of two or more.
  • any compound can be used as long as it absorbs ultraviolet rays, which are active rays, and converts them into heat, infrared rays, etc. and releases them.
  • an organic ultraviolet absorber is preferred.
  • UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, benzoate UV absorbers, salicylic acid UV absorbers, triazine UV absorbers, and cyanoacrylate UV absorbers. be able to. These may be used alone or in combination of two or more. Moreover, you may use what contains these 2 or more types of basic structures in combination in 1 molecule.
  • the addition amount of the ultraviolet absorber is not particularly limited, but may be, for example, 1% or more and 10% or less with respect to the entire intermediate resin layer 33 on a weight basis. When the addition amount of the ultraviolet absorber is less than 1%, a sufficient UV cut function may not be exhibited. On the other hand, when the addition amount of the ultraviolet absorber exceeds 10%, the transparency of the touch input sensor 1 may be lowered. A more preferable addition amount of the ultraviolet absorber is, for example, 3% or more and 7% or less.
  • the photosensitive resin and the ultraviolet absorber may exist in a separated state or may exist in a mixed state.
  • the ultraviolet absorbent is dispersed and held in the photosensitive resin layer 34 composed of the photosensitive resin composition.
  • the photosensitive resin composition having a UV cut function which contains a binder resin, a photopolymerizable compound having an ethylenically unsaturated bond, a photopolymerization initiator, and an ultraviolet absorber.
  • An intermediate resin layer 33 is configured.
  • the ultraviolet absorber is approximately uniformly dispersed in the photosensitive resin layer 34.
  • the intermediate resin layer 33 corresponds to a “photosensitive layer with a UV cut function”.
  • the intermediate resin layer 33 can be formed, for example, by applying a solution of the above resin composition dissolved in a solvent onto the transparent conductive film 32 formed on the base film 31 and then drying.
  • a solvent for example, methanol, ethanol, acetone, methyl ethyl ketone, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether and the like can be used. These may be used alone or in combination of two or more.
  • coating can be performed by well-known methods, such as a roll coat method, a comma coat method, a gravure coat method, an air knife coat method, a die coat method, a bar coat method, a spray coat method, for example. Drying can be performed using, for example, a hot air convection dryer or the like.
  • the thickness of the intermediate resin layer 33 can be set to, for example, 1 ⁇ m to 200 ⁇ m after drying.
  • the separator 39 is provided to facilitate the handling of the photosensitive conductive film 3.
  • Separator 39 can be constituted using the same material (for example, polyethylene terephthalate etc.) as substrate film 31 mentioned above.
  • the photosensitive conductive film 3 mainly composed of a laminate of the base film 31, the transparent conductive film 32, and the intermediate resin layer 33 is also referred to as a dry film resist (DFR).
  • DFR dry film resist
  • the photosensitive conductive film 3 it is preferable to use a film having a minimum light transmittance of 80% or more (preferably 85% or more) in a wavelength region of 450 nm to 650 nm, for example. In this way, it is easy to increase the brightness on a touch panel display or the like.
  • two such photosensitive conductive films 3 are prepared for one transparent substrate 10.
  • the deposition process is a process of depositing one transparent substrate 10 and two photosensitive conductive films 3 prepared in the preparation process.
  • the protective films on both sides are peeled to expose the first surface 10a and the second surface 10b of the transparent substrate 10.
  • the separator 39 is peeled off from each of the two photosensitive conductive films 3 to expose the intermediate resin layer 33.
  • each of the two photosensitive conductive films 3 is attached to the exposed surface of the transparent substrate 10 from the exposed intermediate resin layer 33 side.
  • two photosensitive conductive films 3 are attached to both surfaces of the transparent substrate 10 by pressure bonding (thermal lamination) while heating to a temperature of 80 ° C. to 120 ° C.
  • the intermediate resin layer 33 including the photosensitive resin and the ultraviolet absorber, the transparent conductive film 32, and the base film 31 are sequentially laminated on both surfaces of the transparent substrate 10 from the transparent substrate 10 side.
  • the two base film 31 of the both ends of a lamination direction may be peeled.
  • the pattern exposure step is a step of performing first exposure on the laminated body after the deposition step.
  • masks 41 and 42 are arranged so as to cover the intermediate resin layer 33 and the transparent conductive film 32 on both sides, and pattern exposure is performed from both sides. That is, the first mask (first photomask) 41 is disposed outside the base film 31 on the first surface 10a side, and the second mask (second photomask) is disposed outside the base film 31 on the second surface 10b side. Exposure is performed from both sides with the photomask (42) disposed.
  • the first mask 41 has a first transparent electrode formation pattern corresponding to the overall shape (see FIG. 1) of the first transparent electrode 14 in plan view.
  • the second mask 42 has a second transparent electrode formation pattern corresponding to the overall shape of the second transparent electrode 24 in plan view.
  • the photosensitive resin layer 34 included in the intermediate resin layer 33 is a negative type as in the present embodiment, the first transparent electrode formation pattern and the second transparent electrode formation pattern are formed on the corresponding masks 41 and 42. It is the made window part (translucent part).
  • Alignment of the first mask 41 and the second mask 42 can be performed easily and with high accuracy using a mask alignment mechanism (including a position sensor and a position adjustment mechanism) provided in the exposure apparatus.
  • a mask alignment mechanism including a position sensor and a position adjustment mechanism
  • an alignment mark is formed in advance on each of the first mask 41 and the second mask 42, and the relative position between the alignment marks of both masks 41 and 42 is detected by a position sensor such as a camera, for example. Get relative position information.
  • the position adjustment mechanism relatively moves the masks 41 and 42 so that the alignment marks that make a pair overlap each other, so that the first mask 41 and the second mask 41
  • the mask 42 may be positioned.
  • ultraviolet rays L as actinic rays are irradiated from both sides.
  • the ultraviolet light L can be irradiated using an ultraviolet irradiation lamp.
  • the ultraviolet ray L may be irradiated simultaneously on both sides or sequentially irradiated on each side. In this embodiment, double-sided simultaneous exposure is used to shorten the cycle time.
  • the exposure intensity and exposure time of the ultraviolet light L can be appropriately set according to the photosensitive characteristics of the photosensitive resin layer 34 in consideration of the influence of the ultraviolet absorbent held in the photosensitive resin layer 34.
  • the pattern exposure process can be performed in the air.
  • the pattern exposure step is preferably performed in the presence of non-oxygen (for example, in the presence of an inert gas or in a vacuum).
  • the intermediate resin layer 33 is formed in a pattern corresponding to the planar view shape of the first transparent electrode 14 by irradiating ultraviolet rays L in an image shape through the first mask 41.
  • (Photosensitive resin layer 34) is exposed.
  • the portion of the photosensitive resin layer 34 exposed to the ultraviolet light L is cured in correspondence with the shape of the first transparent electrode 14 in plan view, and the other portions are maintained uncured (see FIG. 6). reference). 6 to 10, the cured portion (cured portion 34C) and the uncured portion (uncured portion 34U) of the photosensitive resin layer 34 are indicated by different hatching. Yes.
  • the intermediate resin layer 33 contains a photosensitive resin and an ultraviolet absorber
  • the ultraviolet light L irradiated from the first surface 10a side is the photosensitive resin layer 34 on the first surface 10a side. Is cured by the ultraviolet absorber and hardly penetrates to the second surface 10b side of the transparent substrate 10. Therefore, the intermediate resin layer 33 provided on the second surface 10b side is hardly cured by the action of the ultraviolet light L irradiated from the first surface 10a side.
  • the intermediate resin layer 33 (photosensitive property) is formed in a pattern according to the planar view shape of the second transparent electrode 24 by irradiating the ultraviolet ray L in an image shape through the second mask 42. Resin layer 34) is exposed. Thereby, the part exposed to the ultraviolet ray L in the photosensitive resin layer 34 is cured corresponding to the shape of the second transparent electrode 24 in plan view, and the other part is kept uncured. At this time, the ultraviolet light L radiated from the second surface 10b side cures the photosensitive resin layer 34 on the second surface 10b side, while being absorbed by the ultraviolet absorber to the first surface 10a side of the transparent substrate 10. Is hardly transparent. Therefore, the intermediate resin layer 33 provided on the first surface 10a side is hardly cured by the action of the ultraviolet light L irradiated from the second surface 10b side.
  • the patterning of the first transparent electrode 14 and the patterning of the second transparent electrode 24 can be prevented from affecting each other. Therefore, exposure interference can be suppressed while performing double-sided simultaneous exposure, and patterning of the first transparent electrode 14 and patterning of the second transparent electrode 24 can be performed simultaneously and appropriately.
  • the positional accuracy between the patterned first transparent electrode 14 and the patterned second transparent electrode 24 is also high according to the positioning accuracy of the first mask 41 and the second mask 42.
  • the photosensitive resin layer 34 may be cured to such an extent that the transparent conductive film 32 can be supported on the transparent substrate 10 via the photosensitive resin layer 34, and is completely cured. It does not have to be done. For this reason, even if the ultraviolet absorber is dispersed and held in the photosensitive resin layer 34 constituting the intermediate resin layer 33, the required hardness can be obtained, and there is no particular problem.
  • the development step is a step of performing development processing on the laminated body after the pattern exposure step.
  • the intermediate resin layer 33 photosensitive resin layer 34
  • the second transparent electrode 24 are formed (see also FIG. 10).
  • the development process can be performed, for example, by wet development using a developer with the base film 31 on both sides peeled off. Specifically, first, a developer corresponding to the chemical properties of the photosensitive resin layer 34 is prepared.
  • a sodium carbonate solution, a potassium hydroxide solution, alkali ethylaminoethanol, tetramethylammonium hydroxide, diethanolamine, or the like can be used as a developer.
  • a polar solvent such as N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, or N, N-dimethylacetamide can be used as a developing solution.
  • These polar solvents may be used alone or in combination with other solvents such as water, methanol, ethanol and the like.
  • the development can also be performed by, for example, a spray method, a dip method, a paddle method or the like.
  • the uncured portion 34U of the photosensitive resin layer 34 that remains uncured even after the pattern exposure process is completed is at least partially removed.
  • at least the surface layer portion (portion on the transparent conductive film 32 side) of the uncured portion 34U of the photosensitive resin layer 34 is removed.
  • the deep layer portion (portion on the transparent substrate 10 side) of the uncured portion 34U of the photosensitive resin layer 34 may not be sufficiently removed. did.
  • the ultraviolet absorber since the ultraviolet absorber is dispersed and held in the photosensitive resin layer 34 constituting the intermediate resin layer 33, in the pattern exposure step, the ultraviolet absorber that is dispersed and held causes a deeper layer side than the surface layer side.
  • Curing of the photosensitive resin layer 34 tends to be insufficient.
  • the cured portion 34C of the photosensitive resin layer 34 is likely to have an inverted frustum shape, and the relationship between the cured portion 34C of the photosensitive resin layer 34 and the uncured portion 34U is under-represented. Easy to cut shape. For this reason, in the development process, the deep layer portion of the uncured portion 34U of the photosensitive resin layer 34 is difficult to be removed and may remain.
  • the manufacturing method of the present embodiment additionally includes a deactivation treatment process.
  • the deactivation treatment step is a step of deactivating the ultraviolet absorber included in the intermediate resin layer 33.
  • the deactivation process is performed by heat treatment.
  • the entire laminate after the development step is heated to a temperature higher than the thermal lamination temperature.
  • the ultraviolet rays contained in the intermediate resin layer 33 are heated by heating to a thermal decomposition start temperature (for example, 250 ° C. to 350 ° C.) or higher of the ultraviolet absorber. Thermally deactivate the absorbent. In this way, the UV cut function of the ultraviolet absorber is inactivated.
  • the whole surface exposure step is a step of performing second exposure (post exposure) on the laminate after the deactivation treatment step.
  • the entire surface of the intermediate resin layer 33 is irradiated with ultraviolet rays L without using a mask. Since the UV cutting function of the ultraviolet absorber has already been deactivated in the deactivation process, the ultraviolet light L may be irradiated from both sides or only from one side in the entire exposure process. In the present embodiment, double-sided simultaneous exposure is used in order to improve uniformity and shorten cycle time.
  • the entire photosensitive resin layer 34 is completely cured, including the uncured portion 34U that may remain in the development process.
  • the cured photosensitive resin layer 34 becomes the support layers 12 and 22 (see FIG. 10).
  • the exposure intensity and exposure time of the ultraviolet light L can be appropriately set according to the photosensitive characteristics of the photosensitive resin layer 34 in consideration of the hardness required for the support layers 12 and 22 in the final product.
  • the uncured portion 34U (including the ultraviolet absorber) that may remain in the development process is positively used, and the portion can be completely cured in the deactivation processing step.
  • the step between the transparent electrodes 14 and 24 and the non-electrode portion is kept small. Therefore, it is possible to suppress the appearance of the patterns of the first transparent electrode 14 and the second transparent electrode 24 by a simple method. Therefore, the visibility of the display device via the touch input sensor 1 is maintained well. Further, when the touch input sensor 1 is provided with another functional layer such as a protective layer, it is possible to prevent bubbles from being mixed (foaming occurs) when the touch input sensor 1 and the functional layer are bonded together. it can.
