WO2016111253A1 - 湿度測定装置 - Google Patents

湿度測定装置 Download PDF

Info

Publication number
WO2016111253A1
WO2016111253A1 PCT/JP2016/050003 JP2016050003W WO2016111253A1 WO 2016111253 A1 WO2016111253 A1 WO 2016111253A1 JP 2016050003 W JP2016050003 W JP 2016050003W WO 2016111253 A1 WO2016111253 A1 WO 2016111253A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis
humidity
gas
temperature
self
Prior art date
Application number
PCT/JP2016/050003
Other languages
English (en)
French (fr)
Inventor
有毅 磯谷
浩昭 星加
余語 孝之
崇裕 三木
卓央 山本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/539,799 priority Critical patent/US10401314B2/en
Priority to EP16734992.7A priority patent/EP3244199B1/en
Priority to JP2016568366A priority patent/JP6386589B2/ja
Priority to CN201680004681.6A priority patent/CN107110800B/zh
Publication of WO2016111253A1 publication Critical patent/WO2016111253A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • G01N25/64Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers using electric temperature-responsive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10393Sensors for intake systems for characterising a multi-component mixture, e.g. for the composition such as humidity, density or viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • F02D2041/285Interface circuits between sensors and control unit the sensor having a signal processing unit external to the engine control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0418Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a humidity measuring device attached to an intake system of an internal combustion engine of an automobile, for example.
  • a humidity measuring device is one of sensors that are attached to the intake system of an automobile internal combustion engine to improve fuel efficiency and environmental performance.
  • the humidity measuring device includes a relative humidity measuring element, a temperature measuring element provided in the vicinity of the relative humidity measuring element, a heating element provided in the vicinity of the relative humidity measuring element, a relative humidity measuring element, a temperature measuring element, and a heating element.
  • a circuit unit for control calculates an absolute moisture amount using outputs of the relative humidity measuring element and the temperature measuring element, and transmits a signal corresponding to the absolute moisture amount to the outside.
  • Patent document 1 is mentioned as a prior art which recovers from the accuracy deterioration state by fouling substance adhesion to a relative humidity measuring element.
  • Japanese Patent Laid-Open No. 2004-260688 determines whether or not deterioration has occurred to a degree that requires cleaning by determining the difference in dew point temperature between before heating and during heating in an environment where there is no pressure change and humidification and dehumidification are not performed. A technique for self-diagnosis is disclosed.
  • the deterioration diagnosis process may be started in response to a start instruction from the user, may be started periodically, or when the self-diagnosis determines that the humidity element has deteriorated
  • the deterioration of the humidity element can be recovered by performing heat cleaning and removing components of the atmosphere that cause the humidity element to deteriorate.
  • a humidity measuring device attached to an intake system of an internal combustion engine of an automobile tends to be hot due to the influence of heat generated by the internal combustion engine. Therefore, when the relative humidity measuring element is heated for the purpose of diagnosis in such a high temperature state, the relative humidity measuring element may be self-destructed.
  • the relative humidity decreases because the amount of saturated water vapor increases. In this state, even if the relative humidity measuring element is heated, the change in relative humidity is small, and the state before heating and the state during heating In this case, a significant difference required for diagnosis cannot be generated and accuracy may deteriorate.
  • Patent Document 1 self-diagnosis is performed in an environment in which there is no pressure change and humidification and dehumidification are not performed, and there is no heating element state communication measure and safety measure during the diagnosis process. For this reason, Patent Document 1 leaves room for improvement with respect to the above-described problems.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a humidity measuring apparatus capable of performing highly reliable self-diagnosis.
  • the humidity measuring apparatus performs self-diagnosis using the gas temperature and gas humidity before heating and controlling the gas in the ambient atmosphere to be measured, and the gas temperature and gas humidity subjected to the heating control.
  • a humidity measuring apparatus having a diagnostic processing unit, wherein the diagnostic processing unit is configured to perform the self-measurement based on a replacement state of the measured environment atmosphere and a gas temperature and a gas humidity before heating and controlling the gas in the measured environment atmosphere.
  • FIG. 3 is an activity diagram showing diagnosis processing and output value correction processing according to the first embodiment of the present invention.
  • FIG. 10 is an activity diagram showing diagnosis processing and output value correction processing according to Embodiment 2 of the present invention. Explanatory drawing explaining the characteristic diagnostic process and relative humidity correction amount by Example 3 of this invention.
  • the humidity measuring device 20 includes a housing support 11, a screw hole 12, a connector 13, and a housing 14.
  • the humidity measuring device 20 is inserted from an insertion hole provided in the main air passage wall 2 so that the main bypass 16 can take in part of the intake air flowing through the main air passage 1.
  • the humidity detection device 20 is fixed to the mounting base 3 with screws inserted into the screw holes 12 through the housing support portion 11. A gap generated when the humidity detection device 20 is fixed to the mounting base 3 is filled with the O-ring 18.
  • the relative humidity measuring element 32 ⁇ / b> A is provided in the sub-bypass 17 branched from the main bypass 16. Since most of the contaminated matter taken into the main bypass 16 travels straight due to inertial force, the entry of the contaminated matter into the sub bypass 17 can be suppressed. For this reason, by providing the relative humidity measuring element 32A in the sub-bypass 17, it is possible to suppress deterioration of the relative humidity measuring element 32A due to adhesion of contaminated substances.
  • the humidity measuring device 20 includes a humidity measuring device control element 21, a heat generating device drive unit 29, a heat generating element 30, a temperature measuring element 31A, and a relative humidity measuring element 32A. .
  • the humidity measuring device control element 21 includes a control request processing unit 22, a diagnostic processing unit 25, a temperature signal processing unit 31B, a relative humidity signal processing unit 32B, an absolute water content calculation unit 33B, a temperature output unit 31C, A relative humidity output unit 32C, an absolute water content output unit 33C, a diagnostic result sending unit 34A, and a diagnostic result reflecting unit 35 are provided.
  • the control request processing unit 22 receives a diagnosis request (hereinafter referred to as remote control) from another device other than the humidity measuring device 20 such as the control device 36, and a local control start determination.
  • the diagnosis processing unit 25 includes a diagnosis start determination unit 26, a diagnosis unit 27, and a diagnosis continuation determination unit 28.
  • the control device 36 has a remote control request unit 37.
  • the humidity measuring device 20 receives and processes the output of the temperature measuring element 31A by the temperature signal processing unit 31B, and then performs a correction calculation by the diagnostic result reflecting unit 35, and the temperature output unit 31C sends the corresponding temperature 31 to the control device 36.
  • the diagnosis result reflecting unit 35 performs a correction operation
  • the relative humidity output unit 32C converts the corresponding relative humidity 32 into the control device 36. Is output.
  • the absolute moisture amount calculation unit 33B is executed using the output of the temperature signal processing unit 31B corrected by the diagnosis result reflection unit 35 and the output of the relative humidity signal processing unit 32B corrected by the diagnosis result reflection unit 35,
  • the absolute moisture amount output unit 33C outputs the corresponding absolute moisture amount 33 to the control device 36.
