WO2016104677A1 - 窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法 - Google Patents

窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法 Download PDF

Info

Publication number
WO2016104677A1
WO2016104677A1 PCT/JP2015/086177 JP2015086177W WO2016104677A1 WO 2016104677 A1 WO2016104677 A1 WO 2016104677A1 JP 2015086177 W JP2015086177 W JP 2015086177W WO 2016104677 A1 WO2016104677 A1 WO 2016104677A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
pentafluorosulfanylbenzene
compound
reaction
formula
Prior art date
Application number
PCT/JP2015/086177
Other languages
English (en)
French (fr)
Inventor
秀好 島
洋治 小俣
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US15/539,059 priority Critical patent/US9868701B2/en
Priority to CN201580070598.4A priority patent/CN107108490B/zh
Priority to GB1710285.6A priority patent/GB2548301B/en
Priority to DE112015005812.5T priority patent/DE112015005812B4/de
Priority to JP2016566491A priority patent/JP6709509B2/ja
Publication of WO2016104677A1 publication Critical patent/WO2016104677A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide

Definitions

  • the present invention relates to a method for producing a nitrogen-containing pentafluorosulfanylbenzene compound, which comprises reacting a halogenated aromatic compound with a nitrogen-based nucleophile.
  • An aromatic amine compound such as aniline is a useful compound as a basic raw material for medical and agricultural chemicals or dyes.
  • Patent Document 1 As a method for producing a pentafluorosulfanylaniline compound, a method of reacting a disulfide compound and fluorine gas is known (Patent Document 1). This method has a problem that fluorination of benzene nuclei progresses and the nucleofluorine compound is difficult to remove, in addition to the use of a fluorine gas having a problem in handling. For this reason, manufacture of the said compound is difficult and it was difficult to employ
  • An object of the present invention is to provide a method for producing a nitrogen-containing pentafluorosulfanylbenzene compound by a simple method using readily available raw materials.
  • X is a halogen atom
  • n is an integer of 1 to 5
  • R 1 is a hydrogen atom or a hydrocarbon group
  • R 1 is defined as described above, Z is an aryl group bonded to a carbonyl group, and Y is a group represented by the formula (Y1), (Y2), (Y3), or (Y4).
  • R 2 is a hydrogen atom or a hydrocarbon group
  • Formula (3) The manufacturing method of the pentafluoro sulfanyl aniline compound represented by these.
  • a method for producing a nitrogen-containing pentafluorosulfanylbenzene compound can be provided by a simple method using readily available raw materials.
  • X to Y includes X and Y which are their end values.
  • the nitrogen-containing pentafluorosulfanylbenzene compound refers to a pentafluorosulfanylbenzene compound having an amino group or an imide group.
  • the method for producing the compound includes a reaction step of a halogeno-pentafluorosulfanylbenzene compound and a nitrogen-based nucleophile.
  • this process is also referred to as “nucleophilic reaction process”.
  • halogeno-pentafluorosulfanylbenzene compound used in the present invention is represented by the following formula (1).
  • X represents a halogen atom
  • n represents an integer of 1 to 5.
  • the halogen include fluorine, chlorine, bromine and iodine, but fluorine and chlorine are preferable, and fluorine is more preferable.
  • n of halogen substituents is an integer of 1 to 5.
  • Compound (1) may have a plurality of different halogen atoms having different reactivity in the nucleophilic reaction.
  • n is preferably 1 (mono-substituted) from the viewpoint of easy handling.
  • the halogen substitution position includes ortho, meta, and para positions. From the viewpoint of reactivity and the like, the substitution position of halogen is preferably meta or para, and more preferably para, relative to the pentafluorosulfanyl group.
  • R 1 is a hydrocarbon group or a hydrogen atom.
  • substituents include an alkyl group or an aryl group that does not react with the nitrogen-based nucleophile, and R 1 is preferably a hydrogen atom.
  • Nitrogen-based nucleophiles include benzylamine compounds (benzylamine, p-chlorobenzylamine, p-methoxybenzylamine, etc.), hydrazine compounds (anhydrides, hydrates, hydrogen halide salts, etc.), guanidine compounds (carbonic acid carbonates). Salts, hydrogen halide salts, etc.), hydroxylamine compounds (anhydrides, hydrates, hydrogen halide salts, etc.), and phthalimide alkali metal salts (potassium phthalimide, etc.).
  • the amount of nitrogen-based nucleophile used is 0.1 to 100 mol, preferably 1.0 to 50 mol, particularly preferably 1.1 to 10 mol, relative to 1 mol of the halogeno-pentafluorosulfanylbenzene compound.
  • an aprotic polar solvent is preferable, and dimethyl sulfoxide and N-methyl-2-pyrrolidone are preferable.
  • an organic or inorganic base may be used in this reaction.
  • Examples of the organic base include tertiary amines such as triethylamine and tributylamine, and examples of the inorganic base include carbonates such as lithium carbonate, potassium carbonate, and cesium carbonate. Preferred are inorganic bases, and potassium carbonate is preferable.
  • the amount of the base used is 0.1 to 100 mol, preferably 1.0 to 50 mol, particularly preferably 1.1 to 10 mol, relative to 1 mol of the halogeno-pentafluorosulfanylbenzene compound.
  • the reaction temperature of this reaction is 0 to 200 ° C., preferably 20 to 150 ° C.
  • Y represents the formula ( Y1) is produced.
  • R 2 is a hydrocarbon group such as a hydrogen atom, or an aryl group or an alkyl group. From the viewpoint of promoting the nucleophilic reaction and atom utilization efficiency, R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • N- (4-pentafluorosulfanylphenyl) phthalimide (a compound in which Z is an aryl group (phenylene group) in formula (1b)) is formed.
  • the aryl group include a substituted or unsubstituted phenylene group or a naphthylene group, and an unsubstituted phenylene group is preferable from the viewpoint of availability of the compound.
  • N- (2-pentafluorosulfanylphenyl) hydroxylamine is formed.
  • potassium phthalimide is used, N- (2-pentafluorosulfanylphenyl) phthalimide is formed.
  • the obtained product can be used as a raw material for reduction in the next step without purification or purification.
  • the step of reducing the product is also referred to as “reduction step”.
  • 4-Pentafluorosulfanylaniline (compound represented by formula (3)) is produced by reducing the N-benzyl-4-pentafluorosulfanylbenzene obtained in the above reaction. Before the reduction, the reaction mixture containing N-benzyl-4-pentafluorosulfanylbenzene is crystallized in, for example, a water-methanol solvent, dissolved in the solvent, filtered with activated carbon, and crystallized again in the water-methanol solvent. It is preferable to make it. Moreover, it is preferable to purify by column chromatography. Alternatively, it is preferable to add a nitrogen-based nucleophile such as hydrazine.
  • a small amount of a by-product that greatly inhibits the reduction of Pd / C used in the next step may be generated.
  • the by-product is decomposed in the reaction system. Or can be removed.
  • Reduction can be carried out in the presence of hydrogen by dissolving the product obtained in the previous step in a solvent, adding a catalyst.
  • 4-Pentafluorosulfanylaniline is produced by reducing (4-pentafluorosulfanylphenyl) hydrazine obtained in the above reaction.
  • the reaction mixture containing (4-pentafluorosulfanylphenyl) hydrazine is preferably crystallized, for example, in an aqueous solvent, or dissolved in an organic solvent and washed with acid, alkali, or water. It can also be produced by column chromatography.
  • the reduction can be performed in the presence of hydrogen by dissolving the product obtained in the previous step in a solvent, adding a catalyst.
  • Solvents in the nucleophilic reaction step and reduction step include alcohols such as methanol, ethanol, isopropyl alcohol, butyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; N, N Amides such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; Ureas such as N, N′-dimethylimidazolidinone; Sulphoxides such as dimethyl sulfoxide; Acetonitrile, propionitrile, benzonitrile, etc.
  • alcohols such as methanol, ethanol, isopropyl alcohol, butyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol
  • ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • N N Amides such as dimethylform
  • ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether (MTBE), tetrahydrofuran, dioxane; benzene, toluene, xyle Aromatic hydrocarbons and the like; acetic acid, carboxylic acids such as propionic acid.
  • alcohols, ethers, nitriles, carboxylic acids more preferred are alcohols, ethers, and still more preferred are methanol, ethanol, isopropanol, dioxane, dimethoxyethane, and tetrahydrofuran.
  • organic solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is, for example, 0.1 to 100 ml, preferably 1 to 50 ml with respect to 1 g of N-benzyl-4-pentafluorosulfanylbenzene or (4-pentafluorosulfanylphenyl) hydrazine.
  • Examples of the catalyst used in the reduction step include platinum group metals such as Pd, Pt, Rh, Ru, and Raney nickel. Pd / C and Raney nickel supported on activated carbon are preferable.
  • the amount of catalyst used is, for example, 0.01 to 100 g, preferably 0.1 to 5 g, with respect to 1 g of N-benzyl-4-pentafluorosulfanylbenzene or (4-pentafluorosulfanylphenyl) hydrazine.
  • the reaction temperature is 0 to 200 ° C., preferably 10 to 180 ° C., more preferably 20 to 150 ° C.
  • Hydrogen is supplied from a resin balun or piping, but it can also be generated and used in the reaction system.
  • the reaction pressure is 1 to 10 atmospheres (atm), preferably 1 to 5 atmospheres.