  • the wiring formation process is a process of forming the routing wirings 16 and 26 extending from the transparent electrodes 14 and 24, respectively.
  • the wirings 16 and 26 are formed by a printing method using a metal such as gold, silver, copper, and nickel, or a conductive paste such as carbon.
  • a printing method for example, a screen printing method or an ink jet printing method can be employed.
  • patterning is preferably performed by laser irradiation or the like after applying the conductive paste.
  • the ink jet printing method printing with high positional accuracy is possible, so that the lead wirings 16 and 26 can be directly formed.
  • a wiring protective layer that covers and protects the formed routing wirings 16 and 26 may be further formed.
  • the configuration in which the photosensitive resin and the ultraviolet absorber exist in a mixed state in the intermediate resin layer 33 has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the photosensitive resin and the ultraviolet absorber may exist in a separated state.
  • the photosensitive resin layer 34 and the ultraviolet absorber layer 37 are laminated in a state where the photosensitive resin layer 34 is positioned on the transparent conductive film 32 side. Even if the photosensitive conductive film 3 having such a configuration is used, the patterning of the first transparent electrode 14 and the patterning of the second transparent electrode 24 can be performed simultaneously and appropriately by double-sided simultaneous exposure.
  • the ultraviolet absorber layer 37 may be a non-photosensitive ultraviolet absorber layer 36.
  • the non-photosensitive ultraviolet absorber layer 36 is configured in a state where the ultraviolet absorber is dispersed in the non-photosensitive resin layer.
  • the non-photosensitive resin include a thermoplastic resin and a pressure-sensitive adhesive (PSA).
  • PSA pressure-sensitive adhesive
  • the photosensitive conductive film 3 needs to have a certain thickness.
  • the photosensitive resin is provided by the thickness.
  • the thickness of the layer 34 can be reduced. As a result, it is possible to reduce the level difference of the transparent electrodes 14 and 24 to be patterned.
  • the ultraviolet absorber layer 37 is bonded to the transparent substrate 10 during thermal lamination in the deposition process. There is an advantage that it is easy to make.
  • thermoplastic resin layer for example, ethylene-vinyl acetate copolymer resin, polyamide resin, polyurethane resin, polyester resin, olefin resin, and acrylic resin can be used. These may be used alone or in combination of two or more.
  • pressure sensitive adhesives include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, Epoxy adhesives and polyether adhesives can be used. These may be used alone or in combination of two or more.
  • the intermediate resin layer 33 is different from the ultraviolet absorber layer 37, and the transparent conductive film 32 is different from the photosensitive resin layer 34.
  • a non-photosensitive resin layer 38 laminated on the opposite side may be further included. In this case, considering the adhesiveness between the transparent substrate 10 and the non-photosensitive resin layer 38, it is preferable that the photosensitive resin layer 34, the ultraviolet absorber layer 37, and the non-photosensitive resin layer 38 are laminated in this order.
  • the non-photosensitive resin layer 38 is a resin layer (thermoplastic resin layer) having a property of being softened by heating to, for example, a glass transition temperature or a melting point or higher and being cured by cooling to a temperature lower than the glass transition temperature or the melting point. It is preferable. In this case, there is an advantage that the non-photosensitive resin layer 38 is easily adhered to the transparent substrate 10 at the time of thermal lamination in the deposition process. Further, in consideration of ease of handling, the photosensitive conductive film 3 needs to have a certain thickness. However, by providing the ultraviolet absorber layer 37 and the non-photosensitive resin layer 38 in a separated state. The thickness of the photosensitive resin layer 34 can be reduced by the thickness.
  • the non-photosensitive resin layer 38 may be a layer made of a pressure-sensitive adhesive having a characteristic of curing when pressed and exhibiting adhesive force, for example. Also in this case, the adhesiveness to the transparent substrate 10 can be secured, and the steps of the transparent electrodes 14 and 24 to be patterned can be reduced by making the photosensitive resin layer 34 thinner.
  • the configuration in which the ultraviolet absorber is dispersed and held in the photosensitive resin layer 34 approximately uniformly in the intermediate resin layer 33 has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the ultraviolet absorber (schematically shown as small dots in the figure) is dispersed and held in the photosensitive resin layer 34 in a state having a concentration gradient. May be.
  • the ultraviolet absorber is dispersed and held in a state where the concentration increases from the transparent conductive film 32 side toward the separator 39 side (the transparent substrate 10 side after the deposition process). Good to be done.
  • the photosensitive conductive film 3 containing a negative photosensitive resin is used.
  • the embodiment of the present invention is not limited to this.
  • a photosensitive conductive film 3 containing a positive type photosensitive resin may be used.
  • the first mask 41 and the second mask 42 are formed so as to have an electrode formation pattern corresponding to positive photosensitive characteristics.
  • the transparent substrate 10 having an ultraviolet absorbing function may be used. By doing so, exposure interference can be more reliably suppressed by cooperation with the ultraviolet absorber contained in the intermediate resin layer 33.
  • the transparent substrate 10 with a UV cut function the material constituting the transparent substrate 10 containing the ultraviolet absorbent described in the above embodiment can be used.
  • the first transparent electrode 14 and the second transparent electrode 24 have been described as an example of a configuration in which a plurality of rhombus electrodes are connected to each other.
  • the transparent electrodes 14 and 24 may be formed, for example, in a stripe shape (a straight line having a certain width), or in a wave shape or a zigzag shape.
  • the shape of the window part (translucent part) of the first mask 41 and the second mask 42 is determined according to the planar view shape of the transparent electrodes 14 and 24.
  • the configuration in which the ultraviolet absorber included in the intermediate resin layer 33 is deactivated by heat treatment has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the ultraviolet absorber may be deactivated by high energy UV treatment that irradiates ultraviolet rays having a shorter wavelength than the ultraviolet rays L irradiated in the pattern exposure step.
  • the touch input sensor manufacturing method preferably includes the following components.
  • a method for manufacturing a touch input sensor (1) comprising: A step of laminating an intermediate resin layer (33) containing a photosensitive resin and an ultraviolet absorber and a transparent conductive film (32) in this order on both sides of the transparent substrate (10) from the transparent substrate (10) side; Placing masks (41, 42) so as to cover the intermediate resin layer (33) on both sides and the transparent conductive film (32), respectively, and performing pattern exposure with ultraviolet rays (L) from both sides; And developing to form transparent electrodes (14, 24) made of the transparent conductive film (32) on both surfaces of the transparent substrate (10).
  • pattern exposure is performed after the intermediate resin layer and the transparent conductive film are laminated on both surfaces of the transparent substrate.
  • the alignment of the two masks can be performed relatively easily and with high accuracy, so that the alignment between the pair of transparent electrodes obtained separately on both surfaces of the transparent substrate after development is also easily performed. be able to.
  • the intermediate resin layer containing the photosensitive resin provided in both surfaces of a transparent substrate further contains a ultraviolet absorber, one patterning of a pair of transparent electrodes and the other patterning mutually influence each other. This can be suppressed.
  • first surface ultraviolet light for patterning one transparent electrode on one surface (hereinafter referred to as “first surface”) side of the transparent substrate is absorbed by the ultraviolet absorber and the other surface (hereinafter referred to as “second surface”). ”) And hardly penetrates to the side.
  • second surface the ultraviolet light for patterning the other transparent electrode on the second surface side of the transparent substrate is absorbed by the ultraviolet absorber and hardly transmits to the first surface side. Therefore, the patterning of the pair of transparent electrodes obtained separately on both surfaces of the transparent substrate can be appropriately performed. Since there are few exposure processes and there are almost no restrictions on the apparatus as long as exposure can be performed from both sides, a pair of transparent electrodes can be easily formed, and the manufacture of the touch input sensor can be simplified.
  • the ultraviolet absorbent is dispersed and held in the photosensitive resin layer (34).
  • the intermediate resin layer containing the photosensitive resin and the ultraviolet absorber can be easily formed by dispersing the ultraviolet absorber in the photosensitive resin layer.
  • the UV absorber dispersed and held causes insufficient curing of the photosensitive resin layer on the deep layer side (transparent substrate side) compared to the surface layer side (transparent conductive film side), and the undercut shape is Prone to occur. For this reason, only the surface layer side part in a transparent conductive film and a photosensitive resin layer is removed at the time of subsequent development, and the level difference between the transparent electrode and the non-electrode part can be kept small. Therefore, it can suppress that the pattern appearance of a transparent electrode arises.
  • the UV absorber is deactivated and then the entire surface of the intermediate resin layer is exposed, so that the patterning in the intermediate resin layer is not affected by the UV absorber.
  • the cured and uncured portions can be fully cured. Therefore, even when an intermediate resin layer having a configuration in which the ultraviolet absorber is dispersed and held in the photosensitive resin layer is used, the entire complete curing can be appropriately performed, and a touch input sensor having appropriate performance can be obtained. be able to.
  • the ultraviolet absorber is dispersed and held in the photosensitive resin layer (34) in a state having a concentration gradient that increases in concentration from the transparent conductive film (32) side toward the transparent substrate (10) side. Yes.
  • the photosensitive resin layer (34) and the ultraviolet absorber layer (37) are laminated in a state where the photosensitive resin layer (34) is positioned on the transparent conductive film (32) side. Has been.
  • the intermediate resin layer containing the photosensitive resin and the ultraviolet absorber can be easily formed by separately forming and laminating the photosensitive resin layer and the ultraviolet absorber layer. Since the photosensitive resin layer is positioned on the transparent conductive film side and the ultraviolet absorber layer is positioned on the transparent substrate side, the photosensitive resin layer can be appropriately cured during pattern exposure, Transmission of ultraviolet rays to the opposite side with respect to the transparent substrate can be effectively suppressed. In addition, when the thickness of the intermediate resin layer is constant, the thickness of the photosensitive resin layer can be reduced according to the thickness of the ultraviolet absorber layer. Therefore, the step between the transparent electrode and the non-electrode portion can be kept small after the pattern exposure step and the subsequent development. Therefore, it can suppress that the pattern appearance of a transparent electrode arises.
  • the intermediate resin layer (33) further includes a non-photosensitive resin layer (38) laminated on the opposite side of the photosensitive resin layer (34) with respect to the ultraviolet absorber layer (37).
  • the thickness of the intermediate resin layer when the thickness of the intermediate resin layer is constant, the thickness of the photosensitive resin layer can be further reduced according to the thickness of the non-photosensitive resin layer and the ultraviolet absorber layer. Therefore, the step between the transparent electrode and the non-electrode portion can be further reduced. Therefore, it is possible to effectively suppress the appearance of the transparent electrode pattern.
  • the photosensitive conductive film according to the present disclosure preferably includes the following components.
  • a photosensitive conductive film (3) A base film (31); A transparent conductive film (32) disposed on the base film (31); A photosensitive layer (33) with a UV-cut function, which is disposed on the transparent conductive film (32) and contains a photosensitive resin and an ultraviolet absorber; Is provided.
  • the UV cut function is applied to both sides of the transparent substrate from the transparent substrate side.
  • a laminate in which the photosensitive layer and the transparent conductive film are laminated in this order is formed.
  • a pair of masks are provided so as to cover the UV-cut photosensitive layer and the transparent conductive film on both sides of the laminate, and pattern exposure is performed from both sides, thereby obtaining a pair obtained separately on both sides of the transparent substrate after development.
  • the transparent electrodes can be easily aligned with each other.
  • the photosensitive layer with UV cut function containing the photosensitive resin provided in both surfaces of a transparent substrate further contains an ultraviolet absorber, one patterning of a pair of transparent electrodes and the other patterning mutually Influencing each other can be suppressed. Therefore, the patterning of the pair of transparent electrodes obtained separately on both surfaces of the transparent substrate can be appropriately performed. Since there are few exposure processes and there are almost no restrictions on the apparatus as long as exposure can be performed from both sides, a pair of transparent electrodes can be easily formed, and the manufacture of the touch input sensor can be simplified. Therefore, it is possible to provide a photosensitive conductive film suitable for a method of manufacturing a touch input sensor that can be easily manufactured and can easily align a pair of transparent electrodes.
  • the photosensitive conductive film also has a suitable configuration ([2], [4] to [6]) described regarding the manufacturing method of the touch input sensor described above.
  • the “transparent substrate (10) side” in the configuration of [4] may be read as “the side opposite to the base film (31)”.
  • the touch input sensor manufacturing method and photosensitive conductive film according to the present disclosure only have to exhibit at least one of the effects described above.
  • the technology according to the present disclosure can be used to form a pair of transparent electrodes, for example, in the manufacture of a touch input sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】 簡易に製造可能であり、かつ、一対の透明電極どうしの位置合わせを容易に行うことができるタッチ入力センサの製造方法を提供する。 【解決手段】 タッチ入力センサの製造方法は、透明基板(10)の両面に感光性樹脂と紫外線吸収剤とを含む中間樹脂層(33)及び透明導電膜(32)の順に積層する工程と、 両面側から紫外線(L)によるパターン露光を行う工程と、現像して透明基板(10)の両面に透明導電膜(32)からなる透明電極を形成する工程とを備える。

