WO2016111089A1 - 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 - Google Patents

冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 Download PDF

Info

Publication number
WO2016111089A1
WO2016111089A1 PCT/JP2015/082408 JP2015082408W WO2016111089A1 WO 2016111089 A1 WO2016111089 A1 WO 2016111089A1 JP 2015082408 W JP2015082408 W JP 2015082408W WO 2016111089 A1 WO2016111089 A1 WO 2016111089A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
outflow
refrigerant distributor
silicon alloy
zinc
Prior art date
Application number
PCT/JP2015/082408
Other languages
English (en)
French (fr)
Inventor
栗木 宏徳
一普 宮
三宅 展明
明生 村田
祥彦 佐竹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016517568A priority Critical patent/JP5955488B1/ja
Priority to EP15876962.0A priority patent/EP3244159B1/en
Priority to US15/533,683 priority patent/US10175009B2/en
Priority to CN201580071901.2A priority patent/CN107110624B/zh
Publication of WO2016111089A1 publication Critical patent/WO2016111089A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the present invention relates to a method for manufacturing a refrigerant distributor having a surface subjected to anticorrosion treatment, a manufacturing apparatus for the refrigerant distributor, a refrigerant distributor, a heat exchanger provided with the refrigerant distributor, and an air conditioner.
  • a heat exchanger that acts as a condenser or an evaporator of a refrigeration cycle apparatus such as an air conditioner or a refrigeration apparatus
  • the refrigerant is supplied to each path at the inlet of the heat exchanger.
  • a refrigerant distributor is required.
  • a refrigerant distributor is required to distribute the refrigerant from the main refrigerant flow path to each unit.
  • the distribution part of the refrigerant distributor is made of aluminum material that has been machined, etc.
  • the outflow pipe and inflow pipe connected to the distribution part are also made of aluminum.
  • Use wood for joining the outflow pipe and the distribution part and joining the inflow pipe and the distribution part, joining by brazing is generally used because of the complexity of each shape.
  • an aluminum brazing material made of an alloy of aluminum and silicon is used as a brazing material.
  • the aluminum brazing material, the outflow pipe, the distribution section, and the inflow pipe are alloyed and joined by heat treatment using a burner or the like.
  • the outflow pipe, the refrigerant distributor, the inflow pipe, and the brazing part are all made of aluminum metal or aluminum alloy.
  • the method of corroding is effective.
  • As the sacrificial anode layer (material) for aluminum an aluminum-zinc alloy in which zinc is mixed with aluminum is generally used.
  • As the aluminum material with a sacrificial anode layer in which the sacrificial anode layer is formed on the aluminum surface “zinc sprayed aluminum material”, “aluminum clad material with sacrificial anode layer” and the like are generally known.
  • the zinc sprayed aluminum material is an aluminum-zinc alloy formed by wiping molten metal zinc on the surface and then heating and diffusing the surface metal zinc inside (for example, see Patent Document 1). .
  • the aluminum clad material with a sacrificial anode layer is obtained by rolling and pressing an aluminum-zinc alloy material together with an aluminum material at a high temperature.
  • the aluminum circular tube and the cross-sectional shape are flat and have a flat portion on the outer shell
  • a “zinc sprayed aluminum tube” in which zinc is sprayed on a flat heat transfer tube (hereinafter referred to as a flat tube) having a refrigerant channel has been used.
  • an “aluminum clad circular tube with a sacrificial anode layer” in which an aluminum-zinc alloy circular tube and an aluminum circular tube are clad has been used.
  • the refrigerant distributor has a simple shape such as a uniform cylinder, a prism, etc., since the plurality of outflow pipes and the distribution part are brazed and the inflow pipe and the distribution part are brazed. Rather, it is molded into a complex shape with multiple branches.
  • a sacrificial anode layer on the surface of an aluminum refrigerant distributor having such a complicated shape it is difficult to form an aluminum clad material with a sacrificial anode layer, which is a combination of an aluminum-zinc alloy and an aluminum alloy, in advance. This is considered difficult.
  • a brazing material is installed between the pipe and the refrigerant distributor and heated to about 600 ° C. and brazed. If the heat treatment becomes excessive during heating, the melted brazing material will erode inside the core material, resulting in “erosion” in which the strength of the core material becomes weak. In the brazed portion where erosion occurred, the strength was lowered when the refrigerant distributor was manufactured, and further, the strength-decreasing portion sometimes broke down.
  • the present invention has been made to solve the above-mentioned problems, and a method for manufacturing a refrigerant distributor, a refrigerant distributor, and a method for easily and efficiently forming a sacrificial anode layer on the surface of a refrigerant distributor having a complicated shape.
  • An object of the present invention is to obtain a manufacturing apparatus, a refrigerant distributor, a heat exchanger, and an air conditioner. Furthermore, it is an object to obtain a refrigerant distributor manufacturing method, a refrigerant distributor manufacturing apparatus, a refrigerant distributor, a heat exchanger, and an air conditioner that suppress a decrease in strength around the joint due to excessive heat treatment when forming a sacrificial anode layer.
  • an aluminum inflow portion into which refrigerant flows from an inflow pipe, a plurality of aluminum outflow pipes through which the refrigerant flows out, and the plurality of outflow pipes are connected to each other.
  • a distribution device made of aluminum having a plurality of outflow portions, and a method of manufacturing a refrigerant distributor comprising: an aluminum oxide on the surfaces of the plurality of outflow portions and the distribution portions.
  • a coating step of applying a flux to be removed; an alloy placement step of placing a zinc-containing aluminum-silicon alloy on the coated surface; and heat treatment of the placed zinc-containing aluminum-silicon alloy, and a sacrificial anode layer on the surface Forming a plurality of outflow pipes into the plurality of outflow portions, respectively, and placing an aluminum-silicon alloy brazing material on the surface of the outflow portion.
  • an aluminum inflow portion into which refrigerant flows from an inflow pipe, a plurality of aluminum outflow pipes through which the refrigerant that has flowed out flows, and the plurality of outflow pipes are connected to each other.
  • the refrigerant distributor according to the present invention includes an aluminum inflow portion into which refrigerant flows from an inflow pipe, a plurality of aluminum outflow pipes through which the inflowed refrigerant flows out, and a plurality of the plurality of outflow pipes connected to each other.
  • An aluminum distribution portion having a plurality of outflow portions; an aluminum-silicon alloy brazing material portion in which the plurality of outflow pipes and the plurality of outflow portions are joined; and the surfaces of the plurality of outflow portions and the distribution portion
  • a heat exchanger includes the above refrigerant distributor, a plurality of heat transfer tubes extending from the refrigerant distributor, and a plurality of fins.
  • An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an electronically controlled expansion valve, an indoor heat exchanger, and the refrigerant distributor, wherein the refrigerant distributor is the refrigerant. Is distributed to the plurality of heat transfer tubes of the outdoor heat exchanger.
  • the sacrificial anode layer can be easily formed on the surface of the refrigerant distributor having a complicated shape. Can be formed efficiently and accurately. Furthermore, it is possible to suppress a decrease in strength around the joint due to excessive heat treatment during the formation of the sacrificial anode layer.
  • FIG. 5 is a diagram schematically showing the diffusion state of a sacrificial anode layer in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram schematically showing the diffusion state of a sacrificial anode layer in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram schematically showing the diffusion state of a sacrificial anode layer in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram schematically showing the diffusion state of a sacrificial anode layer in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor according to Embodiment 1 of the present invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air-conditioning apparatus 200 according to Embodiment 1 of the present invention.
  • the air conditioner 200 includes a compressor 201, a muffler 202, a four-way valve 203, an outdoor heat exchanger 100, a capillary tube 205, a strainer 206, an electronically controlled expansion valve 207, A refrigerant circuit configured by connecting the stop valves 208a and 208b, the indoor heat exchanger 209, and the auxiliary muffler 210 by the refrigerant pipe 4 is provided.
  • the indoor unit having the indoor heat exchanger 209 of the air conditioner 200 includes a control unit that controls the actuators such as the compressor 201 and the electronically controlled expansion valve 207 based on the temperatures of the outside air, the room, the refrigerant, and the like. 211 is provided.
  • the four-way valve 203 is a valve that switches between a cooling cycle and a heating refrigeration cycle, and is controlled by the control unit 211.
  • the control unit 211 switches the four-way valve 203 to the cooling operation
  • the refrigerant is compressed by the compressor 201 to become a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 100 through the four-way valve 203.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 100 undergoes heat exchange (heat radiation) with outdoor air that passes through the outdoor heat exchanger 100 and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 100 is depressurized by the capillary tube 205 and the electronic control type expansion valve 207, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 209.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 209 exchanges heat with the indoor air that passes through the indoor heat exchanger 209, cools the indoor air, and becomes a low-temperature and low-pressure gas refrigerant that is sucked into the compressor 201. Is done.
  • the refrigerant is compressed by the compressor 201 in the same manner as described above to become a high-temperature and high-pressure gas refrigerant, and the indoor heat exchanger 209 via the four-way valve 203. Flow into.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 209 is heat-exchanged with indoor air that passes through the indoor heat exchanger 209, and warms the indoor air to become high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 209 is depressurized by the electronically controlled expansion valve 207 and the capillary tube 205 to become a low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 100.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 100 is heat-exchanged with outdoor air that passes through the outdoor heat exchanger 100, and is sucked into the compressor 201 as a low-temperature low-pressure gas refrigerant.
  • FIG. 2 is a schematic diagram showing a connection state of the refrigerant distributor 1 and the finned tube heat exchanger (outdoor heat exchanger 100) according to Embodiment 1 of the present invention.
  • the outflow pipe 2 extended from the refrigerant distributor 1 to the finned tube heat exchanger is connected to, for example, a heat transfer pipe 50 provided in an outdoor unit for the air conditioner 200 or the like.
  • the refrigerant distributor 1 is a fin-and-tube type heat exchange composed of a plurality of fins 51 that are inserted through the heat transfer tubes 50 to open a space.
  • the two-phase refrigerant flowing into the vessel is distributed.
  • the heat transfer tubes 50 and the fins 51 are both made of aluminum or an aluminum alloy.
  • the heat transfer tube 50 may be a circular tube, a flat tube, or any other shape.
  • the heat transfer tubes 50 gather in the gas header 52.
  • FIG. 3 is a schematic longitudinal sectional view of the refrigerant distributor 1 according to Embodiment 1 of the present invention.
  • the configuration of the refrigerant distributor 1 will be described with reference to FIG.
  • the refrigerant distributor 1 includes an aluminum inflow portion 5 and an aluminum distribution portion 3.
  • the inflow portion 5 is composed of a circular ring portion 5a and a cylindrical portion 5b having a smaller diameter than the ring portion 5a disposed coaxially with the central axis of the ring portion 5a.
  • the refrigerant flows in from.
  • the distribution unit 3 includes a cylindrical main body 3a connected to the inflow portion 5 and a plurality of tubular outflow portions 3b protruding from the main body 3a, and the main body 3a has a plurality of outflow portions.
  • the refrigerant that is integrally formed including 3b and flows into the distribution section 3 is distributed to the plurality of outflow pipes 2.
  • gaps are illustrated between the inflow portion 5 and the refrigerant pipe 4, between the inflow portion 5 and the distribution portion 3, and between the outflow portion 3 b and the outflow pipe 2. This is a depiction for easy understanding based on the filling of the brazing material.
  • the distribution portion 3 is provided with a guide portion 3d that protrudes in an annular shape in the inner diameter direction so that the position of the insertion end of the outflow tube 2 is fixed at the base of the outflow portion 3b.
  • the guide part 3d has a smaller diameter than the outflow part 3b, and the lower end of the outflow pipe 2 is fitted and connected to the outflow part 3b from the inside. Therefore, when fitting the outflow pipe 2 to the outflow part 3b, the outflow pipe 2 is inserted into the outflow part 3b, and the insertion end of the outflow pipe 2 and the guide part 3d are brought into contact with each other for positioning.
  • the correlation between the thickness of the outflow pipe 2 and the radial width of the guide part 3d provided below the outflow part 3b is the same or the width of the guide part 3d is the same in order to prevent the refrigerant flow. It is preferable that the thickness is less than 2.
  • the distribution part 3 having the outflow part 3b and the guide part 3d and the inflow part 5 it is possible to use press molding, molding by cutting, or casting using an aluminum alloy such as aluminum die casting.
  • the outer periphery of the annular part 5a of the inflow part 5 is connected to a circular notch 3c having a one-step diameter increase formed on the circumferential surface of the lower end of the main body part 3a. Mating. And when joining the refrigerant
  • the distributor 3 and the inflow portion 5 are joined by brazing, the refrigerant pipe 4 and the inflow portion 5 are brazed, and the outflow pipe 2 and the outflow portion 3b are joined by brazing.
  • the brazing method include a burner brazing method and an in-furnace brazing method.
  • the burner brazing method is a joining method in which after the fluoride flux is applied to the joint portion and the brazing material is placed at the joint portion, the temperature of the brazing material is increased to a melting point of 590 ° C. by the burner, and the brazing material is melted and joined. is there.
  • the gas burner uses city gas, propane, a mixed gas of acetylene and oxygen, or the like.
  • the in-furnace brazing method is generally called the Nocolok brazing method.
  • the fluoride flux is used to introduce nitrogen gas into the furnace and control the temperature in the furnace with a heater. It is a joining method for brazing.
  • a brazing method in the furnace other than the Nocolok brazing method there is a joining method called a vacuum brazing method.
  • This vacuum brazing method is a joining method in which the inside of a furnace is brought into a high vacuum state and the supply of oxygen is eliminated to prevent reoxidation and braze.
  • the Nocolok brazing method and the vacuum brazing method are highly reliable brazing methods because they can be brazed while performing temperature control in a furnace.
  • the anticorrosion treatment is performed on the surface of the refrigerant distributor 1 manufactured with the above configuration.
  • Aluminum is an active metal by nature, but it reacts immediately with oxygen in the environment to form a protective oxide film on the surface, so it is stable in dry air at room temperature and is considered a metal with good corrosion resistance. ing. When this aluminum is in an atmospheric exposure environment, “pitting corrosion” occurs in which the oxide film on the surface is locally broken and pits are formed. Once pitting corrosion occurs, active aluminum inside the oxide film is eroded.
  • brazing using a zinc-containing aluminum-silicon alloy obtained by adding zinc to an aluminum-silicon alloy, which is a brazing material for aluminum brazing is employed.
  • This material has a feature that its melting point is lower than that of the base material when zinc is contained in the aluminum-silicon alloy as the base material. Since the melting point of, for example, A4047 alloy (88 wt% aluminum / 12 wt% silicon) used as an aluminum-silicon alloy for brazing is around 590 ° C., the melting point of metallic zinc to be added is 420 ° C.
  • the melting point of the zinc-containing aluminum-silicon alloy according to the present embodiment approaches the melting point of metal zinc in accordance with the amount of metal zinc added.
  • the zinc-containing aluminum-silicon alloy for forming the sacrificial anode layer is referred to as a brazing zinc-containing aluminum-silicon alloy brazing material, but it is not necessarily a brazing material.
  • the flux has a function of securing the brazing material wettability and fluidity of the surface by removing the aluminum oxide formed on the aluminum surface and preventing a new oxide film from being formed.
  • alkali metal chlorides and fluorides are used, and in consideration of the influence on the corrosion of the aluminum material by the residue after brazing, more preferably potassium fluoroaluminate composed of alkali metal fluorides, for example, KAlF 4 or K 3 AlF 6 may be used.
  • the flux is applied to the region where the sacrificial anode layer of the refrigerant distributor 1 is to be formed, specifically, the thin portion of the refrigerant distributor 1, that is, the surface of the outflow portion 3b and the vicinity thereof, and zinc is surrounded therearound.
  • the sacrificial anode layer-attached refrigerant distributor 1 is obtained by arranging and brazing the aluminum-silicon alloy containing.
  • the region where the sacrificial anode layer is desired to be formed can be formed with high accuracy by merely providing the zinc-containing aluminum-silicon alloy even if the refrigerant distributor 1 has a complicated shape. What added 10 wt% of metallic zinc to the A4047 alloy was used as a zinc-containing aluminum-silicon alloy.
  • potassium fluoroaluminate composed of fluoride of potassium and aluminum was used. Further, not only the sacrificial anode layer was formed, but also the refrigerant distributor 1 and the outflow pipe 2 were brazed at the same time. When brazing the refrigerant distributor 1 and the outflow pipe 2, the flux was potassium fluoride aluminate as before, and the A4047 alloy was used as the brazing material.
  • the refrigerant distributor 1 and the outflow pipe 2 are brazed by the burner brazing (the refrigerant distributor 1 and the outflow pipe 2 are brazed with an aluminum-silicon alloy brazing material), and the sacrificial anode layer Formation (zinc-containing aluminum-silicon alloy brazing material was disposed on the surface of the refrigerant distributor 1) was brazed at the same time.
  • the zinc-containing aluminum-silicon alloy is first melted due to the difference in melting point of the brazing material, and then the aluminum-silicon alloy is melted.
  • the point at which the aluminum-silicon alloy was melted as brazing of the refrigerant distributor 1 and the outflow pipe 2 was defined as the end point of simultaneous brazing.
  • the brazing process here also serves as a forming process for forming the sacrificial anode layer.
  • FIG. 4A is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor 1 according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor 1 according to Embodiment 1 of the present invention. .
  • FIG. 4A is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor 1 according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the
  • FIG. 4C is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor 1 according to Embodiment 1 of the present invention.