  • the vertical axis represents the characteristic deterioration amount
  • the horizontal axis represents the relative humidity of the ambient atmosphere to be measured (hereinafter referred to as reference relative humidity).
  • the relative humidity measuring element 32A has a measurement error with respect to the reference relative humidity.
  • the output characteristic 40 at the time of characteristic deterioration changes to take the first measurement point 40A having a negative characteristic deterioration amount and the second measurement point 40B having a positive characteristic deterioration amount.
  • the following describes a diagnostic method that incorporates a control method that enhances reliability when making a diagnosis, but the diagnostic logic that is taken up is an example and can be applied to various diagnostic methods that change the relative humidity by changing the temperature. it can.
  • a self-diagnosis method with improved reliability in the first embodiment will be described with reference to FIGS. 6, 7, 8, 9, and 10.
  • the reflection of the self-diagnosis and the correction result is to execute a steady operation process, a control request processing process, a diagnosis start determination process, a diagnosis & diagnosis continuation determination process, a diagnosis result transmission process, and a diagnosis result reflection process.
  • a diagnosis execution request is made to the humidity measuring device 20 in a local control request ST1 or a remote control request ST1 'in a steady operation process.
  • the local control request ST1 and the remote control request ST1 ' can be executed at an arbitrary timing.
  • the control request receiving unit ST2 receives the local control request ST1 or the remote control request ST1 ′, and using this as a trigger, the internal state is changed from the request 1 unaccepted state q1 to the request 2 reception standby state q2. Thereafter, only when the local control request ST1 or the remote control request ST1 ′ is received again in the request 2 reception standby state q2, the state transits to the request 2 reception state, and the subsequent diagnosis and correction processing is executed. In the request 2 reception standby state q2, a time-out period is provided, and if there is no second request again within a preset period after transition to the request 2 reception standby state q2, the first request is rejected. Request 1 and request 2 do not have to be the same.
  • Equation 1 SH is the absolute moisture content [g / kg] of the measured environment atmosphere, RH is the relative humidity [% RH] of the measured environment atmosphere, Temp is the temperature [° C.] of the measured environment atmosphere, and Press is the measured value.
  • the atmospheric pressure is atmospheric pressure [Pa].
  • the diagnosis result sending process merging point P1 in the diagnosis result sending process is performed without performing the subsequent diagnosis process. Transition.
  • the process proceeds to the temperature measurement and relative humidity measurement step ST4 (hereinafter, temperature and humidity measurement step 1ST4).
  • the case where it is determined that the gas in the ambient atmosphere to be measured has not been exchanged is, for example, when the engine is stopped, such as during idling stop, keyless entry, or smart entry. It is also possible to determine whether or not the gas in the ambient atmosphere to be measured has been exchanged by measuring the flow rate of the fluid flowing through the main air passage 1 with an air flow sensor or the like.
  • the temperature / humidity measuring step 1ST4 includes a temperature measuring step ST4A for measuring the gas temperature of the measured environment atmosphere by the temperature measuring element 31A and a relative humidity measuring step for measuring the relative humidity of the gas of the measured environment atmosphere by the relative humidity measuring element 32A.
  • ST4B is performed in parallel.
  • the diagnosis start determination step ST5 determines whether the temperature obtained in the temperature measurement step ST4A and the relative humidity obtained in the relative humidity measurement step ST4B are within the diagnosable temperature and humidity range 50. Since the relative humidity can be obtained from the temperature and the absolute moisture amount as shown in Equation 1, the diagnosis start determination step ST5 is a combination of the temperature obtained in the temperature measurement step ST4A and the absolute moisture amount in the state. Whether or not the self-diagnosis can be started may be determined, and furthermore, as shown in the following formula 2, since the relative humidity can be obtained from the temperature and the dew point temperature, the diagnosis start determination step ST5 is a temperature measurement step ST4A. Whether or not the self-diagnosis can be started may be determined based on the combination of the temperature obtained in step 1 and the dew point temperature in this state.
  • Equation 2 E is the saturated water vapor pressure [hPa] of the measured environment atmosphere, t is the temperature [° C.] of the measured environment atmosphere, RH is the relative humidity [% RH] of the measured environment atmosphere, and dp is the measured environment atmosphere.
  • the dew point temperature [° C.] and Press are the atmospheric pressure [Pa] of the ambient atmosphere to be measured.
  • T 1 is the dew point temperature [° C.] in the ambient atmosphere to be measured
  • T 2 is the relative humidity measuring element 32 A or the junction temperature of any element in the humidity measuring device 20.
  • Temperature value [° C.] minus exothermic component RH 1 is a humidity value (low RH) that can be accurately measured by the relative humidity measuring element 32A [% RH]
  • RH 2 is a humidity value that can be accurately measured by the relative humidity measuring element 32A. (High humidity side) [% RH].
  • the diagnosis start determination step ST5 determines whether the temperature and relative humidity of the measured environment are not within the diagnosable temperature / humidity range 50 (outside the diagnosable temperature / humidity range). Then, the process proceeds to the diagnosis result sending process merging point P1 in the diagnosis result sending process without performing the subsequent diagnosis process.
  • the diagnosis start determination step ST5 determines that the diagnosis can be started after the absolute water content calculation step ST6. move on.
  • the absolute moisture content calculation step ST6 in the diagnosis & diagnosis continuation judgment process calculates the absolute moisture content by applying the temperature obtained in the temperature measurement step ST4A and the relative humidity obtained in the relative humidity measurement step ST4B to Equation 1. To do. At this time, the pressure is 1 atm (101325 [Pa]).
  • a temperature control step ST8 for controlling the gas temperature of the ambient atmosphere to be measured by controlling the heating temperature of the heating element 30, and a temperature measurement and relative humidity measurement step ST9 ( Hereinafter, the temperature and humidity measurement step 2ST9) is performed in parallel.
  • the temperature control step ST8 or in parallel with the temperature control step for example, by communication between the humidity measuring device 20 and the control device 36 using a communication method such as LIN, CAN, SENT, FlexRay, Ethernet (registered trademark).
  • the heating element 30 is controlled to be in an ON state by the humidity measuring device control element 21, is controlled to be in an OFF state by the humidity measuring device control element 21, and is turned on by the control device 36.
  • the temperature obtained in the temperature measurement step 2ST9A in the temperature / humidity measurement step 2ST9 and the relative humidity obtained in the relative humidity measurement step 2ST9B can be diagnosed. To determine whether it is within.
  • the relative humidity does not fall within the diagnosable temperature / humidity range 50, there is a risk in each of the temperature regions 51A to 51D. Therefore, when it is determined that the temperature is not within the diagnosable temperature / humidity range 50, the diagnosis cannot be continued, and the process proceeds to the diagnosis result sending process merge point P1 in the diagnosis result sending process without performing the subsequent processes. To do.
  • the process proceeds to a relative humidity estimated value calculation step ST12.
  • the data acquisition step ST7 it may be repeatedly executed depending on the gas temperature difference in the measured environment atmosphere in the temperature control step ST8.
  • Equation 3 for calculating the relative humidity is obtained.
  • the state before the temperature control step ST8 (the state before the heating control of the gas in the measured environment atmosphere) is the state A
  • the state during the temperature control step ST8 (the state where the heating of the gas in the measured environment atmosphere is controlled) is the state B.
  • the following mathematical formula 4 for estimating the relative humidity in the state B is obtained.
  • Equation 4 RH Bestimate is the relative humidity [% RH] of the measured environment atmosphere in state B, Temp A is the measured environment atmosphere temperature [° C.] in state A, and ⁇ Temp is the measured environment atmosphere temperature and Temp in state B. A temperature difference of A [° C.].
  • the relative humidity estimated value calculation step ST12 the absolute moisture content in the state A obtained in the absolute moisture content computation step ST6 and the temperature in the state B obtained in the temperature measurement step 2ST9A are applied to the equation 4, so that the relative humidity in the state B Calculate the estimated humidity.
  • This utilizes the fact that the absolute moisture content does not change between the state A and the state B when the gas in the atmosphere to be measured is not in the exchange state, and therefore follows the ideal relative humidity output characteristic 63 (see FIG. 8).
  • Press is set to 1 atm (101325 [Pa]). That is, the estimated relative humidity value calculation step ST12 calculates the estimated relative value 61B of the relative humidity in the state B from the actual measured value 61A of the relative humidity in the state A.
  • the relative humidity estimated value 61B in the state B calculated in the relative humidity estimated value calculation step ST12 and the state actually measured in the relative humidity measurement step ST9B.
  • the measured value 62 of the relative humidity in B is compared, and the characteristic deterioration amount 64 in the state B is calculated from the difference between the measured value and the estimated value.
  • the diagnosis result sending process confluence point P1 in the diagnosis result sending process proceeds to the diagnosis result sending step ST14 using the measured environment atmosphere exchange state judgment step ST3, the diagnosis continuation judgment step ST11, and the relative humidity difference calculation step ST13 as transition sources.
  • the diagnosis result is sent to the control device 36 by communication between the humidity measuring device 20 and the control device 36 using a communication method such as LIN, CAN, SENT, FlexRay, Ethernet (registered trademark), for example.
  • a communication method such as LIN, CAN, SENT, FlexRay, Ethernet (registered trademark), for example.
  • the transition source to the diagnosis result transmission processing joining point P1 is the measured environment atmosphere exchange state determination step ST3
  • the diagnosis is canceled because the measured environment atmosphere is exchanged because it is impossible to start the self-diagnosis.
  • a signal corresponding to the event is sent.
  • the transition source to the diagnosis result transmission processing joining point P1 is the diagnosis continuation determination step ST11, it is determined that the diagnosis cannot be continued, and the temperature obtained in the temperature measurement step 2ST9A in the temperature / humidity measurement step 2ST9 is the high temperature region 51A.
  • a signal in the low temperature region 51B, a case in which the relative humidity obtained in the relative humidity measurement step 2ST9B is in the high humidity region 51C, and a case in the low humidity region 51D are transmitted. To do.
  • the diagnosis result reflecting step ST15 in the diagnosis result reflecting process the characteristic deterioration amount 64 in the state B calculated in the relative humidity difference calculating step ST13 is corrected with respect to the relative humidity in the state B, so that the measurement error in the state B is corrected. Can be reduced.
  • the diagnosis result reflecting step ST15 can reduce the measurement error in the state B by correcting the entire relative humidity and obtaining the relative humidity output characteristic 71 including the first diagnosis point 70B.
  • the reference point 70A corresponds to a measurement point in the state A
  • the first diagnosis point 70B corresponds to a measurement point in the state B (see FIG. 10).
  • an intermediate state is interposed between the steady state and the diagnostic state. For example, unexpected diagnosis due to noise is avoided, abnormal diagnosis results due to incorrect diagnosis, and measurement accuracy of the relative humidity measurement value is deteriorated. It becomes possible to prevent.
  • temperature and relative humidity are measured to determine whether diagnosis is possible.
  • the risk of exceeding the junction temperature due to further heating and the measured environment are low.
  • Condensation risk due to discontinuation of heating when the environment is measured, condensation risk due to discontinuation of heating when the measured environment is high humidity, and conditions before and after temperature control when the measured environment is low humidity Therefore, it is possible to avoid a risk that accuracy is deteriorated without generating a significant difference between the two, and it is possible to respond to a diagnosis request by an external control device 36 that cannot know the state of the humidity measuring device 20.
  • the humidity measurement device 20 in a state where a pollutant is attached to the relative humidity measuring element 32A or in a deteriorated state, when the diagnosis is started by a local control request by the humidity measuring device 20 itself, When the diagnosis is started by a remote control request from the control device 36 outside the measurement device 20, the humidity measurement device 20 with high reliability can be provided.
  • Example 2 A second embodiment of the present invention will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.
  • Example 2 a temperature and humidity adjustment step ST16 is added after the temperature and humidity measurement step 1ST4.
  • a temperature control step 2ST17 for controlling the gas temperature of the ambient atmosphere to be measured and a temperature control step 3ST18 are performed in parallel.
  • a temperature measurement step 3ST18A for measuring the gas temperature in the measurement environment atmosphere by the temperature measurement element 31A
  • a relative humidity measurement step 3ST18B for measuring the relative humidity of the gas in the measurement environment atmosphere by the relative humidity measurement element 32A.
  • the temperature / humidity adjustment step ST16 when heating is performed by the heating element 30 in the high temperature region 51A in the diagnosable temperature / humidity range 50, heating is stopped, and heating is performed by the heating element 30 in the low temperature region 51B. If not, heating is performed when the heating element 30 is not heated in the high humidity region 51C, and heating is performed when the heating element 30 is heated in the low humidity region 51D. By stopping, a process for adjusting the temperature and relative humidity in the temperature / humidity range 50 that can be diagnosed in advance is provided.
  • the process of executing the process for setting the temperature and humidity in a state suitable for diagnosis in advance is not limited to the diagnosis start determination process, and can be executed in various processes other than during diagnosis, such as steady operation.
  • the gas temperature and the gas humidity detected by the humidity measuring device 20 are controlled to values suitable for diagnosis in advance, so that a diagnosis request from the external control device 36 can be immediately responded.
  • the processing time can be shortened. Therefore, it is possible to increase diagnosis opportunities within a limited time during which the gas in the environment to be measured is not exchanged, such as during idling stop, keyless entry, and smart entry.
  • Example 3 A third embodiment of the present invention will be described with reference to FIGS. 12 (a) and 12 (b). Note that a description of the same configurations as those of the first and second embodiments is omitted.
  • the diagnosable temperature / humidity range (OK range) is expanded to a region 50 ′ shown in FIG. 12B, which is wider than the region 50 shown in FIG. 50 ').
  • the diagnosable temperature / humidity range can be expanded to the region 50 ′ shown in FIG. 12B, which is wider than the region 50 shown in FIG.
  • the third embodiment of the present invention it is possible to increase the chances of diagnosis by providing a wide diagnosable temperature / humidity range (OK range) used in the diagnosis start determination step ST5 and the diagnosis continuation determination step ST11.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

信頼性の高い自己診断を行うことができる湿度測定装置を得ること。 本発明の湿度測定装置20は、被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度、及び、加熱制御した気体温度と気体湿度を用いて自己診断を行う診断処理部25を有しており、診断処理部は、被測定環境雰囲気の交換状態と被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度に基づいて自己診断を開始可能か否かを判断する診断開始判断部26と、自己診断中に、加熱制御した気体温度と気体湿度に基づいて自己診断を継続可能か否かを判断する診断継続判断部28を有する。

Description

湿度測定装置
 本発明は、例えば自動車の内燃機関の吸気系に取り付けられる湿度測定装置に関する。
 燃費の向上、及び、環境性能向上の為に自動車の内燃機関の吸気系に取り付けられるセンサの1つとして湿度測定装置が挙げられる。湿度測定装置は、相対湿度測定素子と、相対湿度測定素子の近傍に設けられる温度測定素子と、相対湿度測定素子の近傍に設けられる加熱素子と、相対湿度測定素子と温度測定素子と加熱素子を制御する回路部と、を有し、相対湿度測定素子と温度測定素子の出力を用いて絶対水分量を算出し、絶対水分量に対応する信号を外部に送信している。
 ここで、主空気通路を流れる被測定気体中には、エアクリーナーでトラップしきれなかったダストなどの汚損物が含まれており、この汚損物が相対湿度測定素子に付着することで相対湿度の測定精度が悪化してしまい、ひいては湿度測定装置における絶対水分量の算出精度が悪化してしまうという課題が存在する。相対湿度測定素子への汚損物付着による精度悪化状態から回復する従来技術として、特許文献1が挙げられる。
 特許文献1には、圧力変化がなく、加湿および除湿が行われていない環境下で、加熱前と加熱中との露点温度の差を判定してクリーニングが必要な程度の劣化が生じているかを自己診断する技術が開示されている。
 特許文献1によれば、劣化診断処理はユーザから開始の指示を受けて開始してもよいし、定期的に開始してもよく、自己診断にて湿度エレメントが劣化していると判断した場合には加熱クリーニングを行い、湿度エレメントを劣化させる原因となる雰囲気の成分を除去することで、湿度エレメントの劣化を回復させることができる。
特開2010-237130号公報
 しかしながら、自動車の内燃機関の吸気系に取り付けられる湿度測定装置は、内燃機関が発する熱の影響を受けることにより湿度測定装置自体が高温になる傾向がある。したがって、かかる高温状態で診断を目的とした相対湿度測定素子の加熱を行った場合に、相対湿度測定素子が自己破壊する可能性がある。
 また、高温環境下においては飽和水蒸気量が大きくなる為に相対湿度は小さくなり、この状態では相対湿度測定素子を加熱しても相対湿度の変化は小さく、加熱前の状態と加熱中での状態において診断に必要となる有意差を発生させることができずに精度が悪化する可能性がある。
 そのため、診断の基準となる絶対水分量が変化しないという環境条件の他、診断を行うことのできる温度条件及び相対湿度条件を定めることが望ましい。また、予期しない診断が行われた場合には基準となる絶対水分量自体が変化する等、診断結果が不正となることは明らかであり、診断中の温度測定値、相対湿度測定値の測定精度悪化が生じないよう、定常状態と診断状態の間に中間状態を介する等の安全策を設けることが望ましい。
 更に、診断中には加熱による温度変化、相対湿度変化が生じ、該変化が診断による変化かどうか、環境の変化かどうか、或いは温度測定素子または相対湿度測定素子の故障かどうかを識別する必要がある。そのため、発熱素子の制御状態を制御装置へと伝えることが望ましい。
 特許文献1によれば、自己診断するのは圧力変化が無く、加湿および除湿が行われていない環境下としており、発熱素子の状態通信策及び診断プロセス中の安全策は無い。そのため、特許文献1は上述した課題に対して改良の余地が残されている。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、信頼性の高い自己診断を行うことができる湿度測定装置を提供することである。
 上記目的を達成するため、本発明の湿度測定装置は、被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度、及び、加熱制御した気体温度と気体湿度を用いて自己診断を行う診断処理部を有する湿度測定装置であって、前記診断処理部は、前記被測定環境雰囲気の交換状態と該被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度に基づいて前記自己診断を開始可能か否かを判断する診断開始判断部と、前記自己診断中に、前記加熱制御した気体温度と気体湿度に基づいて前記自己診断を継続可能か否かを判断する診断継続判断部と、を有することを特徴としている。
 本発明によれば、湿度測定素子に汚染物質が付着した状態や湿度測定素子が劣化した状態においても信頼性の高い自己診断技術を提供することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例1による主空気通路を含む相対湿度測定装置筐体の傾斜図。 本発明の実施例1による相対湿度測定装置筐体の傾斜図。 本発明の実施例1による相対湿度測定装置筐体の側面図。 本発明の実施例1による構成を示すブロック図。 本発明の実施例1による相対湿度補正量を説明する説明図。 本発明の実施例1による診断処理及び出力値補正処理を示すアクティビティ図。 本発明の実施例1による診断処理及び出力値補正処理を行う際のステートマシン図。 本発明の実施例1による診断可能温湿度範囲を説明する説明図。 本発明の実施例1による特性診断処理及び相対湿度補正量を説明する説明図。 本発明の実施例1による相対湿度補正方法を説明する説明図。 本発明の実施例2による診断処理及び出力値補正処理を示すアクティビティ図。 本発明の実施例3による特性診断処理及び相対湿度補正量を説明する説明図。
[実施例1]
 本発明の実施例1について、図1から図10を用いて説明する。
 図1、図2(a)、図2(b)、図3に示すように、実施例1における湿度測定装置20は、ハウジング支持部11と、ネジ穴12と、コネクタ13と、ハウジング14と、カバー15と、主空気通路1を流れる吸入空気の一部を取り込むメインバイパス16と、ハウジング14とカバー15により形成されるサブバイパス17と、発熱素子30と、温度測定素子31Aと、相対湿度測定素子32Aと、湿度測定装置制御素子21を有する。
 湿度測定装置20は、主空気通路1を流れる吸入空気の一部をメインバイパス16が取り込めるように主空気通路壁2に設けられる挿入孔から挿入される。湿度検出装置20は、ハウジング支持部11を介してネジ穴12に挿入されたネジにより取付台座3に固定される。湿度検出装置20を取付台座3に固定する際に生じる隙間は、Oリング18により埋められる。
 相対湿度測定素子32Aは、メインバイパス16から分岐するサブバイパス17内に設けられる構成としている。メインバイパス16内に取り込まれた汚損物のほとんどは慣性力により直進するため、サブバイパス17への汚損物の侵入を抑制することができる。そのため、相対湿度測定素子32Aをサブバイパス17内に設けることにより、相対湿度測定素子32Aの汚損物の付着による劣化を抑制することが可能となる。
 図4に示すように、湿度測定装置20は湿度測定装置制御素子21と、発熱装置駆動部29と、発熱素子30と、温度測定素子31Aと、相対湿度測定素子32Aと、を有している。
 湿度測定装置制御素子21は、制御要求処理部22と、診断処理部25と、温度信号処理部31Bと、相対湿度信号処理部32Bと、絶対水分量算出部33Bと、温度出力部31Cと、相対湿度出力部32Cと、絶対水分量出力部33Cと、診断結果送出部34Aと、診断結果反映部35と、を有している。
 制御要求処理部22は、湿度測定装置20以外の、例えば制御装置36などの他の装置からの診断要求(以降、リモート制御と表記する。)を受けるリモート制御受理部23と、ローカル制御開始判定部24と、を有し、診断処理部25は、診断開始判断部26と、診断部27と、診断継続判断部28と、を有する。制御装置36は、リモート制御要求部37を有する。
 湿度測定装置20は、温度測定素子31Aの出力を温度信号処理部31Bで受け取って処理した後、診断結果反映部35により補正演算を行い、温度出力部31Cにより対応する温度31が制御装置36に出力され、相対湿度測定素子32Aの出力を相対湿度信号処理部32Bで受け取って処理した後、診断結果反映部35により補正演算を行い、相対湿度出力部32Cにより対応する相対湿度32が制御装置36に出力される。また、診断結果反映部35により補正された温度信号処理部31Bの出力と、診断結果反映部35により補正された相対湿度信号処理部32Bの出力を用いて絶対水分量算出部33Bが実行され、絶対水分量出力部33Cにより対応する絶対水分量33が制御装置36に出力される。
 汚損物の付着や劣化による相対湿度測定素子の出力特性の悪化について、図5を用いて説明する。図5において縦軸は特性悪化量、横軸は被測定環境雰囲気の相対湿度(以降、基準相対湿度と表記する。)を示す。相対湿度測定素子32Aに汚損物質が付着したり、相対湿度測定素子32Aが経時劣化することにより相対湿度の出力特性が悪化すると、相対湿度測定素子32Aは基準相対湿度に対して計測誤差が生じる。例えば、マイナスの特性悪化量を有する第一の測定点40Aや、プラスの特性悪化量を有する第二の測定点40Bをとるような特性悪化時の出力特性40に変化する。以下、診断を行う際に信頼性を高める制御方法を取り入れた診断方法を述べるが、採り上げる診断ロジックは一例であり、温度を変化させることにより相対湿度を変化させる種種の診断方法に適用することができる。
 実施例1における信頼性を向上した自己診断方法について図6と図7、図8、図9、図10を用いて説明する。自己診断及び補正結果の反映は、定常動作プロセスと、制御要求処理プロセスと、診断開始判断プロセスと、診断&診断継続判断プロセスと、診断結果送出プロセスと、診断結果反映プロセスと、を実行することにより達成する。
 まず、定常動作プロセス内のローカル制御要求ST1またはリモート制御要求ST1’において湿度測定装置20に対して診断実行の要求を行う。ここで、ローカル制御要求ST1及びリモート制御要求ST1’は任意のタイミングで実行することができる。
 制御要求処理プロセスでは、制御要求受理部ST2でローカル制御要求ST1もしくはリモート制御要求ST1’を受け、これをトリガとして内部状態を要求1未受理状態q1から要求2受信待機状態q2へと遷移させた後、要求2受信待機状態q2において再度ローカル制御要求ST1もしくはリモート制御要求ST1’を受信した場合にのみ要求2受信状態に遷移し、後段の診断及び補正処理を実行する。要求2受信待機状態q2ではタイムアウト期間を設け、要求2受信待機状態q2に遷移してから予め設定された期間内に再びとなる2度目の要求が無ければ1度目の要求を棄却する。尚、要求1と要求2は同一でなくとも良い。
 診断開始判断プロセス内の被測定環境雰囲気交換状態判断ステップST3は被測定環境雰囲気の気体が交換されているか否かを判断する。ここで、一般に絶対水分量と相対湿度と温度の関係性は図8の湿り空気線図60に示すようになり、これは下記の数式1によって求まり、被測定環境雰囲気の気体が交換されていない場合には絶対水分量が変化しない為、絶対水分量が安定しているかどうかにより判断する。
Figure JPOXMLDOC01-appb-M000001
 数式1において、SHは被測定環境雰囲気の絶対水分量[g/kg]、RHは被測定環
境雰囲気の相対湿度[%RH]、Tempは被測定環境雰囲気の温度[℃]、Pressは被測定環境雰囲気の大気圧[Pa]である。
 被測定環境雰囲気交換状態判断ステップST3で被測定環境雰囲気の気体が交換されていると判断した場合には、以降の診断処理を行わずに診断結果送出プロセス内の診断結果送出処理合流ポイントP1へ遷移する。一方で、被測定環境雰囲気交換状態判断ステップST3で被測定環境雰囲気の気体が交換されていないと判断した場合においては、温度測定及び相対湿度測定ステップST4(以下、温湿度測定ステップ1ST4)に進む。
 被測定環境雰囲気の気体が交換されていないと判断する場合としては、例えばアイドリングストップ中やキーレスエントリー時、スマートエントリー時等、エンジンが停止中の場合が挙げられる。また、エアフローセンサ等で主空気通路1を流れる流体の流量を測定することで、被測定環境雰囲気の気体が交換されているか否かを判断することも可能である。
 温湿度測定ステップ1ST4は、温度測定素子31Aにより被測定環境雰囲気の気体温度を測定する温度測定ステップST4Aと、相対湿度測定素子32Aにより被測定環境雰囲気の気体の相対湿度を測定する相対湿度測定ステップST4Bを並行に行う。
 診断開始判断ステップST5は、温度測定ステップST4Aで得られた温度と、相対湿度測定ステップST4Bで得られた相対湿度が診断可能温湿度範囲50内であるかどうかを判断する。尚、数式1に示した通り、温度と絶対水分量により相対湿度を求めることができる為、診断開始判断ステップST5は、温度測定ステップST4Aで得られた温度と、該状態の絶対水分量の組み合わせで自己診断を開始可能か否かを判断しても良く、更には、下記数式2に示す通り、温度と露点温度により相対湿度を求めることができる為、診断開始判断ステップST5は温度測定ステップST4Aで得られた温度と、該状態の露点温度の組み合わせで自己診断を開始可能か否かを判断しても良い。
Figure JPOXMLDOC01-appb-M000002
 数式2において、Eは被測定環境雰囲気の飽和水蒸気圧[hPa]、tは被測定環境雰囲気の温度[℃]、RHは被測定環境雰囲気の相対湿度[%RH]、dpは被測定環境雰囲気の露点温度[℃]、Pressは被測定環境雰囲気の大気圧[Pa]である。
 ここで、図9において、Tは被測定環境雰囲気における露点温度[℃]、Tは相対湿度測定素子32Aあるいは湿度測定装置20内のいずれかの素子のジャンクション温度より発熱素子及び周辺回路の発熱分を引いた温度値[℃]、RHは相対湿度測定素子32Aが精度良く測定できる湿度値(低湿側)[%RH]、RHは相対湿度測定素子32Aが
精度よく測定できる湿度値(高湿側)[%RH]である。
 例えば、非測定環境雰囲気の気体温度が高温領域51Aにある際に更なる加熱を行うと、素子のジャンクション温度を超えるリスクがある。そして、低温領域51Bにある際に加熱を中止した場合、あるいは、非測定環境雰囲気の気体湿度が高湿領域51Cにある際に加熱を中止した場合に結露を発生させるリスクがある。また、非測定環境雰囲気の気体湿度が低湿領域51Dにある場合には、加熱制御の前後における湿度の変化が少なく、湿度状態に有意差を発生することができずに精度が悪化するリスクがある。
 したがって、診断開始判断ステップST5で被測定環境の温度と相対湿度が診断可能温湿度範囲50内に入っていない(診断可能温湿度範囲外)と判断した場合には、診断開始不可能であるとして、以降の診断処理を行わずに診断結果送出プロセス内の診断結果送出処理合流ポイントP1へ遷移する。一方で、診断開始判断ステップST5で被測定環境の温度と相対湿度が診断可能温湿度範囲50内に入っていると判断した場合においては、診断開始可能であるとして絶対水分量算出ステップST6以降に進む。
 診断&診断継続判断プロセス内の絶対水分量算出ステップST6は温度測定ステップST4Aで得られた温度と、相対湿度測定ステップST4Bで得られた相対湿度とを数式1に当てはめることで絶対水分量を算出する。この際、Pressは1気圧(101325 [Pa])とする。
 診断&診断継続判断プロセス内のデータ取得ステップST7では、発熱素子30の加熱温度を制御することで被測定環境雰囲気の気体温度を制御する温度制御ステップST8と、温度測定及び相対湿度測定ステップST9(以下、温湿度測定ステップ2ST9)と、を並行に行う。温度制御ステップST8後もしくは温度制御ステップと並列(図示せず)に、例えばLIN、CAN、SENT、FlexRay、Ethernet(登録商標)といった通信方式を利用した湿度測定装置20と制御装置36間の通信により制御装置36へ、発熱素子30が湿度測定装置制御素子21によりON状態に制御されている状態と、湿度測定装置制御素子21によりOFF状態に制御されている状態と、制御装置36によりON状態に制御されている状態と、制御装置36によりOFF状態に制御されている状態と、の夫々に対応する信号を送出する。これにより、加熱制御の状態、及び、診断処理部25による診断処理がローカル制御要求ST1またはリモート制御要求ST1’のいずれによるものであるかの情報が、外部の装置である制御装置36に出力される(出力部)。
 温湿度測定ステップ2ST9では、温度測定素子31Aにより被測定環境雰囲気の気体温度を測定する温度測定ステップ2ST9Aと、相対湿度測定素子32Aにより被測定環境雰囲気の気体の相対湿度を測定する相対湿度測定ステップ2ST9Bを並行に行う。
 診断&診断継続判断プロセス内の診断継続判断ステップST11では、温湿度測定ステップ2ST9における温度測定ステップ2ST9Aで得られた温度と、相対湿度測定ステップ2ST9Bで得られた相対湿度が診断可能温湿度範囲50内であるかどうかを判断する。ここで、相対湿度が診断可能温湿度範囲50内に入っていない場合には、各温度領域51A~51Dにおけるリスクがある。したがって、診断可能温湿度範囲50内に入っていないと判断した場合には、診断継続不可能であるとして、以降の処理を行わずに診断結果送出プロセス内の診断結果送出処理合流ポイントP1へ遷移する。一方で診断可能温湿度範囲50内に入っていると判断した場合には、診断継続可能であるとして、相対湿度推定値算出ステップST12へと進む。尚、データ取得ステップST7では温度制御ステップST8による被測定環境雰囲気の気体温度違いで繰り返し実行しても良い。
 ここで数式1を変形すると相対湿度を算出する以下の数式3が得られる。温度制御ステップST8前の状態(被測定環境雰囲気の気体を加熱制御する前の状態)を状態A、温度制御ステップST8中の状態(被測定環境雰囲気の気体を加熱制御した状態)を状態Bとすると、状態Bにおける相対湿度を推定する以下の数式4が得られる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 数式4においてRHBestimateは状態Bにおける被測定環境雰囲気の相対湿度[%RH]、Tempは状態Aにおける被測定環境雰囲気の温度[℃]、ΔTempは状態Bにおける被測定環境雰囲気の温度とTempの温度差[℃]である。
 相対湿度推定値算出ステップST12では絶対水分量算出ステップST6で得られた状態Aにおける絶対水分量と、温度測定ステップ2ST9Aで得られた状態Bにおける温度を数式4に当てはめることで、状態Bにおける相対湿度の推定値を算出する。これは、被測定雰囲気の気体が交換状態でない場合、絶対水分量は状態Aと状態Bで変化しないため、理想的な相対湿度出力特性63(図8を参照)に従うことを利用している。この際、絶対水分量算出ステップST6と同様に、Pressは1気圧(101325[Pa])とする。すなわち、相対湿度推定値算出ステップST12は、状態Aにおける相対湿度の実測値61Aから、状態Bにおける相対湿度の推定値61Bを算出する。
 診断&診断継続判断プロセス内の相対湿度差分算出ステップST13では、相対湿度推定値算出ステップST12で算出された状態Bにおける相対湿度の推定値61Bと、相対湿度測定ステップST9Bで実際に測定された状態Bにおける相対湿度の実測値62を比較し、実測値と推定値の差分から状態Bにおける特性悪化量64を算出する。
 診断結果送出プロセス内の診断結果送出処理合流ポイントP1は、被測定環境雰囲気交換状態判断ステップST3、診断継続判断ステップST11、相対湿度差分算出ステップST13を遷移元とし、診断結果送出ステップST14へ進む。
 診断結果送出ステップST14では、例えばLIN、CAN、SENT、FlexRay、Ethernet(登録商標)といった通信方式を利用した湿度測定装置20と制御装置36間の通信により制御装置36へ診断の結果を送出する。例えば、診断結果送出処理合流ポイントP1への遷移元が被測定環境雰囲気交換状態判断ステップST3の場合は、自己診断の開始が不可能であるとして被測定環境雰囲気が交換される為に診断をキャンセルしたことに対応する信号を送出する。また、診断結果送出処理合流ポイントP1への遷移元が診断継続判断ステップST11の場合は、診断継続不可能であるとして、温湿度測定ステップ2ST9における温度測定ステップ2ST9Aで得られた温度が高温領域51Aにある場合と、低温領域51Bにある場合と、相対湿度測定ステップ2ST9Bで得られた相対湿度が高湿領域51Cにある場合と、低湿領域51Dにある場合と、の夫々に対応する信号を送出する。
 診断結果反映プロセス内の診断結果反映ステップST15では、相対湿度差分算出ステップST13で算出した状態Bにおける特性悪化量64を、状態Bにおける相対湿度に対して補正を行うことで、状態Bにおける測定誤差を低減することが可能となる。或いは、診断結果反映ステップST15は、相対湿度全域に対する補正を行い、第一診断点70Bを合わせ込んだ相対湿度出力特性71を得ることで、状態Bにおける測定誤差を低減することが可能となる。ここで、基準点70Aは、状態Aにおける測定点に該当し、第一診断点70Bは、状態Bにおける測定点に該当する(図10参照)。
 本発明の実施例1では、定常状態と診断状態の間に中間状態を介しており、例えばノイズ起因による予期しない診断を避け、不正な診断による診断結果異常、相対湿度測定値の測定精度悪化を防ぐことが可能となる。
 また、診断開始前に温度及び相対湿度を測定して診断可否判断を行っており、被測定環境が高温である際に更なる加熱を行うことによるジャンクション温度を超えるリスクと、被測定環境が低温である際に加熱を中止することによる結露発生リスクと、被測定環境が高湿である際に加熱を中止することによる結露発生リスクと、被測定環境が低湿である際に温度制御前後における状態に有意差を発生することができずに精度が悪化するリスクを回避することができ、湿度測定装置20の状態を知りえない外部の制御装置36による診断要求に対応することが可能となる。
 更に、診断処理実行中の発熱素子の状態を外部の制御装置36に伝えることにより、温湿度測定値の変化要因を切り分けることが可能となり、診断結果を外部の制御装置36に伝えることにより、外部の制御装置36の無駄な制御を抑えることが可能となる。
 その為、本発明の実施例1によれば、相対湿度測定素子32Aに汚損物質が付着した状態や劣化した状態において、湿度測定装置20の自己によるローカル制御要求により診断を開始する場合と、湿度測定装置20の外部の制御装置36によるリモート制御要求により診断を開始する場合に、信頼性の高い湿度測定装置20を提供することができる。
[実施例2]
 本発明の実施例2について図11を用いて説明する。尚、実施例1と同様の構成については説明を省略する。
 実施例2では、温湿度測定ステップ1ST4後に温湿度調整ステップST16が追加される。温湿度調整ステップST16は被測定環境雰囲気の気体温度を制御する温度制御ステップ2ST17と、温度制御ステップ3ST18と、を並行に行う。
 温度制御ステップ3ST18では、温度測定素子31Aにより被測定環境雰囲気の気体温度を測定する温度測定ステップ3ST18Aと、相対湿度測定素子32Aにより被測定環境雰囲気の気体の相対湿度を測定する相対湿度測定ステップ3ST18Bを並行に行う。
 温湿度調整ステップST16では診断可能温湿度範囲50の内、高温領域51Aにいて発熱素子30による加熱を行っている場合には加熱を中止すること、低温領域51Bにいて発熱素子30による加熱を行っていない場合には加熱を行うこと、高湿領域51Cにおいて発熱素子30による加熱を行っていない場合には加熱を行うこと、低湿領域51Dにおいて発熱素子30による加熱を行っている場合には加熱を中止すること、により予め診断可能温湿度範囲50内に温度及び相対湿度を調整する処理を設けている。
 尚、予め温湿度を診断に適した状態にする処理を実行するプロセスは診断開始判断プロセス内のみに限らず、例えば定常動作等、診断中を除く種種のプロセスにおいて実行可能である。
 本発明の実施例2によれば、湿度測定装置20が検出する気体温度と気体湿度と、を予め診断に適した値に制御することにより、外部の制御装置36による診断要求に即座に対応することと、処理時間の短縮が可能になる。したがって、アイドリングストップ中やキーレスエントリー時、スマートエントリー時等、被測定環境雰囲気の気体が交換されない限られた時間内における診断機会を増やすことができる。
[実施例3]
 本発明の実施例3について図12(a)と図12(b)を用いて説明する。尚、実施例1及び実施例2と同様の構成については説明を省略する。
 実施例3では、診断可能温湿度範囲(OK範囲)を図12(a)に示す領域50よりも広い領域である図12(b)に示す領域50’に広げている(診断可能温湿度範囲50’)。
 例えば、診断開始判断ステップST5及び診断継続判断ステップST11を行う際、高温領域51Aにおいて発熱素子30による加熱を行っている場合には加熱を中止すること、高湿領域51Cにおいて発熱素子30による加熱を行っていない場合には加熱を行うこと、低湿領域51Dにおいて発熱素子30による加熱を行っている場合には加熱を中止すること、によって診断が可能なケースが存在する。したがって、診断可能温湿度範囲(OK範囲)を図12(a)に示す領域50よりも広い領域である図12(b)に示す領域50’に広げることができる。
 本発明の実施例3によれば、診断開始判断ステップST5及び診断継続判断ステップST11において用いる診断可能温湿度範囲(OK範囲)を広く設けることにより診断可能な機会を増やすことができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
20          湿度測定装置
21          湿度測定装置制御素子
22          要求処理部
23          リモート制御受理部
24          ローカル制御開始判定部
25          診断処理部
26          診断開始判断部
27          診断部
28          診断継続判断部
29          発熱装置駆動部
30          発熱素子
31          温度
31A        温度測定素子
31B        温度信号処理部
31C        温度出力部
32          相対湿度
32A        相対湿度測定素子
32B        相対湿度信号処理部
32C        相対湿度出力部
33          絶対水分量
33B        絶対水分量算出部
33C        絶対水分量出力部
34          診断結果
34A        診断結果送出部
35          診断結果反映部
36          制御装置
37          リモート制御要求部
40          特性悪化時の出力特性
40A        第一の測定点
40B        第二の測定点
50          診断可能温湿度範囲
50’        診断可能温湿度範囲
51A        高温領域
51B        低温領域
51C        高湿領域
51D        低湿領域
60          湿り空気線図

Claims (10)

  1.  被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度、及び、加熱制御した気体温度と気体湿度を用いて自己診断を行う診断処理部を有する湿度測定装置であって、
     前記診断処理部は、
     前記被測定環境雰囲気の交換状態と該被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度に基づいて前記自己診断を開始可能か否かを判断する診断開始判断部と、
     前記自己診断中に、前記加熱制御した気体温度と気体湿度に基づいて前記自己診断を継続可能か否かを判断する診断継続判断部と、
     を有することを特徴とする湿度測定装置。
  2.  前記診断処理部は、
     前記診断継続判断部により前記自己診断を継続可能であると判断された場合に、前記加熱制御する前の気体温度と気体湿度を用いて絶対水分量を算出し、前記加熱制御した気体温度と前記絶対水分量とを用いて相対湿度の推定値を算出し、前記加熱制御する前の気体湿度と、前記推定値との差分から特性悪化量を算出する診断部と、を有することを特徴とする請求項1に記載の湿度測定装置。
  3.  前記診断処理部から前記診断部で算出された特性悪化量を用いて、前記加熱制御された気体湿度を補正する診断結果反映部を有することを特徴とする請求項2に記載の湿度測定装置。
  4.  前記診断開始判断部は、前記加熱制御する前の気体温度と気体湿度が予め設定された範囲内のときに前記自己診断を開始可能であると判断し、
     前記診断継続判断部は、前記加熱制御した気体温度と気体湿度が予め設定された範囲内のときに前記自己診断を継続可能であると判断することを特徴とする請求項1に記載の湿度測定装置。
  5.  自己によるローカル制御要求もしくは他の装置によるリモート制御要求に基づき前記診断処理部に対して前記自己診断の制御要求を行う制御要求処理部を有し、
     前記診断処理部は、前記制御要求処理部からの制御要求を受けることにより前記診断開始判断部による診断開始可能か否かの判断処理を実行することを特徴とする請求項1に記載の湿度測定装置。
  6.  前記制御要求処理部は、
     前記ローカル制御要求もしくは前記リモート制御要求を受けることにより内部状態を要求未受理状態から要求受信待機状態に遷移させ、該要求受信待機状態に遷移してから予め設定された期間内に再び前記ローカル制御要求もしくは前記リモート制御要求を受けることにより前記内部状態を前記要求受信待機状態から要求受信状態に遷移させて、前記自己診断の制御要求を行うことを特徴とする請求項5に記載の湿度測定装置。
  7.  前記加熱制御の状態、及び、前記診断処理部による診断処理が前記ローカル制御要求または前記リモート制御要求のいずれによるものであるかの情報を、外部の装置に出力する出力部を有することを特徴とする請求項6に記載の湿度測定装置。
  8.  前記診断開始判断部により前記自己診断の開始不可能と判断された場合、または、前記診断継続判断部により前記自己診断を継続不可能と判断された場合に、判断結果を外部の装置に出力する診断結果送出部を有することを特徴とする請求項1に記載の湿度測定装置。
  9.  前記被測定環境雰囲気の気体を加熱する発熱素子を有し、
     前記診断開始判断部は、前記加熱制御する前の気体温度と気体湿度が予め設定された診断可能温湿度範囲外のときに前記発熱素子を制御して前記気体温度と気体湿度を前記診断可能温湿度範囲に調整し、該調整された気体温度と気体湿度が前記診断可能温湿度範囲内のときに前記自己診断を開始可能であると判断することを特徴とする請求項1に記載の湿度測定装置。
  10.  前記診断開始判断部は、前記被測定環境雰囲気の気体を加熱制御する前の気体温度と気体湿度の代わりに、前記被測定環境雰囲気の気体を加熱制御する前の気体温度と絶対水分量、もしくは、前記被測定環境雰囲気の気体を加熱制御する前の気体温度と露点温度に基づいて前記自己診断を開始可能か否かを判断することを特徴とする請求項1に記載の湿度測定装置。
     
PCT/JP2016/050003 2015-01-08 2016-01-04 湿度測定装置 WO2016111253A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/539,799 US10401314B2 (en) 2015-01-08 2016-01-04 Humidity measuring device
EP16734992.7A EP3244199B1 (en) 2015-01-08 2016-01-04 Humidity measuring device
JP2016568366A JP6386589B2 (ja) 2015-01-08 2016-01-04 湿度測定装置
CN201680004681.6A CN107110800B (zh) 2015-01-08 2016-01-04 湿度测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015002430 2015-01-08
JP2015-002430 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016111253A1 true WO2016111253A1 (ja) 2016-07-14

Family

ID=56355942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050003 WO2016111253A1 (ja) 2015-01-08 2016-01-04 湿度測定装置

Country Status (5)

Country Link
US (1) US10401314B2 (ja)
EP (1) EP3244199B1 (ja)
JP (1) JP6386589B2 (ja)
CN (1) CN107110800B (ja)
WO (1) WO2016111253A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379218A1 (en) * 2017-03-21 2018-09-26 MEAS France Method for providing a diagnostic on a combined humidity and temperature sensor
CN116381163A (zh) * 2023-05-29 2023-07-04 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201946A1 (de) * 2018-02-08 2019-08-08 Audi Ag Verfahren und Vorrichtung zur Plausibilisierung der Messwerte eines Feuchtesensors
JP6993635B2 (ja) 2018-06-28 2022-01-13 有限会社メトロポリス 防護盾
TWM569412U (zh) * 2018-08-07 2018-11-01 捷騰光電股份有限公司 溫濕度感測模組之烘乾裝置
JP2020173245A (ja) * 2019-04-10 2020-10-22 ミネベアミツミ株式会社 付着水分検出装置、付着水分検出方法、電気機器、及びログ出力システム
CN111541176B (zh) * 2020-06-16 2021-01-26 广州百畅信息科技有限公司 一种具有湿度调节的电控防潮柜
EP4109051A3 (en) 2021-06-22 2023-02-15 SMC Corporation Humidity measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174721A (ja) * 1993-09-29 1995-07-14 Vaisala Oy ラジオゾンデ気象観測などにおける湿度測定方法と湿度測定構造
JPH07294469A (ja) * 1994-04-15 1995-11-10 Vaisala Oy 露点または気体濃度の測定方法と着氷予測装置
JPH08254579A (ja) * 1995-03-17 1996-10-01 Seiko Epson Corp 腕装着型環境データ計測装置
JP2002156348A (ja) * 2000-11-17 2002-05-31 Tabai Espec Corp 湿度センサの校正方法およびそれを用いた湿度センサ
JP2008541118A (ja) * 2005-05-18 2008-11-20 ヴァイサラ オーワイジェー 相対湿度センサを較正するための方法及び装置
JP2010008323A (ja) * 2008-06-30 2010-01-14 Yamatake Corp 湿度計測装置
JP2010237128A (ja) * 2009-03-31 2010-10-21 Yamatake Corp 湿度センサの劣化診断方法
JP2013529776A (ja) * 2010-06-22 2013-07-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 湿度センサの検査方法及びそのためのセンサモジュール

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947055B2 (ja) * 2001-10-12 2007-07-18 本田技研工業株式会社 炭化水素吸着材の劣化状態評価方法
JP3782341B2 (ja) * 2001-12-06 2006-06-07 本田技研工業株式会社 湿度センサの故障検知方法
JP3914044B2 (ja) * 2001-12-14 2007-05-16 日本特殊陶業株式会社 ガスセンサの制御装置及びガスセンサの制御方法
JP5230508B2 (ja) 2009-03-31 2013-07-10 アズビル株式会社 湿度センサの劣化診断方法
US9329160B2 (en) 2013-04-05 2016-05-03 Ford Global Technologies, Llc Humidity sensor diagnostic method using condensation clearing heater
US9389198B2 (en) * 2013-04-18 2016-07-12 Ford Global Technologies, Llc Humidity sensor and engine system
US20150114087A1 (en) * 2013-10-25 2015-04-30 Ngk Spark Plug Co., Ltd. Particulate measurement system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174721A (ja) * 1993-09-29 1995-07-14 Vaisala Oy ラジオゾンデ気象観測などにおける湿度測定方法と湿度測定構造
JPH07294469A (ja) * 1994-04-15 1995-11-10 Vaisala Oy 露点または気体濃度の測定方法と着氷予測装置
JPH08254579A (ja) * 1995-03-17 1996-10-01 Seiko Epson Corp 腕装着型環境データ計測装置
JP2002156348A (ja) * 2000-11-17 2002-05-31 Tabai Espec Corp 湿度センサの校正方法およびそれを用いた湿度センサ
JP2008541118A (ja) * 2005-05-18 2008-11-20 ヴァイサラ オーワイジェー 相対湿度センサを較正するための方法及び装置
JP2010008323A (ja) * 2008-06-30 2010-01-14 Yamatake Corp 湿度計測装置
JP2010237128A (ja) * 2009-03-31 2010-10-21 Yamatake Corp 湿度センサの劣化診断方法
JP2013529776A (ja) * 2010-06-22 2013-07-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 湿度センサの検査方法及びそのためのセンサモジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379218A1 (en) * 2017-03-21 2018-09-26 MEAS France Method for providing a diagnostic on a combined humidity and temperature sensor
CN108627198A (zh) * 2017-03-21 2018-10-09 梅斯法国公司 用于在组合的湿度和温度传感器上提供诊断的方法
US10950069B2 (en) 2017-03-21 2021-03-16 MEAS France Method for providing a diagnostic on a combined humidity and temperature sensor
CN116381163A (zh) * 2023-05-29 2023-07-04 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质
CN116381163B (zh) * 2023-05-29 2024-02-23 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP3244199B1 (en) 2019-12-18
JPWO2016111253A1 (ja) 2017-06-08
EP3244199A4 (en) 2018-11-21
US10401314B2 (en) 2019-09-03
US20170370862A1 (en) 2017-12-28
CN107110800A (zh) 2017-08-29
CN107110800B (zh) 2019-08-09
JP6386589B2 (ja) 2018-09-05
EP3244199A1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6386589B2 (ja) 湿度測定装置
US8924190B2 (en) Method and system for correcting a temperature measurement signal
JP7356510B2 (ja) ホルムアルデヒド濃度の検出方法、装置及び空気清浄機
JP4371103B2 (ja) 内燃機関の吸入空気量算出装置
US8315759B2 (en) Humidity sensor diagnostic systems and methods
JP2007040108A5 (ja)
JP2008542776A (ja) センサの信号の補正方法及び装置
US20180276914A1 (en) Method for Providing A Diagnostic On A Combined Humidity And Temperature Sensor
JP5914388B2 (ja) 熱式流体計測装置
JP2006242748A (ja) 発熱抵抗体式空気流量測定装置およびその計測誤差補正方法
US6834542B2 (en) Method for determining the atmospheric pressure on the basis of the pressure in the intake line of an internal combustion engine
JP2003307152A (ja) 車両におけるmapセンサー故障診断装置及び方法
US8051641B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2006329138A (ja) エアフローセンサの故障診断装置
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
JPH08284721A (ja) 内燃機関の出力制御方法および装置
JP6294960B2 (ja) 湿度測定装置
EP1363007A2 (en) Failure diagnosis apparatus and method for diagnosing position control system
US20210048351A1 (en) Method and system for processing a temperature measurement signal delivered by a sensor
JP2005308665A (ja) 発熱抵抗体式流量計
JP2009103114A (ja) 内燃機関の異常検出装置
KR20210076086A (ko) 요레이트 센서의 요레이트 센서 신호의 오프셋 보정 방법, 시스템, 및 컴퓨터 프로그램
US8000934B2 (en) Method and device for diagnosing an ascertainment of a performance quantity of an internal combustion engine
JP2008045455A (ja) 温度推定装置、及びエンジンの制御システム
WO2022013912A1 (ja) 温度測定装置、方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568366

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539799

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016734992

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE