WO2016104747A1 - 変倍光学系、光学装置、及び、変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、及び、変倍光学系の製造方法 Download PDF

Info

Publication number
WO2016104747A1
WO2016104747A1 PCT/JP2015/086342 JP2015086342W WO2016104747A1 WO 2016104747 A1 WO2016104747 A1 WO 2016104747A1 JP 2015086342 W JP2015086342 W JP 2015086342W WO 2016104747 A1 WO2016104747 A1 WO 2016104747A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
group
focusing
optical system
Prior art date
Application number
PCT/JP2015/086342
Other languages
English (en)
French (fr)
Inventor
健介 内田
昭彦 小濱
規和 横井
山本 浩史
拓 松尾
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US15/539,033 priority Critical patent/US10317654B2/en
Priority to CN201580074891.8A priority patent/CN107209351B/zh
Priority to JP2016566541A priority patent/JP6531766B2/ja
Publication of WO2016104747A1 publication Critical patent/WO2016104747A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
  • This application claims priority based on the Japan patent application 2014-266035 for which it applied on December 26, 2014, and uses the content here.
  • variable power optical system has a large aberration fluctuation at the time of zooming, and it has been difficult to ensure good optical performance.
  • a variable magnification optical system has a first lens group having a positive refractive power disposed closest to the object side, and a negative refractive power disposed on the image side from the first lens group.
  • a focusing group disposed between the first lens group and the negative lens group, and the distance between the first lens group and the negative lens group changes during zooming, and the distance between the negative lens group and the positive lens group changes.
  • the distance between the focusing group and the lens disposed at the position facing the object side of the focusing group changes, and the focusing group and the position facing the image side of the focusing group
  • the distance between the lens and the lens arranged at the position changes, and the following conditional expression is satisfied. 2.00 ⁇ fp / ( ⁇ fn) ⁇ 5.50 1.83 ⁇ fp / ff ⁇ 4.75
  • fp focal length of the positive lens group
  • fn focal length of the negative lens group
  • ff focal length of the focusing group
  • fn focal length of the second lens group
  • ff focal length of the third lens group
  • fp focal length of the fourth lens group
  • an optical device includes the zoom optical system.
  • a variable magnification optical system manufacturing method includes a first lens group having a positive refractive power disposed closest to the object side, and a negative lens disposed closer to the image side than the first lens group.
  • the distance between the focusing group and the lens arranged at the position facing the image side of the focusing group is It arranged to reduction, to satisfy the following condition. 2.00 ⁇ fp / ( ⁇ fn) ⁇ 5.50 1.83 ⁇ fp / ff ⁇ 4.75
  • fp focal length of the positive lens group
  • fn focal length of the negative lens group
  • ff focal length of the focusing group
  • FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 in an infinitely focused state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, ( c) shows various aberrations in the telephoto end state.
  • FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 in an infinitely focused state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, ( c) shows various aberrations in the telephoto end state.
  • 5A is a diagram illustrating various aberrations of the variable magnification optical system according to the first example in a short-distance in-focus state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, c) shows various aberrations in the telephoto end state.
  • It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 in an infinitely focused state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, ( c) shows various aberrations in the telephoto end state.
  • FIG. 5A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 in a short-distance in-focus state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, c) shows various aberrations in the telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 3 in an infinitely focused state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, ( c) shows various aberrations in the telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 3 in an infinitely focused state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, ( c) shows various aberrations in the telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to the third example in a short distance focusing state, where (a) illustrates various aberrations in the wide-angle end state, (b) illustrates various aberrations in the intermediate focal length state, c) shows various aberrations in the telephoto end state. It is a figure which shows the structure of an example of the camera by which a variable magnification optical system is mounted. It is a flowchart for demonstrating an example of the manufacturing method of a variable magnification optical system.
  • variable magnification optical system an optical apparatus, and a method for manufacturing the variable magnification optical system will be described.
  • variable magnification optical system includes a first lens group having a positive refractive power disposed closest to the object side, and a negative lens having a negative refractive power disposed closer to the image side than the first lens group.
  • a positive lens group having at least one lens disposed on the image side of the negative lens group and moving integrally with an aperture stop, and having a positive refractive power; the negative lens group and the positive lens group;
  • a focusing group disposed between the first lens group and the negative lens group, and the distance between the negative lens group and the positive lens group changes during zooming.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • a third lens group having a positive refractive power, and a distance between the first lens group and the second lens group is changed upon zooming, and the second lens group The distance between the third lens group changes, and the distance between the third lens group and the fourth lens group changes.
  • variable magnification optical system preferably allows at least a part of the third lens group to move along the optical axis as a focusing group (focusing lens group) during focusing. is there.
  • the height of the off-axis light beam from the optical axis in the in-focus group can be suppressed, so that the in-focus group can be reduced in size.
  • astigmatism fluctuations during focusing can be suppressed, and good optical performance can be realized.
  • variable magnification optical system satisfies the following conditional expression (1).
  • fn focal length of the negative lens group (second lens group)
  • fp focal length of the positive lens group (fourth lens group)
  • Conditional expression (1) defines an appropriate ratio between the focal length of the negative lens group (second lens group) and the focal length of the positive lens group (fourth lens group). By satisfying conditional expression (1), it is possible to suppress spherical aberration fluctuation, coma aberration fluctuation, astigmatism fluctuation, and astigmatism fluctuation during focusing.
  • the refractive power of the negative lens group becomes strong, making it difficult to suppress spherical aberration fluctuations during zooming and astigmatism fluctuations during focusing. .
  • the refractive power of the negative lens group (second lens group) becomes weak. Therefore, in order to ensure a desired zoom ratio, the first lens group at the time of zooming It is necessary to increase the change in the distance between the negative lens group (second lens group) or the change in the distance between the negative lens group (second lens group) and the focusing group (third lens group). As a result, the variation in height from the optical axis of the off-axis light beam passing through the first lens group and the negative lens group (second lens group) at the time of zooming becomes excessive, so coma and astigmatism at the time of zooming are increased. It becomes difficult to suppress fluctuations in aberrations. In order to secure the effect, it is more preferable to set the lower limit of conditional expression (1) to 2.49. In order to further secure the effect, it is more preferable to set the lower limit of conditional expression (1) to 2.97.
  • variable magnification optical system satisfies the following conditional expression (2).
  • ff focal length of the focusing group (third lens group)
  • Conditional expression (2) defines an appropriate ratio between the focal length of the focusing group (third lens group) and the focal length of the positive lens group (fourth lens group). By satisfying conditional expression (2), it is possible to suppress astigmatism fluctuations during zooming, spherical aberration fluctuations, axial chromatic aberration fluctuations, and astigmatism during focusing.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the refractive power of the focusing group (third lens group) becomes strong, and astigmatism fluctuations during zooming, spherical aberration fluctuations and axial chromatic aberration fluctuations during focusing become large. Thus, it becomes difficult to achieve good optical performance. In order to secure the effect, it is more preferable to set the upper limit of conditional expression (2) to 4.14. In order to further secure the effect, it is more preferable to set the upper limit of conditional expression (2) to 3.53.
  • the refractive power of the focusing group (third lens group) becomes weak, and the amount of movement of the focusing group (third lens group) during focusing increases. Not only is it difficult to reduce the size of the drive mechanism of the focusing group (third lens group), but it is also difficult to suppress astigmatism fluctuations during focusing.
  • the zoom optical system can suppress aberration fluctuations during zooming and ensure good optical performance. Further, according to the above configuration, the focusing group (focusing lens group) can be reduced in size, and the focusing mechanism can be downsized and the focusing speed can be increased.
  • variable magnification optical system preferably allows the first lens group to move with respect to the image plane during zooming.
  • variable magnification optical system satisfies the following conditional expression (3).
  • (3) 2.50 ⁇ f1 / ( ⁇ fn) ⁇ 5.00
  • f1 Focal length of the first lens group
  • Conditional expression (3) defines an appropriate ratio between the focal length of the first lens group and the focal length of the negative lens group (second lens group). By satisfying conditional expression (3), it is possible to suppress spherical aberration fluctuation, astigmatism fluctuation, axial chromatic aberration fluctuation, and astigmatism fluctuation during focusing.
  • the refractive power of the negative lens group (second lens group) will increase, and spherical aberration fluctuations and astigmatism fluctuations during zooming, and non-focusing during focusing at the wide-angle end state will occur. It becomes difficult to suppress fluctuations in point aberration.
  • the lower limit of conditional expression (3) is not reached, the refractive power of the first lens unit becomes strong, and it becomes difficult to suppress spherical aberration fluctuation and axial chromatic aberration fluctuation during zooming.
  • variable magnification optical system satisfies the following conditional expression (4). (4) 1.50 ⁇ f1 / fw ⁇ 2.60
  • fw focal length of the entire system in the wide-angle end state
  • Conditional expression (4) defines an appropriate range of the focal length of the first lens group. By satisfying conditional expression (4), it is possible to suppress spherical aberration fluctuations and astigmatism fluctuations during zooming.