  • FIG. 4D is a diagram schematically showing the diffusion state of the sacrificial anode layer 11 in the process from the flux application to the time when the aluminum-silicon alloy is melted in the refrigerant distributor 1 according to Embodiment 1 of the present invention.
  • . 4A to 4D schematically show the diffusion state of the sacrificial anode layer in the process from the flux application to the time when the aluminum-silicon alloy is melted (the brazing end point).
  • the flux 7 is applied to the region 10 where the sacrificial anode layer 11 is to be formed in the aluminum material 6 and the oxide film 6a on the surface thereof, and the zinc-containing aluminum-silicon alloy brazing material 8 is provided in the vicinity thereof. Then, a flux 7 is applied to a place where the aluminum materials 6 are to be brazed, and an aluminum-silicon alloy brazing material 9 is disposed in the vicinity thereof (step A1).
  • step A2 As shown in FIG. 4B, in the region 10 where the flux 7 is applied, the oxide film 6a formed on the surface of the aluminum material is removed, and the aluminum material 6, the zinc-containing aluminum-silicon alloy brazing material 8, and the aluminum material 6 The contact of the aluminum-silicon alloy brazing material 9 becomes possible (step A2).
  • the zinc-containing aluminum-silicon alloy brazing material 8 is melted and alloyed with the aluminum material 6 by performing a heat treatment in an inert gas atmosphere such as nitrogen in a state where contact is possible. (Step A3).
  • the aluminum-silicon alloy brazing material 9 having a melting point higher than that of the zinc-containing aluminum-silicon alloy brazing material is melted and alloyed with the aluminum material 6 to form the aluminum material. 6 are brazed together.
  • the alloyed zinc diffuses to the aluminum material 6 side having a low zinc concentration, thereby sacrificing anode layer 11. Can be formed (step A4). At this point, the brazing is finished.
  • the refrigerant distributor 1 having the sacrificial anode layer formed on the surface thereof was manufactured.
  • the brazing portion is filled with an aluminum-silicon alloy without forming a gap between the outflow pipe 2 and the refrigerant distributor 1, and the aluminum-silicon alloy is filled in the aluminum-silicon alloy.
  • silicon was uniformly dispersed.
  • the aluminum-silicon alloy is eroded on both the refrigerant distributor 1 side and the outflow pipe 2 side, and the brazing material is appropriately disposed between the refrigerant distributor 1 and the outflow pipe 2. It was found that the alloying of the base metal and the brazing material was performed without any problems.
  • the zinc concentration is uniformly dispersed at a concentration of 7 to 8 wt% in most of the zinc, aluminum, and silicon alloy layers, and the zinc in the erosion portion of the outflow portion 3b increases toward the inside. It was found that the concentration was decreasing.
  • the zinc-aluminum-silicon alloy layer having a zinc concentration of 7 to 8 wt% is first preferentially corroded, and after disappearance, the zinc-aluminum-silicon alloy layer having a thickness of 10 to 20 ⁇ m is an erosion portion Is thought to corrode in order from the outer layer toward the lower concentration portion. It is considered that the progress of the corrosion suppresses the progress of the corrosion of the outflow portion 3b serving as the core material and the core material portion of the refrigerant distributor 1.
  • the refrigerant distributor 1 according to the present embodiment is applied to an outdoor unit for the air conditioner 200, and it is considered appropriate to assume aluminum corrosion due to salt damage as a corrosion factor.
  • a combined cycle test was conducted using salt water as an accelerating solution to simulate corrosion due to salt damage, and the corrosion state was evaluated.
  • a combined cycle test using 5 wt% NaCl water as a spray solution was performed for 1000 hours on the sacrificial anode layer-attached refrigerant distributor 1 according to the present embodiment, and the corrosion state thereof was evaluated. As a result, it was confirmed from the appearance that white rust was generated in the region where the sacrificial anode layer 11 was formed, and the surface of the aluminum base material in the vicinity thereof remained glossy. Furthermore, in order to grasp this corrosion state in detail, the corrosion sample was filled with resin, the cut section was observed with a metal microscope, and component analysis was performed with EPMA. About the cross section of the corrosion sample, it was confirmed that the corrosion progressed to the surface layer from the result of metal microscope observation.
  • the sacrificial anode layer 11 is formed on the surface using the zinc-containing aluminum-silicon alloy brazing material 8.
  • the sacrificial anode layer 11 can be simply and efficiently formed accurately on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to suppress a decrease in strength around the joint due to excessive heat treatment when the sacrificial anode layer 11 is formed.
  • a brazing flux 7 is applied to the region where the sacrificial anode layer 11 is to be formed on the surface of the refrigerant distributor 1, and a zinc-containing aluminum-silicon alloy brazing material 8 is provided in the vicinity of the applied region.
  • the sacrificial anode layer 11 is formed by heat-treating the aluminum-silicon alloy brazing material 8 and the surface of the refrigerant distributor 1.
  • an aluminum-silicon alloy brazing material 9 is used for joining the refrigerant pipe 4 and the inflow part 5 of the refrigerant distributor 1 and joining the outflow pipe 2 and the outflow part 3 b of the refrigerant distributor 1. Brazing and forming an aluminum-silicon alloy brazing material part. Thereby, the melting point of the zinc-containing aluminum-silicon alloy brazing material 8 forming the sacrificial anode layer 11 is lower than the melting point of the aluminum-silicon alloy brazing material 9. Therefore, the sacrificial anode layer 11 can be formed by melting only the zinc-containing aluminum-silicon alloy brazing material 8.
  • Embodiment 2 As a manufacturing method of the refrigerant distributor 1 according to the first embodiment, the sacrificial anode layer 11 is formed on the surface of the refrigerant distributor 1 simultaneously with the brazing of the refrigerant distributor 1 and the outflow pipe 2. In some cases, the sacrificial anode layer 11 may be formed on the surface of the refrigerant distributor 1 where the outflow pipe 2 and the outflow portion 3b are joined in advance by forming an aluminum-silicon alloy brazing material portion by brazing.
  • the manufacturing order including the step of forming the sacrificial anode layer 11 after the brazing joining step of the refrigerant distributor 1 and the piping is specified.
  • the refrigerant distributor 1 is prepared which is joined to the outflow pipe 2 by forming an aluminum-silicon alloy brazing material portion by brazing.
  • a flux 7 is applied to the outflow portion 3b of the refrigerant distributor 1, and a zinc-containing aluminum-silicon alloy brazing material 8 is provided.
  • the flux 7 and the zinc-containing aluminum-silicon alloy brazing material 8 are made of the same materials and arrangement as in the first embodiment. These were subjected to heat treatment by burner brazing, and the heat treatment was completed when the zinc-containing aluminum-silicon alloy brazing material 8 was melted. That is, the heat treatment was performed up to a temperature at which only the zinc-containing aluminum-silicon alloy brazing material 8 where the aluminum-silicon alloy brazing material 9 did not melt was melted.
  • the refrigerant distributor according to this embodiment since the zinc-containing aluminum-silicon alloy forming the sacrificial anode layer 11 has a lower melting point than the aluminum alloy around the joint of the refrigerant distributor 1, the heat treatment is stopped before reaching the excessive heat treatment. As a result, excessive heat treatment can be suppressed, the strength of the joint portion does not decrease, and a decrease in corrosion resistance can be suppressed.
  • a sacrificial anode layer 11 was formed using a zinc-containing aluminum-silicon alloy brazing material 8. This limits the order of manufacturing around the joint where the sacrificial anode layer 11 is formed after the joint is first joined.
  • the sacrificial anode layer 11 is formed by performing a heat treatment up to a temperature at which only the zinc-containing aluminum-silicon alloy brazing material 8 at which the aluminum-silicon alloy brazing material 9 does not melt is melted.
  • Embodiment 3 In the refrigerant distributor 1 according to Embodiment 2, excessive heat treatment is suppressed by performing a heat treatment controlled to a temperature at which the zinc-containing aluminum-silicon alloy brazing material 8 is melted to form the sacrificial anode layer 11. In addition, it was confirmed that it is possible to suppress a decrease in strength and a decrease in corrosion resistance around the joint portion of the sacrificial anode layer 11 due to excessive heat treatment. This is because, as described above, since zinc is added to the aluminum-silicon alloy forming the sacrificial anode layer 11, the melting point is lowered, and excessive heat treatment at an excessively high temperature can be suppressed. .
  • the melting point decreases as the amount added increases, and it becomes easy to suppress excessive heat treatment.
  • the amount of zinc added increases because the corrosion rate of the material itself increases, that is, the material tends to corrode. It is necessary to control to the optimum area.
  • the influence of the zinc addition amount on the thermodynamic characteristics and corrosion resistance of the zinc-containing aluminum-silicon alloy was investigated.
  • A4047 containing 12 wt% of silicon was prepared, and a zinc-containing aluminum-silicon alloy was produced using the concentration of metallic zinc added to A4047 as a parameter.
  • FIG. 5 is a graph showing the zinc concentration dependency on the melting point of the zinc-containing aluminum-silicon alloy according to Embodiment 3 of the present invention.
  • the melting point of the zinc-containing aluminum-silicon alloy decreases as the zinc concentration increases from 580 ° C., which is the melting point of the aluminum-silicon alloy as a base material, to 420 ° C., which is the melting point of metallic zinc.
  • the degree of decrease becomes more gradual as the zinc concentration is higher.
  • the zinc concentration is lower than 5 wt%, the difference between the melting point of the zinc-containing aluminum-silicon alloy and the aluminum alloy is almost equal to 20 ° C. or less.
  • the melting point of the zinc-containing aluminum-silicon alloy forming the sacrificial anode layer 11 is set around the joint in order to suppress a decrease in strength due to excessive heat treatment in the joint periphery. It must be lower than the melting point of the aluminum-silicon alloy. That is, it was found that a predetermined concentration must be ensured for the zinc concentration in the alloy.
  • zinc contained in the zinc-containing aluminum-silicon alloy has a function of weakening the oxide film formed on the surface of the aluminum alloy. Therefore, the corrosion rate increases as the amount of zinc added increases.
  • the influence of the zinc concentration in the zinc-containing aluminum-silicon alloy on the corrosion rate was evaluated by electrochemical measurement. It is possible to derive the corrosion current from the oxidation-reduction current measurement of the evaluation material and convert it to the corrosion rate.
  • FIG. 6 is a diagram showing the zinc concentration dependence of the corrosion rate of the zinc-containing aluminum-silicon alloy according to Embodiment 3 of the present invention.
  • the higher the zinc concentration in the zinc-containing aluminum-silicon alloy the higher the corrosion rate.
  • the allowable range may exceed 1 ⁇ g / h ⁇ cm 2.
  • the corrosion rate increases with increasing zinc concentration in the zinc-containing aluminum-silicon alloy. In other words, since the disappearance of the sacrificial anode layer is accelerated by corrosion, when the zinc-containing aluminum-silicon alloy layer is formed on the surface of the refrigerant distributor 1, the zinc concentration must be controlled to a predetermined concentration. I understood.
  • the concentration needs to be controlled in an optimum region.
  • the zinc concentration is preferably controlled to 5 wt% or more and 15 wt% or less with respect to the zinc-containing aluminum-silicon alloy. That is, since the zinc concentration of the zinc-containing aluminum-silicon alloy brazing material 8 is 5 wt% or more, the melting point of the zinc-containing aluminum-silicon alloy brazing material 8 is surely lower than the melting point of the aluminum-silicon alloy brazing material 9 and heat treatment. A temperature difference can be provided.
  • the zinc concentration of the zinc-containing aluminum-silicon alloy brazing material 8 is 15 wt% or less, the corrosion rate does not exceed the allowable range of 1 ⁇ g / h ⁇ cm 2 , and the corrosion resistance can be ensured.
  • the zinc concentration in the zinc-containing aluminum-silicon alloy brazing material 8 is suitably limited, the zinc-containing aluminum-silicon alloy brazing material 8 is heat-treated after joining with the aluminum-silicon alloy brazing material 9.
  • the sacrificial anode layer 11 can be formed. Therefore, it is possible to suppress the occurrence of remelting, erosion, and the like around the joint, and to ensure the corrosion resistance of the refrigerant distributor 1.
  • Embodiment 4 FIG.
  • the refrigerant distributor manufacturing apparatus 300 that forms the sacrificial anode layer 11 in the vicinity of the outflow portion 3b where the wall thickness is the thinnest, that is, where corrosion resistance should be ensured, and the manufacture of the refrigerant distributor 1 using the same. A method will be described.
  • FIG. 7 is a diagram showing a refrigerant distributor manufacturing apparatus 300 used for forming the sacrificial anode layer 11 on the surface of the refrigerant distributor 1 according to Embodiment 4 of the present invention.
  • the refrigerant distributor manufacturing apparatus 300 includes an application unit 61 for applying, an alloy arrangement unit 62 for arranging the zinc-containing aluminum-silicon alloy brazing material 8, and an outflow pipe 2 through the outflow of the refrigerant distributor 1.
  • the sacrificial anode layer 11 is formed with respect to the refrigerant distributor 1, the insertion part 63 inserted into the part 3b, the brazing material arrangement part 64 in which the aluminum-silicon alloy brazing material 9 is arranged, and the outflow pipe 2 having a heating member.
  • the application unit 61, the alloy arrangement unit 62, the insertion unit 63, the brazing material arrangement unit 64, and the heating unit 65 are connected by a line 66, and movement between the other components of the refrigerant distributor 1 is performed by the line 66. Enable.
  • an aluminum-manganese alloy A3003 material is used as the aluminum material used for the distribution unit 3, the refrigerant pipe 4 as the inflow pipe, and the outflow pipe 2.
  • Other aluminum materials used include pure aluminum A1000 series alloys (A1050, A1070, etc.), aluminum-magnesium alloys A5000 series alloys (A5052 etc.), and aluminum-magnesium-silicon alloys A6000 series alloys (A6063, etc.). May be used. Since the details of the zinc-containing aluminum-silicon alloy brazing material used for forming the sacrificial anode layer, the flux used for brazing, and the aluminum-silicon alloy brazing material are the same as those in the first embodiment, they are omitted here. .
  • the flux 7 is applied to the surfaces of the distribution part 3 and the outflow part 3b of the refrigerant distributor 1 by the application part 61 filled with the flux 7 as a solvent.
  • a zinc-containing aluminum-silicon alloy brazing material 8 is arranged at the base of the outflow part 3 b of the refrigerant distributor 1 to which the flux 7 is applied by an alloy arrangement part 62.
  • the arrangement method of the zinc-containing aluminum-silicon alloy brazing material 8 needs to be designed so that the sacrificial anode layer 11 is formed on the surface of the outflow portion 3b and the distribution portion 3, and the details will be described in the fifth embodiment. .
  • the refrigerant distributor 1 on which the flux 7 is applied and the zinc-containing aluminum-silicon alloy brazing material 8 is disposed is heated by the heating member in the heating unit 65 of the refrigerant distributor manufacturing apparatus 300, so that the sacrificial anode layer 11 becomes the refrigerant. It is formed on the surface of the outflow part 3 b and the distribution part 3 of the distributor 1.
  • the flux 7 is applied to the surface corresponding to the fitting portion between the outflow portion 3b of the refrigerant distributor 1 and the outflow pipe 2 by the application portion 61 filled with the flux 7 which is also a solvent.
  • the outflow part 3b of the refrigerant distributor 1 with the flux 7 applied on the surface and the outflow pipe 2 are fitted by the insertion part 63, and the aluminum-silicon alloy brazing material 9 is fitted in the fitting part by the brazing material arrangement part 56.
  • the refrigerant distributor 1 on which the flux 7 is applied and the aluminum-silicon alloy brazing material 9 is disposed is heated by the heating member in the heating unit 65 of the refrigerant distributor manufacturing apparatus 300, whereby the outflow pipe 2 and the refrigerant distributor 1.
  • the outflow portion 3b is brazed.
  • the melting point of the zinc-containing aluminum-silicon alloy brazing material 8 is lower than that of the aluminum-silicon alloy brazing material 9 and is lower than the temperature during brazing.
  • the zinc component diffuses as the sacrificial anode layer 11 in the direction of the core material of the refrigerant distributor 1.
  • the sacrificial anode layer forming step simultaneously with the brazing step and the sacrificial anode layer 11 forming step or after the brazing step.
  • the sacrificial anode layer 11 is not exposed to a temperature higher than the melting point of the aluminum-silicon alloy brazing material 9 when it is formed. For this reason, it is possible to form the sacrificial anode layer 11 also on the brazing material layer.
  • FIG. 8A is a process diagram showing a method of manufacturing the refrigerant distributor 1 that forms the sacrificial anode layer 11 on the surface of the refrigerant distributor 1 according to Embodiment 4 of the present invention.
  • FIG. 8B is a process diagram showing a method of manufacturing the refrigerant distributor 1 that forms the sacrificial anode layer 11 on the surface of the refrigerant distributor 1 according to Embodiment 4 of the present invention.
  • the refrigerant distributor manufacturing apparatus 300 uses the application unit 61 filled with the flux 7 as the solvent to The flux 7 is applied to the surface corresponding to the fitting portion between the outflow portion 3b and the outflow tube 2. Further, the flux 7 is applied to the surfaces of the distribution unit 3 and the outflow unit 3 b of the refrigerant distributor 1.
  • the refrigerant distributor manufacturing apparatus 300 arranges the zinc-containing aluminum-silicon alloy brazing material 8 by the alloy arrangement part 62 at the root of the outflow part 3b of the refrigerant distributor 1 to which the flux 7 is applied. .
  • the refrigerant distributor manufacturing apparatus 300 is configured such that the outflow portion 3b of the refrigerant distributor 1 whose surface is coated with the flux 7 and the outflow pipe 2 are fitted by the insertion portion 63, and the fitting portion.
  • the aluminum-silicon alloy brazing material 9 is disposed between the outflow pipe 2 and the outflow portion 3 b of the refrigerant distributor 1 by the brazing material arranging portion 56.
  • the refrigerant distributor manufacturing apparatus 300 performs a heating process with a burner brazing that is a heating member in the heating unit 65 that heats the zinc-containing aluminum-silicon alloy brazing material 8 and the aluminum-silicon alloy brazing material 9. Prepare as possible.
  • the refrigerant distributor manufacturing apparatus 300 applies the flux 7 and the burner in which the refrigerant distributor 1 in which the aluminum-silicon alloy brazing material 9 is disposed is a heating member in the heating unit 65. By being heated by the brazing heat treatment, the outflow pipe 2 and the outflow portion 3b of the refrigerant distributor 1 are brazed. At the same time, the refrigerant distributor manufacturing apparatus 300 heats the refrigerant distributor 1 on which the flux 7 is applied and the zinc-containing aluminum-silicon alloy brazing material 8 is disposed by the heating process of the burner brazing which is a heating member in the heating unit 65.
  • the sacrificial anode layer 11 is formed on the surface of the outflow part 3 b and the distribution part 3 of the refrigerant distributor 1.