Description

タッチ入力センサの製造方法及び感光性導電フィルム
 本発明は、タッチ入力センサの製造方法、及び当該製造方法に使用可能な感光性導電フィルムに関する。
 例えば多機能携帯電話(スマートフォン)や携帯ゲーム機等の電子機器に備えられる入力デバイスとして、タッチパネル等のタッチ入力センサが用いられている。タッチ入力センサは、例えば特開2013-156655号公報(特許文献1)に開示されているように、透明基板〔基板20〕と、X座標検出用及びY座標検出用の透明電極〔透明電極103,104〕とを備える。特許文献1のタッチ入力センサは、基板上に感光性樹脂層と導電膜とを積層し、その積層体をパターン露光した後、未硬化部分を酸素存在下で露光し、その後、現像することによって導電パターンからなる透明電極を形成するという手順を経て製造される。
 特許文献1の製造方法では、上述した「積層→パターン露光→酸素存在下露光→現像」の各工程を経てX座標検出用の透明電極を形成し、その後、同様の工程を経てY座標検出用の透明電極を形成する(特許文献1の段落0125を参照)。しかし、このような製造方法では、露光工程が計4回必要となって工程数が増大するとともに、パターン露光後に基材フィルムを除去する必要があるために装置に対する制約が多いなど、実用性に欠ける面があった。また、X座標検出用の透明電極とY座標検出用の透明電極との位置合わせが容易ではない場合があった。
特開2013-156655号公報
 簡易に製造可能であり、かつ、一対の透明電極どうしの位置合わせを容易に行うことができるタッチ入力センサの製造方法が求められる。また、そのような製造方法に適した感光性導電フィルムが求められる。
 本開示に係るタッチ入力センサの製造方法は、
 透明基板の両面に、それぞれ前記透明基板側から、感光性樹脂と紫外線吸収剤とを含む中間樹脂層、及び透明導電膜の順に積層する工程と、
 両面側の前記中間樹脂層及び前記透明導電膜をそれぞれ覆うようにマスクを配置して、両面側から紫外線によるパターン露光を行う工程と、
 現像して、前記透明基板の両面に前記透明導電膜からなる透明電極を形成する工程と、を備える。
 本開示に係る感光性導電フィルムは、
 基材フィルムと、
 前記基材フィルム上に配置された透明導電膜と、
 前記透明導電膜上に配置された、感光性樹脂と紫外線吸収剤とを含むUVカット機能付感光層と、を備える。
 本開示に係る技術のさらなる特徴と利点は、以下の説明によってより明確になるであろう。
実施形態に係るタッチ入力センサの平面図 図1のII-II断面図 感光性導電フィルムを示す断面図 被着工程を示す模式図 パターン露光工程を示す模式図 パターン露光工程の完了時の状態を示す模式図 現像工程を示す模式図 図7における部分拡大図 全面露光工程を示す模式図 全面露光工程の完了時の状態を示す模式図 感光性導電フィルム及びタッチ入力センサの別態様を示す断面図 感光性導電フィルムの別態様を示す断面図 感光性導電フィルムの別態様を示す断面図
 以下、本発明の実施形態について説明する。但し、以下に記載する実施形態によって、本発明の範囲が限定される訳ではない。また、以下の説明において、作用機序の説明には一部推定が含まれており、その正否によって本発明の範囲が限定されることはないものとする。
 なお、以下の説明で参照する図面においては、図示の容易化や理解の容易化等の観点から、縮尺や上下左右の寸法比率等を実際の製品とは異ならせて表示している場合がある。複数個存在することが予定される各部材に関して、以下の説明で言及されるとともに対応する図面に示される具体的な数は、単なる例示であって、それ以外の個数とすることも当然に可能である。
 本実施形態に係るタッチ入力センサ1は、例えば多機能携帯電話(スマートフォン)や携帯ゲーム機等の電子機器に備えられ、入力デバイスとして機能するタッチパネル等である。これらの電子機器において、タッチ入力センサ1は、例えば液晶表示パネルや有機EL(electroluminescence)表示パネル等からなる表示装置と重ねて用いられる。以下、本実施形態に係るタッチ入力センサ1の製造方法について、詳細に説明する。
 図1及び図2に示すように、タッチ入力センサ1は、透明基板10と、担持層12,22と、透明電極14,24と、引き回し配線16,26とを備えている。第一担持層12、第一透明電極14、及び第一引き回し配線16が透明基板10の一方の面(第一面10a)側に設けられ、第二担持層22、第二透明電極24、及び第二引き回し配線26が透明基板10の他方の面(第二面10b)側に設けられている。透明基板10の第一面10a側において、透明基板10の側から第一担持層12及び第一透明電極14の順に積層され、透明基板10の第二面10b側において、透明基板10の側から第二担持層22及び第二透明電極24の順に積層されている。本実施形態のタッチ入力センサ1は、1枚の透明基板10の両面に透明電極14,24を備えることで、センサ全体としての薄型化が図られている。
 透明基板10は、第一透明電極14及び第二透明電極24を設けるためのベースとなる部材である。透明基板10は、透明性に加え、柔軟性及び絶縁性等に優れた材料を用いて構成されていることが好ましい。透明基板10は、例えばポリエチレンテレフタレートやアクリル系樹脂等の汎用樹脂、ポリアセタール系樹脂やポリカーボネート系樹脂等の汎用エンジニアリング樹脂、ポリスルホン系樹脂やポリフェニレンサルファイド系樹脂等のスーパーエンジニアリング樹脂等で構成することができる。本実施形態では、ポリエチレンテレフタレートフィルムにより透明基板10が構成されている。なお、透明基板10は、ガラス基板等で構成されても良い。透明基板10の厚みは、例えば25μm~100μmとすることができる。
 第一担持層12は、透明基板10の第一面10aに配置されている。第一担持層12上には、複数(本例では5つ)の第一透明電極14が配置されている。すなわち、透明基板10の第一面10aに、第一担持層12を介して複数の第一透明電極14が設けられている。図1に示すように、複数の第一透明電極14は、それぞれ、X軸方向に沿って並んで配置された複数(本例では5つ)の菱形電極をX軸方向に互いに接続して形成されている。第一透明電極14のそれぞれは、全体として、X軸方向に沿って延在するように形成されている。複数の第一透明電極14は、Y軸方向に並ぶように互いに平行に配置されている。
 第二担持層22は、透明基板10の第二面10bに配置されている。第二担持層22上には、複数(本例では4つ)の第二透明電極24が配置されている。すなわち、透明基板10の第二面10bに、第二担持層22を介して複数の第二透明電極24が設けられている。図1に示すように、複数の第二透明電極24は、それぞれ、X軸方向に交差(本例では直交)するY軸方向に沿って並んで配置された複数(本例では6つ)の菱形電極をY軸方向に互いに接続して形成されている。第二透明電極24のそれぞれは、全体として、Y軸方向に沿って延在するように形成されている。複数の第二透明電極24は、X軸方向に並ぶように互いに平行に配置されている。
 第一透明電極14を構成する複数の菱形電極と、第二透明電極24を構成する複数の菱形電極とは、平面視(タッチ入力センサ1の延在面に直交する方向に見た状態)で相補的な位置関係で配置されている。つまり、第一透明電極14を構成する菱形電極の非配置領域に第二透明電極24を構成する菱形電極が配置され、第二透明電極24を構成する菱形電極の非配置領域に第一透明電極14を構成する菱形電極が配置されている。そして、複数の第一透明電極14と複数の第二透明電極24とは、これらの全体で、表示装置の表示領域を概ね全面的に覆うように配置されている。
 第一担持層12及び第二担持層22は、透明性及び電気的絶縁性に優れた樹脂材料を用いて構成されていることが好ましい。また、第一担持層12及び第二担持層22は、適度な硬度及び機械的強度を有する樹脂材料を用いて構成されていることが好ましい。本実施形態では、担持層12,22は、後述する感光性樹脂(光硬化性樹脂)を主体として構成されている。
 第一透明電極14及び第二透明電極24は、透明性に加え導電性に優れた材料を用いて構成されている。透明電極14,24は、例えば酸化スズ、酸化インジウム、酸化亜鉛、及びITO(Indium Tin Oxide)等の金属酸化物、金、銀、銅、ニッケル、及びそれらの合金等からなる金属ナノワイヤー、カーボンナノチューブ、グラフェン、金属メッシュ、導電性ポリマー等で構成されている。透明電極14,24は、これらの材料を用いて構成された透明導電層である。本実施形態では、銀ナノワイヤーにより透明電極14,24が構成されている。
 第一透明電極14及び第二透明電極24は、被検知物(ユーザーの指やスタイラス等の導体)の近接/離間に応じて静電容量が変化する。なお、「静電容量」とは、自己容量(self capacitance)と相互容量(mutual capacitance)との双方を含む概念である。つまり、第一透明電極14は、被検知物の近接/離間に応じて、自己容量又は第二透明電極24との間の相互容量が変化し、第二透明電極24は、被検知物の近接/離間に応じて、自己容量又は第一透明電極14との間の相互容量が変化する。
 第一透明電極14のそれぞれは、第一引き回し配線16に接続されている。第二透明電極24のそれぞれは、第二引き回し配線26に接続されている。引き回し配線16,26は、金、銀、銅、及びニッケル等の金属、又はカーボン等の導電ペーストで構成されている。引き回し配線16,26における透明電極14,24とは反対側の端部には、接続端子28が設けられている。透明電極14,24は、引き回し配線16,26及び接続端子28を介して制御部(図示せず)に接続されている。透明電極14,24に生じる静電容量の変化に応じて流れる電流を制御部で検知することで、ユーザーによるタッチ操作及びタッチ位置を検出することができる。
 タッチ入力センサ1の製造方法は、準備工程、被着工程、パターン露光工程、現像工程、及び全面露光工程を備える。また、本実施形態では失活処理工程及び配線形成工程をさらに備える。準備工程、被着工程、パターン露光工程、現像工程、失活処理工程、全面露光工程、及び配線形成工程は、記載の順に実行される。
 準備工程は、本実施形態の製造方法に用いる中間材料を準備する工程である。準備工程では、透明基板10と、担持層12,22及び透明電極14,24の基となる感光性導電フィルム3とが準備される。透明基板10は、例えばその両面に保護フィルムがそれぞれ貼付された状態で提供される(図示せず)。透明基板10は、例えば450nm~650nmの波長域での最小光透過率が80%以上(好ましくは85%以上)であるものを用いることが好ましい。このようにすれば、タッチパネルディスプレイ等での高輝度化が容易となる。
 図3に示すように、感光性導電フィルム3は、基材フィルム31と透明導電膜32と中間樹脂層33との積層体として構成される。感光性導電フィルム3は、基材フィルム31と、基材フィルム31上に配置された透明導電膜32と、透明導電膜32上に配置された中間樹脂層33とを備えている。また、本実施形態では、中間樹脂層33上にセパレータ39が配置されている。
 基材フィルム31は、重合体フィルムを用いて構成することができる。基材フィルム31は、耐熱性及び耐溶剤性に優れた材料を用いて構成されている。基材フィルム31は、例えばポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等で構成することができる。本実施形態では、ポリエチレンテレフタレートフィルムにより、基材フィルム31が構成されている。基材フィルム31の厚みは、例えば5μm~300μmとすることができる。
 透明導電膜32は、第一透明電極14及び第二透明電極24の基となる層である。透明導電膜32は、例えば酸化スズ、酸化インジウム、酸化亜鉛、及びITO等の金属酸化物、金、銀、銅、ニッケル、及びそれらの合金等からなる金属ナノワイヤー、カーボンナノチューブ、グラフェン、金属メッシュ、導電性ポリマー等からなる透明導電層とすることができる。本実施形態では、透明導電膜32として銀ナノワイヤーの薄膜層が用いられている。銀ナノワイヤーは、ナノメートル単位(例えば数nm~数百nm)の外径を有する微小な銀線である。銀ナノワイヤーは非常に微細であって人間の目では視認できないため、銀ナノワイヤーの薄膜層は透明性に優れたものとなる。透明導電膜32は、平面分布を呈する銀ナノワイヤーどうしが接触してなる網目構造を有するように構成されても良い。このようにすれば、透明導電膜32の厚みを極力抑えつつ、面方向の導電性を等方的とすることができる。また、可撓性を有するタッチ入力センサ1の製造にも対応できて好適である。透明導電膜32は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、及びロールコーター法等により、基材フィルム31上に全面的に形成することができる。透明導電膜32の厚みは、例えば5nm~5000nmとすることができ
る。
 中間樹脂層33は、第一担持層12及び第二担持層22の基となる層である。本実施形態では、中間樹脂層33は、感光性樹脂と紫外線吸収剤とを含む樹脂層として構成されている。
 感光性樹脂は、活性光線(具体的には、紫外線)によって化学的変化又は構造的変化を生じる性質を有するものであれば、ネガ型及びポジ型のいずれのタイプを用いても良い。本実施形態では、ネガ型の感光性樹脂を用いる。ネガ型の感光性樹脂を構成する感光性樹脂組成物は、例えばバインダー樹脂と、エチレン性不飽和結合を有する光重合性化合物と、光重合開始剤とを含有する。
 バインダー樹脂としては、例えばアクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸の反応で得られるエポキシアクリレート樹脂、エポキシアクリレート樹脂と酸無水物の反応で得られる酸変性エポキシアクリレート樹脂等を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。
 エチレン性不飽和結合を有する光重合性化合物としては、例えば多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、フタル酸系化合物、(メタ)アクリル酸アルキルエステル等を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。
 光重合開始剤としては、例えば芳香族ケトン、ベンゾインエーテル化合物、ベンゾイン化合物、オキシムエステル化合物、ベンジル誘導体、2,4,5-トリアリールイミダゾール二量体、アクリジン誘導体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物等のラジカル重合開始剤等を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。
 感光性樹脂組成物は、必要に応じて、各種の添加剤をさらに含有しても良い。添加剤としては、可塑剤、充填剤、消泡剤、難燃剤、安定剤、密着性付与剤、レベリング剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤等を例示することができる。これらは、それぞれ単独で含有されても良いし、2種以上が組み合わせて含有されても良い。
 紫外線吸収剤は、活性光線である紫外線を吸収して熱や赤外線等にエネルギー変換して放出させるものであれば、あらゆる化合物を用いることができる。透明性の観点からは、有機系の紫外線吸収剤が好ましい。このような紫外線吸収剤としては、例えばベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、サリチル酸系紫外線吸収剤、トリアジン系紫外線吸収剤、及びシアノアクリレート系紫外線吸収剤を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。また、これらの2種以上の基本構造を1分子中に組み合わせて含むものを用いても良い。
 紫外線吸収剤の添加量は、特に限定される訳ではないが、重量基準で、中間樹脂層33の全体に対して例えば1%以上10%以下とすることができる。紫外線吸収剤の添加量が1%未満の場合、十分なUVカット機能が発揮されない可能性がある。一方、紫外線吸収剤の添加量が10%を超えると、タッチ入力センサ1の透明性が低下する場合がある。より好ましい紫外線吸収剤の添加量は、例えば3%以上7%以下である。
 中間樹脂層33において、感光性樹脂と紫外線吸収剤とは、分離状態で存在しても良いし、混合状態で存在しても良い。本実施形態では、中間樹脂層33において、感光性樹脂組成物で構成される感光性樹脂層34中に、紫外線吸収剤が分散保持されている。言い換えれば、本実施形態では、バインダー樹脂と、エチレン性不飽和結合を有する光重合性化合物と、光重合開始剤と、紫外線吸収剤とを含有する、UVカット機能を有する感光性樹脂組成物によって中間樹脂層33が構成されている。本実施形態では、紫外線吸収剤は、感光性樹脂層34中におよそ均一に分散されている。本実施形態では、中間樹脂層33が「UVカット機能付感光層」に相当する。
 中間樹脂層33は、例えば溶剤に溶解した上記の樹脂組成物の溶液を基材フィルム31上に形成された透明導電膜32上に塗布した後、乾燥することによって形成することができる。溶剤としては、例えばメタノール、エタノール、アセトン、メチルエチルケトン、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上の混合溶剤であっても良い。また、塗布は、例えばロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。乾燥は、例えば熱風対流式乾燥機等を用いて行うことができる。中間樹脂層33の厚みは、乾燥後において、例えば1μm~200μmとすることができる。
 セパレータ39は、感光性導電フィルム3の取り扱いの容易化を図るために設けられている。セパレータ39は、上述した基材フィルム31と同様の材料(例えばポリエチレンテレフタレート等)を用いて構成することができる。
 基材フィルム31と透明導電膜32と中間樹脂層33との積層体を主体として構成される感光性導電フィルム3は、ドライフィルムレジスト(Dry Film Resist;DFR)とも称される。感光性導電フィルム3は、例えば450nm~650nmの波長域での最小光透過率が80%以上(好ましくは85%以上)であるものを用いることが好ましい。このようにすれば、タッチパネルディスプレイ等での高輝度化が容易となる。本実施形態では、このような感光性導電フィルム3が、1枚の透明基板10に対して、2枚準備される。
 被着工程は、準備工程で準備された1枚の透明基板10と2枚の感光性導電フィルム3とを被着させる工程である。被着工程では、両面側の保護フィルムを剥離して、透明基板10の第一面10a及び第二面10bを露出させる。また、2枚の感光性導電フィルム3のそれぞれからセパレータ39を剥離して、中間樹脂層33を露出させる。そして、図4に示すように、2枚の感光性導電フィルム3のそれぞれを、露出した中間樹脂層33側から透明基板10の露出面に被着させる。その際、例えば80℃~120℃の温度に加熱しながら圧着(熱ラミネート)することにより、2枚の感光性導電フィルム3を透明基板10の両面に被着させる。このようにして、透明基板10の両面に、それぞれ透明基板10側から、感光性樹脂と紫外線吸収剤とを含む中間樹脂層33、透明導電膜32、及び基材フィルム31の順に積層する。なお、積層方向両端の2枚の基材フィルム31は、剥離されても良い。
 パターン露光工程は、被着工程後の積層体に対して第1の露光を行う工程である。図5に示すように、パターン露光工程では、両面側の中間樹脂層33及び透明導電膜32をそれぞれ覆うようにマスク41,42を配置して両面側からパターン露光する。すなわち、第一面10a側の基材フィルム31の外側に第一マスク(第一フォトマスク)41を配置し、かつ、第二面10b側の基材フィルム31の外側に第二マスク(第二フォトマスク)42を配置した状態で、両面側から露光する。第一マスク41は、第一透明電極14の平面視での全体形状(図1を参照)に対応する第一透明電極形成パターンを有している。第二マスク42は、第二透明電極24の平面視での全体形状に対応する第二透明電極形成パターンを有している。本実施形態のように中間樹脂層33に含まれる感光性樹脂層34がネガ型である場合には、第一透明電極形成パターン及び第二透明電極形成パターンは、対応するマスク41,42に形成された窓部(透光部)である。
 第一マスク41及び第二マスク42の位置合わせは、露光装置に設けられるマスクアライメント機構(位置センサ及び位置調整機構を含む)を用いて容易かつ高精度に行うことができる。具体的には、例えば第一マスク41及び第二マスク42のそれぞれに予めアライメントマークを形成しておき、例えばカメラ等の位置センサで両マスク41,42のアライメントマークどうしの相対位置を検出して相対位置情報を得る。そして、得られた相対位置情報に基づいて、位置調整機構が、対をなすアライメントマークどうしが中心を合わせて重なるように両マスク41,42を相対移動させることで、第一マスク41及び第二マスク42の位置決めを行うと良い。
 被着工程後の積層体に対して第一マスク41及び第二マスク42を位置決めして固定した後、活性光線としての紫外線Lを両面側から照射する。紫外線Lは、紫外線照射ランプを用いて照射することができる。紫外線Lは、両面同時に照射しても良いし、片面ずつ順次照射しても良い。本実施形態では、サイクルタイムの短縮のため、両面同時露光としている。紫外線Lの露光強度及び露光時間は、感光性樹脂層34中に保持された紫外線吸収剤による影響等も考慮した上で、感光性樹脂層34の感光特性に応じて適宜設定することができる。本実施形態では、基材フィルム31を剥離せずに透明導電膜32の表面に配置したままで露光するので、パターン露光工程を空気中で行うことができる。基材フィルム31が既に剥離されている場合には、パターン露光工程は、非酸素存在下(例えば不活性ガスの存在下又は真空中)で行うと良い。
 パターン露光工程では、透明基板10の第一面10a側において、第一マスク41を通して紫外線Lを画像状に照射することで、第一透明電極14の平面視形状に応じたパターンで中間樹脂層33(感光性樹脂層34)を露光する。これにより、感光性樹脂層34のうち紫外線Lに露光した部分を、第一透明電極14の平面視形状に対応させて硬化させるとともに、それ以外の部分を未硬化のまま維持させる(図6を参照)。なお、図6~図10においては、感光性樹脂層34のうちの硬化済みの部分(硬化部分34C)と未だ硬化していない部分(未硬化部分34U)とを、互いに異なるハッチングで表示している。このとき、本実施形態では中間樹脂層33が感光性樹脂と紫外線吸収剤とを含んでいるので、第一面10a側から照射される紫外線Lは、第一面10a側の感光性樹脂層34を硬化させる一方で、紫外線吸収剤で吸収されて透明基板10の第二面10b側まではほとんど透過しない。よって、第一面10a側から照射される紫外線Lの作用によって、第二面10b側に設けられた中間樹脂層33が硬化することはほとんどない。
 また、透明基板10の第二面10b側において、第二マスク42を通して紫外線Lを画像状に照射することで、第二透明電極24の平面視形状に応じたパターンで中間樹脂層33(感光性樹脂層34)を露光する。これにより、感光性樹脂層34のうち紫外線Lに露光した部分を、第二透明電極24の平面視形状に対応させて硬化させるとともに、それ以外の部分を未硬化のまま維持させる。このとき、第二面10b側から照射される紫外線Lは、第二面10b側の感光性樹脂層34を硬化させる一方で、紫外線吸収剤で吸収されて透明基板10の第一面10a側まではほとんど透過しない。よって、第二面10b側から照射される紫外線Lの作用によって、第一面10a側に設けられた中間樹脂層33が硬化することはほとんどない。
 このように、第一透明電極14のパターニングと第二透明電極24のパターニングとが相互に影響し合うことを抑制することができる。よって、両面同時露光を行いつつ露光干渉を抑制して、第一透明電極14のパターニングと第二透明電極24のパターニングとを同時にかつ適切に行うことができる。パターン化された第一透明電極14とパターン化された第二透明電極24との位置精度も、第一マスク41及び第二マスク42の位置決め精度に応じて高精度なものとなる。なお、パターン露光工程では、感光性樹脂層34は、透明基板10上に当該感光性樹脂層34を介して透明導電膜32を担持することができる程度に硬化されれば良く、完全には硬化されなくても良い。このため、中間樹脂層33を構成する感光性樹脂層34中に紫外線吸収剤が分散保持されていても、必要とされる硬度は得られるため、特に問題はない。
 現像工程は、パターン露光工程後の積層体に対して現像処理を行う工程である。図7に示すように、現像工程では、中間樹脂層33(感光性樹脂層34)を現像して、透明基板10の両面に、それぞれパターン化された透明導電膜32からなる第一透明電極14と第二透明電極24とを形成する(図10も参照)。現像工程は、両側の基材フィルム31を剥離した状態で、例えば現像液を用いたウェット現像により行うことができる。具体的には、まず、感光性樹脂層34の化学的性質に応じた現像液を準備する。例えばアルカリ現像を行う場合には、現像液として炭酸ナトリウム溶液、水酸化カリウム溶液、アルカリエチルアミノエタノール、水酸化テトラメチルアンモニウム、ジエタノールアミン等を用いることができる。また、例えば有機現像を行う場合には、現像液としてN-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド等の極性溶媒を用いることができる。これらの極性溶媒は、単独で用いても良いし、水、メタノール、エタノール等のその他の溶媒と組み合わせて用いても良い。また、現像は、例えばスプレー法、ディップ法、パドル法等によって行うこともできる。
 現像工程では、パターン露光工程の完了後もなお未硬化のまま残っている感光性樹脂層34の未硬化部分34Uが少なくとも部分的に除去される。本実施形態では、感光性樹脂層34の未硬化部分34Uのうち、少なくとも表層部分(透明導電膜32側の部分)が除去される。ここで、本発明者らの検討によれば、感光性樹脂層34の未硬化部分34Uのうちの深層部分(透明基板10側の部分)は、十分には除去されない可能性があることが判明した。本実施形態では中間樹脂層33を構成する感光性樹脂層34中に紫外線吸収剤が分散保持されているので、パターン露光工程において、分散保持された紫外線吸収剤により、表層側に比べて深層側における感光性樹脂層34の硬化が不十分となりやすい。特に、感光性樹脂層34における露光領域の辺縁部では、マスク41,42の遮光部によって覆われた領域側からの露光の重なりが全くないため、露光領域の中央部に比べて深層側の硬化が不十分となりやすい。その結果、例えば図8に誇張して示すように、感光性樹脂層34の硬化部分34Cが逆錘台状となりやすく、感光性樹脂層34の硬化部分34Cと未硬化部分34Uとの関係がアンダーカット形状となりやすい。このため、現像工程において、感光性樹脂層34の未硬化部分34Uのうち深層部分が除去されにくく、残存して
しまう可能性がある。
 上記のように残存する場合のある未硬化部分34Uを、後工程で完全硬化させるため、本実施形態の製造方法は、失活処理工程を追加的に備えている。失活処理工程は、中間樹脂層33に含まれる紫外線吸収剤を失活させる工程である。本実施形態では、加熱処理によって失活処理工程を実行する。失活処理工程では、現像工程後の積層体の全体を、熱ラミネート温度よりも高い温度に加熱する。例えば、紫外線吸収剤の熱分解開始温度(例えば250℃~350℃)以上に加熱することで、中間樹脂層33に含まれる(本実施形態では感光性樹脂層34中に分散保持された)紫外線吸収剤を熱失活させる。このようにして、紫外線吸収剤のUVカット機能を不活化させる。
 全面露光工程は、失活処理工程後の積層体に対して第2の露光(ポスト露光)を行う工程である。図9に示すように、全面露光工程では、マスクを使用することなく、両面側の中間樹脂層33に対して全面的に紫外線Lを照射する。失活処理工程において既に紫外線吸収剤のUVカット機能が不活化されているので、全面露光工程では、紫外線Lは、両面側から照射しても良いし、片面側だけから照射しても良い。本実施形態では、均一性の向上及びサイクルタイムの短縮のため、両面同時露光としている。この全面露光工程により、現像工程において残存する場合のある未硬化部分34Uも含めて、感光性樹脂層34の全体を完全に硬化させる。硬化した感光性樹脂層34は、担持層12,22となる(図10を参照)。紫外線Lの露光強度及び露光時間は、最終製品において担持層12,22に要求される硬度等も考慮した上で、感光性樹脂層34の感光特性に応じて適宜設定することができる。
 本実施形態の製造方法では、現像工程において残存する場合のある未硬化部分34U(紫外線吸収剤を含む)を積極的に利用し、当該部分を失活処理工程で全面的に硬化可能として、その後の全面露光工程で透明電極14,24と非電極部分との段差を小さく抑えている。よって、簡易な方法で、第一透明電極14及び第二透明電極24のパターン見えが生じるのを抑制することができる。従って、タッチ入力センサ1を介した表示装置の視認性が良好に維持される。また、タッチ入力センサ1に保護層等の他の機能層が設けられる場合において、タッチ入力センサ1と機能層とを貼り合わせる際に気泡が混入する(泡かみが生じる)のを抑制することができる。
 配線形成工程は、透明電極14,24のそれぞれから延びる引き回し配線16,26を形成する工程である。配線形成工程では、例えば金、銀、銅、及びニッケル等の金属、又はカーボン等の導電ペーストを用いて、印刷法によって引き回し配線16,26を形成する。印刷法としては、例えばスクリーン印刷法やインクジェット印刷法等が採用できる。スクリーン印刷法による場合は、導電ペーストの塗布後、レーザ照射等によってパターニングを行うと良い。インクジェット印刷法による場合は、高い位置精度での印刷が可能なので、引き回し配線16,26を直接形成することができる。配線形成工程では、形成された引き回し配線16,26を被覆して保護する配線保護層をさらに形成しても良い。
〔その他の実施形態〕
 タッチ入力センサの製造方法及び感光性導電フィルムのその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
(1)上記の実施形態では、中間樹脂層33において、感光性樹脂と紫外線吸収剤とが混合状態で存在する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば図11に示すように、中間樹脂層33において、感光性樹脂と紫外線吸収剤とが分離状態で存在しても良い。図示の例では、中間樹脂層33において、感光性樹脂層34と紫外線吸収剤層37とが、感光性樹脂層34が透明導電膜32側に位置する状態で積層されている。このような構成の感光性導電フィルム3を用いても、両面同時露光によって、第一透明電極14のパターニングと第二透明電極24のパターニングとを同時にかつ適切に行うことができる。なお、図11の例のように、紫外線吸収剤層37が、非感光性紫外線吸収剤層36であっても良い。非感光性紫外線吸収剤層36は、非感光性樹脂層中に紫外線吸収剤が分散した状態で構成される。非感光性樹脂としては、例えば熱可塑性樹脂及び感圧接着剤(Pressure Sensitive Adhesive;PSA)等が例示される。取り扱いの容易性を考慮すれば感光性導電フィルム3は一定の厚みを有していることが必要であるところ、紫外線吸収剤層37を分離状態で備えることで、その厚みの分だけ感光性樹脂層34の厚みを薄くすることができる。その結果、パターン化される透明電極14,24の低段差化を図ることができる。なお、非感光性紫外線吸収剤層36として、熱可塑性樹脂層中に紫外線吸収剤が分散したものを用いれば、被着工程における熱ラミネート時に、透明基板10に対して紫外線吸収剤層37を接着させやすいという利点がある。
 熱可塑性樹脂層としては、例えばエチレン-酢酸ビニル共重合体系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、オレフィン系樹脂、及びアクリル系樹脂を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。感圧接着剤としては、例えばアクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤、及びポリエーテル系粘着剤等を用いることができる。これらは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。
(2)或いは、上記(1)の例において、例えば図12に示すように、中間樹脂層33が、紫外線吸収剤層37とは別に、感光性樹脂層34に対して透明導電膜32とは反対側に積層された非感光性樹脂層38をさらに含んでも良い。この場合、透明基板10と非感光性樹脂層38との接着性を考慮すれば、感光性樹脂層34、紫外線吸収剤層37、及び非感光性樹脂層38の順に積層されることが好ましい。非感光性樹脂層38は、例えばガラス転移温度又は融点以上に加熱することによって軟化し、かつ、ガラス転移温度又は融点未満に冷却することによって硬化する特性を有する樹脂層(熱可塑性樹脂層)であると好適である。この場合、被着工程における熱ラミネート時に、透明基板10に対して非感光性樹脂層38を接着させやすいという利点がある。また、取り扱いの容易性を考慮すれば感光性導電フィルム3は一定の厚みを有していることが必要であるところ、紫外線吸収剤層37及び非感光性樹脂層38を分離状態で備えることで、それらの厚みの分だけ感光性樹脂層34の厚みを薄くすることができる。その結果、パターン化される透明電極14,24の低段差化を図ることができる。また、非感光性樹脂層38は、例えば加圧時に硬化して粘着力を発揮する特性を有する感圧接着剤からなる層であっても良い。この場合にも、透明基板10に対する接着性を確保できるとともに、感光性樹脂層34の薄層化により、パターン化される透明電極14,24の低段差化を図ることができる。
(3)上記の実施形態では、中間樹脂層33において、感光性樹脂層34中に紫外線吸収剤がおよそ均一に分散保持されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば図13に示すように、中間樹脂層33において、紫外線吸収剤(図中、小ドットとして模式的に示されている)が濃度勾配を有する状態で感光性樹脂層34中に分散保持されていても良い。図示の例のように、感光性導電フィルム3において、紫外線吸収剤は、透明導電膜32側からセパレータ39側(被着工程後における透明基板10側)に向かうに従って高濃度となる状態で分散保持されると良い。
(4)上記の実施形態では、ネガ型の感光性樹脂を含む感光性導電フィルム3を用いる例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、ポジ型の感光性樹脂を含む感光性導電フィルム3を用いても良い。この場合、第一マスク41及び第二マスク42は、ポジ型の感光特性に応じた電極形成パターンを有するように形成される。
(5)上記の実施形態では、透明基板10の両面にそれぞれ中間樹脂層33及び透明導電膜32を積層するのに、2枚の感光性導電フィルム3を用いて被着させる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、透明基板10の両面に、透明導電膜32の構成材料及び中間樹脂層33の構成材料を、それぞれ液相で積層しても良い。
(6)上記の実施形態において、紫外線吸収機能を有する透明基板10を用いても良い。このようにすれば、中間樹脂層33に含まれる紫外線吸収剤との協働により、露光干渉をより確実に抑制することができる。UVカット機能付き透明基板10は、透明基板10を構成する材料中に、上記の実施形態で説明した紫外線吸収剤を含有させたものを用いることができる。
(7)上記の実施形態では、第一透明電極14及び第二透明電極24が、複数の菱形電極を互いに接続した形状を有する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。透明電極14,24は、例えばストライプ状(一定幅を有する直線状)に形成されても良いし、波状やジグザグ状に形成されても良い。透明電極14,24の平面視形状に応じて、第一マスク41及び第二マスク42の窓部(透光部)の形状が決定される。
(8)上記の実施形態では、中間樹脂層33に含まれる紫外線吸収剤を加熱処理によって失活させる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、パターン露光工程で照射される紫外線Lよりも短波長の紫外線を照射する高エネルギーUV処理によって、紫外線吸収剤を失活させても良い。
(9)上記の実施形態では、現像工程において、現像液を用いてウェット現像を行う例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、酸素プラズマ等の現像ガスとの接触によって現像処理するドライ現像を行っても良い。
(10)その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎないと理解されるべきである。従って、当業者は、本開示の趣旨を逸脱しない範囲で、適宜、種々の改変を行うことが可能である。
〔実施形態の概要〕
 以上をまとめると、本開示に係るタッチ入力センサの製造方法は、好適には、以下の各構成を備える。
[1]
 タッチ入力センサ(1)の製造方法であって、
 透明基板(10)の両面に、それぞれ前記透明基板(10)側から、感光性樹脂と紫外線吸収剤とを含む中間樹脂層(33)、及び透明導電膜(32)の順に積層する工程と、
 両面側の前記中間樹脂層(33)及び前記透明導電膜(32)をそれぞれ覆うようにマスク(41,42)を配置して、両面側から紫外線(L)によるパターン露光を行う工程と、
 現像して、前記透明基板(10)の両面に前記透明導電膜(32)からなる透明電極(14,24)を形成する工程と、を備える。
 この構成によれば、透明基板の両面に中間樹脂層と透明導電膜とをそれぞれ積層してからパターン露光する。このパターン露光の際、2つのマスクの位置合わせ自体は比較的容易かつ高精度に行うことができるので、現像後に透明基板の両面に分かれて得られる一対の透明電極どうしの位置合わせも容易に行うことができる。
 また、上記の構成では、透明基板の両面に設けられる感光性樹脂を含む中間樹脂層が紫外線吸収剤をさらに含むので、一対の透明電極の一方のパターニングと他方のパターニングとが相互に影響し合うことを抑制できる。つまり、透明基板の一方の面(以下、「第一面」と言う)側で一方の透明電極をパターニングするための紫外線は、紫外線吸収剤で吸収されて他方の面(以下、「第二面」と言う)側まではほとんど透過しない。同様に、透明基板の第二面側で他方の透明電極をパターニングするための紫外線は、紫外線吸収剤で吸収されて第一面側まではほとんど透過しない。よって、透明基板の両面に分かれて得られる一対の透明電極のパターニングをそれぞれ適切に行うことができる。露光工程数が少なく、両面側から露光さえできれば装置に関する制約もほとんどないので、簡易に一対の透明電極を形成することができ、タッチ入力センサの製造を簡易化することができる。
[2]
 前記中間樹脂層(33)において、感光性樹脂層(34)中に前記紫外線吸収剤が分散保持されている。
 この構成によれば、感光性樹脂層中に紫外線吸収剤を分散させることにより、感光性樹脂と紫外線吸収剤とを含む中間樹脂層を容易に形成することができる。また、パターン露光の際、分散保持された紫外線吸収剤により、表層側(透明導電膜側)に比べて深層側(透明基板側)における感光性樹脂層の硬化が不十分となり、アンダーカット形状が生じやすい。このため、その後の現像時に、透明導電膜と感光性樹脂層における表層側部分のみが除去されて、透明電極と非電極部分との段差を小さく抑えることができる。よって、透明電極のパターン見えが生じるのを抑制することができる。
[3]
 現像後、前記中間樹脂層(33)に含まれる前記紫外線吸収剤を失活させる工程と、
 前記紫外線吸収剤を失活させた後、両面側の前記中間樹脂層(33)を全面露光する工程と、
をさらに備える。
 この構成によれば、パターン露光及び現像の後、紫外線吸収剤を失活させてから両面側の中間樹脂層を全面露光するので、紫外線吸収剤の影響を受けることなく、中間樹脂層におけるパターン化された部分及び未硬化の部分を完全硬化させることができる。よって、感光性樹脂層中に紫外線吸収剤が分散保持された構成の中間樹脂層を用いる場合であっても、全体の完全硬化を適切に行うことができ、適正性能を有するタッチ入力センサを得る
ことができる。
[4]
 前記紫外線吸収剤が、前記透明導電膜(32)側から前記透明基板(10)側に向かうに従っ高濃度となる濃度勾配を有する状態で前記感光性樹脂層(34)中に分散保持されている。
 この構成によれば、パターン露光の際に中間樹脂層における透明導電膜側の大部分を適切に硬化させやすいとともに、透明基板に対して反対側への紫外線の透過を効果的に抑制できる。
[5]
 前記中間樹脂層(33)において、感光性樹脂層(34)と紫外線吸収剤層(37)とが、前記感光性樹脂層(34)が前記透明導電膜(32)側に位置する状態で積層されている。
 この構成によれば、感光性樹脂層と紫外線吸収剤層とを別々に形成して積層させることにより、感光性樹脂と紫外線吸収剤とを含む中間樹脂層を容易に形成することができる。感光性樹脂層が透明導電膜側に位置し、紫外線吸収剤層が透明基板側に位置する状態で積層されるので、パターン露光の際に感光性樹脂層を適切に硬化させることができるとともに、透明基板に対して反対側への紫外線の透過を効果的に抑制できる。また、中間樹脂層の厚みを一定とした場合に、紫外線吸収剤層の厚みに応じて、感光性樹脂層の厚みを小さく抑えることができる。よって、パターン露光工程及びその後の現像後に、透明電極と非電極部分との段差を小さく抑えることができる。よって、透明電極のパターン見えが生じるのを抑制することができる。
[6]
 前記中間樹脂層(33)が、前記紫外線吸収剤層(37)に対して前記感光性樹脂層(34)とは反対側に積層された非感光性樹脂層(38)をさらに含む。
 この構成によれば、中間樹脂層の厚みを一定とした場合に、非感光性樹脂層及び紫外線吸収剤層の厚みに応じて、感光性樹脂層の厚みをさらに小さく抑えることができる。よって、透明電極と非電極部分との段差をさらに小さく抑えることができる。よって、透明電極のパターン見えが生じるのを有効に抑制することができる。
 また、本開示に係る感光性導電フィルムは、好適には、以下の各構成を備える。
[7]
 感光性導電フィルム(3)であって、
 基材フィルム(31)と、
 前記基材フィルム(31)上に配置された透明導電膜(32)と、
 前記透明導電膜(32)上に配置された、感光性樹脂と紫外線吸収剤とを含むUVカット機能付感光層(33)と、
を備える。
 このような構成の感光性導電フィルムを2枚用いて、UVカット機能付感光層がそれぞれ透明基板の両面に接するように被着させると、透明基板の両面に、それぞれ透明基板側からUVカット機能付感光層及び透明導電膜の順に積層された積層体が形成される。この積層体における両面側のUVカット機能付感光層及び透明導電膜をそれぞれ覆うようにマスクを配置して、両面側からパターン露光を行うことで、現像後に透明基板の両面に分かれて得られる一対の透明電極どうしの位置合わせを容易に行うことができる。
 また、上記の構成では、透明基板の両面に設けられる感光性樹脂を含むUVカット機能付感光層が紫外線吸収剤をさらに含むので、一対の透明電極の一方のパターニングと他方のパターニングとが相互に影響し合うことを抑制できる。よって、透明基板の両面に分かれて得られる一対の透明電極のパターニングをそれぞれ適切に行うことができる。露光工程数が少なく、両面側から露光さえできれば装置に関する制約もほとんどないので、簡易に一対の透明電極を形成することができ、タッチ入力センサの製造を簡易化することができる。
 従って、簡易に製造可能であり、かつ、一対の透明電極どうしの位置合わせを容易に行うことができるタッチ入力センサの製造方法に適した感光性導電フィルムを提供することができる。
 なお、感光性導電フィルムも、上述したタッチ入力センサの製造方法に関して説明した好適な構成([2],[4]~[6])を備えることが好ましい。この場合において、上記[4]の構成における「前記透明基板(10)側」は、「前記基材フィルム(31)とは反対側」と読み替えて考えれば良い。
 本開示に係るタッチ入力センサの製造方法及び感光性導電フィルムは、上述した各効果のうち、少なくとも1つを奏することができれば良い。
 本開示に係る技術は、例えばタッチ入力センサの製造において、一対の透明電極を形成するために利用することができる。
1    タッチ入力センサ
3    感光性導電フィルム
10   透明基板
14   第一透明電極(透明電極)
24   第二透明電極(透明電極)
31   基材フィルム
32   透明導電膜
33   中間樹脂層(UVカット機能付感光層)
34   感光性樹脂層
36   熱可塑性紫外線吸収剤層(紫外線吸収剤層、非感光性樹脂層)
37   紫外線吸収剤層
38   熱可塑性樹脂層(非感光性樹脂層)
41   第一マスク(マスク)
42   第二マスク(マスク)
L    紫外線
 

Claims (7)

  1.  透明基板の両面に、それぞれ前記透明基板側から、感光性樹脂と紫外線吸収剤とを含む中間樹脂層、及び透明導電膜の順に積層する工程と、
     両面側の前記中間樹脂層及び前記透明導電膜をそれぞれ覆うようにマスクを配置して、両面側から紫外線によるパターン露光を行う工程と、
     現像して、前記透明基板の両面に前記透明導電膜からなる透明電極を形成する工程と、
    を備えるタッチ入力センサの製造方法。
  2.  前記中間樹脂層において、感光性樹脂層中に前記紫外線吸収剤が分散保持されている請求項1に記載のタッチ入力センサの製造方法。
  3.  現像後、前記中間樹脂層に含まれる前記紫外線吸収剤を失活させる工程と、
     前記紫外線吸収剤を失活させた後、両面側の前記中間樹脂層を全面露光する工程と、
    をさらに備える請求項2に記載のタッチ入力センサの製造方法。
  4.  前記紫外線吸収剤が、前記透明導電膜側から前記透明基板側に向かうに従って高濃度となる濃度勾配を有する状態で前記感光性樹脂層中に分散保持されている請求項2又は3に記載のタッチ入力センサの製造方法。
  5.  前記中間樹脂層において、感光性樹脂層と紫外線吸収剤層とが、前記感光性樹脂層が前記透明導電膜側に位置する状態で積層されている請求項1に記載のタッチ入力センサの製造方法。
  6.  前記中間樹脂層が、前記紫外線吸収剤層に対して前記感光性樹脂層とは反対側に積層された非感光性樹脂層をさらに含む請求項5に記載のタッチ入力センサの製造方法。
  7.  基材フィルムと、
     前記基材フィルム上に配置された透明導電膜と、
     前記透明導電膜上に配置された、感光性樹脂と紫外線吸収剤とを含むUVカット機能付感光層と、
    を備える感光性導電フィルム。
     
PCT/JP2015/084510 2015-01-13 2015-12-09 タッチ入力センサの製造方法及び感光性導電フィルム WO2016114041A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177000980A KR101878109B1 (ko) 2015-01-13 2015-12-09 터치 입력 센서의 제조 방법 및 감광성 도전 필름
CN201580047364.8A CN106687892B (zh) 2015-01-13 2015-12-09 触摸输入传感器的制造方法以及感光性导电膜
US15/477,937 US9874814B2 (en) 2015-01-13 2017-04-03 Method for producing touch input sensor and photosensitve conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015004553A JP6027633B2 (ja) 2015-01-13 2015-01-13 タッチ入力センサの製造方法及び感光性導電フィルム
JP2015-004553 2015-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/477,937 Continuation US9874814B2 (en) 2015-01-13 2017-04-03 Method for producing touch input sensor and photosensitve conductive film

Publications (1)

Publication Number Publication Date
WO2016114041A1 true WO2016114041A1 (ja) 2016-07-21

Family

ID=56408938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084510 WO2016114041A1 (ja) 2015-01-13 2015-12-09 タッチ入力センサの製造方法及び感光性導電フィルム

Country Status (5)

Country Link
US (1) US9874814B2 (ja)
JP (1) JP6027633B2 (ja)
KR (1) KR101878109B1 (ja)
CN (1) CN106687892B (ja)
WO (1) WO2016114041A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM508718U (zh) * 2015-03-12 2015-09-11 Ind Tech Res Inst 觸控裝置
JP7120225B2 (ja) 2017-05-31 2022-08-17 日本ゼオン株式会社 タッチセンサ基材及びその製造方法、タッチセンサ部材及びその製造方法、並びに、表示装置
JP7000323B2 (ja) 2017-06-07 2022-01-19 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
CN110197875A (zh) * 2018-02-26 2019-09-03 松下知识产权经营株式会社 光电转换元件及其制造方法
CN110221731B (zh) * 2018-03-02 2023-03-28 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板
JP6733693B2 (ja) * 2018-03-19 2020-08-05 Smk株式会社 タッチパネルの製造方法
TWI651737B (zh) * 2018-05-17 2019-02-21 睿明科技股份有限公司 導電膜之製造方法
JP6796116B2 (ja) * 2018-08-28 2020-12-02 双葉電子工業株式会社 センサフィルム、タッチセンサ及び該センサの製造方法
CN108990260A (zh) * 2018-09-21 2018-12-11 江西新正耀光学研究院有限公司 透光线路板结构、电路板及透光线路板制造方法
CN109799934B (zh) * 2019-01-24 2022-06-28 蓝思科技(长沙)有限公司 一种触控传感器的制备方法
US11910525B2 (en) 2019-01-28 2024-02-20 C3 Nano, Inc. Thin flexible structures with surfaces with transparent conductive films and processes for forming the structures
CN111698835A (zh) * 2019-03-11 2020-09-22 恒煦电子材料股份有限公司 具有紫外线吸收层的双面透明功能板及其制造方法
EP4130178A4 (en) * 2020-03-27 2023-09-13 Nitto Denko Corporation METHOD FOR MANUFACTURING ADHESIVE SHEET AND ADHESIVE SHEET
KR102331375B1 (ko) * 2020-08-12 2021-12-02 영 패스트 옵토일렉트로닉스 씨오., 엘티디. 대형 터치 감지 패턴의 제조 방법
CN114721229B (zh) * 2022-03-18 2023-07-28 浙江鑫柔科技有限公司 一种新型非对称性紫外曝光方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198103A (ja) * 2009-02-23 2010-09-09 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネルセンサを作製するための積層体、および、タッチパネルセンサの製造方法
JP2012194644A (ja) * 2011-03-15 2012-10-11 Nissha Printing Co Ltd 静電センサ用片面導電膜付フィルムの製造方法
JP2012203565A (ja) * 2011-03-24 2012-10-22 Dainippon Printing Co Ltd タッチパネルセンサおよびタッチパネルセンサの製造方法
JP2013109682A (ja) * 2011-11-24 2013-06-06 Toppan Printing Co Ltd 透明導電性積層体の製造方法ならびに静電容量式タッチパネル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047166A2 (en) * 2002-11-15 2004-06-03 E.I. Du Pont De Nemours And Company Process for using protective layers in the fabrication of electronic devices
CN100541327C (zh) * 2004-05-21 2009-09-16 明德国际仓储贸易(上海)有限公司 液晶显示元件散乱层光阻组成物
KR20070034519A (ko) * 2004-05-27 2007-03-28 이 아이 듀폰 디 네모아 앤드 캄파니 광감성 중합체 보호층용 현상제
CN102789131A (zh) * 2008-08-22 2012-11-21 日立化成工业株式会社 感光性导电膜、导电膜的形成方法、导电图形的形成方法以及导电膜基板
US8450144B2 (en) * 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5582189B2 (ja) * 2010-05-13 2014-09-03 日立化成株式会社 感光性導電フィルム、導電膜の形成方法及び導電パターンの形成方法
JP5257558B1 (ja) * 2011-10-03 2013-08-07 日立化成株式会社 導電パターンの形成方法、導電パターン基板及びタッチパネルセンサ
CN102881701B (zh) * 2012-09-19 2015-01-07 北京京东方光电科技有限公司 一种tft平板x射线传感器及其制造方法
CN103094287B (zh) * 2013-01-31 2015-12-09 北京京东方光电科技有限公司 阵列基板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198103A (ja) * 2009-02-23 2010-09-09 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネルセンサを作製するための積層体、および、タッチパネルセンサの製造方法
JP2012194644A (ja) * 2011-03-15 2012-10-11 Nissha Printing Co Ltd 静電センサ用片面導電膜付フィルムの製造方法
JP2012203565A (ja) * 2011-03-24 2012-10-22 Dainippon Printing Co Ltd タッチパネルセンサおよびタッチパネルセンサの製造方法
JP2013109682A (ja) * 2011-11-24 2013-06-06 Toppan Printing Co Ltd 透明導電性積層体の製造方法ならびに静電容量式タッチパネル

Also Published As

Publication number Publication date
KR20170105474A (ko) 2017-09-19
US20170205917A1 (en) 2017-07-20
CN106687892B (zh) 2020-05-22
JP6027633B2 (ja) 2016-11-16
US9874814B2 (en) 2018-01-23
KR101878109B1 (ko) 2018-07-13
CN106687892A (zh) 2017-05-17
JP2016130922A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6027633B2 (ja) タッチ入力センサの製造方法及び感光性導電フィルム
JP4888608B2 (ja) 導電性基板およびその製造方法ならびにタッチパネル
JP5383991B2 (ja) 静電容量センサとその製造方法
JP2015184323A (ja) 感光性積層体、転写材料、パターン化された感光性積層体及びその製造方法、タッチパネル、並びに画像表示装置
CN106104444A (zh) 透明导电性层叠体及具备透明导电性层叠体的触摸面板
KR101675712B1 (ko) 상호 정전 용량 방식 터치 패널
JP5887940B2 (ja) タッチパネルセンサおよびその製造方法
JPWO2014132623A1 (ja) タッチパネル、及び、タッチパネルの製造方法
JP6457897B2 (ja) タッチ入力センサ及びその製造方法
JP6355824B2 (ja) タッチパネル
JP2014016935A (ja) フィルム状静電容量型タッチパネルの製造方法
JPWO2017010521A1 (ja) 透明電極フィルム、調光素子、および透明電極フィルムの製造方法
CN104978058B (zh) 电路元件及其制造方法
TWI534679B (zh) 觸控面板及其製法
JP2014029682A (ja) タッチパネル
TWI496063B (zh) A method of forming a transparent conductive pattern, a method of manufacturing a touch screen, and a conductive transfer film
JP6115427B2 (ja) タッチパネルセンサとその製造方法
JP2013222590A (ja) 導電パターン形成基板及びその製造方法
JP5618083B2 (ja) タッチパネル部材の製造方法
KR20170024604A (ko) 포토레지스트 방식에 의한 일괄패턴 형성방법
JP2017107426A (ja) 導電パターン付き基材、導電パターン付き基材の製造方法、及びタッチパネル
JP2015049797A (ja) 透明導電性積層体、タッチパネル、および、透明導電性積層体の製造方法
JP2015079338A (ja) タッチパネルの製造方法及びタッチパネル
JP2014071802A (ja) 透明導電性積層体の製造方法
JP2013142986A (ja) タッチパネル部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877992

Country of ref document: EP

Kind code of ref document: A1