  • the desired pentafluorosulfanylaniline compound can be obtained by purification by a general method such as neutralization, extraction, filtration, concentration, distillation, column chromatography and the like.
  • an acid aqueous solution or an alkaline aqueous solution is used.
  • the acid aqueous solution include aqueous solutions of hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, methanesulfonic acid, trifluoromethanesulfonic acid, acetic acid, trifluoroacetic acid, and formic acid.
  • alkaline aqueous solution examples include aqueous solutions of alkali metals (sodium, potassium, etc.) or alkaline earth metals (calcium), such as hydroxides, carbonates, bicarbonates, and the like.
  • alkali metal hydroxide examples include sodium hydroxide and potassium hydroxide.
  • alkali metal carbonate examples include sodium carbonate and potassium carbonate.
  • alkali metal hydrogen carbonate examples include sodium hydrogen carbonate and potassium hydrogen carbonate.
  • Examples of the alkaline earth metal hydroxide include calcium hydroxide.
  • Examples of the alkaline earth metal carbonate include calcium carbonate.
  • Examples of the alkaline earth metal hydrogen carbonate include calcium hydrogen carbonate.
  • the amount of the aqueous acid solution or aqueous alkali solution used is 0.0001 to 100 ml, preferably 0.001 to 50 ml, based on 1 g of the reaction mixture of the nucleophilic reaction or the product obtained by purification.
  • an organic solvent may be contained.
  • the reaction temperature for hydrolysis is 0 to 200 ° C, preferably 10 to 150 ° C.
  • the desired pentafluorosulfanylaniline compound can be obtained by purification by a general method such as neutralization, extraction, filtration, concentration, distillation, column chromatography and the like.
  • Example 1 To a 500 ml glass container equipped with a stirrer and a condenser, add 20 g of 4-fluoro-pentafluorosulfanylbenzene, 100 ml of dimethyl sulfoxide, 30 ml of benzylamine, and 38 g of potassium carbonate, and stir for 30 hours while heating to 130 ° C. (Reaction solution A). Toluene was added, inorganic salts were filtered, and the filtrate was washed with water. The obtained mother liquor was concentrated and dried to obtain 32 g of a crude product. From NMR quantification of the crude product, it was confirmed that 24 g (yield 88%) of N-benzyl-4-pentafluorosulfanylbenzene was formed.
  • N-benzyl-4-pentafluorosulfanylbenzene The physical properties of N-benzyl-4-pentafluorosulfanylbenzene are as follows. 1 H-NMR (400 MHz; CDCl 3 ; ⁇ (ppm)) 4.36 to 4.37 (m, 2H), 4.46 (brs, 1H), 6.54 to 6.56 (m, 2H), 7.25 to 7.39 (m, 5H), 7.51 to 7.53 (m, 2H) EI-MS; 309 (M)
  • Example 2 The same procedure as in Example 1 was conducted except that dimethyl sulfoxide was changed to N-methyl-2-pyrrolidone. The yield was 92%.
  • Example 3 The same operation as in Example 1 was conducted except that potassium carbonate was changed to diisopropylethylamine. The yield was 76%.
  • Example 4 N- (4-methoxybenzyl) -4-pentafluorosulfanylbenzene was obtained in a yield of 86% in the same manner as in Example 1 except that benzylamine was changed to paramethoxybenzylamine.
  • N- (4-methoxybenzyl) -4-pentafluorosulfanylbenzene are as follows. 1 H-NMR (400 MHz; CDCl 3 ; ⁇ (ppm)) 3.81 (s, 3H), 4.28 to 4.29 (m, 2H), 4.38 (brs, 1H), 6.53 to 6.56 (m, 2H), 6.88 to 6.90 (m, 2H), 7.25 to 7.27 (m, 2H), 7.51 to 7.53 (m, 2H) EI-MS; 339 (M)
  • Example 1a 4 g (80 mmol) of hydrazine was added to the reaction solution A of Example 1, and the mixture was heated and stirred at 50 ° C. for 5 hours. After cooling to room temperature, toluene was added, the inorganic salt was filtered, and the filtrate was washed with saturated brine (5 times with 200 ml) and 1N hydrochloric acid (5 times with 200 ml). The obtained mother liquor was concentrated to dryness to obtain 27 g as a yellow solid. From NMR quantification, it was confirmed that 26 g (yield 92%) of N-benzyl-4-pentafluorosulfanylbenzene was produced.
  • Example 5 (reduction reaction of 4-benzyl compound)
  • 10 ml of ethanol and 0.40 g of 10% Pd / C as a dried product were added, and the mixture was heated and stirred at 50 ° C. for 4 hours in a hydrogen atmosphere.
  • Pd / C was filtered off, and the filtrate was concentrated to dryness to obtain 0.65 g of 4-pentafluorosulfanylaniline as a white solid in a yield of 92%.
  • the physical properties of 4-pentafluorosulfanylaniline are as follows.
  • Example 6 To 1.0 g of N-benzyl-4-pentafluorosulfanylbenzene obtained in Example 1a, 5 ml of ethanol and 0.4 g of 10% Pd / C as a dried product were added and stirred at room temperature for 1 hour in a hydrogen atmosphere. When analyzed by HPLC, 4-pentafluorosulfanylaniline was produced in an area percentage of 100%.
  • Example 7 To a 100 ml glass container equipped with a stirrer and a condenser, add 5 g of 2-fluoro-pentafluorosulfanylbenzene, 25 ml of dimethyl sulfoxide, 7.23 g of benzylamine, and 9.33 g of potassium carbonate, and stir overnight while heating to 130 ° C. And reacted. To the reaction solution, 0.5 g (10 mmol) of hydrazine was added and heated and stirred at 50 ° C. for 2 hours.
  • Example 8 To a 100 ml glass container equipped with a stirrer and a condenser tube, 5 g (22.5 mmol) of 4-fluoro-pentafluorosulfanylbenzene, 15 ml of dimethyl sulfoxide, 3.3 ml (67.5 mmol) of hydrazine monohydrate were added, and 75 The reaction was carried out at 1 ° C for 1 hour and at 95 ° C for 2 hours.
  • Example 9 4-fluoro-pentafluorosulfanylbenzene 1 g (4.5 mmol), dimethyl sulfoxide 1 ml, and hydrazine monohydrate 0.7 ml (13.5 mmol) were added to a 30 ml glass container equipped with a stirrer and a cooling tube, and 95 ° C. As a result of quantification by HPLC after reaction for 6 hours, 0.86 g of (4-pentafluorosulfanylphenyl) hydrazine was formed (reaction yield: 81%).
  • Example 10 to 16 (4-Pentafluorosulfanylphenyl) hydrazine was obtained in the same manner as in Example 9 except that the conditions shown below were employed.
  • Example 17 In a 30 ml glass container equipped with a stirrer and a condenser tube, 1 g (4.5 mmol) of 4-fluoro-pentafluorosulfanylbenzene, 15 ml of dimethyl sulfoxide, 1.22 g (6.8 mmol) of guanidine carbonate, 1.86 g of potassium carbonate ( 13.5 mmol) was added and reacted at 130 ° C. for 17 hours. Analysis of the reaction solution revealed that (4-pentafluorosulfanylphenyl) guanidine was 87% in terms of HPLC area percentage and 4-pentafluorosulfanylaniline was 13% in terms of HPLC area percentage.
  • Example 18 To a 30 ml glass container equipped with a stirrer and a cooling tube, 1 g (4.5 mmol) of 4-fluoro-pentafluorosulfanylbenzene, 5 ml of dimethyl sulfoxide and 1.0 g (5.4 mmol) of potassium phthalimide are added, and the mixture is heated at 100 ° C. for 1 hour. After reacting at 130 ° C. for 18 hours, 2.0 g (10.8 mmol) of potassium phthalimide and 5 ml of dimethyl sulfoxide were added and reacted at 130 ° C. for 3 hours.
  • Example 19 While adding 0.25 g (1.1 mmol) of (4-pentafluorosulfanylphenyl) hydrazine, 0.05 g of Raney nickel, and 5 ml of ethanol to a 30 ml glass container equipped with a stirrer and a cooling tube, supplying hydrogen with hydrogen balun The mixture was reacted at room temperature for 1 hour and then at 70 ° C. for 2 hours. Raney nickel was filtered off and the solution was concentrated to dryness to obtain 0.19 g of 4-pentafluorosulfanylaniline as a white solid (isolation yield 83%).
  • Example 20 To a 100 ml glass container equipped with a stirrer and a condenser, 15 g (67.5 mmol) of 4-fluoro-pentafluorosulfanylbenzene, 30 ml of dimethyl sulfoxide, and 9.8 ml (203 mmol) of hydrazine monohydrate were added at 95 ° C. The reaction was performed for 5.5 hours. After cooling to room temperature, 1N aqueous sodium hydroxide solution (100 ml) and saturated brine (100 ml) were added, extracted with TMBE (methyl tert-butyl ether) (150 ml), and washed with saturated brine (100 ml) three times.
  • TMBE methyl tert-butyl ether
  • Example 21 To a 100 ml glass container equipped with a stirrer and a condenser, 15 g (67.5 mmol) of 2-fluoro-pentafluorosulfanylbenzene, 30 ml of dimethyl sulfoxide, and 9.8 ml (203 mmol) of hydrazine monohydrate were added at 100 ° C. The reaction was performed for 3 hours. Hydrazine monohydrate (9.8 ml, 203 mmol) and dimethyl sulfoxide (15 ml) were added, and the mixture was further reacted for 10 hours.
  • (2-Pentafluorosulfanylphenyl) hydrazine is a novel compound having the following physical properties.
  • 1 H-NMR 400 MHz; CDCl 3 ; ⁇ (ppm)) 3.63 (brs, 2H), 6.25 (brs, 1H), 6.74 to 6.78 (m, 1H), 7.37 to 7.41 (m, 1H), 7.46-7.48 (m, 1H), 7.59-7.61 (m, 1H)
  • Example 22 To a glass reaction vessel having an internal volume of 30 ml, 1.51 g (6.8 mmol) of 3-fluoropentafluorosulfanylbenzene, 1.01 g (20.8 mmol) of hydrazine monohydrate and 3 ml of dimethyl sulfoxide were added, and the mixture was heated at 80 ° C. for 4 hours. Then, the reaction was performed at 110 ° C. for 3 hours. Hydrazine monohydrate (1.01 g, 20.8 mmol) was added, and the mixture was further reacted at 110 ° C. for 8 hours.
  • 3-Hydrazinopentafluorosulfanylbenzene is a novel compound having the following physical properties.
  • Example 23 Add 0.52 g (2.22 mmol) of 3-hydrazinopentafluorosulfanylbenzene, 0.2 g of Raney nickel (manufactured by Tokyo Chemical Industry) and 20 ml of ethanol to a glass reaction vessel with an internal volume of 30 ml, and pressurize for 4 hours at room temperature under hydrogen balun pressure. Reacted. After completion of the reaction, the inorganic substance was filtered through Celite and the solvent was distilled off. A small amount of insoluble matter was removed with a membrane filter to obtain 0.3 g of 3-aminopentafluorosulfanylbenzene as a pale yellow oil (isolation yield 67 %).
  • 3-Aminopentafluorosulfanylbenzene is a compound having the following physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Indole Compounds (AREA)

Abstract

 式(1)で表されるハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤を反応させることを含む、(式中、Xはハロゲン原子、nは1~5の整数、Rは水素原子又は炭化水素基である) 式(2a)又は(2b): (式中、Rは前述のとおり定義され、Zはカルボニル基に結合したアリール基であり、Yは式(Y1)、(Y2)、(Y3)、又は(Y4)で表される基であり、Rは水素原子又は炭化水素基である)で表される窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法。

Description

窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法
 本発明は、ハロゲン化芳香族化合物と窒素系求核剤とを反応させことを含む、窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法に関する。
 アニリン等の芳香族アミン化合物は、医農薬或いは染料の基礎原料等として有用な化合物である。
 ペンタフルオロスルファニルアニリン化合物の製造方法として、ジスルフィド化合物とフッ素ガスを反応させる方法が知られている(特許文献1)。この方法は、取扱いに問題のあるフッ素ガスを使用しなければならない点の他、ベンゼン核のフッ素化が進行し、その核フッ素化合物が除去しにくいという問題があった。このため当該化合物の製造は困難であり、工業的な製造方法としては採用されにくかった。
特許第3964935号公報
 本発明の課題は入手が容易な原料を使用し、簡便な方法により、窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法を提供することにある。
 前記課題は、以下の本発明により解決される。
[1]式(1)で表されるハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤を反応させることを含む、
Figure JPOXMLDOC01-appb-C000005
 (式中、Xはハロゲン原子、nは1~5の整数、Rは水素原子又は炭化水素基である)
 式(2a)又は(2b):
Figure JPOXMLDOC01-appb-C000006
 (式中、Rは前述のとおり定義され、Zはカルボニル基に結合したアリール基であり、Yは式(Y1)、(Y2)、(Y3)、又は(Y4)で表される基であり、Rは水素原子又は炭化水素基である)
Figure JPOXMLDOC01-appb-C000007
で表される窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法。
[2]前記[1]に記載の窒素含有ペンタフルオロスルファニルベンゼン化合物を還元若しくは加水分解することを含む、
 式(3):
Figure JPOXMLDOC01-appb-C000008
で表されるペンタフルオロスルファニルアニリン化合物の製造方法。
[3]前記窒素系求核剤がベンジルアミン化合物、ヒドラジン化合物、グアニジン化合物、ヒドロキシルアミン及びフタルイミドアルカリ金属塩からなる群より選ばれる少なくとも1種である[1]または[2]に記載の製造方法。
[4]前記還元を、触媒としてPd/C若しくはラネーニッケル用い水素存在下で行う、[2]又は[3]に記載の製造方法。
[5]前記加水分解を、酸水溶液若しくはアルカリ水溶液を用いて行う、[2]~[4]のいずれかに記載の製造方法。
[6]溶媒として非プロトン性極性溶媒を用いる[1]~[5]のいずれかに記載の製造方法。
[7]非プロトン性極性溶媒が、ジメチルスルホキシド又はN-メチル-2-ピロリドンである[6]記載のペンタフルオロスルファニルアニリンの製造方法。
[8]ハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤との反応において、塩基を使用する[1]~[7]のいずれかに記載の製造方法。
 本発明により、入手が容易な原料を使用した簡便な方法により、窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法を提供する事ができる。
 以下、本発明を詳細に説明する。本発明において「X~Y」はその端値であるXおよびYを含む。
 本発明において、窒素含有ペンタフルオロスルファニルベンゼン化合物とはアミノ基またはイミド基を有するペンタフルオロスルファニルベンゼン化合物をいう。当該化合物の製造方法は、ハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤との反応工程を含む。以下、この工程を「求核反応工程」ともいう。
 本発明で用いられるハロゲノ-ペンタフルオロスルファニルベンゼン化合物は、下式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 式中、Xはハロゲン原子であり、nは1~5の整数を表す。ハロゲンとしては、フッ素、塩素、臭素、ヨウ素等が挙げられるが、フッ素、塩素が好ましく、フッ素がより好ましい。
 ハロゲンの置換基数nは、1~5の整数である。化合物(1)は、求核反応において反応性に差がある異なる複数のハロゲン原子を有していてもよい。しかしながら、取扱性が容易であること等から、nは1であること(モノ置換)が好ましい。
 ハロゲンの置換位置としては、オルト、メタ、パラ位が挙げられる。反応性等の観点から、ハロゲンの置換位置はペンタフルオロスルファニル基に対して、メタまたはパラ位が好ましく、パラ位がより好ましい。
 Rは炭化水素基または水素原子である。当該置換基としては窒素系求核剤と反応しないアルキル基またはアリール基が挙げられるが、Rは水素原子であることが好ましい。
 窒素系求核剤としては、ベンジルアミン化合物(ベンジルアミン、p-クロロベンジルアミン、p-メトキシベンジルアミン等)、ヒドラジン化合物(無水物、水和物、ハロゲン化水素塩等)、グアニジン化合物(炭酸塩、ハロゲン化水素塩等)、ヒドロキシルアミン化合物(無水物、水和物、ハロゲン化水素塩等)、フタルイミドアルカリ金属塩(フタルイミドカリウム等)が挙げられる。
 窒素系求核剤の使用量は、ハロゲノ-ペンタフルオロスルファニルベンゼン化合物1molに対して0.1~100mol、好ましくは1.0~50mol、特に好ましくは1.1~10molである。
 本反応は無溶媒で行う事も出来るが、溶媒を使用する事が好ましい。
 溶媒としては、非プロトン性極性溶媒が好ましく、ジメチルスルホキシド、N-メチル-2-ピロリドンが好ましい。
 また、本反応において有機又は無機塩基を使用してもよい。
 有機塩基としてはトリエチルアミン、トリブチルアミン等の3級アミンが挙げられ、無機塩基としては炭酸リチウム、炭酸カリウム、炭酸セシウム等の炭酸塩が挙げられるが、好ましくは無機塩基であり、炭酸カリウムが好ましい。
 塩基の使用量は、ハロゲノ-ペンタフルオロスルファニルベンゼン化合物1molに対して0.1~100mol、好ましくは1.0~50mol、特に好ましくは1.1~10molである。
 本反応の反応温度は0~200℃、好ましくは20~150℃である。
 ハロゲノ-ペンタフルオロスルファニルベンゼン化合物として4-フルオロ-ペンタフルオロスルファニルベンゼン、窒素系求核剤としてベンジルアミンを使用した場合、N-ベンジル-4-ペンタフルオロスルファニルベンゼン(式(1a)においてYが式(Y1)である化合物)が生成する。Y1において、Rは水素原子、或いはアリール基又はアルキル基等の炭化水素基である。前記求核反応の促進や原子利用効率の観点から、Rは水素原子又は炭素数が1~5のアルキル基であることが好ましい。
 窒素系求核剤としてヒドラジン化合物を使用した場合、(4-ペンタフルオロスルファニルフェニル)ヒドラジン(式(1a)においてYが式(Y2)である化合物)が生成する。窒素系求核剤としてグアニジン化合物を使用した場合、(4-ペンタフルオロスルファニルフェニル)グアニジン(式(1a)においてYが式(Y3)である化合物)が生成する。ヒドロキシルアミン化合物を使用した場合、N-(4-ペンタフルオロスルファニルフェニル)ヒドロキシルアミン(式(1a)においてYが式(Y4)である化合物)が生成する。
 窒素系求核剤としてフタルイミドカリウムを使用した場合、N-(4-ペンタフルオロスルファニルフェニル)フタルイミド(式(1b)においてZがアリール基(フェニレン基)である化合物)が生成する。アリール基としては、置換又は非置換のフェニレン基又はナフチレン基が挙げられるが、化合物の入手容易性等から非置換のフェニレン基が好ましい。
 ハロゲノ-ペンタフルオロスルファニルベンゼン化合物として2-フルオロ-ペンタフルオロスルファニルベンゼン、窒素系求核剤としてベンジルアミンを使用した場合、N-ベンジル-2-ペンタフルオロスルファニルベンゼンが生成する。窒素系求核剤としてヒドラジン化合物を使用した場合、(2-ペンタフルオロスルファニルフェニル)ヒドラジンが生成する。窒素系求核剤としてグアニジン化合物を使用した場合、(2-ペンタフルオロスルファニルフェニル)グアニジンが生成する。ヒドロキシルアミン化合物を使用した場合、N-(2-ペンタフルオロスルファニルフェニル)ヒドロキシルアミンが生成する。フタルイミドカリウムを使用した場合、N-(2-ペンタフルオロスルファニルフェニル)フタルイミドが生成する。
 同様に、ハロゲノ-ペンタフルオロスルファニルベンゼン化合物として3-フルオロ-ペンタフルオロスルファニルベンゼンを使用すると、例えば(2-ペンタフルオロスルファニルフェニル)ヒドラジン等を製造できる。これらの化合物の代表的な具体的例を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 得られた生成物は精製又は精製する事無く、次工程の還元の原料とする事ができる。生成物を還元する工程を「還元工程」ともいう。
 前記反応で得られたN-ベンジル-4-ペンタフルオロスルファニルベンゼンを還元する事で4-ペンタフルオロスルファニルアニリン(式(3)で表される化合物)が製造される。還元前にN-ベンジル-4-ペンタフルオロスルファニルベンゼンを含む反応混合物を、例えば水-メタノール溶媒中に晶析させた後、溶媒に溶解させ活性炭濾過し、再度、水-メタノール溶媒中に晶析させることが好ましい。またカラムクロマトグラフィーにて精製することが好ましい。或いは、ヒドラジン等の窒素系求核剤を添加する事が好ましい。前記反応において、次工程で使用するPd/Cの還元を大きく阻害する副生成物が微量生成することがあるが、窒素系求核剤を添加することにより当該副生成物を反応系内で分解または除去することができる。
 還元は、前工程で得られた生成物を溶媒に溶解させ、触媒を添加し、水素存在下に行う事ができる。
 前記反応で得られた(4-ペンタフルオロスルファニルフェニル)ヒドラジンを還元する事で4-ペンタフルオロスルファニルアニリンが製造される。還元前に(4-ペンタフルオロスルファニルフェニル)ヒドラジンを含む反応混合物を、例えば水溶媒中に晶析させる、あるいは、有機溶媒に溶解させ酸、アルカリ、水で洗浄することが好ましい。カラムクロマトグラフィーにて生成することも出来る。還元は、前工程で得られた生成物を溶媒に溶解させ、触媒を添加し、水素存在下に行う事ができる。
 求核反応工程および還元工程における溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;N,N’-ジメチルイミダゾリジノン等の尿素類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類;ジエチルエーテル、ジイソプロピルエーテル、メチルtert-ブチルエーテル(MTBE)、テトラヒドロフラン、ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸、プロピオン酸等のカルボン酸類が挙げられる。好ましくはアルコール類、エーテル類、ニトリル類、カルボン酸類、より好ましくはアルコール類、エーテル類、更に好ましくはメタノール、エタノール、イソプロパノール、ジオキサン、ジメトキシエタン、テトラヒドロフランである。これらの有機溶媒は、単独又は二種以上を混合して使用してもよい。
 溶媒の使用量は例えばN-ベンジル-4-ペンタフルオロスルファニルベンゼン若しくは(4-ペンタフルオロスルファニルフェニル)ヒドラジン1gに対して0.1~100ml、好ましくは1~50mlである。
 還元工程に用いる触媒としては、Pd、Pt、Rh、Ru、ラネーニッケル等の白金族金属等が挙げられるが活性炭に担持させたPd/C、ラネーニッケルが好ましい。
 触媒の使用量は例えばN-ベンジル-4-ペンタフルオロスルファニルベンゼン若しくは(4-ペンタフルオロスルファニルフェニル)ヒドラジン1gに対して0.01~100g、好ましくは0.1~5gである。
 反応温度は、0~200℃、好ましくは10~180℃、更に好ましくは20~150℃である。
 水素は樹脂製バルン又は配管から供給されるが、反応系内で発生させて使用する事も出来る。
 反応圧力は1~10気圧(atm)、好ましくは1~5気圧である。
 反応終了後、中和、抽出、濾過、濃縮、蒸留、カラムクロマトグラフィー等の一般的な方法により精製し目的のペンタフルオロスルファニルアニリン化合物を取得する事ができる。
 前記求核反応工程において得られた生成物である((4-ペンタフルオロスルファニルフェニル)グアニジン、又はN-(4-ペンタフルオロスルファニルフェニル)フタルイミド)を加水分解する事でペンタフルオロスルファニルアニリンが製造される。この工程を「加水分解工程」ともいう。
 加水分解には、酸水溶液若しくはアルカリ水溶液を用いる。酸水溶液としては、塩化水素、臭化水素、ヨウ化水素、硫酸、硝酸、メタンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸、蟻酸の水溶液が挙げられる。
 アルカリ水溶液としては、アルカリ金属(ナトリウム、カリウム等)又はアルカリ土類金属(カルシウム)の、水酸化物、炭酸塩、炭酸水素塩等の水溶液が挙げられる。アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウムが挙げられる。アルカリ金属の炭酸塩としては、例えば、炭酸ナトリウム、炭酸カリウムが挙げられる。アルカリ金属の炭酸水素塩としては、例えば、炭酸水素ナトリウム、炭酸水素カリウムが挙げられる。
 アルカリ土類金属の水酸化物としては、例えば、水酸化カルシウムが挙げられる。アルカリ土類金属の炭酸塩としては、例えば、炭酸カルシウムが挙げられる。アルカリ土類金属の炭酸水素塩としては、例えば、炭酸水素カルシウムが挙げられる。
 酸水溶液若しくはアルカリ水溶液の使用量は、前記求核反応の反応混合物、又は精製して得られた前記生成物1gに対して0.0001~100ml、好ましくは0.001~50mlである。求核反応工程で得た反応液をそのまま用いる場合、有機溶媒が含まれていてもよい。
 加水分解の反応温度は0~200℃、好ましくは10~150℃である。
 反応終了後、中和、抽出、濾過、濃縮、蒸留、カラムクロマトグラフィー等の一般的な方法により精製し目的のペンタフルオロスルファニルアニリン化合物を取得する事ができる。
[実施例1]
 攪拌装置と冷却管を備えた500mlガラス製容器に、4-フルオロ-ペンタフルオロスルファニルベンゼン20g、ジメチルスルホキシド100ml、ベンジルアミン30ml、炭酸カリウム38gを加え、130℃に加熱しながら30時間撹拌して反応させた(反応液A)。トルエンを加えて、無機塩を濾過し、濾液を水洗浄した。得られた母液を濃縮乾固させ、粗体32g得た。粗体のNMR定量から、N-ベンジル-4-ペンタフルオロスルファニルベンゼンが24g(収率88%)生成している事を確認した。
 粗体32gをメタノール96mlで50℃加熱溶解し、水27mlをゆっくり加え晶析し、粗結晶26g得た。粗結晶をメタノール125mlに溶解し、活性炭素6.3gを加え30分加熱還流した。室温まで冷却後セライトろ過して活性炭素をろ別し、ろ液を濃縮し、白色固体を得た。白色固体にメタノール75mlで60℃加熱溶解し、水20mlをゆっくり加え晶析し、白色粉末22g得た。
N-ベンジル-4-ペンタフルオロスルファニルベンゼンの物性値は以下の通りである。
H-NMR(400MHz;CDCl;δ(ppm))4.36~4.37(m、2H)、4.46(brs,1H)、6.54~6.56(m、2H)、7.25~7.39(m、5H)、7.51~7.53(m、2H)
 EI-MS;309(M)
[実施例2]
 ジメチルスルホキシドをN-メチル-2-ピロリドンに変更した以外は実施例1と同様に行った。収率は92%であった。
[実施例3]
 炭酸カリウムをジイソプロピルエチルアミンに変更した以外は、実施例1と同様に行った。収率は76%であった。
[実施例4]
 ベンジルアミンをパラメトキシベンジルアミンに変更した以外は、実施例1と同様に行い、N-(4-メトキシベンジル)-4-ペンタフルオロスルファニルベンゼンを収率86%で得た。
 N-(4-メトキシベンジル)-4-ペンタフルオロスルファニルベンゼンの物性値は以下の通りである。
 H-NMR(400MHz;CDCl;δ(ppm))3.81(s、3H),4.28~4.29(m、2H)、4.38(brs,1H)、6.53~6.56(m、2H)、6.88~6.90(m、2H)、7.25~7.27(m、2H)、7.51~7.53(m、2H)
 EI-MS;339(M)
[実施例1a]
 実施例1の反応液Aにヒドラジン4g(80mmol)を加えて50℃で5時間加熱撹拌した。室温まで冷却後にトルエンを加えて、無機塩を濾過し、濾液を飽和食塩水(200mlで5回)、1規定塩酸(200mlで5回)で洗浄した。得られた母液を濃縮乾固させ、黄色固体として27g得た。NMR定量から、N-ベンジル-4-ペンタフルオロスルファニルベンゼンが26g(収率92%)生成している事を確認した。
 [実施例5(4-ベンジル体の還元反応)]
 実施例1で取得したN-ベンジル-4-ペンタフルオロスルファニルベンゼン1gに、エタノール10ml、乾燥品の10%Pd/Cを0.40g加え、水素雰囲気下50℃で4時間加熱撹拌した。Pd/Cをろ別し、ろ液を濃縮乾固して、白色固体として4-ペンタフルオロスルファニルアニリンを0.65g、収率92%で得た。
 4-ペンタフルオロスルファニルアニリンの物性値は以下の通りである。
H-NMR(400MHz;CDCl;δ(ppm))4.00(brs,2H)、6.61~6.63(m、2H)、7.51~7.53(m、2H)
 EI-MS;219(M)
[実施例6]
 実施例1aで得たN-ベンジル-4-ペンタフルオロスルファニルベンゼン1.0gに、エタノール5ml、乾燥品の10%Pd/Cを0.4g加え、水素雰囲気下室温で1時間撹拌した。HPLCで分析したところ、4-ペンタフルオロスルファニルアニリンが面積百分率100%で生成していた。
[実施例7]
 攪拌装置と冷却管を備えた100mlガラス製容器に、2-フルオロ-ペンタフルオロスルファニルベンゼン5g、ジメチルスルホキシド25ml、ベンジルアミン7.23g、炭酸カリウム9.33gを加え、130℃に加熱しながら終夜撹拌して反応させた。反応液にヒドラジン0.5g(10mmol)を加えて50℃で2時間加熱撹拌した。室温まで冷却後にトルエンを加えて、無機塩を濾過し、濾液を飽和食塩水(50mlで5回)、1規定塩酸(50mlで5回)で洗浄した。得られた母液を濃縮乾固させ、黄色固体として1.41g得た。NMR定量から、単離収率20%でN-ベンジル-2-ペンタフルオロスルファニルベンゼンを得た。
H-NMR(400MHz;CDCl;δ(ppm))4.44~4.45(m、2H)、5.29(brs,1H)、6.66~6.75(m、2H)、7.23~7.39(m、6H)、7.62~7.64(m、1H)
 EI-MS;309(M)
[実施例8]
 攪拌装置と冷却管を備えた100mlガラス製容器に、4-フルオロ-ペンタフルオロスルファニルベンゼン5g(22.5mmol)、ジメチルスルホキシド15ml、ヒドラジン1水和物3.3ml(67.5mmol)を加え、75℃で1時間、95℃で2時間反応させた。室温まで冷却後、1規定水酸化ナトリウム水溶液50mlに添加し、0℃に冷却して析出した固体を減圧濾取し、水で洗浄後に室温で真空乾燥して、白色固体として(4-ペンタフルオロスルファニルフェニル)ヒドラジン4.5gを得た。(単離収率85%)
 (4-ペンタフルオロスルファニルフェニル)ヒドラジンの物性は以下の通りであった。
H-NMR(400MHz;CDCl;δ(ppm))3.63(brs,2H)、5.50(brs、1H)、6.78~6.80(m、2H)、7.56~7.60(m、2H)
 EI-MS;234(M)
[実施例9]
 攪拌装置と冷却管を備えた30mlガラス製容器に4-フルオロ-ペンタフルオロスルファニルベンゼン1g(4.5mmol)、ジメチルスルホキシド1ml、ヒドラジン1水和物0.7ml(13.5mmol)を加え、95℃で6時間反応後HPLCにて定量したところ、(4-ペンタフルオロスルファニルフェニル)ヒドラジンが0.86g生成していた(反応収率81%)。
[実施例10~16]
 下記に示す条件を採用した以外は、実施例9と同様にして、(4-ペンタフルオロスルファニルフェニル)ヒドラジンを得た。
Figure JPOXMLDOC01-appb-T000011
[実施例17]
 攪拌装置と冷却管を備えた30mlガラス製容器に4-フルオロ-ペンタフルオロスルファニルベンゼン1g(4.5mmol)、ジメチルスルホキシド15ml、グアニジン炭酸塩1.22g(6.8mmol)、炭酸カリウム1.86g(13.5mmol)を加え、130℃で17時間反応させた。反応液を分析したところ、(4-ペンタフルオロスルファニルフェニル)グアニジンがHPLC面積百分率で87%、4-ペンタフルオロスルファニルアニリンがHPLC面積百分率で13%の生成していた。
 (4-ペンタフルオロスルファニルフェニル)グアニジンの物性は以下の通りであった。
H-NMR(400MHz;CDCl;δ(ppm))6.96~6.98(m、2H)、7.59~7.61(m、2H)
 EI-MS;261(M)
 更に、130℃で48時間反応後に分析したところ、(4-ペンタフルオロスルファニルフェニル)グアニジンがHPLC面積百分率で59%、4-ペンタフルオロスルファニルアニリンがHPLC面積百分率で41%生成していた。
[実施例18]
 攪拌装置と冷却管を備えた30mlガラス製容器に4-フルオロ-ペンタフルオロスルファニルベンゼン1g(4.5mmol)、ジメチルスルホキシド5ml、フタルイミドカリウム1.0g(5.4mmol)を加え、100℃で1時間、130℃で18時間反応させた後、フタルイミドカリウム2.0g(10.8mmol)とジメチルスルホキシド5ml加えて130℃で3時間反応させた。室温まで冷却後、1規定水酸化ナトリウム水溶液50mlに加え、析出した沈殿をろ別し乾燥したところ、白色固体としてN-(4-ペンタフルオロスルファニルフェニル)フタルイミド)0.1gを得た(単離収率6%)。
 N-(4-ペンタフルオロスルファニルフェニル)フタルイミド)の物性は以下の通りであった。
H-NMR(400MHz;CDCl;δ(ppm))7.64~7.66(m、2H)、7.82~7.86(m、2H)、7.89~7.93(m、2H)、7.97~8.01(m、2H)
 EI-MS;349(M)
[実施例19]
 攪拌装置と冷却管を備えた30mlガラス製容器に(4-ペンタフルオロスルファニルフェニル)ヒドラジン0.25g(1.1mmol)、ラネーニッケル0.05g、及びエタノール5mlを加え、水素バルンで水素を供給しながら、室温で1時間、ついで70℃で2時間反応させた。ラネーニッケルをろ別し、溶液を濃縮乾固したところ、白色固体として4-ペンタフルオロスルファニルアニリン0.19gを得た(単離収率83%)。
[実施例20]
 攪拌装置と冷却管を備えた100mlガラス製容器に、4-フルオロ-ペンタフルオロスルファニルベンゼン15g(67.5mmol)、ジメチルスルホキシド30ml、ヒドラジン1水和物9.8ml(203mmol)を加え、95℃で5.5時間反応させた。室温まで冷却後、1規定水酸化ナトリウム水溶液100mlと飽和食塩水100mlを加え、TMBE(メチルtert-ブチルエーテル)150mlで抽出後、飽和食塩水100mlで3回洗浄した。硫酸マグネシウムで乾燥後、40℃で減圧濃縮を行い、黄色固体として(4-ペンタフルオロスルファニルフェニル)ヒドラジン14.97gを得た(単離収率95%)。得られた黄色固体14.97gに、ラネーニッケル3g及びイソプロパノール300mlを加え、樹脂性バルンで水素供給しながら60℃で1時間、70℃で3時間反応後、ラネーニッケルを0.7g追加し、60℃で1時間反応を行なった。反応終了後、ラネーニッケルをろ別除去した溶液を減圧濃縮し、4-ペンタフルオロスルファニルアニリンを13.1g得た(4-フルオロ-ペンタフルオロスルファニルベンゼン基準の単離収率94%)。
[実施例21]
 攪拌装置と冷却管を備えた100mlガラス製容器に、2-フルオロ-ペンタフルオロスルファニルベンゼン15g(67.5mmol)、ジメチルスルホキシド30ml、ヒドラジン1水和物9.8ml(203mmol)を加え、100℃で3時間反応させた。ヒドラジン1水和物9.8ml(203mmol)とジメチルスルホキシド15mlを加え、更に10時間反応させた。室温まで冷却後、1規定水酸化ナトリウム水溶液100mlと飽和食塩水100mlを加え、TMBE(メチルtert-ブチルエーテル)150mlで抽出後、飽和食塩水100mlで3回洗浄した。硫酸マグネシウムで乾燥後、40℃で減圧濃縮を行い、黄色固体として(2-ペンタフルオロスルファニルフェニル)ヒドラジン13.9gを得た(単離収率88%)。
 (2-ペンタフルオロスルファニルフェニル)ヒドラジンは以下の物性値を有する新規化合物である。
H-NMR(400MHz;CDCl;δ(ppm))3.63(brs、2H)、6.25(brs、1H)、6.74~6.78(m、1H)、7.37~7.41(m、1H)、7.46~7.48(m、1H)、7.59~7.61(m、1H)
 EI-MS;234(M)
上記(2-ペンタフルオロスルファニルフェニル)ヒドラジン1gと、ラネーニッケル逐次添加しながら合計1.5g、イソプロパノール10mlを用い、樹脂性バルンで水素供給しながら、70~80℃で6時間反応を行なったところ、2-ペンタフルオロスルファニルアニリンの生成を確認した。
 2-ペンタフルオロスルファニルアニリンの物性は以下の通りであった。
EI-MS;219(M)
[実施例22]
 内容積30mlのガラス製反応容器に3-フルオロペンタフルオロスルファニルベンゼン1.51g(6.8mmol)、ヒドラジン1水和物1.01g(20.8mmol)及びジメチルスルホキシド3mlを加え、80℃で4時間、次いで110℃で3時間反応させた。ヒドラジン1水和物1.01g(20.8mmol)を加え、110℃で更に8時間反応させた。反応液を室温まで冷却後、1規定水酸化ナトリウム水溶液100mlを加え、ターシャリーブチルメチルエーテル100ml、飽和食塩水100mlを加えて分液し、有機層を飽和食塩水100mlで3回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して、薄黄色オイルとして3-ヒドラジノペンタフルオロスルファニルベンゼン1.04gを得た(単離収率65%)。
 3-ヒドラジノペンタフルオロスルファニルベンゼンは以下の物性値を有する新規化合物である。
H-NMR(CDCl3):3.64(brs,2H)、5.38(brs,1H)、6.91~6.94(m,1H)、7.15~7.17(m,1H)、7.25~7.29(m,2H)
EIMS 234(M+1)
[実施例23]
 内容積30mlのガラス製反応容器に3-ヒドラジノペンタフルオロスルファニルベンゼン0.52g(2.22mmol)、ラネーニッケル(東京化成製)0.2g及びエタノール20mlを加え、水素バルン加圧下、室温で4時間反応させた。反応終了後、無機物をセライトでろ過後溶媒を留去し、少量の不溶物をメンブランフィルターで除去し、薄黄色オイルとして3-アミノペンタフルオロスルファニルベンゼン0.3gを得た(単離収率67%)。
 3-アミノペンタフルオロスルファニルベンゼンは以下の物性値を有する化合物である。
H-NMR(CDCl3):3.81(brs,2H),6.72~6.75(m,1H)、7.01~7.02(m,1H)、7.08~7.11(m,1H)、7.16~7.20(m,1H)
EIMS 219(M+1)
 実施例22および23のスキームを以下に示す。
Figure JPOXMLDOC01-appb-C000012

Claims (8)

  1.  式(1)で表されるハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤を反応させることを含む、
    Figure JPOXMLDOC01-appb-C000001
     (式中、Xはハロゲン原子、nは1~5の整数、Rは水素原子又は炭化水素基である)
     式(2a)又は(2b):
    Figure JPOXMLDOC01-appb-C000002
     (式中、Rは前述のとおり定義され、Zはカルボニル基に結合したアリール基であり、Yは式(Y1)、(Y2)、(Y3)、又は(Y4)で表される基であり、Rは水素原子又は炭化水素基である)
    Figure JPOXMLDOC01-appb-C000003
    で表される窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法。
  2.  請求項1に記載の窒素含有ペンタフルオロスルファニルベンゼン化合物を還元若しくは加水分解することを含む、
     式(3):
    Figure JPOXMLDOC01-appb-C000004
    で表されるペンタフルオロスルファニルアニリン化合物の製造方法。
  3.  前記窒素系求核剤がベンジルアミン化合物、ヒドラジン化合物、グアニジン化合物、ヒドロキシルアミン及びフタルイミドアルカリ金属塩からなる群より選ばれる少なくとも1種である請求項1または2に記載の製造方法。
  4.  前記還元を、触媒としてPd/C若しくはラネーニッケル用い水素存在下で行う、請求項2又は3に記載の製造方法。
  5.  前記加水分解を、酸水溶液若しくはアルカリ水溶液を用いて行う、請求項2~4のいずれかに記載の製造方法。
  6.  溶媒として非プロトン性極性溶媒を用いる請求項1~5のいずれかに記載の製造方法。
  7.  非プロトン性極性溶媒が、ジメチルスルホキシド又はN-メチル-2-ピロリドンである請求項6記載のペンタフルオロスルファニルアニリンの製造方法。
  8.  ハロゲノ-ペンタフルオロスルファニルベンゼン化合物と窒素系求核剤との反応において、塩基を使用する請求項1~7のいずれかに記載の製造方法。
     
PCT/JP2015/086177 2014-12-25 2015-12-25 窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法 WO2016104677A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/539,059 US9868701B2 (en) 2014-12-25 2015-12-25 Method for producing nitrogen-containing pentafluorosulfanylbenzene compound
CN201580070598.4A CN107108490B (zh) 2014-12-25 2015-12-25 含氮五氟硫基苯化合物的制造方法
GB1710285.6A GB2548301B (en) 2014-12-25 2015-12-25 Method for producing nitrogen-containing pentafluorosulfanylbenzene compound
DE112015005812.5T DE112015005812B4 (de) 2014-12-25 2015-12-25 Verfahren zur Herstellung einer stickstoffhaltigen Pentafluorsulfanylbenzol-Verbindung
JP2016566491A JP6709509B2 (ja) 2014-12-25 2015-12-25 窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263240 2014-12-25
JP2014-263240 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104677A1 true WO2016104677A1 (ja) 2016-06-30

Family

ID=56150689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086177 WO2016104677A1 (ja) 2014-12-25 2015-12-25 窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法

Country Status (6)

Country Link
US (1) US9868701B2 (ja)
JP (1) JP6709509B2 (ja)
CN (1) CN107108490B (ja)
DE (1) DE112015005812B4 (ja)
GB (1) GB2548301B (ja)
WO (1) WO2016104677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044215A1 (ja) * 2017-08-29 2019-03-07 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びポリイミド化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231028A (ja) * 1983-05-31 1984-12-25 バスフ アクチェン ゲゼルシャフト フタルイミドの分解法
JPS63156759A (ja) * 1986-12-06 1988-06-29 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト 2−アミノ−5−アシルアミノフエノール類の製造法
JPH1112239A (ja) * 1997-06-23 1999-01-19 Kao Corp 1−(β−ヒドロキシエチル)−2,5−ジアミノベンゼン又はその塩の製造法
JP2002541131A (ja) * 1999-03-31 2002-12-03 アベンティス・クロップサイエンス・エス・アー 農薬中間体の製造方法
JP2007512246A (ja) * 2003-11-13 2007-05-17 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング オルト−置換ペンタフルオリドスルファニル−ベンゼン、その製造法及び有用な合成中間体段階の形態でのその使用
JP2013544774A (ja) * 2010-09-29 2013-12-19 ザ プロクター アンド ギャンブル カンパニー 2−メトキシメチル−1,4−ベンゼンジアミンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9515599D0 (en) 1995-07-29 1995-09-27 British Nuclear Fuels Plc The preparation of fluorinated organic compounds
US7317124B2 (en) 2003-11-13 2008-01-08 Sanofi-Aventis Deutschland Gmbh Ortho-substituted pentafluorosulfanylbenzenes, process for their preparation and their use as valuable synthetic intermediates
US20120129846A1 (en) * 2008-11-06 2012-05-24 Zhaoning Zhu Gamma secretase modulators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231028A (ja) * 1983-05-31 1984-12-25 バスフ アクチェン ゲゼルシャフト フタルイミドの分解法
JPS63156759A (ja) * 1986-12-06 1988-06-29 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト 2−アミノ−5−アシルアミノフエノール類の製造法
JPH1112239A (ja) * 1997-06-23 1999-01-19 Kao Corp 1−(β−ヒドロキシエチル)−2,5−ジアミノベンゼン又はその塩の製造法
JP2002541131A (ja) * 1999-03-31 2002-12-03 アベンティス・クロップサイエンス・エス・アー 農薬中間体の製造方法
JP2007512246A (ja) * 2003-11-13 2007-05-17 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング オルト−置換ペンタフルオリドスルファニル−ベンゼン、その製造法及び有用な合成中間体段階の形態でのその使用
JP2013544774A (ja) * 2010-09-29 2013-12-19 ザ プロクター アンド ギャンブル カンパニー 2−メトキシメチル−1,4−ベンゼンジアミンの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044215A1 (ja) * 2017-08-29 2019-03-07 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びポリイミド化合物

Also Published As

Publication number Publication date
GB201710285D0 (en) 2017-08-09
CN107108490A (zh) 2017-08-29
GB2548301B (en) 2019-08-07
DE112015005812T5 (de) 2017-09-14
JPWO2016104677A1 (ja) 2017-10-12
JP6709509B2 (ja) 2020-06-17
US9868701B2 (en) 2018-01-16
DE112015005812B4 (de) 2018-12-27
US20170349545A1 (en) 2017-12-07
GB2548301A (en) 2017-09-13
CN107108490B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
JP5235683B2 (ja) アダマンタンアミン類の調製方法
JP4342940B2 (ja) 5−メチル−1−フェニル−2(1h)ピリジノンの製造方法
JP5167283B2 (ja) フェニルトリアゾリノン類の製造法
US11472767B2 (en) Process for the monotopic preparation of intermediate organo-iodinated compounds for the synthesis of ioversol
TWI444360B (zh) An asymmetric azine compound and a method for producing the same
JP5689321B2 (ja) 2−アミノ−4−トリフルオロメチルピリジン類の製造方法
JP6709509B2 (ja) 窒素含有ペンタフルオロスルファニルベンゼン化合物の製造方法
JP5266708B2 (ja) ヒドロキシペンタフルオロスルファニルベンゼン化合物の製法
JP5168830B2 (ja) テトラヒドロピラン−4−オン化合物の製法
JPWO2011001976A1 (ja) スレオ−3−(3,4−ジヒドロキシフェニル)−l−セリンの製造法
TWI623520B (zh) 製備雙(3-胺基苯基)二硫化物及3-胺基硫醇之方法
JP3919215B2 (ja) カルボキシアレーンスルホン酸およびそのカルボン酸誘導体の製造法
JP4161290B2 (ja) ピリミジニルアルコール誘導体の製造方法及びその合成中間体
JP5166747B2 (ja) アルキルアミノピリジン類の精製方法
JP6943560B2 (ja) 2−アミノ−6−メチルニコチン酸エステル又はそのプロトン酸塩の製造方法
KR101856566B1 (ko) 4'-히드록시-4-비페닐카르복실산의 신규 제조 방법
JP2009500302A (ja) 3,4−ジクロロイソチアゾールカルボン酸の調製方法
JP4587139B2 (ja) アミノアルコキシカルボスチリル誘導体の製造方法。
JP4500983B2 (ja) 6−アルコキシ−2−ナフタレンチオールおよびその製造方法
WO2022202643A1 (ja) S,s-(6-メチルキノキサリン-2,3-ジイル)ジチオカーボネートの製造方法
JP5573904B2 (ja) テトラヒドロピラン−4−オン化合物の製法
JP2003113153A (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
JP2020037522A (ja) N、n’−ジ置換ビオチン化合物の製造方法
JP2007119406A (ja) 4−アセチル−1−ベンジル−4−フェニルピペリジン類の製造法
JP2006045138A (ja) 1−アミノシクロプロパンカルボン酸の精製方法及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539059

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016566491

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005812

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 201710285

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151225

122 Ep: pct application non-entry in european phase

Ref document number: 15873245

Country of ref document: EP

Kind code of ref document: A1