  • the zinc-containing aluminum-silicon alloy brazing material 8 is first melted and alloyed with the aluminum material 6, and the heat treatment is continued as it is. Then, the heating temperature is raised, and the aluminum-silicon alloy brazing material 9 is melted and alloyed with the aluminum material 6.
  • the manufacture of the refrigerant distributor 1 is completed.
  • distributor manufacturing apparatus 300 is a refrigerant
  • the flux 7 is applied to the surface corresponding to the fitting portion between the outflow portion 3 b of the distributor 1 and the outflow pipe 2.
  • the refrigerant distributor manufacturing apparatus 300 has the outflow portion 3b of the refrigerant distributor 1 whose surface is coated with the flux 7 and the outflow pipe 2 are fitted by the insertion portion 63, and is fitted into the fitting portion.
  • the aluminum-silicon alloy brazing material 9 is disposed between the outflow pipe 2 and the outflow portion 3 b of the refrigerant distributor 1 by the brazing material disposing portion 56.
  • the refrigerant distributor manufacturing apparatus 300 applies the burner brazing, in which the flux 7 is applied and the refrigerant distributor 1 in which the aluminum-silicon alloy brazing material 9 is disposed is a heating member in the heating unit 65. By being heated by the heat treatment, the outflow pipe 2 and the outflow portion 3b of the refrigerant distributor 1 are brazed.
  • the refrigerant distributor manufacturing apparatus 300 applies the flux 7 to the surfaces of the distribution part 3 and the outflow part 3b of the refrigerant distributor 1 by the application part 61 filled with the flux 7 as the solvent. .
  • the refrigerant distributor manufacturing apparatus 300 arranges the zinc-containing aluminum-silicon alloy brazing material 8 by the alloy arrangement part 62 at the root of the outflow part 3b of the refrigerant distributor 1 to which the flux 7 is applied. .
  • the refrigerant distributor manufacturing apparatus 300 applies the flux 7 and brazes the refrigerant distributor 1 in which the zinc-containing aluminum-silicon alloy brazing material 8 is disposed as a heating member in the heating unit 65.
  • the sacrificial anode layer 11 is formed on the surface of the outflow part 3 b and the distribution part 3 of the refrigerant distributor 1 by heating by the heat treatment.
  • the heating temperature is lower than in the brazing process of step S23. That is, heat treatment is performed up to a temperature at which only the zinc-containing aluminum-silicon alloy brazing material 8 at which the aluminum-silicon alloy brazing material 9 does not melt is melted.
  • the manufacture of the refrigerant distributor 1 is completed.
  • Embodiment 5 When manufacturing the refrigerant distributor 1 according to the fourth embodiment, the inner and outer circumferences of the outflow portion 3b of the refrigerant distributor 1 are selected as the arrangement of the zinc-containing aluminum-silicon alloy brazing material 8, but another arrangement method is used. It is also effective to take the form of In the refrigerant distributor 1 according to the fifth embodiment, an effective arrangement method of the zinc-containing aluminum-silicon alloy brazing material 8 for forming the sacrificial anode layer 11 will be described.
  • the location that is difficult to deal with by the above-described zinc spraying method is the root portion of the outflow portion 3 b or the portion of the refrigerant distributor 1 according to the present embodiment. It is on the inner core side than the outflow portion 3b.
  • FIG. 9A is a view showing a method of arranging the zinc-containing aluminum-silicon alloy brazing material 8 for forming the sacrificial anode layer 11 on the surface of the refrigerant distributor 1.
  • FIG. 9B is a view showing a method of arranging the zinc-containing aluminum-silicon alloy brazing material 8 for forming the sacrificial anode layer 11 on the surface of the refrigerant distributor 1.
  • FIG. 9C is a diagram showing a method of arranging the zinc-containing aluminum-silicon alloy brazing material 8 for forming the sacrificial anode layer 11 on the surface of the refrigerant distributor 1.
  • the wire-like zinc-containing aluminum-silicon alloy brazing material 8 may be arranged as shown in FIGS. 9A to 9C.
  • 9A to 9C are views in which the refrigerant distributor 1 is projected from the outflow portion 3b side.
  • FIG. 9A it arrange
  • FIG. 9B it arrange
  • FIG. 9A it arrange
  • the sacrificial anode layer 11 can be efficiently and accurately formed around the outflow portion 3b.
  • FIG. 9B it arrange
  • Embodiment 6 In the method for manufacturing the refrigerant distributor 1 according to the first to fifth embodiments, the zinc-containing aluminum-silicon alloy brazing material 8 or the aluminum-silicon alloy brazing material 9 is melted to produce the refrigerant distributor 1, the outflow pipe 2, or a plurality of outflows.
  • a flux 7 for removing the aluminum oxide on the surface is applied in advance.
  • the flux 7 is supported on these alloy brazing materials in advance and the brazing heat treatment is performed by placing the alloy brazing material in the refrigerant distributor 1, the outflow pipe 2 or the plurality of outflow portions 3b to be alloyed. It is valid.
  • a method of manufacturing the refrigerant distributor 1 using an alloy brazing material on which the flux 7 is previously supported will be described.
  • a zinc-containing aluminum-silicon alloy brazing material 8 or aluminum-silicon alloy brazing material 9 in which a flux 7 as a solvent has been applied to the surface is used.
  • the zinc-containing aluminum-silicon alloy brazing material 8 coated with the flux 7 by the arrangement method in the fifth embodiment is arranged.
  • an aluminum-silicon alloy brazing material 9 coated with a flux 7 in a ring shape is disposed at a portion where the plurality of outflow pipes 2 and the plurality of outflow portions 3b are respectively fitted.
  • the refrigerant distributor 1, the outflow pipe 2, the zinc-containing aluminum-silicon alloy brazing material 8 and the aluminum-silicon alloy brazing material 9 which are combined in this manner are subjected to brazing heat treatment.
  • the zinc-containing aluminum-silicon alloy brazing material 8 is melted with the flux 7 by the heat treatment. Subsequently, the aluminum-silicon alloy brazing material 8 is melted together with the flux 7. For this reason, the flux 7 removes the aluminum oxide on the surface of the refrigerant distributor 1, the outflow pipe 2, and the outflow portion 3b, and ensures the brazing material wettability and fluidity on the surface.
  • the aluminum base material and the aluminum alloy brazing material are alloyed on the surface where the brazing material wettability and fluidity are ensured, and sacrificial anode layer formation and brazing joining are performed, respectively.
  • Refrigerant distributor manufacturing apparatus 300 applies flux 7 for removing aluminum oxide on the surface of zinc-containing aluminum-silicon alloy brazing material 8 and aluminum-silicon alloy brazing material 9 at application unit 61.
  • the sacrificial anode layer 11 is formed by arranging and heating the zinc-containing aluminum-silicon alloy brazing material 8 to which the flux 7 is applied. Is done. It is not necessary to apply the flux 7 according to the complicated shape of the outflow portion 3b, and it is not necessary to apply the aluminum-silicon alloy brazing material 9 according to the complicated shape of the outflow portion 3b. Therefore, the sacrificial anode layer can be easily and efficiently formed accurately on the surface of the refrigerant distributor having a complicated shape.
  • the refrigerant distributor 1 is manufactured by using the zinc-containing aluminum-silicon alloy brazing material 8 and the aluminum-silicon alloy brazing material 9 on which the flux 7 is previously supported. It can be seen that the sacrificial anode layer and the brazed joint are well formed.
  • the method of manufacturing the refrigerant distributor 1 includes an aluminum inflow portion 5 through which refrigerant flows from the refrigerant pipe 4 that is an inflow pipe, and a plurality of aluminum products through which the inflowed refrigerant flows out.
  • the refrigerant distributor 1 is manufactured, which includes an outflow pipe 2 and an aluminum distribution section 3 having a plurality of outflow sections 3b to which the plurality of outflow pipes 2 are respectively connected.
  • the manufacturing method of the refrigerant distributor 1 includes an application step of applying a flux 7 for removing aluminum oxide on the surfaces of the plurality of outflow portions 3 b and the distribution portion 3.
  • An alloy placement step of placing a zinc-containing aluminum-silicon alloy brazing material 8 on the coated surface.
  • a heat treatment is performed on the disposed zinc-containing aluminum-silicon alloy brazing material 8 to form a sacrificial anode layer 11 on the surface.
  • a plurality of outflow pipes 2 are inserted into the plurality of outflow portions 3b, respectively, and a brazing material disposing step of disposing the aluminum-silicon alloy brazing material 9 on the surface of the outflow portion 3b is included.
  • the aluminum-silicon alloy brazing material 9 disposed is subjected to a heat treatment, and includes a brazing step of brazing the plurality of outflow portions 3b and the plurality of outflow pipes 2 respectively.
  • the method of manufacturing the refrigerant distributor 1 includes an aluminum inflow portion 5 through which refrigerant flows from a refrigerant pipe 4 that is an inflow pipe, a plurality of aluminum outflow pipes 2 through which the inflowed refrigerant flows out, and a plurality of outflow pipes 2. And a distribution unit 3 made of aluminum having a plurality of outflow portions 3b connected to each other.
  • the manufacturing method of the refrigerant distributor 1 includes an application step of applying a flux 7 for removing aluminum oxide on the surface of the zinc-containing aluminum-silicon alloy brazing material 8. This includes an alloy placement step of placing the zinc-containing aluminum-silicon alloy brazing material 8 with the flux 7 applied on the surface in the outflow portion 3b and the distribution portion 3.
  • a heat treatment is performed on the disposed zinc-containing aluminum-silicon alloy brazing material 8 to form a sacrificial anode layer on the surface of the outflow portion 3b and the distribution portion 3.
  • a plurality of outflow pipes 2 are inserted into the plurality of outflow portions 3b, respectively, and a brazing material disposing step of disposing the aluminum-silicon alloy brazing material 9 with the flux 7 applied beforehand on the outflow portion 3b is included.
  • the aluminum-silicon alloy brazing material 9 disposed is subjected to a heat treatment, and includes a brazing step of brazing the plurality of outflow portions 3b and the plurality of outflow pipes 2 respectively.
  • the sacrificial anode layer 11 is formed by disposing and heating the zinc-containing aluminum-silicon alloy brazing material 8 to which the flux 7 is applied. It is not necessary to apply the flux 7 according to the complicated shape of the outflow portion 3b, and it is not necessary to apply the aluminum-silicon alloy brazing material 9 according to the complicated shape of the outflow portion 3b. Therefore, the sacrificial anode layer 11 can be easily and efficiently formed accurately on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to suppress a decrease in strength around the joint due to excessive heat treatment when the sacrificial anode layer 11 is formed.
  • the manufacturing method of the refrigerant distributor includes a preparation step of preparing a heating member for heating the refrigerant distributor, and the heat treatment applied in the forming step and the heat treatment applied in the brazing step are prepared in the preparation step. Simultaneously using a heating member. According to this configuration, the manufacturing process of the refrigerant distributor 1 can be reduced, and the manufacturing efficiency can be improved.
  • the forming step is performed after the brazing step.
  • the sacrificial anode layer 11 can be formed on the surface of the refrigerant distributor 1 in which the outflow pipe 2 and the outflow portion 3b are joined in advance by brazing due to limitations in the manufacturing process.
  • the refrigerant distributor manufacturing apparatus 300 includes an aluminum inflow portion 5 into which refrigerant flows from a refrigerant pipe 4 that is an inflow pipe, a plurality of aluminum outflow pipes 2 through which the inflowed refrigerant flows out, and a plurality of outflow pipes 2.
  • a refrigerant distributor 1 including an aluminum distribution section 3 having a plurality of outflow sections 3b connected to each other is manufactured.
  • the refrigerant distributor manufacturing apparatus 300 includes an application unit 61 that applies a flux 7 for removing aluminum oxide on the surfaces of the plurality of outflow portions 3b and the distribution unit 3.
  • An alloy placement portion 62 for placing the zinc-containing aluminum-silicon alloy brazing material 8 on the surface coated with the coating portion 61 is provided.
  • the insertion part 63 which inserts the some outflow pipe
  • the insertion portion 63 includes a brazing material arranging portion 64 for arranging the aluminum-silicon alloy brazing material 9 in the plurality of outflow portions 3b into which the plurality of outflow pipes 2 are respectively inserted. Heating the zinc-containing aluminum-silicon alloy brazing material 8 arranged by the alloy arranging portion 62 to form the sacrificial anode layer 11 on the surface, and heating the aluminum-silicon alloy brazing material 9 arranged by the brazing material arranging portion 64 And a heating unit 65 for performing a brazing process for brazing the plurality of outflow parts 3b and the plurality of outflow pipes 2 respectively.
  • the sacrificial anode layer 11 can be easily and efficiently formed accurately on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to suppress a decrease in strength around the joint due to excessive heat treatment when the sacrificial anode layer 11 is formed.
  • the refrigerant distributor manufacturing apparatus 300 includes an aluminum inflow portion 5 into which refrigerant flows from a refrigerant pipe 4 that is an inflow pipe, a plurality of aluminum outflow pipes 2 through which the inflowed refrigerant flows out, and a plurality of outflow pipes 2.
  • a refrigerant distributor 1 including an aluminum distribution section 3 having a plurality of outflow sections 3b connected to each other is manufactured.
  • the refrigerant distributor manufacturing apparatus 300 includes an application unit 61 that applies a flux 7 for removing aluminum oxide on the surfaces of the zinc-containing aluminum-silicon alloy brazing material 8 and the aluminum-silicon alloy brazing material 9.
  • An alloy placement portion 62 is provided for placing the zinc-containing aluminum-silicon alloy brazing material 8 coated by the coating portion 61 on the outflow portion 3b and the distribution portion 3.
  • the insertion part 63 which inserts the some outflow pipe
  • the insertion portion 63 includes a brazing material placement portion 64 for placing the aluminum-silicon alloy brazing material 9 coated with the coating portion 61 on the plurality of outflow portions 3b into which the plurality of outflow pipes 2 are respectively inserted.
  • the sacrificial anode layer 11 is formed by disposing and heating the zinc-containing aluminum-silicon alloy brazing material 8 to which the flux 7 is applied.
  • the sacrificial anode layer 11 can be easily and efficiently formed accurately on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to suppress a decrease in strength around the joint due to excessive heat treatment when the sacrificial anode layer 11 is formed.
  • the heating unit 65 includes a heating member that heats the refrigerant distributor 1, and simultaneously performs the forming process and the brazing process using the heating member. According to this configuration, the manufacturing process of the refrigerant distributor 1 can be reduced, and the manufacturing efficiency can be improved.
  • the heating unit 65 performs a forming process after the brazing process.
  • the sacrificial anode layer 11 can be formed on the surface of the refrigerant distributor 1 in which the outflow pipe 2 and the outflow portion 3b are joined in advance by brazing due to limitations in the manufacturing process.
  • the refrigerant distributor 1 includes an aluminum inflow portion 5 into which refrigerant flows from a refrigerant pipe 4 that is an inflow pipe.
  • a plurality of aluminum outflow pipes 2 for discharging the inflowing refrigerant are provided.
  • An aluminum distribution part 3 having a plurality of outflow parts 3b to which a plurality of outflow pipes 2 are connected is provided.
  • An aluminum-silicon alloy brazing material portion in which a plurality of outflow pipes 2 and a plurality of outflow portions 3b are joined is provided.
  • a sacrificial anode layer 11 having a brazing material 8 is provided. According to this configuration, the sacrificial anode layer 11 is simply and efficiently formed accurately on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, the strength reduction around the joint due to excessive heat treatment during the formation of the sacrificial anode layer 11 is suppressed.
  • the zinc concentration of the zinc-containing aluminum-silicon alloy brazing material 8 is 5 wt% or more and 15 wt% or less with respect to the alloy. According to this configuration, since the zinc concentration of the zinc-containing aluminum-silicon alloy brazing material 8 is 5 wt% or more, the melting point of the zinc-containing aluminum-silicon alloy brazing material 8 is higher than the melting point of the aluminum-silicon alloy brazing material 9. A temperature difference in heat treatment can be surely set low. Further, when the zinc concentration of the zinc-containing aluminum-silicon alloy brazing material 8 is 15 wt% or less, the corrosion rate does not exceed the allowable range of 1 ⁇ g / h ⁇ cm 2 , and the corrosion resistance can be ensured.
  • the aluminum-silicon alloy brazing material portion and the sacrificial anode layer 11 are adjacent to each other. According to this configuration, the aluminum-silicon alloy brazing material portion and the sacrificial anode layer 11 can be formed simultaneously.
  • the outdoor heat exchanger 100 includes a refrigerant distributor 1, a plurality of heat transfer tubes 50 extended from the refrigerant distributor 1, and a plurality of fins 51. According to this configuration, it is possible to provide the refrigerant distributor 1 in which the sacrificial anode layer 11 is simply and efficiently formed on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to provide the refrigerant distributor 1 that suppresses a decrease in strength around the joint due to excessive heat treatment during the formation of the sacrificial anode layer 11.
  • the air conditioner 200 includes a compressor 201, an outdoor heat exchanger 100, an electronically controlled expansion valve 207, an indoor heat exchanger 209, and the refrigerant distributor 1.
  • the refrigerant distributor 1 distributes the refrigerant to the plurality of heat transfer tubes 50 of the outdoor heat exchanger 100. According to this configuration, it is possible to provide the refrigerant distributor 1 in which the sacrificial anode layer 11 is simply and efficiently formed on the surface of the refrigerant distributor 1 having a complicated shape. Furthermore, it is possible to provide the refrigerant distributor 1 that suppresses a decrease in strength around the joint due to excessive heat treatment during the formation of the sacrificial anode layer 11.
  • the refrigerant distributor 1 is used in the outdoor heat exchanger 100 connected to the outflow pipe 2, but the present invention is not limited to this.
  • the refrigerant distributor according to the present invention may be provided in a refrigerant distributor that distributes refrigerant to a plurality of outdoor heat exchangers of an indoor heat exchanger or a multi-type air conditioner.
  • Refrigerant distributor 2 Outflow pipe, 3 Distribution part, 3a Main body part, 3b Outflow part, 3c Notch part, 3d Guide, 4 Refrigerant piping, 5 Inflow part, 5a Ring part, 5b Cylindrical part, 5c Notch part, 6 Aluminum material, 6a oxide film, 7 flux, 8 zinc-containing aluminum-silicon alloy brazing material, 9 aluminum-silicon alloy brazing material, 10 region where sacrificial anode layer is to be formed, 11 sacrificial anode layer, 50 heat transfer tube, 51 fin, 52 Gas header, 61 coating part, 62 alloy placement part, 63 insertion part, 64 brazing material placement part, 65 heating part, 66 line, 100 outdoor heat exchanger, 200 air conditioner, 201 compressor, 202 muffler, 203 four-way valve , 205 capillary tube, 206 strainer, 207 electronically controlled expansion valve, 208a, 208b Stop valve, 209 indoor heat exchanger, 210 auxiliary muffler, 211

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 複雑な形状の冷媒分配器の表面に対して犠牲陽極層を簡便に効率良くかつ正確に形成させる。さらには犠牲陽極層形成時における熱処理過多による接合部周辺の強度低下を抑制する。複数の流出部及び分配部の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布工程と、塗布した表面に亜鉛含有アルミニウム-ケイ素合金を配置する合金配置工程と、配置した亜鉛含有アルミニウム-ケイ素合金に加熱処理を施し、表面に犠牲陽極層を形成する形成工程と、複数の流出部に複数の流出管をそれぞれ挿入し、アルミニウム-ケイ素合金ろう材を流出部の表面に配置するろう材配置工程と、アルミニウム-ケイ素合金ろう材に加熱処理を施し、複数の流出部と複数の流出管とをそれぞれろう付するろう付工程と、を含む。

Description

冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
 本発明は、その表面に防食処理を施した冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、その冷媒分配器を備えた熱交換器及び空気調和装置に関する。
 空気調和装置又は冷凍装置等の冷凍サイクル装置の凝縮器又は蒸発器として作用する熱交換器において、内部の冷媒流路を複数パスに分割した場合に、熱交換器の入口には各パスへ冷媒を分割する冷媒分配器が必要である。
 また、例えば複数台の室外機や室内機を並列に接続してなるマルチ型空気調和装置では、メインの冷媒流路から各ユニットへ冷媒を分配するために冷媒分配器が必要である。
 熱交換器の伝熱管がアルミニウム製の場合、冷媒分配器の分配部にはアルミニウム材を削り出し加工等にて成型されたものを使用し、分配部に接続する流出管及び流入管にもアルミニウム材を使用する。流出管と分配部との接合及び流入管と分配部との接合には、各々の形状の複雑さからろう付による接合が一般的に用いられる。このろう付には、ろう材としてアルミニウムとケイ素の合金からなるアルミニウムろう材を使用する。そして、バーナー等を用いて加熱処理によってアルミニウムろう材と流出管、分配部及び流入管とをそれぞれ合金化させて接合される。このように、流出管、冷媒分配器、流入管及びろう付部の全ては、アルミニウム金属又はアルミニウム合金から構成される。
 アルミニウム金属によって構成された冷媒分配器、熱交換器及び空気調和装置は室外環境に設置されるため、外気に飛来する海塩粒子由来の塩化物イオンがその表面に付着する。塩化物イオンの付着は、アルミニウム表面にて耐食性を有するアルミニウム酸化被膜を局所的に破壊し、破壊箇所を起点に局所腐食が進行する。局所腐食が進行し続けると、結果として冷媒漏れを起こす貫通孔が形成され、製品寿命を予定よりも早く迎える可能性がある。
 そこで、この局所腐食の進行を抑制するために、アルミニウム金属表面にアルミニウムよりも電気化学的に卑な(不安定な)材料である「犠牲陽極層」を形成しておき犠牲陽極層から優先的に腐食させる方法が有効である。アルミニウムに対する犠牲陽極層(材)としては、アルミニウムに亜鉛を混ぜたアルミニウム-亜鉛合金が一般的に用いられる。この犠牲陽極層をアルミニウム表面に形成させた犠牲陽極層付アルミニウム材としては、「亜鉛溶射アルミニウム材」、「犠牲陽極層付アルミニウムクラッド材」等が一般的に知られている。亜鉛溶射アルミニウム材は、溶融させた金属亜鉛を表面に拭き付けた後に加熱し表面の金属亜鉛を内部に拡散させることによりアルミニウム-亜鉛合金を形成させたものである(例えば、特許文献1参照)。犠牲陽極層付アルミニウムクラッド材は、アルミニウム-亜鉛合金材をアルミニウム材に併せて高温状態にて圧延圧接させたものである。
特開平4-15496号公報
 このように従来、熱交換器のアルミニウム冷媒配管における局所腐食の抑制に有効な犠牲陽極層を形成するために、アルミニウム円管や断面形状が扁平で外郭に平坦部を有し、内部に複数の冷媒流路をもつ扁平形状伝熱管(以下、扁平管と称する)に亜鉛溶射させた「亜鉛溶射アルミニウム管」が用いられてきた。また、アルミニウム-亜鉛合金円管とアルミニウム円管をクラッド化させた「犠牲陽極層付アルミニウムクラッド円管」も用いられてきた。
 一方、上記冷媒分配器については、複数の流出管と分配部とをろう付接合すると共に流入管と分配部とをろう付接合していることから、一様な円柱、角柱等の単純な形状ではなく、複数の分岐を持つ複雑な形状に成形される。このような複雑な形状のアルミニウム冷媒分配器の表面に犠牲陽極層を形成させるために、予めアルミニウム-亜鉛合金とアルミニウム合金を併せた犠牲陽極層付アルミニウムクラッド材を成形することはその形状の複雑さから困難であると考えられる。
 したがって、複雑な形状の冷媒分配器に犠牲陽極層を形成するためには、成形した冷媒分配器に対して亜鉛を溶射し表面に拡散させる必要がある。この場合において、冷媒分配器に任意の領域に亜鉛を溶射して芯材内部に向かって亜鉛を拡散させるためには、溶射したい領域に溶融亜鉛を噴射するノズルを配置する必要がある。分岐を複数持つような冷媒分配器に亜鉛溶射領域を形成させたい場合には、亜鉛溶射領域が増えるほどノズルの配置数や冷媒分配器に対する配置方法が複雑となり犠牲陽極層の形成が困難になる。
 また、冷媒分配器に対して配管を接合する際に、ろう材を配管と冷媒分配器の間に設置し600℃付近まで加熱してろう付する。加熱時に熱処理過多になった場合には、溶融したろう材が芯材内部に浸食し芯材強度が弱くなる「エロージョン」が生じてしまう。エロージョンの起こったろう付部では、冷媒分配器を製作する際に強度が低下し、さらには強度低下部分から破壊が生じることがあった。
 本発明は、上記課題を解決するためのものであり、複雑な形状の冷媒分配器の表面に対して犠牲陽極層を簡便に効率良くかつ正確に形成させる冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置を得ることを目的とする。さらには犠牲陽極層形成時における熱処理過多による接合部周辺の強度低下を抑制する冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置を得ることを目的とする。
 本発明に係る冷媒分配器の製造方法は、流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造方法であって、前記複数の流出部及び前記分配部の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布工程と、塗布した前記表面に亜鉛含有アルミニウム-ケイ素合金を配置する合金配置工程と、配置した前記亜鉛含有アルミニウム-ケイ素合金に加熱処理を施し、前記表面に犠牲陽極層を形成する形成工程と、前記複数の流出部に前記複数の流出管をそれぞれ挿入し、アルミニウム-ケイ素合金ろう材を前記流出部の表面に配置するろう材配置工程と、前記アルミニウム-ケイ素合金ろう材に加熱処理を施し、前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程と、を含むものである。
 本発明に係る冷媒分配器の製造装置は、流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造装置であって、前記複数の流出部及び前記分配部の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布部と、前記塗布部が塗布した前記表面に亜鉛含有アルミニウム-ケイ素合金を配置する合金配置部と、前記複数の流出部に前記複数の流出管をそれぞれ挿入する挿入部と、前記挿入部が前記複数の流出管をそれぞれ挿入した前記複数の流出部にアルミニウム-ケイ素合金ろう材を配置するろう材配置部と、前記合金配置部が配置した前記亜鉛含有アルミニウム-ケイ素合金を加熱して前記表面に犠牲陽極層を形成する形成工程と前記ろう材配置部が配置した前記アルミニウム-ケイ素合金ろう材を加熱して前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程とを実行する加熱部と、を備えたものである。
 本発明に係る冷媒分配器は、流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、前記複数の流出管と前記複数の流出部とが接合されているアルミニウム-ケイ素合金ろう材部と、前記複数の流出部及び前記分配部の表面にて、亜鉛濃度が前記アルミニウム-ケイ素合金ろう材よりも高く、前記アルミニウム-ケイ素合金ろう材よりも電気化学的に不安定な亜鉛含有アルミニウム-ケイ素合金を有している犠牲陽極層と、を備えたものである。
 本発明に係る熱交換器は、上記の冷媒分配器と、前記冷媒分配器から延出された複数の伝熱管と、複数のフィンと、を備えたものである。
 本発明に係る空気調和装置は、圧縮機と、室外熱交換器と、電子制御式膨張弁と、室内熱交換器と、上記の冷媒分配器と、を備え、前記冷媒分配器は、前記冷媒を前記室外熱交換器の複数の伝熱管に分配するものである。
 本発明に係る冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置によれば、複雑な形状の冷媒分配器の表面に対して犠牲陽極層を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
本発明の実施の形態1に係る空気調和装置の概略構成を示す冷媒回路図である。 本発明の実施の形態1に係る冷媒分配器及び熱交換器の接続状態を示す概略図である。 本発明の実施の形態1に係る冷媒分配器の概略縦断面図である。 本発明の実施の形態1に係る冷媒分配器においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層の拡散様子を併せて模式化した図である。 本発明の実施の形態1に係る冷媒分配器においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層の拡散様子を併せて模式化した図である。 本発明の実施の形態1に係る冷媒分配器においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層の拡散様子を併せて模式化した図である。 本発明の実施の形態1に係る冷媒分配器においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層の拡散様子を併せて模式化した図である。 本発明の実施の形態3に係る亜鉛含有アルミニウム-ケイ素合金の融点に対する亜鉛濃度依存性を示す図である。 本発明の実施の形態3に係る亜鉛含有アルミニウム-ケイ素合金の腐食速度に対する亜鉛濃度依存性を示す図である。 本発明の実施の形態4に係る冷媒分配器の表面に犠牲陽極層を形成するために使用する冷媒分配器製造装置を示す図である。 本発明の実施の形態4に係る冷媒分配器の表面に犠牲陽極層を形成する冷媒分配器の製造方法を示す工程図である。 本発明の実施の形態4に係る冷媒分配器の表面に犠牲陽極層を形成する冷媒分配器の製造方法を示す工程図である。 本発明の実施の形態5に係る冷媒分配器の表面に犠牲陽極層を形成するための亜鉛含有アルミニウム-ケイ素合金の配置方法を示す図である。 本発明の実施の形態5に係る冷媒分配器の表面に犠牲陽極層を形成するための亜鉛含有アルミニウム-ケイ素合金の配置方法を示す図である。 本発明の実施の形態5に係る冷媒分配器の表面に犠牲陽極層を形成するための亜鉛含有アルミニウム-ケイ素合金の配置方法を示す図である。
 以下に、本発明の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 [空気調和装置の構成]
 図1は、本発明の実施の形態1に係る空気調和装置200の概略構成を示す冷媒回路図である。図1に示すように、空気調和装置200は、圧縮機201と、マフラー202と、四方弁203と、室外熱交換器100と、毛細管205と、ストレーナ206と、電子制御式膨張弁207と、ストップバルブ208a,208bと、室内熱交換器209と、補助マフラー210とを、冷媒配管4により接続して構成される冷媒回路を備える。
 空気調和装置200の室内熱交換器209を有する室内機には、外気、室内、冷媒等の各温度に基づいて、圧縮機201、電子制御式膨張弁207等のアクチュエータ類の制御を司る制御部211が設けられる。四方弁203は、冷房と暖房の冷凍サイクルを切り替える弁であり、制御部211によって制御される。
 次に、図1を参照して空気調和装置200の冷房運転時の動作例について説明する。制御部211によって四方弁203が冷房運転に切り替えられた場合には、冷媒が圧縮機201により圧縮されて高温高圧のガス冷媒となり、四方弁203を介して室外熱交換器100に流入する。室外熱交換器100に流入した高温高圧のガス冷媒は、室外熱交換器100を通過する室外空気と熱交換(放熱)され、高圧の液冷媒となって流出する。室外熱交換器100から流出した高圧の液冷媒は、毛細管205及び電子制御式膨張弁207で減圧され、低圧の気液二相の冷媒となり、室内熱交換器209に流入する。室内熱交換器209に流入した気液二相の冷媒は、室内熱交換器209を通過する室内空気と熱交換され、室内空気を冷却して低温低圧のガス冷媒となって圧縮機201に吸入される。
 次に、図1を参照して空気調和装置200の暖房運転時の動作例について説明する。制御部211によって四方弁203が暖房運転に切り替えられた場合には、冷媒は、上記と同様に圧縮機201により圧縮されて高温高圧のガス冷媒となり、四方弁203を介して室内熱交換器209に流入する。室内熱交換器209に流入した高温高圧のガス冷媒は、室内熱交換器209を通過する室内空気と熱交換され、室内空気を暖めて高圧の液冷媒となる。室内熱交換器209から流出した高圧の液冷媒は、電子制御式膨張弁207及び毛細管205で減圧され、低圧の気液二相の冷媒となり、室外熱交換器100に流入する。室外熱交換器100に流入した低圧の気液二相の冷媒は、室外熱交換器100を通過する室外空気と熱交換され、低温低圧のガス冷媒となって圧縮機201に吸入される。
 [熱交換器及び冷媒分配器の構成]
 図2は、本発明の実施の形態1に係る冷媒分配器1及びフィンチューブ型熱交換器(室外熱交換器100)の接続状態を示す概略図である。冷媒分配器1からフィンチューブ型熱交換器に延出された流出管2は、例えば、空気調和装置200用の室外機等に備えられる伝熱管50に接続されるものである。冷媒分配器1は、例えば熱交換器が蒸発器として機能するときに伝熱管50と伝熱管50を挿通して空間を開けて複数配列されたフィン51で構成されるフィンアンドチューブ型の熱交換器に流入する二相冷媒を分配するものである。伝熱管50とフィン51は、いずれもアルミニウム又はアルミニウム合金で構成されている。なお、伝熱管50は、円管、扁平管、その他どのような形状であっても採用可能である。伝熱管50は、ガスヘッダー52に集合する。
 図3は、本発明の実施の形態1に係る冷媒分配器1の概略縦断面図である。図3を参照して冷媒分配器1の構成について説明する。
 冷媒分配器1は、アルミニウム製の流入部5とアルミニウム製の分配部3とから構成される。流入部5は、円形の円環部5aと、この円環部5aの中心軸に同軸に配置された円環部5aよりも小径の円筒部5bとから構成され、流入管である冷媒配管4から冷媒が流入する。分配部3は、流入部5と接続される円筒形状の本体部3aと、本体部3aから突設された複数の管形状の流出部3bと、を有し、本体部3aに複数の流出部3bを含めて一体に成形され、分配部3に流入した冷媒を複数の流出管2に分配している。
 なお、図3上では、流入部5と冷媒配管4との間、流入部5と分配部3との間及び流出部3bと流出管2との間には、隙間が図示されているが、これはろう材の充填を踏まえた分かりやすくするための描写である。
 分配部3には、流出部3bの根元に流出管2の挿入端の位置を固定しておくように内径方向に環状に突出したガイド部3dを設けている。ガイド部3dは、流出部3bよりも小さい口径であり、流出管2の下端が流出部3bに対して内側から嵌合して接続される。よって、流出管2を流出部3bに嵌合する際には、流出管2を流出部3bに挿入し、流出管2の挿入端とガイド部3dとを当接させて位置決めする。