  • the refractive power of the first lens group becomes weak, and in order to ensure a predetermined zoom ratio, the first lens group during zooming from the wide-angle end state to the telephoto end state. It is necessary to increase the change in the distance between the negative lens group and the negative lens group (second lens group). As a result, not only the total optical length from the lens closest to the object side to the image plane in the telephoto end state is lengthened, but also it is difficult to suppress fluctuations in astigmatism that occurs in the first lens group during zooming. In order to secure the effect, it is more preferable to set the upper limit of conditional expression (4) to 2.43. In order to further secure the effect, it is more preferable to set the upper limit value of conditional expression (4) to 2.27.
  • the lower limit of conditional expression (4) is not reached, the refractive power of the first lens unit becomes strong, and it becomes difficult to correct spherical aberration fluctuations during zooming and axial chromatic aberration in the telephoto end state.
  • variable magnification optical system satisfies the following conditional expression (5) when the focal length of the variable magnification optical system in the wide-angle end state is fw. (5) 1.60 ⁇ fp / fw ⁇ 3.70
  • Conditional expression (5) defines an appropriate range of the focal length of the positive lens group (fourth lens group). By satisfying conditional expression (5), it is possible to suppress spherical aberration fluctuations and astigmatism fluctuations during zooming.
  • the refractive power of the positive lens group (fourth lens group) becomes weak, and the optical total length from the most object side lens to the image plane from the wide-angle end state to the telephoto end state is long.
  • the amount of movement of the positive lens unit (fourth lens unit) with respect to the image plane increases during zooming from the wide-angle end state to the telephoto end state, thereby suppressing astigmatism fluctuations during zooming. It becomes difficult.
  • conditional expression (5) On the other hand, if the lower limit of conditional expression (5) is not reached, the refractive power of the positive lens group (fourth lens group) becomes strong, and the spherical aberration fluctuation during zooming becomes large. In order to secure the effect, it is more preferable to set the lower limit value of conditional expression (5) to 1.76. In order to further secure the effect, it is more preferable to set the lower limit value of conditional expression (5) to 1.92.
  • variable magnification optical system satisfies the following conditional expression (6).
  • (6) 0.12 ⁇ ( ⁇ fn) / ft ⁇ 0.35
  • ft focal length of the entire system in the telephoto end state
  • Conditional expression (6) defines an appropriate range of the focal length of the negative lens group (second lens group). By satisfying conditional expression (6), it is possible to suppress coma aberration fluctuation, astigmatism fluctuation during zooming, and astigmatism fluctuation during focusing.
  • the refractive power of the negative lens group (second lens group) becomes weak. Therefore, in order to secure a desired zoom ratio, the first lens group is negative when zooming. It is necessary to increase the change in the distance between the lens group (second lens group) or the change in the distance between the negative lens group (second lens group) and the focusing group (third lens group). As a result, the fluctuation of the height from the optical axis of the off-axis light beam passing through the first lens group and the negative lens group (second lens group) at the time of zooming becomes excessive, so coma aberration and astigmatism at the time of zooming are increased. It becomes difficult to suppress fluctuations in aberration. In order to secure the effect, it is more preferable to set the upper limit of conditional expression (6) to 0.30. In order to further secure the effect, it is more preferable to set the upper limit of conditional expression (6) to 0.26.
  • the refractive power of the negative lens group becomes strong, making it difficult to correct astigmatism fluctuations during focusing in the wide-angle end state. .
  • the focusing group (third lens group) is composed of a single lens component.
  • the focusing group (focusing lens group) can be reduced in size.
  • the “lens component” refers to a single lens or a cemented lens in which a plurality of lenses are bonded.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, It is preferable that the distance between the first lens group and the second lens group is changed during zooming, and the aperture stop is disposed closer to the image plane than the second lens group. . With this configuration, the aperture stop diameter can be reduced, and a small variable magnification optical system can be realized. It is more preferable that the aperture stop is disposed closer to the image plane than the focusing group (third lens group). More preferably, the aperture stop is disposed in the positive lens group (fourth lens group).
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • a third lens group having a distance between the first lens group and the second lens group during zooming from the wide-angle end state to the telephoto end state, and the second lens group and the third lens group. It is preferable that the distance between the lens groups is reduced.
  • the optical device includes the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize an optical device having good optical performance even at the time of zooming or focusing. In addition, the optical device can be reduced in size.
  • a method for manufacturing a variable magnification optical system includes a first lens group having a positive refractive power arranged closest to the object side, and a negative refractive power arranged on the image side from the first lens group.
  • a variable magnification optical system having a focusing group arranged between the first lens group and the negative lens group, and the negative lens group is changed during zooming.
  • the positive lens group are arranged so that the distance between them changes, and in focusing, the distance between the focusing group and the lens arranged at the position facing the object side of the focusing group changes, and the in-focus state changes.
  • the distance between the lens and the lens arranged at the position facing the image side of the focusing group changes.
  • Arranged so that the following conditional expressions (1) is a manufacturing method of the variable magnification optical system that satisfies (2). (1) 2.00 ⁇ fp / ( ⁇ fn) ⁇ 5.50 (2) 1.83 ⁇ fp / ff ⁇ 4.75
  • fp focal length of the positive lens group
  • fn focal length of the negative lens group
  • ff focal length of the focusing group
  • the method of manufacturing the zoom optical system includes A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power in order from the object side along the optical axis.
  • variable magnification optical system according to numerical examples will be described with reference to the accompanying drawings.
  • FIG. 1 is a cross-sectional view showing a configuration of a variable magnification optical system according to the first example.
  • A shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • the variable magnification optical system according to the first example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive
  • the lens unit includes a third lens group G3 having a refractive power and a fourth lens group G4 having a positive refractive power.
  • the air gap between the first lens group G1 and the second lens group G2 widens, and the air gap between the second lens group G2 and the third lens group G3. Is performed by moving each lens group from the first lens group G1 to the fourth lens group G4 so that the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side, and the second lens group G2 once moves to the image plane I side and then moves to the object side.
  • the first lens group G1 includes, in order from the object side along the optical axis, a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. It consists of a cemented lens with a meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a cemented lens of a biconcave negative lens L21 and a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. Become.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a positive meniscus lens L41 having a convex surface directed toward the object side, and a cemented lens of a biconvex positive lens L42 and a biconcave negative lens L43.
  • a negative meniscus lens L48 having a concave surface facing the object side.
  • Focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side.
  • Table 1 below shows values of specifications of the variable magnification optical system according to the first example.
  • dn is the variable surface interval between the nth surface (n is an integer) and the (n + 1) th surface
  • Bf is the back focus
  • W is the wide angle end
  • M is The intermediate focal length
  • T indicates the telephoto end.
  • D0 represents the distance on the optical axis from the object plane to the first plane.
  • [Lens Group Data] indicates the start surface and focal length f of each lens group.
  • mm is used as the unit of focal length f, radius of curvature r, and other lengths listed in Table 1.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • FIGS. 2A and 2B are graphs showing various aberrations in the infinitely focused state of the variable magnification optical system according to the first example.
  • FIG. 2A shows various aberrations in the wide-angle end state
  • FIG. 2B shows in the intermediate focal length state.
  • Various aberrations, (c) shows various aberrations in the telephoto end state.
  • 3A and 3B are graphs showing various aberrations in the short-distance focusing state of the variable magnification optical system according to the first example.
  • FIG. 3A shows various aberrations in the wide-angle end state
  • FIG. 3B shows in the intermediate focal length state.
  • Various aberrations, (c) shows various aberrations in the telephoto end state.
  • variable magnification optical system according to the first example has various aberrations from the infinite focus state to the short distance focus state in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that is corrected well and has excellent optical performance.
  • FIG. 4 is a cross-sectional view showing the configuration of the variable magnification optical system according to the second example.
  • the variable magnification optical system according to the second example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive
  • the lens unit includes a third lens group G3 having a refractive power and a fourth lens group G4 having a positive refractive power.
  • the air gap between the first lens group G1 and the second lens group G2 widens, and the air gap between the second lens group G2 and the third lens group G3. Is performed by moving each lens group from the first lens group G1 to the fourth lens group G4 so that the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side, and the second lens group G2 once moves to the image plane I side and then moves to the object side.
  • the first lens group G1 is composed of a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 in order from the object side along the optical axis.
  • the second lens group G2 includes, in order from the object side along the optical axis, a cemented lens of a biconvex positive lens L21 and a biconcave negative lens L22, and a biconcave negative lens L23.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of an aperture stop S, a biconvex positive lens L41, and a negative meniscus lens L42 having a concave surface facing the object side, and an object side. It consists of a cemented lens of a positive meniscus lens L43 having a concave surface and a biconcave negative lens L44, a positive lens L45 having a biconvex shape, and a negative meniscus lens L46 having a concave surface facing the object side.
  • Focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side.
  • Table 2 below shows values of specifications of the variable magnification optical system according to the second example.
  • FIGS. 5A and 5B are graphs showing various aberrations in the infinitely focused state of the variable magnification optical system according to the second example.
  • FIG. 5A shows various aberrations in the wide-angle end state
  • FIG. 5B shows in the intermediate focal length state.
  • Various aberrations, (c) shows various aberrations in the telephoto end state.
  • 6A and 6B are graphs showing various aberrations in the short distance focusing state of the variable magnification optical system according to the second example.
  • FIG. 6A shows various aberrations in the wide-angle end state
  • FIG. 6B shows the aberration in the intermediate focal length state.
  • Various aberrations, (c) shows various aberrations in the telephoto end state.
  • variable magnification optical system according to the second example has various aberrations from the infinite focus state to the close focus state in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that is corrected well and has excellent optical performance.
  • FIG. 7 is a cross-sectional view showing the configuration of the variable magnification optical system according to the third example.
  • the variable magnification optical system according to the third example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive
  • the lens unit includes a third lens group G3 having a refractive power and a fourth lens group G4 having a positive refractive power.
  • the air gap between the first lens group G1 and the second lens group G2 widens, and the air gap between the second lens group G2 and the third lens group G3. Is performed by moving each lens group from the first lens group G1 to the fourth lens group G4 so that the air gap between the third lens group G3 and the fourth lens group G4 increases.
  • the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side, and the second lens group G2 once moves to the image plane I side and then moves to the object side.
  • the first lens group G1 includes, in order from the object side along the optical axis, a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13. It consists of a cemented lens.
  • the second lens group G2 includes, in order from the object side along the optical axis, a cemented lens of a biconcave negative lens L21 and a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. Become.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a positive meniscus lens L41 having a convex surface directed toward the object side, and a cemented lens of a biconvex positive lens L42 and a biconcave negative lens L43.
  • Focusing from an infinite object to a close object is performed by moving the third lens group G3 to the image plane I side.
  • Table 3 shows values of specifications of the variable magnification optical system according to the third example.
  • Table 3 [Surface data] Surface number r d nd ⁇ d Object ⁇ 1 89.300 4.180 1.51680 63.88 2 316.082 0.200 3 74.492 2.000 1.78472 25.64 4 48.539 8.579 1.49782 82.57 5 -838.233 Variable 6 -119.487 1.200 1.74100 52.77 7 19.035 4.234 1.84666 23.80 8 54.757 2.458 9 -49.574 1.200 1.80400 46.60 10 168.034 Variable 11 828.136 2.917 1.69680 55.52 12 -48.879 Variable 13 30.703 2.123 1.69680 55.52 14 44.923 0.200 15 32.528 5.119 1.49700 81.54 16 -48.114 1.200 1.90366 31.31 17 37.289 0.200 18 22.379 5.054 1.56384 60.71 19 -159.569 2.000 20
  • FIGS. 8A and 8B are graphs showing various aberrations of the variable magnification optical system according to the third example in the infinite focus state, where FIG. 8A shows various aberrations in the wide-angle end state, and FIG. 8B shows the intermediate focal length state.
  • Various aberrations, (c) shows various aberrations in the telephoto end state.
  • FIGS. 9A and 9B are graphs showing various aberrations in the short distance focusing state of the variable magnification optical system according to the third example.
  • FIG. 9A shows various aberrations in the wide-angle end state
  • FIG. Various aberrations, (c) shows various aberrations in the telephoto end state.
  • variable magnification optical system according to the third example has various aberrations from the infinite focus state to the close focus state in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that is corrected well and has excellent optical performance.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these.
  • the following contents can be appropriately adopted as long as the optical performance of the optical system is not impaired.
  • variable-magnification optical system Although a four-group configuration is shown as a numerical example of the variable-magnification optical system, the present invention is not limited to this, and a variable-magnification optical system of other group configurations (for example, five groups, six groups, etc.) is configured. You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the variable magnification optical system may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the variable magnification optical system uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group. It is good also as a structure moved to an axial direction.
  • the entire first lens group may be the focusing group, or the first lens group may be divided into two or more partial lens groups, and the second and subsequent partial lens groups from the object side may be the focusing group.
  • the third lens group including a single lens is configured to move on the optical axis toward the image plane side.
  • the focusing group described above can also be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor, a stepping motor, or a VCM.
  • an autofocus motor such as an ultrasonic motor, a stepping motor, or a VCM.
  • Good optical performance can be obtained even if the focusing group is composed of a cemented lens, but the variable power optical system can be made smaller by configuring the focusing group from a single lens as described above. .
  • any lens group or a part thereof is moved as an anti-vibration lens group so as to include a component in a direction perpendicular to the optical axis, or an in-plane direction including the optical axis It is also possible to adopt a configuration in which image blur caused by camera shake or the like is corrected by rotating (swinging) to the right.
  • the cemented lens of the positive meniscus lens L44 and the negative lens L45 be an anti-vibration lens group.
  • the cemented lens of the positive meniscus lens L43 and the negative lens L44 is a vibration-proof lens group.
  • the cemented lens of the negative meniscus lens L45 and the positive meniscus lens L46 be an anti-vibration lens group.
  • the lens surface of the lens constituting the variable magnification optical system may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably arranged in the fourth lens group or in the vicinity thereof, but the role may be substituted by a lens frame without providing a member as an aperture stop.
  • an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system.
  • the half field angle ⁇ t in the telephoto end state is preferably 1.5 ° to 4.5 °, and the half field angle ⁇ w in the wide angle end state is 11.0 ° to 24.0 °. It is preferably possible.
  • FIG. 10 is a diagram illustrating a configuration of an example of a camera including a variable magnification optical system.
  • the camera 1 is a so-called mirrorless camera of an interchangeable lens type that includes the variable magnification optical system according to the first example as the photographing lens 2.
  • the camera 1 In the camera 1, light from an object (not shown) that is not shown is collected by the taking lens 2 and passes through an OLPF (Optical Low Pass Filter) (not shown) on the image pickup surface of the image pickup unit 3. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4. When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • OLPF Optical Low Pass Filter
  • the zoom optical system according to the first embodiment mounted as the photographing lens 2 in the camera 1 is a zoom optical system that suppresses aberration fluctuations during zooming and ensures good optical performance. Therefore, the camera 1 can realize a good optical performance with suppressed aberration fluctuation at the time of zooming. Note that even if a camera equipped with the variable magnification optical system according to the second and third examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.
  • variable magnification optical system an outline of an example of a method for manufacturing the variable magnification optical system will be described with reference to FIG.
  • the variable magnification optical system manufacturing method includes a first lens group having a positive refractive power disposed closest to the object side, and a negative refraction disposed on the image side from the first lens group.
  • a negative lens group (second lens group) having power, and at least one lens disposed on the image side of the negative lens group (second lens group) and moving integrally with the stop, and has a positive refractive power
  • a positive lens group (fourth lens group) and a focusing group (at least a third lens group) disposed between the negative lens group (second lens group) and the positive lens group (fourth lens group).
  • a variable magnification optical system that includes the following steps S1 to S3.
  • step S1 during zooming, the distance between the first lens group and the negative lens group (second lens group) changes, and the negative lens group (second lens group) and the positive lens group (fourth lens group).
  • the lens groups are arranged so that the distance between them changes.
  • step S2 during focusing, an interval between the focusing group (at least a part of the third lens group) and a lens disposed at a position facing the object side of the focusing group changes, and the focusing group Arrangement is made so that the distance between (at least part of the third lens group) and the lens arranged at the position facing the image side of the focusing group changes.
  • step S3 the following conditional expressions (1) and (2) are satisfied.
  • the zoom optical system manufacturing method includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction.
  • a variable magnification optical system manufacturing method having a third lens group having power and a fourth lens group having positive refractive power, and includes the following steps S1 to S3.
  • step S1 during zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group
  • the fourth lens groups are arranged so that the interval between them changes.
  • step S2 at the time of focusing, at least a part of the third lens group is arranged so as to move along the optical axis as a focusing group.
  • step S3 the following conditional expressions (1) and (2) are satisfied.
  • step S3 the following conditional expressions (1) and (2) are satisfied.
  • step S3 the following conditional expressions (1) and (2) are satisfied.
  • (1) 2.00 ⁇ fp / ( ⁇ fn) ⁇ 5.50
  • step S3 the following conditional expressions (1) and (2) are satisfied.
  • (1) 2.00 ⁇ fp / ( ⁇ fn) ⁇ 5.50
  • variable magnification optical system having high optical performance while suppressing aberration fluctuation due to variable magnification.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群(G1)と、第1レンズ群より像側に配置された負の屈折力を有する負レンズ群(G2)と、負レンズ群より像側に配置され、かつ、開口絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群(G4)と、負レンズ群と正レンズ群との間に配置された合焦群(G3)と、を有し、変倍に際し、第1レンズ群と負レンズ群の間隔が変化し、負レンズ群と正レンズ群の間隔が変化し、合焦に際し、合焦群と合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、合焦群と合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、所定の条件式を満足する。

Description

変倍光学系、光学装置、及び、変倍光学系の製造方法
 本発明は、変倍光学系、光学装置、及び、変倍光学系の製造方法に関する。
 本願は、2014年12月26日に出願された日本国特許出願2014-266035号に基づき優先権を主張し、その内容をここに援用する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。
特開2010-217838号公報
 しかしながら従来の変倍光学系は、変倍時の収差変動が大きく、良好な光学性能を確保することは困難であった。
 本発明の一態様に係る変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、開口絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、以下の条件式を満足する。
 2.00<fp/(-fn)<5.50
 1.83<fp/ff<4.75
但し、
fp:前記正レンズ群の焦点距離
fn:前記負レンズ群の焦点距離
ff:前記合焦群の焦点距離
 本発明の別の一態様は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、
 変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、
 合焦に際し、前記第3レンズ群の少なくとも一部が合焦群として光軸に沿って移動し、
 以下の条件式を満足する変倍光学系とした。
 2.00<fp/(-fn)<5.50
 1.83<fp/ff<4.75
但し、
fn:前記第2レンズ群の焦点距離
ff:前記第3レンズ群の焦点距離
fp:前記第4レンズ群の焦点距離
 また、本発明の別の一態様に係る光学装置は、前記変倍光学系を有する。
 本発明の別の一態様に係る変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、以下の条件式を満足する。
 2.00<fp/(-fn)<5.50
 1.83<fp/ff<4.75
但し、
fp:前記正レンズ群の焦点距離
fn:前記負レンズ群の焦点距離
ff:前記合焦群の焦点距離
 また、本発明の別の一態様は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する変倍光学系の製造方法であって、
 変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化するように配置し、
 合焦に際し、前記第3レンズ群の少なくとも一部が合焦群として光軸に沿って移動するように配置し、
 以下の条件式を満足するようにする変倍光学系の製造方法とした。
 2.00<fp/(-fn)<5.50
 1.83<fp/ff<4.75
但し、
fn:前記第2レンズ群の焦点距離
ff:前記第3レンズ群の焦点距離
fp:前記第4レンズ群の焦点距離
第1実施例に係る変倍光学系のレンズ構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。 第1実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 第1実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。 第2実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 第2実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。 第3実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 第3実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。 変倍光学系が搭載されたカメラの一例の構成を示す図である。 変倍光学系の製造方法の一例を説明するためのフローチャートである。
 以下、変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
 一実施形態において、変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、開口絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化する。このような構成とすることで、広角端状態から望遠端状態への変倍を実現しつつ、変倍に伴う球面収差変動と非点収差変動を抑制し、変倍時でも良好な光学性能を実現することができる。また、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化する。このような構成とすることで、合焦群における軸外光束の光軸からの高さを抑えられるため、合焦群を小型にすることができる。また、合焦時の非点収差変動を抑え、良好な光学性能を実現することができる。
 代替実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化する。このような構成とすることで、広角端状態から望遠端状態への変倍を実現しつつ、変倍に伴う球面収差変動と非点収差変動を抑制し、変倍時でも良好な光学性能を実現することができる。
 また、代替実施形態において、変倍光学系は、合焦に際し、前記第3レンズ群の少なくとも一部が合焦群(合焦レンズ群)として光軸に沿って移動することが好ましくは可能である。このような構成とすることで、合焦群における軸外光束の光軸からの高さを抑えられるため、合焦群を小型にすることができる。また、合焦時の非点収差変動を抑え、良好な光学性能を実現することができる。
 これらの実施形態において、変倍光学系は、以下の条件式(1)を満足することが好ましくは可能である。
(1) 2.00<fp/(-fn)<5.50
但し、
fn:前記負レンズ群(第2レンズ群)の焦点距離
fp:前記正レンズ群(第4レンズ群)の焦点距離
 条件式(1)は、負レンズ群(第2レンズ群)の焦点距離と正レンズ群(第4レンズ群)の焦点距離の適切な比を規定するものである。条件式(1)を満足することにより、変倍時の球面収差変動やコマ収差変動、非点収差変動、合焦時の非点収差変動を抑えることができる。
 条件式(1)の上限を上回ると、負レンズ群(第2レンズ群)の屈折力が強くなり、変倍時の球面収差変動と合焦時の非点収差変動を抑えることが困難となる。なお、効果をより確実にするために、条件式(1)の上限値を5.46とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(1)の上限値を5.43とすることが更に好ましくは可能である。
 一方、条件式(1)の下限を下回ると、負レンズ群(第2レンズ群)の屈折力が弱くなるため、所望の変倍比を確保するためには、変倍時に、第1レンズ群と負レンズ群(第2レンズ群)との間隔変化、もしくは、負レンズ群(第2レンズ群)と合焦群(第3レンズ群)との間隔変化を大きくする必要がある。その結果、変倍時において第1レンズ群や負レンズ群(第2レンズ群)を通る軸外光束の光軸からの高さの変動が過大になるため、変倍時におけるコマ収差や非点収差の変動を抑えることが困難になってしまう。なお、効果をより確実にするために、条件式(1)の下限値を2.49とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(1)の下限値を2.97にすることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、以下の条件式(2)を満足することが好ましくは可能である。
(2) 1.83<fp/ff<4.75
但し、
ff:前記合焦群(第3レンズ群)の焦点距離
 条件式(2)は、合焦群(第3レンズ群)の焦点距離と正レンズ群(第4レンズ群)の焦点距離の適切な比を規定するものである。条件式(2)を満足することにより、変倍時における非点収差変動や、合焦時における球面収差変動や軸上色収差変動、非点収差を抑えることができる。
 条件式(2)の上限を上回ると、合焦群(第3レンズ群)の屈折力が強くなり、変倍時の非点収差変動、合焦時の球面収差変動と軸上色収差変動が大きくなり、良好な光学性能を実現することが困難となる。なお、効果をより確実にするため、条件式(2)の上限値を4.14とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(2)の上限値を3.53とすることが更に好ましくは可能である。
 一方、条件式(2)の下限を下回ると、合焦群(第3レンズ群)の屈折力が弱くなり、合焦時の合焦群(第3レンズ群)の移動量が大きくなるため、合焦群(第3レンズ群)の駆動機構の小型化が困難となるばかりでなく、合焦時の非点収差変動を抑えることが困難となる。なお、効果をより確実にするため、条件式(2)の下限値を1.85とすることがより好ましくは可能である。また、効果を更に確実にするために、条件式(2)の下限値を1.86とすることが更に好ましくは可能である。
 以上の構成により、変倍光学系は、変倍時の収差変動を抑え、良好な光学性能を確保することができる。また、以上の構成によれば、合焦群(合焦レンズ群)を小型化することが可能となり、合焦機構の小型化及び合焦速度の高速化を実現することができる。
 これらの実施形態において、変倍光学系は、変倍に際し、第1レンズ群が像面に対して移動することが好ましくは可能である。このように構成することで、変倍時の球面収差変動や非点収差変動を抑えることができ、良好な光学性能を実現できる。
 これらの実施形態において、変倍光学系は、以下の条件式(3)を満足することが好ましくは可能である。
(3) 2.50<f1/(-fn)<5.00
但し、
f1:前記第1レンズ群の焦点距離
 条件式(3)は、第1レンズ群の焦点距離と負レンズ群(第2レンズ群)の焦点距離の適切な比を規定するものである。条件式(3)を満足することにより、変倍時の球面収差変動や非点収差変動、軸上色収差変動、合焦時の非点収差変動を抑えることができる。
 条件式(3)の上限を上回ると、負レンズ群(第2レンズ群)の屈折力が強くなり、変倍時の球面収差変動や非点収差変動、広角端状態での合焦時の非点収差変動を抑えることが困難になる。なお、効果をより確実にするため、条件式(3)の上限値を4.77とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(3)の上限値を4.54とすることが更に好ましくは可能である。
 一方、条件式(3)の下限を下回ると、第1レンズ群の屈折力が強くなり、変倍時の球面収差変動と軸上色収差変動を抑えることが困難になる。なお、効果をより確実にするため、条件式(3)の下限値を2.73とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(3)の下限値を2.95とすることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、以下の条件式(4)を満足することが好ましくは可能である。
(4) 1.50<f1/fw<2.60
但し、
fw:広角端状態での全系の焦点距離
 条件式(4)は第1レンズ群の焦点距離の適切な範囲を規定するものである。条件式(4)を満足することにより、変倍時の球面収差変動や非点収差変動を抑えることができる。
 条件式(4)の上限を上回ると、第1レンズ群の屈折力が弱くなり、所定の変倍比を確保するためには広角端状態から望遠端状態への変倍時において第1レンズ群と負レンズ群(第2レンズ群)との間隔変化を大きくする必要がある。その結果、望遠端状態における最も物体側のレンズから像面までの光学全長が長くなるばかりでなく、変倍時において第1レンズ群で発生する非点収差の変動を抑えることが困難になる。なお、効果をより確実にするため、条件式(4)の上限値を2.43とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(4)の上限値を2.27とすることが更に好ましくは可能である。
 一方、条件式(4)の下限を下回ると、第1レンズ群の屈折力が強くなり、変倍時の球面収差変動と望遠端状態での軸上色収差の補正が困難になる。なお、効果をより確実にするため、条件式(4)の下限値を1.58とすることがより好ましくは可能である。また、効果を更に確実にするため、条件式(4)の下限値を1.66とすることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、広角端状態での変倍光学系の焦点距離をfwとしたとき、以下の条件式(5)を満足することが好ましくは可能である。
(5) 1.60<fp/fw<3.70
 条件式(5)は正レンズ群(第4レンズ群)の焦点距離の適切な範囲を規定するものである。条件式(5)を満足することにより、変倍時の球面収差変動や非点収差変動を抑えることができる。
 条件式(5)の上限を上回ると、正レンズ群(第4レンズ群)の屈折力が弱くなり、広角端状態から望遠端状態までの最も物体側のレンズから像面までの光学全長が長くなるばかりでなく、広角端状態から望遠端状態への変倍時に像面に対する正レンズ群(第4レンズ群)の移動量が大きくなることで変倍時における非点収差の変動を抑えることが困難となる。なお、効果をより確実にするために、条件式(5)の上限値を3.40とすることがより好ましくは可能である。また、効果を更に確実にするために、条件式(5)の上限値を3.10とすることが更に好ましくは可能である。
 一方、条件式(5)の下限を下回ると、正レンズ群(第4レンズ群)の屈折力が強くなり、変倍時における球面収差変動が大きくなる。なお、効果をより確実にするために、条件式(5)の下限値を1.76とすることがより好ましくは可能である。また、効果を更に確実にするために、条件式(5)の下限値を1.92とすることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、以下の条件式(6)を満足することが好ましくは可能である。
(6) 0.12<(-fn)/ft<0.35
但し、
ft:望遠端状態での全系の焦点距離
 条件式(6)は、負レンズ群(第2レンズ群)の焦点距離の適切な範囲を規定するものである。条件式(6)を満足することにより、変倍時におけるコマ収差変動、非点収差変動、合焦時の非点収差変動を抑えることができる。
 条件式(6)の上限を上回ると、負レンズ群(第2レンズ群)の屈折力が弱くなるため、所望の変倍比を確保するためには、変倍時に、第1レンズ群と負レンズ群(第2レンズ群)との間隔変化、もしくは負レンズ群(第2レンズ群)と合焦群(第3レンズ群)との間隔変化を大きくする必要がある。その結果、変倍時における第1レンズ群や負レンズ群(第2レンズ群)を通る軸外光束の光軸からの高さの変動が過大になるため、変倍時におけるコマ収差や非点収差の変動を抑えることが困難になる。なお、効果をより確実にするため、条件式(6)の上限値を0.30とすることがより好ましくは可能である。また、効果を更に確実にするために、条件式(6)の上限値を0.26とすることが更に好ましくは可能である。
 また、条件式(6)の下限を下回ると、負レンズ群(第2レンズ群)の屈折力が強くなり、広角端状態での合焦時の非点収差変動を補正することが困難となる。なお、効果をより確実にするため、条件式(6)の下限値を0.13とすることがより好ましくは可能である。また、効果を更に確実にするために、条件式(6)の下限値を0.14とすることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、前記合焦群(第3レンズ群)が単一のレンズ成分から構成されることが好ましくは可能である。この構成により、合焦群(合焦レンズ群)の製造誤差により生じる偏芯コマ収差等による光学性能劣化を抑えることができる。また、合焦群(合焦レンズ群)を小型化することができる。なお、「レンズ成分」とは、単レンズ、又は、複数枚のレンズが貼り合わされた接合レンズのことを言う。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、を有し、変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記開口絞りは前記第2レンズ群よりも像面側に配置されることが好ましくは可能である。このように構成することで、開口絞り径を小さくすることが可能となり、小型な変倍光学系を実現できる。なお、前記開口絞りは、前記合焦群(第3レンズ群)よりも像面側に配置されることがより好ましくは可能である。また、前記開口絞りは、前記正レンズ群(第4レンズ群)中に配置されることが更に好ましくは可能である。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が広がり、前記第2レンズ群と前記第3レンズ群の間隔が狭まることが好ましくは可能である。このような構成により、広角端状態から望遠端状態への変倍を実現しつつ、変倍に伴う球面収差変動と非点収差変動を抑制し、変倍時でも良好な光学性能を実現することができる。
 なお、以上の構成は任意に組み合わせることができ、それにより良好な光学性能を有する変倍光学系を実現することができる。
 一実施形態において、光学装置は、上述した構成の変倍光学系を備えていることを特徴とする。これにより、変倍時や合焦時でも良好な光学性能を有する光学装置を実現することができる。また、光学装置の小型化を実現することができる。
 一実施形態において、変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、以下の条件式(1)、(2)を満足する変倍光学系の製造方法である。
(1) 2.00<fp/(-fn)<5.50
(2) 1.83<fp/ff<4.75
但し、
fp:前記正レンズ群の焦点距離
fn:前記負レンズ群の焦点距離
ff:前記合焦群の焦点距離
 代替実施形態において、変倍光学系の製造方法は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する変倍光学系の製造方法であって、
 変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化するように配置し、
 合焦に際し、前記第3レンズ群の少なくとも一部が合焦群として光軸に沿って移動するように配置し、
 以下の条件式(1)、(2)を満足するようにする変倍光学系の製造方法である。
(1) 2.00<fp/(-fn)<5.50
(2) 1.83<fp/ff<4.75
但し、
fn:前記第2レンズ群の焦点距離
ff:前記第3レンズ群の焦点距離
fp:前記第4レンズ群の焦点距離
 これらの製造方法により、変倍時の収差変動を抑え、良好な光学性能を確保した変倍光学系を製造することができる。
 以下、数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は、第1実施例に係る変倍光学系の構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。第1実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4から構成されている。
 広角端状態から望遠端状態への変倍は、第1レンズ群G1と第2レンズ群G2との間の空気間隔が広がり、第2レンズ群G2と第3レンズ群G3との間の空気間隔が狭まり、第3レンズ群G3と第4レンズ群G4との間の空気間隔が広がるように、第1レンズ群G1から第4レンズ群G4までの各レンズ群を移動させることにより行う。この際、第1レンズ群G1と第3レンズ群G3と第4レンズ群G4とは物体側に移動し、第2レンズ群G2は一旦像面I側に移動させた後に物体側に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合レンズと、両凹形状の負レンズL23からなる。
 第3レンズ群G3は、両凸形状の正レンズL31からなる。
 第4レンズ群G4は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL44と両凹形状の負レンズL45との接合レンズと、物体側に凸面を向けた負メニスカスレンズL46と両凸形状の正レンズL47との接合レンズと、物体側に凹面を向けた負メニスカスレンズL48からなる。
 無限遠物体から近距離物体への合焦は、第3レンズ群G3を像面I側に移動させることにより行う。
 以下の表1に第1実施例に係る変倍光学系の諸元の値を示す。
 [面データ]において、「面番号」は光軸に沿って物体側から数えたレンズ面の順番を、「r」は曲率半径を、「d」は間隔(第n面(nは整数)と第n+1面の間隔)を、「nd」はd線(波長λ=587.6nm)に対する屈折率を、「νd」はd線(波長λ=587.6nm)に対するアッベ数を示している。また、「物面」は物体面を、「可変」は可変の面間隔を、「絞り」は開口絞りSを、「Bf」はバックフォーカスを、「像面」は像面Iを示している。なお、曲率半径「r」において「∞」は平面を示し、空気の屈折率nd=1.000000の記載は省略している。
 [各種データ]において、「W」は広角端を、「M」は中間焦点距離を、「T」は望遠端を、「f」は焦点距離を、「FNO」はFナンバーを、「ω」は半画角(単位は「°」)を、「Y」は最大像高を、「TL」は光学全長(レンズ面の第1面から像面Iまでの光軸上の距離)を、「Bf」はバックフォーカスを示している。
 [可変間隔データ]において、「dn」は第n面(nは整数)と第n+1面の可変の面間隔を、「Bf」はバックフォーカスを、「W」は広角端を、「M」は中間焦点距離を、「T」は望遠端を示している。なお、「d0」は物体面から第1面までの光軸上の距離を示している。
 [レンズ群データ]には、各レンズ群の始面と焦点距離fを示している。
 [条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示している。
 表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。 
(表1)
[面データ]
 面番号   r           d         nd        νd
 物面     ∞
  1     51.1394     5.8000    1.487490    70.31 
  2   1133.2099     0.1000 
  3     82.0020     1.5000    1.672700    32.19 
  4     33.9780     6.2000    1.516800    63.88 
  5    133.9229      可変
  6   -577.3429     1.0000    1.772500    49.62 
  7     21.5312     3.4000    1.846660    23.80 
  8     63.3609     3.4167 
  9    -39.1089     1.0000    1.622990    58.12 
 10    126.2187      可変
 11   2276.1596     3.2242    1.603000    65.44 
 12    -37.4736      可変
 13     23.6470     3.8000    1.487490    70.31 
 14    161.4472     0.1000 
 15     35.8671     4.4658    1.497820    82.57 
 16    -50.2203     1.6000    1.902000    25.26 
 17     64.6451     5.3469 
 18(絞り) ∞        7.4591
 19   -157.1854     2.9000    1.850260    32.35 
 20    -14.7113     0.9000    1.795000    45.31 
 21     35.0299     2.2000 
 22     29.4465     1.0000    1.806100    40.97 
 23     21.3319     3.3000    1.603420    38.03 
 24    -48.3688    11.6956 
 25    -16.7768     1.0000    1.744000    44.81 
 26    -31.2907       Bf
 像面     ∞
 
[各種データ]
        W       M       T
f     56.60   135.00   194.00
FNO    4.11     5.27     5.82
ω    14.23     5.84     4.07
Y     14.00    14.00    14.00
TL   131.99   157.03   166.71
Bf    23.64    39.59    52.68
 
[可変間隔データ]
            無限遠合焦状態       近距離合焦状態(撮影距離 1.5m)
         W       M       T       W       M       T
D0       ∞       ∞       ∞   1368.01  1342.97  1333.288
D5      2.595   24.025   28.556    2.595   24.025   28.5560
D10    28.666    9.576    1.980   30.970   14.542    8.1859
D12     5.674   12.431   12.086    3.371    7.464    5.8803
Bf     23.644   39.593   52.682   23.644   39.593   52.682
 
[レンズ群データ]
群  始面   焦点距離
 1    1     108.548
 2    6     -30.400
 3   11      61.171
 4   13     141.532
 
[条件式対応値]
(1)fp/(-fn) = 4.656
(2)fp/ff     = 2.314
(3)f1/(-fn) = 3.571
(4)f1/fw     = 1.918
(5)fp/fw       = 2.501
(6)(-fn)/ft = 0.157
 
 図2は、第1実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。図3は、第1実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。
 図2及び図3の各収差図において、「FNO」はFナンバー、「NA」は開口数、「Y」は像高、「d」はd線(波長λ=587.6nm)、「g」はg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、第1実施例と同様の符号を用いる。
 各収差図から明らかなように、第1実施例に係る変倍光学系は、広角端状態から望遠端状態までの各焦点距離状態において、無限遠合焦状態から近距離合焦状態にわたって諸収差が良好に補正され、優れた光学性能を有することが分かる。
(第2実施例)
 図4は、第2実施例に係る変倍光学系の構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。第2実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4から構成されている。
 広角端状態から望遠端状態への変倍は、第1レンズ群G1と第2レンズ群G2との間の空気間隔が広がり、第2レンズ群G2と第3レンズ群G3との間の空気間隔が狭まり、第3レンズ群G3と第4レンズ群G4との間の空気間隔が広がるように、第1レンズ群G1から第4レンズ群G4までの各レンズ群を移動させることにより行う。この際、第1レンズ群G1と第3レンズ群G3と第4レンズ群G4とは物体側に移動し、第2レンズ群G2は一旦像面I側に移動した後に物体側に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、両凸形状の正レンズL21と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL23からなる。
 第3レンズ群G3は、両凸形状の正レンズL31からなる。
 第4レンズ群G4は、光軸に沿って物体側から順に、開口絞りSと、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合レンズと、物体側に凹面を向けた正メニスカスレンズL43と両凹形状の負レンズL44との接合レンズと、両凸形状の正レンズL45と、物体側に凹面を向けた負メニスカスレンズL46からなる。
 無限遠物体から近距離物体への合焦は、第3レンズ群G3を像面I側に移動させることにより行う。
 以下の表2に第2実施例に係る変倍光学系の諸元の値を示す。
(表2)
[面データ]
 面番号   r           d         nd        νd 
 物面     ∞
  1     63.095      1.500     1.80518     25.45
  2     41.791      7.123     1.58913     61.22
  3   -386.418       可変
  4    479.014      3.954     1.80518     25.45
  5    -32.519      1.100     1.72916     54.61
  6     59.138      3.181     1.00000 
  7    -37.896      1.100     1.80400     46.60
  8    743.156       可変 
  9    114.932      2.900     1.49782     82.57
 10    -47.146       可変
 11(絞り)  ∞       0.100 
 12     32.029      4.395     1.60300     65.44
 13    -34.300      1.100     1.80518     25.45
 14   -459.609     15.385 
 15    -63.416      3.199     1.85026     32.35
 16    -16.491      1.100     1.75500     52.34
 17     44.329      5.586 
 18     92.872      2.697     1.71999     50.26
 19    -40.382      8.116 
 20    -22.000      1.400     1.80100     34.92
 21    -35.076        Bf 
 像面     ∞ 
 
[各種データ]
        W       M       T
f     56.60   135.00   194.00
FNO    4.12     5.03     5.86
ω    14.25     5.83     4.06
Y     14.00    14.00    14.00 
TL   148.32   172.86   180.32
Bf    39.01    52.66    65.83
 
[可変間隔データ]
         無限遠フォーカス状態   近距離フォーカス状態(撮影距離 1.5m)
         W       M       T       W       M       T
D0       ∞       ∞       ∞   1351.67  1327.14  1319.67
D3      3.000   31.280   36.518  3.000   31.280   36.518
D8     34.644   12.104    1.500   36.933   18.430    9.778
D10     7.717   12.876   12.530    5.427    6.550    4.252
Bf     39.019   52.657   65.834   39.019   52.657   65.834
 
[レンズ群データ]
群  始面   焦点距離
 1    1     109.858
 2    4     -32.251
 3    9      67.558
 4   11     127.122
 
[条件式対応値]
(1)fp/(-fn) = 3.942
(2)fp/ff     = 1.882
(3)f1/(-fn) = 3.407
(4)f1/fw     = 1.941
(5)fp/fw       = 2.246
(6)(-fn)/ft = 0.166
 
 図5は、第2実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。図6は、第2実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。
 各収差図から明らかなように、第2実施例に係る変倍光学系は、広角端状態から望遠端状態までの各焦点距離状態において、無限遠合焦状態から近距離合焦状態にわたって諸収差が良好に補正され、優れた光学性能を有することが分かる。
(第3実施例)
 図7は、第3実施例に係る変倍光学系の構成を示す断面図である。(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示している。第3実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4から構成されている。
 広角端状態から望遠端状態への変倍は、第1レンズ群G1と第2レンズ群G2との間の空気間隔が広がり、第2レンズ群G2と第3レンズ群G3との間の空気間隔が狭まり、第3レンズ群G3と第4レンズ群G4との間の空気間隔が広がるように、第1レンズ群G1から第4レンズ群G4までの各レンズ群を移動させることにより行う。この際、第1レンズ群G1と第3レンズ群G3と第4レンズ群G4とは物体側に移動し、第2レンズ群G2は一旦像面I側に移動した後に物体側に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合レンズからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合レンズと、両凹形状の負レンズL23からなる。
 第3レンズ群G3は両凸形状の正レンズL31からなる。
 第4レンズ群G4は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合レンズと、両凸形状の正レンズL44と、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズと、物体側に凹面を向けた正メニスカスレンズL49と像面I側に凸面を向けた負メニスカスレンズL410との接合レンズからなる。
 無限遠物体から近距離物体への合焦は、第3レンズ群G3を像面I側に移動することにより行う。
 以下の表3に第3実施例に係る変倍光学系の諸元の値を示す。
(表3)
[面データ]
 面番号   r           d         nd        νd 
 物体     ∞
  1     89.300      4.180     1.51680     63.88
  2    316.082      0.200 
  3     74.492      2.000     1.78472     25.64
  4     48.539      8.579     1.49782     82.57
  5   -838.233       可変
  6   -119.487      1.200     1.74100     52.77
  7     19.035      4.234     1.84666     23.80
  8     54.757      2.458 
  9    -49.574      1.200     1.80400     46.60
 10    168.034       可変 
 11    828.136      2.917     1.69680     55.52
 12    -48.879       可変 
 13     30.703      2.123     1.69680     55.52
 14     44.923      0.200 
 15     32.528      5.119     1.49700     81.54
 16    -48.114      1.200     1.90366     31.31
 17     37.289      0.200 
 18     22.379      5.054     1.56384     60.71
 19   -159.569      2.000 
 20(絞り)∞        7.000 
 21    278.397      1.100     1.77250     49.62
 22     20.692      1.881     2.00069     25.46
 23     28.919      5.059 
 24     53.389      6.194     1.64769     33.73
 25    -11.591      0.793     1.71999     50.27
 26    -50.239      1.152 
 27    -22.754      2.381     1.48749     70.31
 28    -15.003      1.000     1.80100     34.92
 29    -36.400        Bf 
 像面     ∞
 
[各種データ]
        W       M       T
f     56.60   135.00   294.00
FNO    4.07     4.62     5.85
ω    15.26     6.11     2.82
Y     14.00    14.00    14.00
TL   164.20   191.81   209.50
Bf    38.19    45.74    70.76
 
[可変間隔データ]
            無限遠合焦状態       近距離合焦状態(撮影距離 1.5m)
         W       M       T       W       M       T
D0       ∞       ∞       ∞   1335.80  1308.19  1290.50
D5     10.131   38.736   47.693   10.131   38.736   47.693
D10    38.763   21.929    2.500   40.495   27.931   13.796
D12     4.193   12.481   15.615    2.461    6.479    4.319
Bf     38.185   45.741   70.765   38.185   45.741   70.765
 
[レンズ群データ]
群  始面   焦点距離
 1    1     106.784
 2    6     -26.150
 3   11      66.329
 4   13     140.408
 
[条件式対応値]
(1)fp/(-fn) = 5.369
(2)fp/ff     = 2.117
(3)f1/(-fn) = 4.086
(4)f1/fw     = 1.907
(5)fp/fw       = 2.507
 
 図8は、第3実施例に係る変倍光学系の無限遠合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。図9は、第3実施例に係る変倍光学系の近距離合焦状態における諸収差図であって、(a)は広角端状態での諸収差、(b)は中間焦点距離状態での諸収差、(c)は望遠端状態での諸収差を示す。
 各収差図から明らかなように、第3実施例に係る変倍光学系は、広角端状態から望遠端状態までの各焦点距離状態において、無限遠合焦状態から近距離合焦状態にわたって諸収差が良好に補正され、優れた光学性能を有することが分かる。
 なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 変倍光学系の数値実施例として4群構成のものを示したが、本願発明はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、変倍光学系は、無限遠物点から近距離物点への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向に移動させる構成としてもよい。例えば、第1レンズ群全体を合焦群としてもよく、又は、第1レンズ群を2以上の部分レンズ群に分割した構成で物体側から2番目以降の部分レンズ群を合焦群としてもよい。特に、前述のように、単レンズからなる第3レンズ群が光軸上を像面側に移動するように構成することが好ましくは可能である。また、上記の合焦群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ、ステッピングモータ、VCM等による駆動にも適している。合焦群が接合レンズからなる構成としても良好な光学性能を得ることができるが、上記のように合焦群を単レンズから構成することで、変倍光学系をより小型化することができる。
 また、変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ブレ等によって生じる像ブレを補正する構成とすることもできる。特に、第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましくは可能である。具体的には、第1実施例では正メニスカスレンズL44と負レンズL45との接合レンズを防振レンズ群とすることが好ましくは可能である。第2実施例では正メニスカスレンズL43と負レンズL44との接合レンズを防振レンズ群とすることが好ましくは可能である。第3実施例では負メニスカスレンズL45と正メニスカスレンズL46との接合レンズを防振レンズ群とすることが好ましくは可能である。
 また、変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができる。また、像面がずれた場合でも描写性能の劣化が少ない。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 
 開口絞りSは、第4レンズ群中かその近傍に配置されるのが好ましくは可能であるが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用しても良い。
 また、変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 
 変倍光学系は、望遠端状態における半画角ωtが1.5°~4.5°であることが好ましく、広角端状態における半画角ωwが11.0°~24.0°であることが好ましくは可能である。
 次に、変倍光学系を備えたカメラの一例を図10に基づいて説明する。図10は、変倍光学系を備えたカメラの一例の構成を示す図である。図10に示すように、カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
 カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
 ここで、カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、変倍時の収差変動を抑え、良好な光学性能を確保した変倍光学系である。したがってカメラ1は、変倍時収差変動を抑えた良好な光学性能を実現することができる。なお、上記第2実施例、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 以下、変倍光学系の製造方法の一例の概略を図11に基づいて説明する。
 図11に示す例において、変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群(第2レンズ群)と、前記負レンズ群(第2レンズ群)より像側に配置され、かつ、絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群(第4レンズ群)と、前記負レンズ群(第2レンズ群)と前記正レンズ群(第4レンズ群)との間に配置された合焦群(第3レンズ群の少なくとも一部)と、を有する変倍光学系の製造方法であって、以下のステップS1~S3を含むものである。
 すなわち、ステップS1として、変倍に際し、前記第1レンズ群と前記負レンズ群(第2レンズ群)の間隔が変化し、前記負レンズ群(第2レンズ群)と前記正レンズ群(第4レンズ群)の間隔が変化するように配置する。ステップS2として、合焦に際し、前記合焦群(第3レンズ群の少なくとも一部)と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群(第3レンズ群の少なくとも一部)と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置する。ステップS3として、以下の条件式(1)、(2)を満足するようにする。
(1) 2.00<fp/(-fn)<5.50
(2) 1.83<fp/ff<4.75
但し、
fp:前記正レンズ群の焦点距離
fn:前記負レンズ群の焦点距離
ff:前記合焦群の焦点距離
 あるいは、図11に示す例において、変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する変倍光学系の製造方法であって、以下のステップS1~S3を含むものである。
 すなわち、ステップS1として、変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化するように配置する。ステップS2として、合焦に際し、前記第3レンズ群の少なくとも一部が合焦群として光軸に沿って移動するように配置する。ステップS3として、以下の条件式(1)、(2)を満足するようにする。
(1) 2.00<fp/(-fn)<5.50
(2) 1.83<fp/ff<4.75
但し、
fn:前記第2レンズ群の焦点距離
ff:前記第3レンズ群の焦点距離
fp:前記第4レンズ群の焦点距離
 以上の製造方法によれば、変倍による収差変動を抑え、高い光学性能を有する変倍光学系を製造することができる。
G1 第1レンズ群 
G2 第2レンズ群(負レンズ群) 
G3 第3レンズ群(合焦群)
G4 第4レンズ群(正レンズ群)
I 像面 
S 開口絞り 
1 カメラ
2 撮影レンズ
3 撮像部
4 EVF。

Claims (12)

  1.  最も物体側に配置された正の屈折力を有する第1レンズ群と、
     前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、
     前記負レンズ群より像側に配置され、かつ、開口絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、
     前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、
     変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化し、
     合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、
     以下の条件式を満足する変倍光学系。
     2.00<fp/(-fn)<5.50
     1.83<fp/ff<4.75
    但し、
    fp:前記正レンズ群の焦点距離
    fn:前記負レンズ群の焦点距離
    ff:前記合焦群の焦点距離
  2.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、
     変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、
     合焦に際し、前記第3レンズ群の少なくとも一部が合焦群として光軸に沿って移動し、
     以下の条件式を満足する変倍光学系。
     2.00<fp/(-fn)<5.50
     1.83<fp/ff<4.75
    但し、
    fn:前記第2レンズ群の焦点距離
    ff:前記第3レンズ群の焦点距離
    fp:前記第4レンズ群の焦点距離
  3.  変倍に際し、前記第1レンズ群が像面に対して移動する請求項1又は2に記載の変倍光学系。
  4.  以下の条件式を満足する請求項1から3のいずれか一項に記載の変倍光学系。
     2.50<f1/(-fn)<5.00
    但し、
    f1:前記第1レンズ群の焦点距離
  5.  以下の条件式を満足する請求項1から4のいずれか一項に記載の変倍光学系。
     1.50<f1/fw<2.60
    但し、
    fw:広角端状態での全系の焦点距離
  6.  以下の条件式を満足する請求項1から5のいずれか一項に記載の変倍光学系。
     1.60<fp/fw<3.70
  7.  以下の条件式を満足する請求項1から6のいずれか一項に記載の変倍光学系。
     0.12<(-fn)/ft<0.35
    但し、
    ft:望遠端状態での全系の焦点距離
  8.  前記合焦群が単一のレンズ成分から構成される請求項1から7のいずれか一項に記載の変倍光学系。
  9.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、を有し、
     変倍に際し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、
     前記開口絞りは前記第2レンズ群よりも像面側に配置される請求項1から8のいずれか一項に記載の変倍光学系。
  10.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
     広角端状態から望遠端状態への変倍に際し、
     前記第1レンズ群と前記第2レンズ群の間隔が広がり、
     前記第2レンズ群と前記第3レンズ群の間隔が狭まる請求項1から9のいずれか一項に記載の変倍光学系。
  11.  請求項1から10のいずれか一項に記載の変倍光学系を有する光学装置。
  12.  最も物体側に配置された正の屈折力を有する第1レンズ群と、
     前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、
     前記負レンズ群より像側に配置され、かつ、絞りと一体に動くレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、
     前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、
     変倍に際し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、
     合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、
     以下の条件式を満足する変倍光学系の製造方法。
     2.00<fp/(-fn)<5.50
     1.83<fp/ff<4.75
    但し、
    fp:前記正レンズ群の焦点距離
    fn:前記負レンズ群の焦点距離
    ff:前記合焦群の焦点距離
PCT/JP2015/086342 2014-12-26 2015-12-25 変倍光学系、光学装置、及び、変倍光学系の製造方法 WO2016104747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/539,033 US10317654B2 (en) 2014-12-26 2015-12-25 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN201580074891.8A CN107209351B (zh) 2014-12-26 2015-12-25 变倍光学系统以及光学装置
JP2016566541A JP6531766B2 (ja) 2014-12-26 2015-12-25 変倍光学系、及び、光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266035 2014-12-26
JP2014-266035 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104747A1 true WO2016104747A1 (ja) 2016-06-30

Family

ID=56150759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086342 WO2016104747A1 (ja) 2014-12-26 2015-12-25 変倍光学系、光学装置、及び、変倍光学系の製造方法

Country Status (4)

Country Link
US (1) US10317654B2 (ja)
JP (1) JP6531766B2 (ja)
CN (1) CN107209351B (ja)
WO (1) WO2016104747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115231A (ja) * 2015-09-18 2020-07-30 株式会社ニコン 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10698189B2 (en) * 2014-12-26 2020-06-30 Nikon Corporation Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
WO2016104742A1 (ja) * 2014-12-26 2016-06-30 株式会社ニコン 変倍光学系、光学装置、及び、変倍光学系の製造方法
WO2017047759A1 (ja) * 2015-09-18 2017-03-23 株式会社ニコン 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法
CN115598804B (zh) * 2022-11-30 2023-03-31 浙江大华技术股份有限公司 一种光学镜头及成像设备
CN116149036A (zh) * 2022-12-27 2023-05-23 中国科学院西安光学精密机械研究所 一种恒定光圈的连续变焦光学镜头
CN115826211B (zh) * 2023-02-17 2023-05-19 深圳市雷影光电科技有限公司 超大光圈全画幅广角自动对焦镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289298A (ja) * 1993-03-30 1994-10-18 Nikon Corp 防振機能を備えたズームレンズ
JPH10197794A (ja) * 1997-01-14 1998-07-31 Nikon Corp ズームレンズ
JP2007240747A (ja) * 2006-03-07 2007-09-20 Olympus Imaging Corp ズームレンズ及びそれを用いた撮像装置
JP2009075581A (ja) * 2007-08-30 2009-04-09 Olympus Imaging Corp ズームレンズ及びそれを用いた撮像装置
JP2010145759A (ja) * 2008-12-19 2010-07-01 Nikon Corp ズームレンズ、このズームレンズを備えた光学機器、及び、ズームレンズの製造方法
JP2011090185A (ja) * 2009-10-23 2011-05-06 Nikon Corp 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
JP2011112832A (ja) * 2009-11-26 2011-06-09 Nikon Corp 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
JP2011232502A (ja) * 2010-04-27 2011-11-17 Nikon Corp ズームレンズ、光学機器及びズームレンズの製造方法
JP2012093548A (ja) * 2010-10-27 2012-05-17 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
WO2013146758A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026312A (ja) 1983-07-22 1985-02-09 Olympus Optical Co Ltd ズ−ムレンズ
US4662724A (en) * 1984-05-22 1987-05-05 Nippon Kogaku K. K. Telephoto zoom lens
JP3063035B2 (ja) * 1990-08-13 2000-07-12 オリンパス光学工業株式会社 変倍レンズ
JP3230523B2 (ja) * 1990-11-27 2001-11-19 株式会社ニコン 内部合焦式のズームレンズ
US5579171A (en) * 1993-03-30 1996-11-26 Nikon Corporation Zoom lens equipped with the image stabilizing function
JPH08136862A (ja) 1994-11-07 1996-05-31 Canon Inc 防振機能を有した変倍光学系
US6124972A (en) * 1994-03-18 2000-09-26 Canon Kabushiki Kaisha Zoom lens having an image stabilizing function
US5930051A (en) * 1996-10-25 1999-07-27 Nikon Corporation Zoom lens system for inner focusing
JP4751732B2 (ja) * 2006-02-10 2011-08-17 Hoya株式会社 望遠ズームレンズ系
JP2008146016A (ja) * 2006-11-15 2008-06-26 Olympus Imaging Corp ズームレンズ及びそれを用いた電子撮像装置
US7433132B2 (en) 2006-11-15 2008-10-07 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
EP2045637B1 (en) * 2007-10-02 2019-07-10 Nikon Corporation Zoom lens system
JP2009169082A (ja) * 2008-01-16 2009-07-30 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP5217698B2 (ja) * 2008-07-03 2013-06-19 株式会社ニコン ズームレンズ、撮像装置、ズームレンズの変倍方法
JP5410797B2 (ja) 2009-03-19 2014-02-05 株式会社シグマ 防振機能を有するズームレンズ
US9329371B2 (en) * 2010-04-27 2016-05-03 Nikon Corporation Zoom lens, optical apparatus and method of manufacturing zoom lens
JP5467976B2 (ja) * 2010-09-10 2014-04-09 株式会社タムロン ズームレンズ
JP6422231B2 (ja) 2013-04-25 2018-11-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289298A (ja) * 1993-03-30 1994-10-18 Nikon Corp 防振機能を備えたズームレンズ
JPH10197794A (ja) * 1997-01-14 1998-07-31 Nikon Corp ズームレンズ
JP2007240747A (ja) * 2006-03-07 2007-09-20 Olympus Imaging Corp ズームレンズ及びそれを用いた撮像装置
JP2009075581A (ja) * 2007-08-30 2009-04-09 Olympus Imaging Corp ズームレンズ及びそれを用いた撮像装置
JP2010145759A (ja) * 2008-12-19 2010-07-01 Nikon Corp ズームレンズ、このズームレンズを備えた光学機器、及び、ズームレンズの製造方法
JP2011090185A (ja) * 2009-10-23 2011-05-06 Nikon Corp 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
JP2011112832A (ja) * 2009-11-26 2011-06-09 Nikon Corp 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
JP2011232502A (ja) * 2010-04-27 2011-11-17 Nikon Corp ズームレンズ、光学機器及びズームレンズの製造方法
JP2012093548A (ja) * 2010-10-27 2012-05-17 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
WO2013146758A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115231A (ja) * 2015-09-18 2020-07-30 株式会社ニコン 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法

Also Published As

Publication number Publication date
US10317654B2 (en) 2019-06-11
CN107209351A (zh) 2017-09-26
JP6531766B2 (ja) 2019-06-19
CN107209351B (zh) 2020-07-31
JPWO2016104747A1 (ja) 2017-10-05
US20180217363A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5904273B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP6531766B2 (ja) 変倍光学系、及び、光学装置
JP6583429B2 (ja) 変倍光学系および光学機器
JP6269861B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP7202547B2 (ja) 変倍光学系、光学機器
WO2018079520A1 (ja) 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法
JPWO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6702337B2 (ja) 変倍光学系および光学機器
JPWO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6182868B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014112176A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6661893B2 (ja) 変倍光学系、光学装置
WO2016104742A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
WO2016194774A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6102269B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2016104786A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6620998B2 (ja) 変倍光学系及び光学装置
JP6911869B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP6693531B2 (ja) 変倍光学系および光学機器
JPWO2017047757A1 (ja) 変倍光学系、光学装置、撮像装置
JP6551420B2 (ja) 変倍光学系、光学装置
WO2017047758A1 (ja) 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法
WO2017047759A1 (ja) 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15539033

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15873315

Country of ref document: EP

Kind code of ref document: A1