 流出管2の肉厚と流出部3bの下に設けられたガイド部3dの径方向幅の相関については、冷媒の流れを妨げないために、同一であるか、ガイド部3dの幅が流出管2の肉厚よりも小さいことが好ましい。
 流出部3b及びガイド部3dを有する分配部3と、流入部5との製造にあたっては、プレス加工による成型、切削加工による成型又はアルミダイカスト等のアルミニウム合金を使った鋳造を利用することができる。
 分配部3と流入部5とを接合する際には、本体部3aの下端の円周面に形成された一段拡径された円形の切欠部3cに流入部5の円環部5aの外周を嵌合する。そして、冷媒配管4と流入部5とを接合する際には、流入部5の円筒部5bの下端内周面に形成された一段拡径された円形の切欠部5cに円筒形状の冷媒配管4の外周を嵌合する。
 その後、分配部3と流入部5とをろう付により接合し、さらに冷媒配管4と流入部5とをろう付けすると共に流出管2と流出部3bとをろう付により接合する。
 ろう付方法としては、バーナーろう付法、炉中ろう付法等が挙げられる。バーナーろう付法は、フッ化物フラックスを接合部に塗布してろう材を接合部に設置した後に、バーナーによってろう材の温度を融点590℃まで上昇させ、ろう材を溶かして接合する接合方法である。ガスバーナーは、都市ガス、プロパン、アセチレンと酸素の混合ガス等を用いる。炉中ろう付け法は、一般的にノコロックろう付け法と呼ばれ、バーナーろう付法と同様にフッ化物系フラックスを用いて、炉中内に窒素ガスを導入しヒーターで炉内の温度をコントロールしてろう付けする接合方法である。また、ノコロックろう付け法以外の炉中ろう付け法として、真空ろう付け法と呼ばれる接合方法がある。この真空ろう付け法は、炉内を高真空状態として酸素の供給をなくすことで、再酸化を防止してろう付けする接合方法である。
 ノコロックろう付け法や真空ろう付け法は、炉の中で温度管理を行いながらろう付けすることが可能なため、信頼性の高いろう付け法である。
 [冷媒分配器の表面への犠牲陽極層形成]
 以上の構成にて製造された冷媒分配器1の表面に対して防食処理を実施する。
 アルミニウムは本来活性な金属であるが、環境中の酸素と直ちに反応して表面に保護性のある酸化被膜が形成されるため、乾燥した室温の空気中では安定であり、耐食性の良い金属とされている。このアルミニウムが大気曝露環境にある場合に、表面の酸化被膜が局所的に破壊されピットが形成される「孔食」が発生する。一旦孔食が発生すると、酸化被膜内部の活性なアルミニウムが浸食される。本実施の形態に係る空気調和装置200の冷媒分配器1を含めた冷媒配管4にアルミニウムを適用する場合には、孔食が発生するとその腐食進行の制御や把握が困難になることから寿命設計のために防食処理を施す必要がある。防食処理として上記のように、アルミニウム合金に亜鉛を添加したアルミニウム亜鉛合金をその表面に形成させて腐食進行を芯材方向への局所腐食から表層方向への全面腐食に腐食形態を制御する「犠牲陽極法」を適用する。ここでは冷媒分配器1の表面への犠牲陽極層の形成について記載する。
 犠牲陽極層を冷媒分配器1の表面に形成させる方法として、アルミニウムろう付用のろう材であるアルミニウム-ケイ素合金に亜鉛を添加させた亜鉛含有アルミニウム-ケイ素合金を用いたろう付を採用する。この材料は基材となるアルミニウム-ケイ素合金に対して亜鉛を含有させることで、その融点が基材よりも低くなるという特徴を有する。ろう付用アルミニウム-ケイ素合金として用いられる、例えばA4047合金(88wt%アルミニウム/12wt%ケイ素)の融点は590℃付近であるのに対して、添加する金属亜鉛の融点が420℃であることから、本実施の形態に係る亜鉛含有アルミニウム-ケイ素合金の融点は金属亜鉛の添加量に応じて金属亜鉛の融点に近づいていく。なお、本実施の形態では、犠牲陽極層を形成するための亜鉛含有アルミニウム-ケイ素合金をろう付け用の亜鉛含有アルミニウム-ケイ素合金ろう材と称するが、必ずしもろう材である必要はない。
 アルミニウム芯材に合金化させるろう材を表面に拡散させるためには、表面処理剤であるフラックスを塗布する必要がある。フラックスは、アルミニウム表面に形成されたアルミニウム酸化物を除去して新たに酸化被膜が形成するのを防止することで表面のろう材ぬれ性と流動性を確保する機能を有する。使用するフラックスとしては、アルカリ金属の塩化物、フッ化物が用いられ、ろう付後の残渣によるアルミニウム材腐食への影響を考慮するとより好ましくはアルカリ金属のフッ化物からなるフッ化アルミン酸カリウム、例えば、KAlF4やKAlF等を用いるとよい。
 上記フラックスを冷媒分配器1の犠牲陽極層を形成したい領域、具体的には冷媒分配器1の中で肉厚の薄い部分、すなわち流出部3bの表面とその近傍に塗布し、その周囲に亜鉛含有アルミニウム-ケイ素合金を配備してろう付することにより、犠牲陽極層付冷媒分配器1とする。ここで、犠牲陽極層を形成したい領域は、冷媒分配器1が複雑な形状であっても亜鉛含有アルミニウム-ケイ素合金を配備するだけでよく、犠牲陽極層を精度よく形成できる。A4047合金に対して金属亜鉛を10wt%添加したものを亜鉛含有アルミニウム-ケイ素合金として使用した。アルカリ金属のフッ化物として、カリウムとアルミニウムのフッ化物からなるフッ化アルミン酸カリウムを使用した。さらに、犠牲陽極層の形成だけでなく冷媒分配器1と流出管2のろう付も同時に行った。冷媒分配器1と流出管2のろう付にあたり、フラックスは先ほど同様フッ化アルミン酸カリウムを、ろう材にはA4047合金を使用した。以上の材料を配備し、バーナーろう付により冷媒分配器1と流出管2のろう付(冷媒分配器1と流出管2とをアルミニウム-ケイ素合金ろう材にてろう付け)、及び犠牲陽極層の形成(冷媒分配器1の表面に亜鉛含有アルミニウム-ケイ素合金ろう材を配備)を同時にろう付した。ろう付工程にてろう材の融点の差から先に亜鉛含有アルミニウム-ケイ素合金が溶融し、その後アルミニウム-ケイ素合金が溶融する。冷媒分配器1と流出管2のろう付としてアルミニウム-ケイ素合金が溶融した時点を同時ろう付の終了ポイントとした。ここでのろう付工程は、犠牲陽極層を形成する形成工程を兼ねているものである。
 図4Aは、本発明の実施の形態1に係る冷媒分配器1においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層11の拡散様子を併せて模式化した図である。図4Bは、本発明の実施の形態1に係る冷媒分配器1においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層11の拡散様子を併せて模式化した図である。図4Cは、本発明の実施の形態1に係る冷媒分配器1においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層11の拡散様子を併せて模式化した図である。図4Dは、本発明の実施の形態1に係る冷媒分配器1においてフラックス塗布からアルミニウム-ケイ素合金が溶融した時点までの工程について、犠牲陽極層11の拡散様子を併せて模式化した図である。図4A~図4Dは、上記フラックス塗布からアルミニウム-ケイ素合金が溶融した時点(ろう付終了ポイント)までの工程について、犠牲陽極層の拡散様子を併せて模式化している。
 図4Aに示すように、アルミニウム材6とその表面の酸化被膜6aにおいて犠牲陽極層11を形成したい領域10にフラックス7を塗布し、その近傍に亜鉛含有アルミニウム-ケイ素合金ろう材8を配備すると共に、アルミニウム材6同士をろう付したい箇所にフラックス7を塗布し、その近傍にアルミニウム-ケイ素合金ろう材9を配備する(工程A1)。
 図4Bに示すように、フラックス7が塗布された領域10において、アルミニウム材表面に形成された酸化被膜6aが除去され、アルミニウム材6と亜鉛含有アルミニウム-ケイ素合金ろう材8、及びアルミニウム材6とアルミニウム-ケイ素合金ろう材9の接触がそれぞれ可能となる(工程A2)。
 図4Cに示すように、接触が可能となった状態で窒素等の不活性ガス雰囲気にて加熱処理を施すことにより、亜鉛含有アルミニウム-ケイ素合金ろう材8が溶融し、アルミニウム材6と合金化する(工程A3)。
 図4Dに示すように、その後、加熱処理を続けると、亜鉛含有アルミニウム-ケイ素合金ろう材よりも融点の高いアルミニウム-ケイ素合金ろう材9が溶融し、アルミニウム材6と合金化することによりアルミニウム材6同士がろう付される。同時に、先に亜鉛含有アルミニウム-ケイ素合金ろう材8が溶融してアルミニウム材6と合金化した部分では、亜鉛濃度の低いアルミニウム材6側へ合金化された亜鉛が拡散することにより犠牲陽極層11を形成することができる(工程A4)。この時点でろう付を終了する。
 以上のようにして、犠牲陽極層をその表面に形成させた冷媒分配器1を製造した。
 [犠牲陽極層付冷媒分配管のろう付状態]
 この製造した冷媒分配器1にてその性能等を検証した。
 冷媒分配器1の表面に犠牲陽極層11を形成するためにろう付を実施している。このろう付にて亜鉛溶射やクラッド管を適用することなく亜鉛含有アルミニウム-ケイ素合金ろう材8の配備(塗布)にて犠牲陽極層11を任意の領域に形成させることが可能であるが、その形成様子を確認する必要がある。ここではろう付後の犠牲陽極層形成様子を確認した。
 冷媒分配器1の表面における犠牲陽極層11の形成の確認には断面の成分分析が有効である。ろう付サンプルを切出して得られた断面に対してEPMA(Electron Probe Micro Analyzer)により成分分析を実施した。分析した場所は犠牲陽極層11を形成させた分配部3の流出部3bの表面近傍と冷媒分配器1と流出管2の接合部の2箇所とした。
 その観察及び成分分析の結果(図示せず)、ろう付部においては流出管2と冷媒分配器1の間に隙間を形成することなくアルミニウム-ケイ素合金が充填され、このアルミニウム-ケイ素合金内にてケイ素が均一に分散している様子を確認した。さらに、アルミニウム-ケイ素合金が冷媒分配器1側、流出管2側どちらにも浸食している様子は確認できず、ろう材が冷媒分配器1と流出管2の間に適切に配置され、ろう付処理による母材とろう材の合金化が問題なく実施されていることが分かった。一方、犠牲陽極層11を形成させた分配部3の流出部3bの表面近傍については、まず、流出部3bの表面に亜鉛、アルミニウム、ケイ素から構成される合金層が存在し、その合金層は流出部3bの表層の10~20μm程度内部に向かって浸食している様子を確認した。
 その中で亜鉛元素に注目すると、亜鉛、アルミニウム及びケイ素合金層の大部分では亜鉛濃度が7~8wt%濃度にて均一に分散しており、流出部3bの浸食部分ではその内部に向かうほど亜鉛濃度が減少していることが分かった。この犠牲陽極層11によれば、最初に亜鉛濃度7~8wt%である亜鉛-アルミニウム-ケイ素合金層が優先腐食され、消失した後に浸食部である10~20μm厚の亜鉛-アルミニウム-ケイ素合金層をその外層から濃度の低い部分に向かって順に腐食すると考えられる。この腐食進行により芯材となる流出部3b及び冷媒分配器1の芯材部の腐食進行を抑制すると考えられる。
 以上より、冷媒分配器1と流出管2の接合及び冷媒分配器1の表面への犠牲陽極層11の形成がフラックス塗布及びろう材の配置とろう付処理により適切に実施されていることをサンプル断面の成分分析により確認した。
 [犠牲陽極層付冷媒分配器の腐食試験]
 犠牲陽極層付冷媒分配器1における犠牲陽極層11の形成を確認すると共に、その機能すなわち耐食性を確認する必要がある。ここでは、作製した犠牲陽極層付冷媒分配器1に対して腐食試験を実施し、その腐食状況を評価することで耐食性確保を検証した。以下に、実施した腐食試験の詳細と試験結果(腐食状況)について記載する。
 本実施の形態に係る冷媒分配器1は、空気調和装置200用室外機等に適用されており、腐食要因として塩害によるアルミニウム腐食を想定することが妥当と考えられる。塩害による腐食を模擬し、かつ加速試験となる塩水を腐食液とした複合サイクル試験を実施し、その腐食状況を評価した。
 本実施の形態に係る犠牲陽極層付冷媒分配器1に対して5重量%NaCl水を噴霧液とした複合サイクル試験を1000h実施し、その腐食状態を評価した。その結果、外観からは犠牲陽極層11が形成された領域にて白錆が発生しており、その近傍のアルミニウム母材表面は光沢が残っている様子を確認した。さらに、この腐食状況を詳細に把握するため、腐食サンプルを樹脂埋めし、切出した断面を金属顕微鏡により観察し、EPMAにより成分分析を行った。腐食サンプル断面について、金属顕微鏡観察の結果から表層に腐食が進行している様子を確認した。この腐食が進行している領域を成分分析により調査した結果、亜鉛-アルミニウム-ケイ素合金層の表層であることを確認した。さらにアルミニウム芯材層については表層に薄く(サブμmオーダー)酸化物の形成を確認した。これらの結果より、ろう付により形成された犠牲陽極層11にて腐食が進行することによりアルミニウム芯材層の腐食が抑制されていることを確認した。
 以上のように本実施の形態に係る犠牲陽極層付冷媒分配器1では、表面に亜鉛含有アルミニウム-ケイ素合金ろう材8を用いて犠牲陽極層11を形成する。これにより、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
 また、冷媒分配器1の表面における犠牲陽極層11を形成させたい領域に対してろう付用フラックス7を塗布し、塗布された領域近傍に亜鉛含有アルミニウム-ケイ素合金ろう材8を配備し、亜鉛含有アルミニウム-ケイ素合金ろう材8と冷媒分配器1の表面に対して加熱処理することにより、犠牲陽極層11を形成する。これにより、フラックス塗布工程、ろう材配備工程、熱処理工程の工程順を整理することができ、冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。
 冷媒分配器1では、冷媒配管4と冷媒分配器1の流入部5との接合及び流出管2と冷媒分配器1の流出部3bとの接合に対して、アルミニウム-ケイ素合金ろう材9を用いてろう付し、アルミニウム-ケイ素合金ろう材部を形成する。これにより、犠牲陽極層11を形成する亜鉛含有アルミニウム-ケイ素合金ろう材8の融点が、アルミニウム-ケイ素合金ろう材9の融点よりも低い。このため、亜鉛含有アルミニウム-ケイ素合金ろう材8だけを溶融することで犠牲陽極層11を形成することができる。よって、犠牲陽極層11の形成時における冷媒配管4と冷媒分配器1の接合部及び流出管2と冷媒分配器1の接合部周辺の再溶融やエロージョン等の発生を抑制することができる。
実施の形態2.
 実施の形態1に係る冷媒分配器1の製造方法として、冷媒分配器1と流出管2のろう付と同時に冷媒分配器1の表面への犠牲陽極層11の形成も行ったが、製造プロセスの制限から予め流出管2と流出部3bをろう付によりアルミニウム-ケイ素合金ろう材部を形成して接合した冷媒分配器1の表面に対して犠牲陽極層11を形成する場合がある。この犠牲陽極層11を形成するにあたり、ろう付プロセスを用いる必要があることから、熱処理過多による流出管2と冷媒分配器1との接続部をはじめとする接合部周辺の再溶融やエロージョン等が発生する可能性がある。また、流出管2と冷媒分配器1との接合部をはじめとする接合部周辺において再溶融やエロージョンが発生すると、その部分にて強度が低下し、さらには強度低下部にて破壊が生じる可能性がある。本実施の形態によれば、冷媒分配器1と配管とのろう付接合工程の後に犠牲陽極層11の形成工程を有する製造順を特定した。
 本実施の形態に係る冷媒分配器1を作製するにあたり、流出管2と既にろう付によりアルミニウム-ケイ素合金ろう材部を形成して接合されている冷媒分配器1を用意する。この冷媒分配器1の流出部3bに対してフラックス7を塗布し、亜鉛含有アルミニウム-ケイ素合金ろう材8を配備する。なお、このフラックス7及び亜鉛含有アルミニウム-ケイ素合金ろう材8については実施の形態1と同様の材料、配置とする。これらに対してバーナーろう付により加熱処理を施し、亜鉛含有アルミニウム-ケイ素合金ろう材8が溶融した時点で加熱処理を完了した。つまり、アルミニウム-ケイ素合金ろう材9が溶融しない亜鉛含有アルミニウム-ケイ素合金ろう材8だけが溶融する温度までの加熱処理を実施した。
 本サンプルは、概観上、接合部にひび割れ等の劣化した形跡は見当たらず、強度低下が抑制されていることが示唆された。さらに、本サンプルの接合部の断面を金属顕微鏡により観察した結果、接合部を形成する亜鉛-アルミニウム-ケイ素合金について熱処理過多による結晶粒粗大化が抑制されつつ、亜鉛が一様に拡散している犠牲陽極層11が形成されていることを確認した(図示せず)。
 結晶粒粗大化が生じると粒界界面に応力集中が起こる、あるいは粒界界面にケイ素や亜鉛等の偏析が生じて強度低下や耐食性低下が懸念されるが、本実施の形態に係る冷媒分配器1によれば、犠牲陽極層11を形成する亜鉛含有アルミニウム-ケイ素合金が冷媒分配器1の接合部周辺のアルミニウム合金よりも融点が低いために、熱処理過多に達する前に加熱処理を停止することが可能となり、結果として熱処理過多を抑制し、接合部の強度が低下せず、耐食性の低下を抑制することができる。
 以上のように本実施の形態に係る冷媒分配器1では、冷媒配管4と流入部5の接合及び流出管2と流出部3bの接合に対するろう付があらかじめ実施されている冷媒分配器1の表面に亜鉛含有アルミニウム-ケイ素合金ろう材8を用いて犠牲陽極層11を形成した。これにより、先に接合部を接合した後に犠牲陽極層11の形成を実施するという接合部周辺の製造順を限定している。この際に、犠牲陽極層11は、アルミニウム-ケイ素合金ろう材9が溶融しない亜鉛含有アルミニウム-ケイ素合金ろう材8だけが溶融する温度までの加熱処理を実施して形成される。このため、ろう付接合部周辺の再溶融やエロージョン等の発生を抑制することができる。したがって、再溶融やエロージョン等の発生が抑制され、強度低下が生じず、強度低下部からの破壊を回避することができる。
実施の形態3.
 実施の形態2に係る冷媒分配器1では、犠牲陽極層11の形成のために亜鉛含有アルミニウム-ケイ素合金ろう材8を溶融させる程度の温度に制御した加熱処理を実施することによって熱処理過多を抑制し、熱処理過多に伴う犠牲陽極層11の接合部周辺の強度低下及び耐食性低下を抑制することが可能であることを確認した。これは上記の通り、犠牲陽極層11を形成するアルミニウム-ケイ素合金中に亜鉛が添加されていることから融点が低下し、過剰に高温となる過度な熱処理を抑制することが可能なためである。この亜鉛添加量について、添加量が多いほど融点は低下し、熱処理過多を抑制しやすくなるが、同時に亜鉛含有量が多くなると材料そのものの腐食速度が大きい、すなわち腐食しやすいためにその添加量について最適な領域に制御する必要がある。ここでは、最適な領域を見出すために、本実施の形態では亜鉛添加量による亜鉛含有アルミニウム-ケイ素合金の熱力学特性、耐食性への影響を調査した。
 アルミニウム-ケイ素合金として、ケイ素を12wt%含むA4047を用意し、このA4047に対して添加する金属亜鉛の濃度をパラメータとして亜鉛含有アルミニウム-ケイ素合金を作製した。
 図5は、本発明の実施の形態3に係る亜鉛含有アルミニウム-ケイ素合金の融点に対する亜鉛濃度依存性を示す図である。
 図5に示すように、亜鉛含有アルミニウム-ケイ素合金の融点は、母材としてのアルミニウム-ケイ素合金の融点である580℃から金属亜鉛の融点である420℃に向かって亜鉛濃度の増加に伴い低下していき、その低下度合いは亜鉛濃度が高いほど緩やかになることが分かった。さらに、亜鉛濃度が5wt%よりも低くなるとその亜鉛含有アルミニウム-ケイ素合金の融点とアルミニウム合金との差が20℃以下とほとんど差がなくなることが分かった。犠牲陽極層11を形成させる際に、その接合部周辺に対して熱処理過多による強度低下を抑制するためには、犠牲陽極層11を形成する亜鉛含有アルミニウム-ケイ素合金の融点を接合部周辺であるアルミニウム-ケイ素合金の融点よりも低くする必要がある。すなわち合金中の亜鉛濃度について所定濃度を確保する必要があることが分かった。
 一方、亜鉛含有アルミニウム-ケイ素合金に含まれる亜鉛は、アルミニウム合金表面に形成された酸化被膜を脆弱化させる働きを持つため、その添加量が多いほど腐食速度は増加する。ここでは、亜鉛含有アルミニウム-ケイ素合金中における亜鉛濃度による腐食速度への影響を電気化学測定により評価した。評価材料の酸化還元電流測定から腐食電流を導出し、それを腐食速度に換算することが可能である。
 図6は、本発明の実施の形態3に係る亜鉛含有アルミニウム-ケイ素合金の腐食速度の亜鉛濃度依存性を示す図である。
 図6に示すように、亜鉛含有アルミニウム-ケイ素合金における亜鉛濃度が高くなるほど腐食速度が大きくなり、その値については亜鉛濃度15wt%を越えると許容範囲である1μg/h×cmを超えることが分かった。亜鉛含有アルミニウム-ケイ素合金中の亜鉛濃度上昇に伴い腐食速度が増加する。すなわち腐食により犠牲陽極層の消失が加速されてしまうことから、亜鉛含有アルミニウム-ケイ素合金層を冷媒分配器1の表面に形成させる場合には、その亜鉛濃度について所定濃度に制御する必要があることが分かった。
 以上、亜鉛含有アルミニウム-ケイ素合金に含まれる亜鉛の濃度によるその熱力学特性(融点)と耐食性への影響を評価した結果、その濃度について最適な領域に制御する必要があることが分かった。具体的には、その亜鉛濃度を亜鉛含有アルミニウム-ケイ素合金に対して5wt%以上15wt%以下に制御することが好ましい。すなわち、亜鉛含有アルミニウム-ケイ素合金ろう材8の亜鉛濃度が5wt%以上であることで、亜鉛含有アルミニウム-ケイ素合金ろう材8の融点がアルミニウム-ケイ素合金ろう材9の融点よりも確実に低く熱処理での温度差を設けることができる。また、亜鉛含有アルミニウム-ケイ素合金ろう材8の亜鉛濃度が15wt%以下であることで、腐食速度が許容範囲である1μg/h×cmを超えず、耐食性を確保することができる。このように、亜鉛含有アルミニウム-ケイ素合金ろう材8中の亜鉛濃度を好適に限定していることから、アルミニウム-ケイ素合金ろう材9を用いた接合後に亜鉛含有アルミニウム-ケイ素合金ろう材8を熱処理して犠牲陽極層11を形成することができる。よって、接合部周辺の再溶融やエロージョン等の発生を抑制し、かつ、冷媒分配器1の耐食性を確保することができる。
実施の形態4.
 本実施の形態では、分配部3における流入部5と流入管である冷媒配管4とを接合し、流出部3bと流出管2とを接合する際に、同時に、もしくはその後に、分配部3のうち最も肉厚の薄い、すなわち耐食性の確保すべき場所である流出部3b近傍に対して犠牲陽極層11を形成する冷媒分配器製造装置300、及びそれを用いて冷媒分配器1を製造する製造方法について説明する。
 図7は、本発明の実施の形態4に係る冷媒分配器1の表面に犠牲陽極層11を形成するために使用する冷媒分配器製造装置300を示す図である。
 図7に示すように、冷媒分配器製造装置300は、塗布する塗布部61と、亜鉛含有アルミニウム-ケイ素合金ろう材8を配置する合金配置部62と、流出管2を冷媒分配器1の流出部3bに挿入する挿入部63と、アルミニウム-ケイ素合金ろう材9を配置するろう材配置部64と、冷媒分配器1に対して犠牲陽極層11を形成し、加熱部材を有し流出管2を冷媒分配器1の流出部3bをろう付するための加熱部65と、備えている。塗布部61、合金配置部62、挿入部63、ろう材配置部64及び加熱部65のそれぞれは、ライン66によってつながっており、このライン66によって冷媒分配器1の他構成部材の各部間の移動を可能にする。
 冷媒分配器1を製造するにあたり、分配部3、流入管である冷媒配管4、流出管2に用いるアルミニウム材にはアルミニウム-マンガン系合金A3003材を使用する。用いるアルミニウム材にはこの他に純アルミニウムのA1000系合金(A1050、A1070等)、アルミニウム-マグネシウム合金であるA5000系合金(A5052等)、アルミニウム-マグネシウム-ケイ素合金であるA6000系合金(A6063等)を用いてもよい。犠牲陽極層を形成する際に用いる亜鉛含有アルミニウム-ケイ素合金ろう材、ろう付の際に用いるフラックス、アルミニウム-ケイ素合金ろう材の詳細内容は実施の形態1と同様であるので、ここでは省略する。
 図7に示すように、溶剤であるフラックス7が充てんされた塗布部61によって冷媒分配器1の分配部3及び流出部3bの表面にフラックス7が塗布される。
 フラックス7が塗布された冷媒分配器1の流出部3bの根元に亜鉛含有アルミニウム-ケイ素合金ろう材8が合金配置部62によって配置される。亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法は、流出部3b及び分配部3の表面に犠牲陽極層11が形成されるよう設計する必要があり、詳細内容については実施の形態5で説明する。
 フラックス7が塗布され、亜鉛含有アルミニウム-ケイ素合金ろう材8が配置された冷媒分配器1が冷媒分配器製造装置300の加熱部65において加熱部材によって加熱されることにより、犠牲陽極層11が冷媒分配器1の流出部3b及び分配部3の表面に形成される。
 さらに、同じく溶剤であるフラックス7が充てんされた塗布部61によって冷媒分配器1の流出部3bと流出管2の嵌合部にあたる表面にフラックス7が塗布される。
 表面にフラックス7が塗布された冷媒分配器1の流出部3bと流出管2が挿入部63により嵌合され、嵌合部分にアルミニウム-ケイ素合金ろう材9がろう材配置部56によって流出管2と冷媒分配器1の流出部3bとの間に配置される。
 フラックス7が塗布され、アルミニウム-ケイ素合金ろう材9が配置された冷媒分配器1が冷媒分配器製造装置300の加熱部65において加熱部材によって加熱されることにより、流出管2と冷媒分配器1の流出部3bのろう付が実施される。
 上記の亜鉛含有アルミニウム-ケイ素合金ろう材8による犠牲陽極層11の形成の工程とアルミニウム-ケイ素合金ろう材9によるろう付の工程の順番について説明する。
 実施の形態1の図4A~図4Dを用いて説明したように、亜鉛含有アルミニウム-ケイ素合金ろう材8の融点はアルミニウム-ケイ素合金ろう材9よりも低く、ろう付時の温度よりも低い温度で冷媒分配器1の芯材方向に犠牲陽極層11として亜鉛成分が拡散する。したがって、ろう付工程と犠牲陽極層11の形成工程を同時、もしくはろう付工程の後に犠牲陽極層形成工程を実施することが好ましい。この順序によれば、犠牲陽極層11の形成時にアルミニウム-ケイ素合金ろう材9の融点よりも高温に曝されることがない。このため、ろう材層の上にも犠牲陽極層11を形成することが可能である。このように、流出管2と流出部3bとのろう付の安定を確保しながら、犠牲陽極層付冷媒分配器1を製作することが可能である。
 図8Aは、本発明の実施の形態4に係る冷媒分配器1の表面に犠牲陽極層11を形成する冷媒分配器1の製造方法を示す工程図である。図8Bは、本発明の実施の形態4に係る冷媒分配器1の表面に犠牲陽極層11を形成する冷媒分配器1の製造方法を示す工程図である。
 図8Aに示す冷媒分配器1の製造方法の一例によれば、ステップS11の塗布工程において、冷媒分配器製造装置300は、溶剤であるフラックス7が充てんされた塗布部61によって冷媒分配器1の流出部3bと流出管2の嵌合部にあたる表面にフラックス7を塗布する。また、冷媒分配器1の分配部3及び流出部3bの表面にフラックス7を塗布する。
 ステップS12の合金配置工程において、冷媒分配器製造装置300は、フラックス7が塗布された冷媒分配器1の流出部3bの根元に亜鉛含有アルミニウム-ケイ素合金ろう材8を合金配置部62によって配置する。
 ステップS13のろう材配置工程において、冷媒分配器製造装置300は、表面にフラックス7が塗布された冷媒分配器1の流出部3bと流出管2とが挿入部63により嵌合され、嵌合部分にアルミニウム-ケイ素合金ろう材9をろう材配置部56によって流出管2と冷媒分配器1の流出部3bとの間に配置する。
 ステップS14の準備工程において、冷媒分配器製造装置300は、亜鉛含有アルミニウム-ケイ素合金ろう材8及びアルミニウム-ケイ素合金ろう材9を加熱する加熱部65を加熱部材であるバーナーろう付の加熱処理が可能なように準備する。
 ステップS15の形成工程及びろう付工程において、冷媒分配器製造装置300は、フラックス7が塗布され、アルミニウム-ケイ素合金ろう材9が配置された冷媒分配器1が加熱部65において加熱部材であるバーナーろう付の加熱処理によって加熱されることにより、流出管2と冷媒分配器1の流出部3bのろう付を実施する。同時に、冷媒分配器製造装置300は、フラックス7が塗布され、亜鉛含有アルミニウム-ケイ素合金ろう材8が配置された冷媒分配器1を加熱部65において加熱部材であるバーナーろう付の加熱処理によって加熱することにより、犠牲陽極層11が冷媒分配器1の流出部3b及び分配部3の表面に形成される。
 ここで、ステップS15の形成工程程及びろう付工程では、実施の形態1の通り、亜鉛含有アルミニウム-ケイ素合金ろう材8を先に溶融させてアルミニウム材6と合金化させ、そのまま加熱処理を継続して加熱温度を上昇させ、アルミニウム-ケイ素合金ろう材9を溶融させてアルミニウム材6と合金化させる。
 以上により、冷媒分配器1の製造を完了する。
 また、図8Bに示す冷媒分配器1の製造方法の一例によれば、ステップS21の第1塗布工程において、冷媒分配器製造装置300は、溶剤であるフラックス7が充てんされた塗布部61によって冷媒分配器1の流出部3bと流出管2の嵌合部にあたる表面にフラックス7を塗布する。
 ステップS22のろう材配置工程において、冷媒分配器製造装置300は、表面にフラックス7が塗布された冷媒分配器1の流出部3bと流出管2が挿入部63により嵌合され、嵌合部分にアルミニウム-ケイ素合金ろう材9をろう材配置部56によって流出管2と冷媒分配器1の流出部3bとの間に配置する。
 ステップS23のろう付工程において、冷媒分配器製造装置300は、フラックス7が塗布され、アルミニウム-ケイ素合金ろう材9が配置された冷媒分配器1が加熱部65において加熱部材であるバーナーろう付の加熱処理によって加熱されることにより、流出管2と冷媒分配器1の流出部3bのろう付を実施する。
 ステップS24の第2塗布工程において、冷媒分配器製造装置300は、溶剤であるフラックス7が充てんされた塗布部61によって冷媒分配器1の分配部3及び流出部3bの表面にフラックス7を塗布する。
 ステップS25の合金配置工程において、冷媒分配器製造装置300は、フラックス7が塗布された冷媒分配器1の流出部3bの根元に亜鉛含有アルミニウム-ケイ素合金ろう材8を合金配置部62によって配置する。
 ステップS26の形成工程において、冷媒分配器製造装置300は、フラックス7が塗布され、亜鉛含有アルミニウム-ケイ素合金ろう材8が配置された冷媒分配器1を加熱部65において加熱部材であるバーナーろう付の加熱処理によって加熱することにより、犠牲陽極層11が冷媒分配器1の流出部3b及び分配部3の表面に形成される。
 ここで、ステップS26の形成工程では、実施の形態2の通り、ステップS23のろう付工程よりも加熱温度が低い。つまり、アルミニウム-ケイ素合金ろう材9が溶融しない亜鉛含有アルミニウム-ケイ素合金ろう材8だけが溶融する温度までの加熱処理を実施する。
 以上により、冷媒分配器1の製造を完了する。
実施の形態5.
 実施の形態4の冷媒分配器1を製造する際に、亜鉛含有アルミニウム-ケイ素合金ろう材8の配置として、冷媒分配器1の流出部3bの内外周を選定したが、配置方法について別の実施の形態を取ることも有効である。実施の形態5にかかる冷媒分配器1では、犠牲陽極層11を形成するために亜鉛含有アルミニウム-ケイ素合金ろう材8の有効な配置方法について説明する。
 犠牲陽極層11を冷媒分配器1の表面に形成するにあたり、上述の亜鉛溶射法で対応が困難な箇所は、本実施の形態に係る冷媒分配器1の場合では、流出部3bの根元部分あるいは流出部3bよりも内芯側である。
 本実施の形態に係る亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法を実施することによって、効率良く正確にこれらの部分に対して表面に犠牲陽極層11を形成することができる。
 図9Aは、冷媒分配器1の表面に犠牲陽極層11を形成するための亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法を示す図である。図9Bは、冷媒分配器1の表面に犠牲陽極層11を形成するための亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法を示す図である。図9Cは、冷媒分配器1の表面に犠牲陽極層11を形成するための亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法を示す図である。
 具体的には、ワイヤ状の亜鉛含有アルミニウム-ケイ素合金ろう材8を、図9A~図9Cに示すような配置とすればよい。なお、図9A~図9Cはいずれも冷媒分配器1を流出部3b側から投影した図である。
 冷媒分配器1に亜鉛含有アルミニウム-ケイ素合金ろう材8の配置方法について説明する。
 図9Aでは、冷媒分配器1の複数の流出部3bに対してその内側と外側に円状に配置する。これにより、流出部3bを中心としたその周辺に犠牲陽極層11を効率良く正確に形成することができる。
 図9Bでは、冷媒分配器1の流出部3bの根元のそれぞれに円状もしくは馬蹄状(図示せず)に配置する。これによっても、図9Aと同様な効果を得ることができる。
 図9Cでは、冷媒分配器1の流出部3bの根元に対して一筆書きの波状に繋がった亜鉛含有アルミニウム-ケイ素合金ろう材8の2つをずらして配置する。これによっても、図9Aと同様な効果を得ることができる。
 いずれの配置方法においても、冷媒分配器製造装置300によって製造した犠牲陽極層付冷媒分配器1を観察した結果、流出部3b及び分配部3の表面に犠牲陽極層11が表層方向と深さ方向に対して均一に拡散しており、良好に形成されていることを確認した。
実施の形態6.
 実施の形態1~5に係る冷媒分配器1の製造方法では、亜鉛含有アルミニウム-ケイ素合金ろう材8あるいはアルミニウム-ケイ素合金ろう材9を溶融させて冷媒分配器1、流出管2あるいは複数の流出部3bと合金化させるため、事前にその表面のアルミニウム酸化物を除去するフラックス7を塗布している。しかし、予めフラックス7をこれらの合金ろう材に担持させておき、その合金ろう材を合金化させたい冷媒分配器1、流出管2あるいは複数の流出部3bに配置してろう付熱処理する方法も有効である。本実施の形態では、予めフラックス7を担持させた合金ろう材を用いて冷媒分配器1を製造する方法について説明する。
 溶剤であるフラックス7をその表面に塗布しておいた亜鉛含有アルミニウム-ケイ素合金ろう材8あるいはアルミニウム-ケイ素合金ろう材9を利用する。実施の形態5における配置方法でフラックス7を塗布した亜鉛含有アルミニウム-ケイ素合金ろう材8を配置しておく。また、複数の流出管2と複数の流出部3bがそれぞれ嵌合されている部分に対してリング状の形でフラックス7を塗布したアルミニウム-ケイ素合金ろう材9を配置する。
 このような形で組み合わせた冷媒分配器1、流出管2、亜鉛含有アルミニウム-ケイ素合金ろう材8及びアルミニウム-ケイ素合金ろう材9に対してろう付熱処理を施す。熱処理によりまず亜鉛含有アルミニウム-ケイ素合金ろう材8がフラックス7を伴って溶融する。続いてアルミニウム-ケイ素合金ろう材8がフラックス7を伴って溶融する。このため、そのフラックス7が冷媒分配器1、流出管2及び流出部3bの表面のアルミニウム酸化物を除去して表面におけるろう材濡れ性及び流動性を確保する。このろう材濡れ性及び流動性が確保された表面においてアルミニウム母材とアルミニウム合金ろう材が合金化され、それぞれ犠牲陽極層形成とろう付接合が実施される。
 これらの材料及び製造工程を適用して実施の形態4における冷媒分配器製造装置300によって製造した犠牲陽極層付冷媒分配器1を観察した結果、流出部3b及び分配部3の表面に犠牲陽極層11が表層方向と深さ方向に対して均一に拡散しており、良好に形成されていることを確認した。さらに、複数の流出管2と流出部3bがアルミニウム-ケイ素合金ろう材9によって良好に接合されていることを確認した。冷媒分配器製造装置300は、塗布部61にて亜鉛含有アルミニウム-ケイ素合金ろう材8及びアルミニウム-ケイ素合金ろう材9の表面に、アルミニウム酸化物を除去するフラックス7を塗布する。
 実施の形態6における冷媒分配器1の製造方法の一例によれば、フラックス7が塗布してある亜鉛含有アルミニウム-ケイ素合金ろう材8が配置されて加熱されることによって、犠牲陽極層11が形成される。流出部3bの複雑な形状に合わせてフラックス7を塗布する必要がなく、流出部3bの複雑な形状に合わせてアルミニウム-ケイ素合金ろう材9を塗布する必要もない。したがって、複雑な形状の冷媒分配器の表面に対して犠牲陽極層を簡便に効率良くかつ正確に形成させることができる。
 以上より、本実施の形態によれば、フラックス7を予めその表面に担持させた亜鉛含有アルミニウム-ケイ素合金ろう材8及びアルミニウム-ケイ素合金ろう材9を用いて冷媒分配器1を作製することにより、犠牲陽極層とろう付接合部が良好に形成されることが分かる。
 以上の実施の形態1~6によると、冷媒分配器1の製造方法は、流入管である冷媒配管4から冷媒が流入するアルミニウム製の流入部5と、流入した冷媒を流出させる複数のアルミニウム製の流出管2と、複数の流出管2がそれぞれ接続された複数の流出部3bを有するアルミニウム製の分配部3と、を備える冷媒分配器1を製造する。この冷媒分配器1の製造方法は、複数の流出部3b及び分配部3の表面に、アルミニウム酸化物を除去するフラックス7を塗布する塗布工程を含む。塗布した表面に亜鉛含有アルミニウム-ケイ素合金ろう材8を配置する合金配置工程を含む。配置した亜鉛含有アルミニウム-ケイ素合金ろう材8に加熱処理を施し、表面に犠牲陽極層11を形成する形成工程を含む。複数の流出部3bに複数の流出管2をそれぞれ挿入し、アルミニウム-ケイ素合金ろう材9を流出部3bの表面に配置するろう材配置工程を含む。配置したアルミニウム-ケイ素合金ろう材9に加熱処理を施し、複数の流出部3bと複数の流出管2とをそれぞれろう付するろう付工程を含む。
 この構成によれば、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
 冷媒分配器1の製造方法は、流入管である冷媒配管4から冷媒が流入するアルミニウム製の流入部5と、流入した冷媒を流出させる複数のアルミニウム製の流出管2と、複数の流出管2がそれぞれ接続された複数の流出部3bを有するアルミニウム製の分配部3と、を備える冷媒分配器1を製造する。この冷媒分配器1の製造方法は、亜鉛含有アルミニウム-ケイ素合金ろう材8の表面に、アルミニウム酸化物を除去するフラックス7を塗布する塗布工程を含む。表面にフラックス7を予め塗布した亜鉛含有アルミニウム-ケイ素合金ろう材8を流出部3b及び分配部3に配置する合金配置工程を含む。配置した亜鉛含有アルミニウム-ケイ素合金ろう材8に加熱処理を施し、流出部3b及び分配部3の表面に犠牲陽極層を形成する形成工程を含む。複数の流出部3bに複数の流出管2をそれぞれ挿入し、表面にフラックス7を予め塗布したアルミニウム-ケイ素合金ろう材9を流出部3bに配置するろう材配置工程を含む。配置したアルミニウム-ケイ素合金ろう材9に加熱処理を施し、複数の流出部3bと複数の流出管2とをそれぞれろう付するろう付工程を含む。
 この構成によれば、フラックス7が塗布してある亜鉛含有アルミニウム-ケイ素合金ろう材8が配置されて加熱されることによって、犠牲陽極層11が形成される。流出部3bの複雑な形状に合わせてフラックス7を塗布する必要がなく、流出部3bの複雑な形状に合わせてアルミニウム-ケイ素合金ろう材9を塗布する必要もない。したがって、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
 冷媒分配器の製造方法では、冷媒分配器を加熱する加熱部材を準備する準備工程を含み、形成工程で施される加熱処理とろう付工程で施される加熱処理とは、準備工程で準備した加熱部材を用いて同時に行う。
 この構成によれば、冷媒分配器1の製造工程が少なくて済み、製造効率が上がる。
 冷媒分配器の製造方法では、形成工程は、ろう付工程の後に行う。
 この構成によれば、製造プロセスの制限から予め流出管2と流出部3bをろう付により接合した冷媒分配器1の表面に対して犠牲陽極層11を形成することができる。
 冷媒分配器製造装置300は、流入管である冷媒配管4から冷媒が流入するアルミニウム製の流入部5と、流入した冷媒を流出させる複数のアルミニウム製の流出管2と、複数の流出管2がそれぞれ接続された複数の流出部3bを有するアルミニウム製の分配部3と、を備える冷媒分配器1を製造する。この冷媒分配器製造装置300は、複数の流出部3b及び分配部3の表面に、アルミニウム酸化物を除去するフラックス7を塗布する塗布部61を備える。塗布部61が塗布した表面に亜鉛含有アルミニウム-ケイ素合金ろう材8を配置する合金配置部62を備える。複数の流出部3bに複数の流出管2をそれぞれ挿入する挿入部63を備える。挿入部63が複数の流出管2をそれぞれ挿入した複数の流出部3bにアルミニウム-ケイ素合金ろう材9を配置するろう材配置部64を備える。合金配置部62が配置した亜鉛含有アルミニウム-ケイ素合金ろう材8を加熱して表面に犠牲陽極層11を形成する形成工程とろう材配置部64が配置したアルミニウム-ケイ素合金ろう材9を加熱して複数の流出部3bと複数の流出管2とをそれぞれろう付するろう付工程とを実行する加熱部65を備える。
 この構成によれば、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
 冷媒分配器製造装置300は、流入管である冷媒配管4から冷媒が流入するアルミニウム製の流入部5と、流入した冷媒を流出させる複数のアルミニウム製の流出管2と、複数の流出管2がそれぞれ接続された複数の流出部3bを有するアルミニウム製の分配部3と、を備える冷媒分配器1を製造する。この冷媒分配器製造装置300は、亜鉛含有アルミニウム-ケイ素合金ろう材8及びアルミニウム-ケイ素合金ろう材9の表面に、アルミニウム酸化物を除去するフラックス7を塗布する塗布部61を備える。塗布部61が塗布した亜鉛含有アルミニウム-ケイ素合金ろう材8を流出部3b及び分配部3に配置する合金配置部62を備える。複数の流出部3bに複数の流出管2をそれぞれ挿入する挿入部63を備える。挿入部63が複数の流出管2をそれぞれ挿入した複数の流出部3bに塗布部61が塗布したアルミニウム-ケイ素合金ろう材9を配置するろう材配置部64を備える。合金配置部62が配置した亜鉛含有アルミニウム-ケイ素合金ろう材8を加熱して複数の流出部3b及び分配部3の表面に犠牲陽極層を形成する形成工程とろう材配置部64が配置したアルミニウム-ケイ素合金ろう材9を加熱して複数の流出部3bと複数の流出管2とをそれぞれろう付するろう付工程とを実行する加熱部65を備える。
 この構成によれば、フラックス7が塗布してある亜鉛含有アルミニウム-ケイ素合金ろう材8が配置されて加熱されることによって、犠牲陽極層11が形成される。流出部3bの複雑な形状に合わせてフラックス7を塗布する必要がなく、流出部3bの複雑な形状に合わせてアルミニウム-ケイ素合金ろう材9を塗布する必要もない。したがって、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制することができる。
 加熱部65は、冷媒分配器1を加熱する加熱部材を備え、加熱部材を用いて形成工程とろう付工程とを同時に行う。
 この構成によれば、冷媒分配器1の製造工程が少なくて済み、製造効率が上がる。
 加熱部65は、ろう付工程の後に形成工程を行う。
 この構成によれば、製造プロセスの制限から予め流出管2と流出部3bをろう付により接合した冷媒分配器1の表面に対して犠牲陽極層11を形成することができる。
 冷媒分配器1は、流入管である冷媒配管4から冷媒が流入するアルミニウム製の流入部5を備える。流入した冷媒を流出させる複数のアルミニウム製の流出管2を備える。複数の流出管2がそれぞれ接続された複数の流出部3bを有するアルミニウム製の分配部3を備える。複数の流出管2と複数の流出部3bとが接合されているアルミニウム-ケイ素合金ろう材部を備える。複数の流出部3b及び分配部3の表面にて、亜鉛濃度がアルミニウム-ケイ素合金ろう材9よりも高く、アルミニウム-ケイ素合金ろう材9よりも電気化学的に不安定な亜鉛含有アルミニウム-ケイ素合金ろう材8を有している犠牲陽極層11を備える。
 この構成によれば、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させている。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制している。
 亜鉛含有アルミニウム-ケイ素合金ろう材8の亜鉛濃度が合金に対して5wt%以上15wt%以下である。
 この構成によれば、亜鉛含有アルミニウム-ケイ素合金ろう材8の亜鉛濃度が5wt%以上であることで、亜鉛含有アルミニウム-ケイ素合金ろう材8の融点がアルミニウム-ケイ素合金ろう材9の融点よりも確実に低く熱処理での温度差を設けることができる。また、亜鉛含有アルミニウム-ケイ素合金ろう材8の亜鉛濃度が15wt%以下であることで、腐食速度が許容範囲である1μg/h×cmを超えず、耐食性を確保することができる。
 アルミニウム-ケイ素合金ろう材部と犠牲陽極層11とは隣接する。
 この構成によれば、アルミニウム-ケイ素合金ろう材部と犠牲陽極層11とを同時に形成することができる。
 室外熱交換器100は、冷媒分配器1と、冷媒分配器1から延出された複数の伝熱管50と、複数のフィン51と、を備える。
 この構成によれば、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させている冷媒分配器1を備えることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制している冷媒分配器1を備えることができる。
 空気調和装置200は、圧縮機201と、室外熱交換器100と、電子制御式膨張弁207と、室内熱交換器209と、冷媒分配器1と、を備える。冷媒分配器1は、冷媒を室外熱交換器100の複数の伝熱管50に分配する。
 この構成によれば、複雑な形状の冷媒分配器1の表面に対して犠牲陽極層11を簡便に効率良くかつ正確に形成させている冷媒分配器1を備えることができる。さらに、犠牲陽極層11の形成時における熱処理過多による接合部周辺の強度低下を抑制している冷媒分配器1を備えることができる。
 上記の実施の形態では、冷媒分配器1が流出管2と接続された室外熱交換器100に用いられていたが、これに限られない。例えば、本発明に係る冷媒分配器は、室内熱交換器やマルチ型空気調和装置の複数台の室外熱交換器に冷媒が分配される冷媒分配部に備えられてもよい。
 なお、上記の各実施の形態の構成を適宜組み合わせることも当初から予定している。上記の各実施の形態では、冷媒分配器1についての記載であるが、冷媒分配器1を含めた熱交換器についても成り立つ。また、冷媒分配器1や熱交換器だけでなく、複雑な形状をしたアルミニウム製冷媒流路の表面に対して、耐食性を向上させるために亜鉛含有アルミニウム-ケイ素合金ろう材を適用することにより犠牲陽極層を形成させてもよい。また、今回開示された各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 冷媒分配器、2 流出管、3 分配部、3a 本体部、3b 流出部、3c 切欠部、3d ガイド、4 冷媒配管、5 流入部、5a 円環部、5b 円筒部、5c 切欠部、6 アルミニウム材、6a 酸化被膜、7 フラックス、8 亜鉛含有アルミニウム-ケイ素合金ろう材、9 アルミニウム-ケイ素合金ろう材、10 犠牲陽極層を形成したい領域、11 犠牲陽極層、50 伝熱管、51 フィン、52 ガスヘッダー、61 塗布部、62 合金配置部、63 挿入部、64 ろう材配置部、65 加熱部、66 ライン、100 室外熱交換器、200 空気調和装置、201 圧縮機、202 マフラー、203 四方弁、205 毛細管、206 ストレーナ、207 電子制御式膨張弁、208a,208b ストップバルブ、209 室内熱交換器、210 補助マフラー、211 制御部、300 冷媒分配器製造装置。

Claims (13)

  1.  流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造方法であって、
     前記複数の流出部及び前記分配部の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布工程と、
     塗布した前記表面に亜鉛含有アルミニウム-ケイ素合金を配置する合金配置工程と、
     配置した前記亜鉛含有アルミニウム-ケイ素合金に加熱処理を施し、前記表面に犠牲陽極層を形成する形成工程と、
     前記複数の流出部に前記複数の流出管をそれぞれ挿入し、アルミニウム-ケイ素合金ろう材を前記流出部の表面に配置するろう材配置工程と、
     配置した前記アルミニウム-ケイ素合金ろう材に加熱処理を施し、前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程と、
    を含む冷媒分配器の製造方法。
  2.  流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造方法であって、
     亜鉛含有アルミニウム-ケイ素合金の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布工程と、
     表面に前記フラックスを予め塗布した前記亜鉛含有アルミニウム-ケイ素合金を前記流出部及び前記分配部に配置する合金配置工程と、
     配置した前記亜鉛含有アルミニウム-ケイ素合金に加熱処理を施し、前記流出部及び前記分配部の表面に犠牲陽極層を形成する形成工程と、
     前記複数の流出部に前記複数の流出管をそれぞれ挿入し、表面に前記フラックスを予め塗布した前記アルミニウム-ケイ素合金ろう材を前記流出部に配置するろう材配置工程と、
     配置した前記アルミニウム-ケイ素合金ろう材に加熱処理を施し、前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程と、
    を含む冷媒分配器の製造方法。
  3.  前記冷媒分配器を加熱する加熱部材を準備する準備工程を含み、
     前記形成工程で施される前記加熱処理と前記ろう付工程で施される前記加熱処理とは、前記準備工程で準備した前記加熱部材を用いて同時に行う請求項1又は2に記載の冷媒分配器の製造方法。
  4.  前記形成工程は、前記ろう付工程の後に行う請求項1又は2に記載の冷媒分配器の製造方法。
  5.  流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造装置であって、
     前記複数の流出部及び前記分配部の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布部と、
     前記塗布部が塗布した前記表面に亜鉛含有アルミニウム-ケイ素合金を配置する合金配置部と、
     前記複数の流出部に前記複数の流出管をそれぞれ挿入する挿入部と、
     前記挿入部が前記複数の流出管をそれぞれ挿入した前記複数の流出部にアルミニウム-ケイ素合金ろう材を配置するろう材配置部と、
     前記合金配置部が配置した前記亜鉛含有アルミニウム-ケイ素合金を加熱して前記表面に犠牲陽極層を形成する形成工程と前記ろう材配置部が配置した前記アルミニウム-ケイ素合金ろう材を加熱して前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程とを実行する加熱部と、
    を備えた冷媒分配器の製造装置。
  6.  流入管から冷媒が流入するアルミニウム製の流入部と、流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、を備える冷媒分配器を製造する冷媒分配器の製造装置であって、
     亜鉛含有アルミニウム-ケイ素合金及びアルミニウム-ケイ素合金ろう材の表面に、アルミニウム酸化物を除去するフラックスを塗布する塗布部と、
     前記塗布部が塗布した前記亜鉛含有アルミニウム-ケイ素合金を前記流出部及び前記分配部に配置する合金配置部と、
     前記複数の流出部に前記複数の流出管をそれぞれ挿入する挿入部と、
     前記挿入部が前記複数の流出管をそれぞれ挿入した前記複数の流出部に前記塗布部が塗布した前記アルミニウム-ケイ素合金ろう材を配置するろう材配置部と、
     前記合金配置部が配置した前記亜鉛含有アルミニウム-ケイ素合金を加熱して前記複数の流出部及び前記分配部の表面に犠牲陽極層を形成する形成工程と前記ろう材配置部が配置した前記アルミニウム-ケイ素合金ろう材を加熱して前記複数の流出部と前記複数の流出管とをそれぞれろう付するろう付工程とを実行する加熱部と、
    を備えた冷媒分配器の製造装置。
  7.  前記加熱部は、前記冷媒分配器を加熱する加熱部材を備え、前記加熱部材を用いて前記形成工程と前記ろう付工程とを同時に行う請求項5又は6に記載の冷媒分配器の製造装置。
  8.  前記加熱部は、前記ろう付工程の後に前記形成工程を行う請求項5又は6に記載の冷媒分配器の製造装置。
  9.  流入管から冷媒が流入するアルミニウム製の流入部と、
     流入した前記冷媒を流出させる複数のアルミニウム製の流出管と、
     前記複数の流出管がそれぞれ接続された複数の流出部を有するアルミニウム製の分配部と、
     前記複数の流出管と前記複数の流出部とが接合されているアルミニウム-ケイ素合金ろう材部と、
     前記複数の流出部及び前記分配部の表面にて、亜鉛濃度が前記アルミニウム-ケイ素合金ろう材よりも高く、前記アルミニウム-ケイ素合金ろう材よりも電気化学的に不安定な亜鉛含有アルミニウム-ケイ素合金を有している犠牲陽極層と、
    を備えた冷媒分配器。
  10.  前記亜鉛含有アルミニウム-ケイ素合金の亜鉛濃度が合金に対して5wt%以上15wt%以下である請求項9に記載の冷媒分配器。
  11.  前記アルミニウム-ケイ素合金ろう材部と前記犠牲陽極層とは隣接する請求項9又は10に記載の冷媒分配器。
  12.  請求項9~11のいずれか1項に記載の冷媒分配器と、前記冷媒分配器から延出された複数の伝熱管と、複数のフィンと、を備えた熱交換器。
  13.  圧縮機と、室外熱交換器と、電子制御式膨張弁と、室内熱交換器と、請求項9~11のいずれか1項に記載の冷媒分配器と、を備え、
     前記冷媒分配器は、前記冷媒を前記室外熱交換器の複数の伝熱管に分配する空気調和装置。
PCT/JP2015/082408 2015-01-07 2015-11-18 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 WO2016111089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016517568A JP5955488B1 (ja) 2015-01-07 2015-11-18 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
EP15876962.0A EP3244159B1 (en) 2015-01-07 2015-11-18 Methods of manufacturing a refrigerant distributor
US15/533,683 US10175009B2 (en) 2015-01-07 2015-11-18 Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
CN201580071901.2A CN107110624B (zh) 2015-01-07 2015-11-18 制冷剂分配器、其制造方法、其制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015001784 2015-01-07
JP2015-001784 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111089A1 true WO2016111089A1 (ja) 2016-07-14

Family

ID=56355791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082408 WO2016111089A1 (ja) 2015-01-07 2015-11-18 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置

Country Status (5)

Country Link
US (1) US10175009B2 (ja)
EP (1) EP3244159B1 (ja)
JP (1) JP5955488B1 (ja)
CN (1) CN107110624B (ja)
WO (1) WO2016111089A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132518A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
WO2019151385A1 (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
JP2021018024A (ja) * 2019-07-19 2021-02-15 ダイキン工業株式会社 冷凍装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904704B2 (ja) * 2014-08-27 2021-07-21 日本電気株式会社 相変化冷却装置および相変化冷却方法
NL2020406B1 (nl) * 2018-02-09 2019-08-19 Inteco B V Werkwijze en inrichting voor het vervaardigen van warmtewisselende elementen, en elemten als zodanig
JP7069350B2 (ja) * 2019-01-10 2022-05-17 三菱電機株式会社 熱交換器、及び冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186164A (ja) * 1985-02-15 1986-08-19 Sanden Corp アルミニウム製熱交換器の製造方法
JPH07278779A (ja) * 1994-04-06 1995-10-24 Mitsubishi Alum Co Ltd 熱交換器の製造方法
JP2001191176A (ja) * 2000-01-07 2001-07-17 Sumitomo Light Metal Ind Ltd アルミニウムのろう付け方法およびフラックス組成物並びに該フラックス組成物被覆アルミニウム合金
JP2012013289A (ja) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
JP2013137153A (ja) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd プレコートフィン材を使用したオールアルミニウム熱交換器
JP2015001335A (ja) * 2013-06-14 2015-01-05 三菱電機株式会社 冷媒分流器、及び、冷凍サイクル装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415496A (ja) 1990-05-08 1992-01-20 Mitsubishi Heavy Ind Ltd 亜鉛溶射アルミニウム押出菅
US5251374A (en) * 1992-09-01 1993-10-12 Gary A. Halstead Method for forming heat exchangers
US5418072A (en) * 1993-09-20 1995-05-23 Alcan International Limited Totally consumable brazing encapsulate for use in joining aluminum surfaces
US20040035910A1 (en) * 2001-11-21 2004-02-26 Dockus Kostas F. Low temperature fluxless brazing
JP2004330266A (ja) * 2003-05-09 2004-11-25 Denso Corp 積層型熱交換器の製造方法
JP2005114214A (ja) * 2003-10-06 2005-04-28 Sharp Corp 冷媒分流器
KR100539570B1 (ko) * 2004-01-27 2005-12-29 엘지전자 주식회사 멀티공기조화기
JP4303629B2 (ja) * 2004-04-02 2009-07-29 本田技研工業株式会社 異種材料の抵抗溶接方法、アルミニウム合金材および異種材料の抵抗溶接部材
CN101715380B (zh) * 2007-06-20 2012-12-19 阿勒里斯铝业科布伦茨有限公司 铝合金硬钎焊板材
JP5476029B2 (ja) * 2009-04-21 2014-04-23 株式会社Uacj アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法
CN103782126B (zh) * 2011-12-09 2016-05-25 松下电器产业株式会社 空气调节机的热交换器
JP2013234828A (ja) * 2012-05-11 2013-11-21 Mitsubishi Electric Corp ディストリビュータ、室外機及び冷凍サイクル装置
JP2015114082A (ja) * 2013-12-13 2015-06-22 ダイキン工業株式会社 冷媒配管接合体および冷媒配管接合体の製造方法
CN103940153B (zh) * 2014-04-10 2016-08-17 美的集团股份有限公司 平行流换热器、空调机
WO2016002088A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186164A (ja) * 1985-02-15 1986-08-19 Sanden Corp アルミニウム製熱交換器の製造方法
JPH07278779A (ja) * 1994-04-06 1995-10-24 Mitsubishi Alum Co Ltd 熱交換器の製造方法
JP2001191176A (ja) * 2000-01-07 2001-07-17 Sumitomo Light Metal Ind Ltd アルミニウムのろう付け方法およびフラックス組成物並びに該フラックス組成物被覆アルミニウム合金
JP2012013289A (ja) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
JP2013137153A (ja) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd プレコートフィン材を使用したオールアルミニウム熱交換器
JP2015001335A (ja) * 2013-06-14 2015-01-05 三菱電機株式会社 冷媒分流器、及び、冷凍サイクル装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132518A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
WO2019151385A1 (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
JP2021018024A (ja) * 2019-07-19 2021-02-15 ダイキン工業株式会社 冷凍装置
JP7037079B2 (ja) 2019-07-19 2022-03-16 ダイキン工業株式会社 冷凍装置

Also Published As

Publication number Publication date
EP3244159A4 (en) 2018-12-19
US20170363376A1 (en) 2017-12-21
US10175009B2 (en) 2019-01-08
EP3244159A1 (en) 2017-11-15
JPWO2016111089A1 (ja) 2017-04-27
CN107110624A (zh) 2017-08-29
JP5955488B1 (ja) 2016-07-20
CN107110624B (zh) 2021-04-30
EP3244159B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP5955488B1 (ja) 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
WO2016002280A1 (ja) 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置
JP4980390B2 (ja) 熱交換器用チューブ
JP5334086B2 (ja) 耐食性に優れたアルミニウム製熱交器およびその製造方法
WO2013073947A1 (en) Method for manufacturing tube plate fin heat exchangers
JP2005257257A (ja) 熱交換器及びその製造方法
CN104768690B (zh) Al合金管的接合体和使用其的热交换器
JP2017002341A (ja) クラッド材、パイプの製造方法、パイプおよびパイプを用いた熱交換器
JP5977640B2 (ja) アルミニウム管の接合体
JP2017002341A5 (ja)
JP2006145060A (ja) アルミニウム熱交換器
JP5633205B2 (ja) アルミニウム管と銅管の接合方法および接合構造ならびにこの接合構造を有する熱交換器
WO2016103487A1 (ja) 熱交換器および空気調和装置
JP2010221256A (ja) 管材の接合方法
JP6039218B2 (ja) 熱交換器用アルミニウム合金扁平管の製造方法及び熱交換器コアの製造方法
EP3376138A1 (en) Air conditioner
JP2010240696A (ja) 管材の接合方法、ならびに、当該接合方法により接合した管材とフィン材とを接合した熱交換器
JP5877739B2 (ja) 熱交換器用アルミニウム合金扁平管及びその製造方法並びに熱交換器コア及びその製造方法
JP5392814B2 (ja) ろう付け用フラックスの組成物を用いた熱交換器用チューブの製造方法
KR20160031833A (ko) 알루미늄 소재 및 구리 소재의 관을 접합하는 방법
CN110587055B (zh) 换热器制造方法及接头的处理方法和与连接管的焊接方法
JP6204450B2 (ja) 熱交換器用アルミニウム合金扁平管及びその製造方法並びに熱交換器コア及びその製造方法
JP2009082971A (ja) 耐食性が良好なアルミニウム合金製熱交換器の継手及びそれを用いた熱交換器、並びにそれらの製造方法
JP2005103610A (ja) ろう付け用複合材及びそれを用いたろう付け製品
US20220065560A1 (en) Welding method of connector and connection tube, connection structure and heat exchanger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016517568

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533683

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015876962

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE